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1. INTRODUCTION

Modern model theory can be viewed as a subject obsessed with notions of dimen-
sion, with the key examples furnished by linear dimension on the one hand, and the
dimension of an algebraic variety (or, from another point of view, transcendences
degree) on the other. There are several rigorous, and not always equivalent, notions
of abstract dimension in use. For historical reasons the one we use is generally re-
ferred to as Morley rank. In the applications of model theory, it is important that
this dimension may be ordinal valued, but the case of finite dimension continues
to stand out. For example, in the model theoretic approach to the Manin kernel
in an abelian variety, one enriches the underlying algebraically closed field with a
differential field structure, at which point the abelian variety becomes infinite di-
mensional, but the Manin kernel itself is finite dimensional, which accounts for a
certain number of its fundamental properties.

For some time it was hoped that one would be able to classify the “one-dimensional”
objects arising in model theory explicitly and in complete generality, a hope which
was dashed by a construction of Hrushovski. But in diophantine applications, even
after leaving the algebraic category, one has in addition to the dimension notion
a topology reminiscent of the Zariski topology, and some very very strong axioms,
given in [HZ96]. In this case one gets the desired algebraicity result, in nondegen-
erate cases, with substantial diophantine applications (cf. [Bo98, Sc01]).
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The work reported here concerns the Algebraicity Conjecture (Cherlin/Zilber)
which states that a simple group of finite Morley rank should be algebraic. This oc-
cupies a middle position between the known results used in diophantine applications
(where the focus in any case is on abelian groups) and the more ambitious conjec-
tures which have been refuted. There is no assumption of a topological nature, and
the axioms are only those which occur in general model theory, but considerably
refined by results holding in the specific context of groups, where the group action
introduces a considerable degree of uniformity into the picture.

This conjecture also occupies a kind of middle position between algebraic group
theory and finite group theory. The identification of the simple algebraic groups as
Chevalley groups can be carried out with relentless efficiency by examining maximal
tori and their actions on unipotent subgroups, thereby quickly revealing the asso-
ciated root system and giving the structure of the Weyl group. The classification
of simple finite groups is similar in outcome: setting aside the alternating groups
and a sackful of sporadic groups, one has some sort of twisted Chevalley group,
which can be identified by determing the associated building, though the process
is so intricate that by the time the building is actually visible the whole group is
equally visible. The question arises whether either of these two approaches offers
anything for our more general problem. In particular cases, both do, and they can
even be combined. But this requires a certain supply of elements of order two to
implement.

Some time ago a project was launched to apply the techniques of finite simple
group theory in combination with relevant notions of algebraic group theory, to-
ward an analysis of hypothetical nonalgebraic simple groups of finite Morley rank
containing involutions, which aims at pinning down the critical (minimal) config-
urations with as much precision as possible. An early sketch of the possibilities is
found in [BN94]. In some cases the hypothesis of minimality is superfluous: for
example, if the group contains a nontrivial unipotent 2-subgroup in an appropriate
sense. Another case is the case in point in the present article. We will prove the
following.

Theorem 1. Let G be a connected group of finite Morley rank whose Sylow 2-
subgroup is finite. Then G contains no involutions.

As a simple group will be either finite or connected, this result tells us in the
simple case that the only exceptions are the finite simple groups. The following
version is a little sharper.

Theorem 2. Let G be a connected group of finite Morley rank, and a € G an
involution. Then the Sylow 2-subgroup of C(a) is infinite.

This casts considerable light on the general program of determining the possible
2-Sylow structure in a hypothetical counterexample to the Cherlin/Zilber Alge-
braicity Conjecture, according to which simple groups of finite Morley rank should
be Chevalley groups.

Groups of finite Morley rank are abstract groups equipped with a notion of
dimension which assigns to every definable set X a dimension, called Morley rank
and denoted rk(X), satisfying well known and fairly rudimentary axioms given for
example in [BN94, P87-G01]. Examples are furnished by algebraic groups over
algebraically closed fields, with rk(X) equal to the dimension of the Zariski closure
of X. The Algebraicity Conjecture amounts to the assertion that simple algebraic
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groups can be characterized, as abstract groups, by the presence of a dimension.
A striking feature of this conjecture is the complete absence of any topological
assumptions; it is the main surviving conjecture, in this general line of thought,
outside the topological framework.

As the category of groups of finite Morley rank is closed under finite direct
products, it is easy to fabricate non-algebraic examples, but to construct “seriously”
nonalgebraic examples is a challenge, which so far has been best met by Baudisch
in [Ba96] with a nilpotent example.

To put the ongoing work in context, we need to present an overall framework for
the analysis, as well as the current status of the program. One first defines Sylow
2-subgroups in the natural way, and one also considers the connected components
of Sylow 2-subgroups, which are called Sylow® 2-subgroups. The structure of these
Sylow® 2-subgroups is as follows, in the context of groups of finite Morley rank.

S=UxT U 2-unipotent, T a 2-torus

That is, S is the central product of groups U and T where U is definable and
connected, and of bounded exponent, while T is a divisible abelian 2-group, not in
general definable. This simple fact provides a framework for further analysis.

It is known that necessarily S = U or S = T when the ambient group G is
simple, the other factor being trivial [ABC]. Furthermore, when U is nontrivial the
group G is in fact algebraic. These are substantial results relying on an analysis
which would be considered long by most standards, though unbelievably rapid by
the standards of finite simple group theory. So attention focusses on the case S =T,
which in fact is two cases:

S =T >1 (odd type); S =T =1 (degenerate type)

We note that another formulation of the degeneracy condition is that the full Sylow
2-subgroup of the ambient group G is finite, and that is the condition we have
adopted in formulating our main result above.

It is in odd type that the theory still relies on the assumption that the ambient
simple group is a K*-group; that is, all its proper definable simple sections are
algebraic. Given that, the group T satisfies severe restrictions: it is known that
its Priifer rank (which is the same as the 2-rank mo(T")) is at most two, which is
a condition analogous to Lie rank at most two in the algebraic case. A good deal
more is known about this case, and a good deal remains to be done here.

Throughout, the case of degenerate type has occupied a peculiar position. It has
certainly not been ignored, but on the other hand nothing approaching a systematic
plan or point of view has ever been found for dealing with this case. The elimination
of involutions from these groups has been arrived at unexpectedly, and from an
unusual direction: techniques used in the computational theory of so-called black
box groups provide a key ingredient in the proof, and the remaining ingredients are
purely model theoretic. What we borrow is taken from one particular chapter in the
theory which owes little to the conventional analysis of finite simple groups, other
than a preoccupation with centralizers of involutions. The sort of problem we are
dealing with here (which is related to the Z*-theorem in finite group theory) would
normally be approached using character theoretic methods and transfer arguments,
neither of which have analogs in our setting. The black box methods become very
global and direct in our setting, having to do with the ranks of fibers of appropriate
covariant maps (first in a rudimentary way in §3, then more precisely in §5).
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Tuna Altinel has pointed out that with Theorem 1 in hand, our subject reaches
a level of maturity sufficient to dispose of two “chestnuts” from the general theory
of groups of finite Morley rank by reduction to the simple case and application of
what amounts to a tripartite theory (degenerate type, odd type, and even type—the
last being the case S = U > 1). Here the fact that odd type groups are always
studied in an inductive setting could be an obstacle, but as it happens a certain
amount of information of a noninductive character has also been obtained recently
[Ch057]. The two results in question are the following.

Proposition 1.1. Let G be a connected and nontrivial group of finite Morley rank.
Then the centralizer of any element of G is infinite.

Proposition 1.2. Let G be a connected group of finite Morley rank containing a
definable generic subset whose elements are of order 28 for some fived k. Then G
has exponent 2F.

Both of these problems have been notoriously open. The point of the second one,
stressed by Poizat, is that the corresponding result for algebraic groups is trivial,
in view of the presence of a suitable topology.

One can combine these two results as follows.

Proposition 1.3. Let G be a connected group of finite Morley rank containing a
definable generic subset whose elements are of order n for some fized n. Then the
Sylow 2-subgroup S of G is unipotent, G = S+ Cg(S) is a central product, and G/S
s a group without involutions whose elements are generically of order ng, where ng
is the odd part of n.

Thus for all practical purposes the study of the “generic equation” z" = 1
reduces to the case of n odd. The analysis in that case is complicated by the
possible existence of simple p-groups of finite Morley rank.

While Proposition 1.3 is expressed as a strong form of Proposition 1.2, it also
includes Proposition 1.1: if @ € G has a finite centralizer, then a has finite order
and its conjugacy class a® is generic in G. Then applying Proposition 1.3, evidently
G > S and thus G = G/S is a group without involutions in which the conjugacy
class of the image @ of a is still generic. But the same applies to @' and thus a,
a1 are conjugate, and this produces involutions in G/S, a contradiction.

We remark that these last results (and Theorem 3 following) rely on a consider-
able body of material, not all of it fully published at this time, and the reader may
prefer to consider them as conditional—specifically, conditional on the classification
of groups of even type [ABC].

We will also generalize Theorem 1 as follows.

Theorem 3. Let G be a connected group of finite Morley rank whose Sylow p-
subgroups are finite. Then G contains no elements of order p.

However the proof for odd p involves a reduction to the statement for p = 2,
though, as will be seen, parts of the two proofs can be done uniformly.
Returning to the case p = 2 we will also show the following.

Theorem 4. Let V be a 4-group acting definably on a connected group H of finite
Morley rank and degenerate type. Then

H = (Cy°(v):veVX)
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In fact one first applies Theorem 1 to reduce to the involution-free case (and in
that setting, connectivity is no longer needed). However this more general form
is the form one would actually want, and may actually be useful, eventually, in
emancipating the odd type analysis from the K*-hypothesis, a line of development
which remains to be explored. In this line, the following is completely open.

Problem 1. Can one show that a simple group of finite Morley rank and degenerate
type has no nontrivial involutory automorphism?

Evidently the hypothesis of simplicity is necessary, but is not easy to bring to
bear on the problem.

Finally, we should mention the outstanding open question of a general nature
concerning groups of finite Morley rank.

Conjecture 1 (Genericity Conjecture). Let G be a connected group of finite Morley
rank. Then the union of the connected definable nilpotent subgroups of G is a
definable generic subset of G.

This conjecture reflects quite well a useful property of connected algebraic groups.
Its truth would greatly simplify the proof of our main result. Conversely, some of
our methods might contribute to the general analysis of this problem. Jaligot has
shown [Ja01] that statements closely related to the Genericity Conjecture have
strong implications for the general structure theory of groups of finite Morley rank,
and mesh well with the existing Carter subgroup theory.

1.1. Notation.

Notation follows [BN94]. We mention the notation d(g) for the definable closure
of g in the group theoretic sense: this is the smallest definable subgroup containing
g, and coincides with d({g)). See [BN94, §5 et passim| for this.

2. APPROXIMATING d(g)

The present section has a purely technical character. We will make extensive
use of the function d(g) which assigns to an element g the smallest definable sub-
group containing it, which we think of as the definable group “generated by” g¢.
Unfortunately the function d is not in general definable (in an algebraic geometric
context the parallel remark would be that the family {d(g) : ¢ € G} is not an
algebraic family). Indeed, for g of finite order the group d(g) is the finite cyclic
group generated by g, which is typically of unbounded order, and hence cannot be
given in a uniformly definable way.

We will replace d by a definable approximation d with essentially the same prop-
erties from a practical point of view. There is no “canonical” approximation, but
we will record all the properties of d used in the present paper, which we think
provides a robust approximation to the function d.

A word on the terminology used in the next lemma is in order. We are interested
in p-torsion (elements of order p™) for all primes p, with special interest in the
case p = 2. We will work generally with the hypothesis that Sylow p-subgroups
have finite exponent. There are two distinct notions of Sylow p-subgroup, both
reasonably natural, in this context: either a maximal p-subgroup, as usual, or else
a maximal locally nilpotent p-subgroup (local nilpotence can be replaced here by
anything similar—local finiteness or solvability for example).
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With either definition, there is at present no Sylow theory for p odd. Note
however that the following conditions are equivalent.

(1) Every abelian p-subgroup of G has finite exponent.
(2) Every Sylow p-subgroup of G has finite exponent.
(3) The p-torsion of G has bounded exponent.

Since these are successively stronger conditions, it suffices to show that the first
implies the last. If the p-torsion of G has unbounded exponent, then in a saturated
elementary extension G* of G there will be an infinite quasicyclic p-subgroup A.
Then d(A) will be a definable abelian p-divisible group containing an element of
order p. The existence of such a subgroup passes from G* to G and contradicts (1).

Since all of these conditions are equivalent, we may express them as follows: “G
has Sylow p-subgroups of bounded exponent.” The reader may possibly prefer to
keep clause (3) in mind.

The practical effect of this condition is the following, which may be surprising
if one thinks in terms of “cyclic” subgroups; the correct intuition is furnished by
Zariski closures of cyclic subgroups.

Lemma 2.1. Let G be a group of finite Morley rank, p a prime. Suppose that G
has Sylow p-subgroups of bounded exponent, and let p"™ be a bound on the exponent.
Then for any element g € G, the following hold.

e d(gP") is p-divisible.

e d(g) has a cyclic Sylow p-subgroup S.

e d(g) =d(g*") x S.

Proof. Let A = d(g), a definable abelian group. One has A = Ay @ S with A p-
divisible and S a p-group of finite exponent. By our hypothesis, Ay has no p-torsion
and thus S is the Sylow p-subgroup of A. We can write g = as with a € Ay, s € S
and then g € Ay X (s), so d(g) = Ap X (s). All that needs to be checked at this
point is that Ag = d(g?").

We have ¢g?" = a?”". Since every definable subgroup of Ay is p-torsion free and
thus uniquely p-divisible, it follows that a € d(¢g*") and thus g € d(¢g*") x S. Hence
d(g) = d(g"") x S and d(g*") = Ao. a

The picture provided by the foregoing lemma should be borne in mind through-
out. Note that tori behave quite differently; their generic elements are dense, and
thus the Sylow p-subgroups of d(g) in general can be very far from cyclic.

Lemma 2.2. Let p be a prime, and let G be a group of finite Morley rank with
Sylow p-subgroups of bounded exponent. Then there is a definable function ci(a),
from elements of G to definable subgroups of G, with the following properties.

(1) d(a) < d(a);

(2) If d(a) = d(b), then d(a) = d(b);
(3) For g € G, we have d(a%) = d(a)9;
(4) d(a) is abelian;
(5)
(6)

[y
~—

The groups d(a) and d(a) have the same Sylow p-subgroup;

If x € G conjugates a to its inverse, then x normalizes d(a) and acts on it
by inversion.

Proof. Consider the following two functions.

o di(a) = Z(C(a)).



INVOLUTIONS IN DEGENERATE TYPE 7

e dy(a) = di(a)?(a) where ¢ is a bound on the order of the p-torsion in G.

One sees easily that d; is definable and satisfies our first four conditions (cf. [BN94,
§5.1]). As [da(a) : d1(a?)] < q it follows easily that ds is also a definable function,
and it also satisfies condition (1) and inherits conditions (2 — 4) from d;.

Furthermore, da(a) also satisfies the fifth condition, since dy(a) is abelian and
dq(a)? is g-torsion free.

Now to achieve the final point, let ds(a) be the subgroup of dz(a) consisting of
elements inverted by every element that inverts a. O

The following is in a similar vein.

Lemma 2.3. Let G be a group of finite Morley rank, and p a prime, with Sylow
p-subgroups of G of bounded exponent. Let H be a definable subgroup of G, and
a € N(H) of order p modulo H. Then d(a) NaH contains a p-element.

Proof. Letting ¢ be the order of a Sylow p-subgroup S of d(a), we have d(a) =
d(a?) x S and thus aH = sH for some s € H. O

In the case that interests us, the group H will contain no elements of order p,
and then the p-element in aH N d(a) will be unique and of order p.

3. MINIMIZATION

Definition 3.1. Let G be a group of finite Morley rank and p a prime. We say
that G is p-degenerate if G contains no infinite abelian p-subgroup.

Observe that G is 2-degenerate if and only if G is of degenerate type.

Lemma 3.2. Let G be a connected p-degenerate group of finite Morley rank with
nontrivial p-torsion, and of minimal Morley rank among all such groups. Then
G = G/Z(G) is simple, and contains nontrivial p-torsion, while no proper definable
connected subgroup of G contains nontrivial p-torsion.

Proof. By our minimality hypothesis no proper connected subgroup of G contains
p-torsion. If H < G is a nontrivial definable connected normal subgroup, then
passing to G/H we contradict the minimality of G. So Z(G) is finite and G/Z(G)
is simple. It suffices to show that G/Z(G) contains nontrivial p-torsion.

Supposing the contrary, after passing to a quotient of G we may suppose that
Z(@) is a p-group. We now introduce a function

n:G— Z(Q)
which though not a homomorphism will be covariant with respect to the action of
Z(@G). This is defined as follows.

For g € G, we consider the subgroup d(g), which splits as d(g)? x Sy, with g the
exponent of Z(G) and S, < Z(G) the Sylow p-subgroup of d(g) (or of d(g)). So
the projection 3 : d(g) — Sy is well-defined, and we may set n(g) = m2(g) € Z(G).

The desired covariance property is the following.

n(zg) = zn(g) for z € Z(G), g € G

Writing g = gos with go € d(g)? and s € S,, we have g} € d(zg) and as d(gd) is
uniquely p-divisible we have gy € d(zg). But zg = gozs and hence zs € d(zg) <

d(zg) as well, and our claim follows.
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Now in view of the covariance of the map 7, its fibers have constant rank. Thus
G is partitioned by the fibers of 5 into finitely many sets of equal rank, and as G
is connected this yields a contradiction. O

4. GENERICITY

In the present section we suppose the following.

G is a p-degenerate simple group of finite Morley rank, p is a prime,
(M) G contains nontrivial p-torsion, and no proper definable connected
subgroup of G contains nontrivial p-torsion.

Let ¢ be a bound on the exponent of the p-torsion in G.

We will show that the generic elements of G lie outside every proper connected
subgroup of G, and we will pin down their location with sufficient precision to give
useful structural information. In particular we will show that the Sylow p-subgroup
of G has exponent p, and that any two elements of order p are conjugate.

Definition 4.1.
(1) Let uw € G have order p, with Cg°(u) nontrivial. Set

H, = N°(...(N°(C°(w)))...)

where the operator N° is applied sufficiently many times to ensure that it
stabilizes (tk(G) is a sufficiently large number of times).

(2) Leta € G, and suppose d(a) contains an element u of order p, with Cg®(u)
nontrivial. Set H, = H,,.

Observe that H, is well-defined in clause (2), as the Sylow p-subgroup of d(a) is
cyclic, and in particular the two notations (1) and (2) are compatible. The notation
H, has no meaning if d(a) is p-torsion free, or if the elements of order p in d(a)
have finite centralizers; we could take H, = G in this case, but we prefer to view
it as undefined. Wherever the notation H, is used a should be assumed (or, as
appropriate, proved) to be of the correct form. Note however that when p = 2, any
element u of order p in G does have C°(u) nontrivial [BN94, Ex. 13,14], and that
by the time we come to deal seriously with the case of p odd, we will have proved
the corresponding result. With these conventions, we have the following properties.

(1) H, is a proper definable connected subgroup of G;
(2) H, = N°(H,) (“almost self-normalizing”);

(3) a € N(H,) \ Hg;

(4) Hy,o = HY.

For the third point, if u € d(a) has order p then u ¢ H, by our hypothesis on
G, and hence a ¢ H,.

The following property lies deeper.

Lemma 4.2. Let a € G, and suppose one of the following conditions is satisfied.

(1) a has order p modulo H, and C°(a) is nontrivial;
(2) p=2, and d(a) contains an involution.

Then for ¢ € aH, we have H, = H. and hence aH, = cH.. Furthermore, all
elements of order p in aH, are conjugate.
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Proof. Suppose first that
(1) a has order p modulo H,

Let u be any element of order p in aH,. Let C,, = Cg, (u). For ¢ € C,,, the group
d(c) is uniquely p-divisible by (1), and ¢? € d(cu), so ¢ € d(c?) < d(cu). Hence
u € d(cu), and indeed u is the image of cu under projection in d((cu)?) X Se,, the
second factor standing for the Sylow p-subgroup of d(cu). We claim that the set
(uC, ) is generic in aH,.

If (uC,) meets (uC, )" with h € H,, and = € (uC,)N(uC,)", then u is the second
projection of z in d(zP) x S, where S,, is the corresponding Sylow p-subgroup, and
similarly this projection is also u". So u = u”" and h € C(u). It follows that the
union J(uC, )™=, or better | J(uC,, ) \Hu is generic in aH,.

If we take a second element v € aH, of order p then similarly (vC, )« is generic
in aH, and hence after conjugating we may suppose v € uC,, in which case v €
(uy NaH, = {u}. So the elements of order p are conjugate, and therefore H., is
constant for ¢ € aH,.

Now suppose

(2) p =2, and d(a) contains an involution %

Then for any ¢ € aH,, there is some ¢’ € d(¢) NiH, and hence some involution
Jj€d(d)NiH,. In particular j € d(c) and H. = Hj.

Now the group H, (i) = H,(j) has a Sylow 2-subgroup of order two and hence ¢

and j are conjugate under the action of H,. But H; = H, and hence H; = H,, so
H. = H,. So the claim holds also in this case. [l

Lemma 4.3. Under the hypothesis (1) or (2) of the previous lemma, the set
U(aH,)% is generic in G.

We interpolate a rank computation similar to that of [CJ04, 3.3], but slightly
more general.

Definition 4.4. Let G be a group of finite Morley rank and X C G definable. The
(generic) stabilizer G[X] is the subgroup

{g € G:rk(XAXY) < 1k(X)}

Lemma 4.5. Let G be a group of finite Morley rank, and X C G a definable set
such that
rk(X\ J X9) > rk(G[X])
9¢G[X]
Then tk(|J X9) = 1k(G).

Proof. Let Y = X \ Uyeqrx X9 Let ¥ = UYCEL Then for h € G[X] and

g ¢ G[X] we have Y"1 Y9 = (Y NY9 ") = and thus Y NY¥ = (). In particular
G[X] = G[Y] and this is also the setwise stabilizer of the set Y. Furthermore
rk(Y) > rk(Y) > rk(G[X]).
Now the family F = {Y9 : g € G} has rank rk(G)—rk(G[Y]) = rk(G)—rk(G[X]).
As distinct elements of F are disjoint, we have
rk(|JF) = tk(Y) + 1k(F) > tk(G)

Thus rk(|JY%) = rk(G), and the same applies to |J X©. O
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We note that the way we obtain the hypotheses of this lemma in practice is by
showing the following, in each instance.

rk(X\ ) X9) =rk(X) > rk(G[X])
9¢GI[X]

Proof of Lemma 4.3. It suffices to show that aH, is disjoint from its conjugates
(aH,)? for g ¢ N(H,), and then to make a simple rank computation based on
the fact that rk(N(H,)) = rk(N°(H,)) = rk(H,). So suppose we have an element
c € (aHy) N (aH,)9.

Then H, = H, by the preceding lemma and similarly H. = H,s = HJ. So
H,=HY, and g € N(H,). O

Now we can pass to structural consequences. We emphasize that the clause (7)
has been assumed throughout.

Lemma 4.6. All elements a of order p for which Cg°(a) is nontrivial are G-
conjugate, and if p = 2 then the Sylow 2-subgroup is elementary abelian.

Proof. For a,b of order p the sets | J(aH,)% and | J(bH})® are generic in G and so we
may suppose after conjugating that aH, NbHy # 0. Then for ¢ in the intersection
we have H, = H., = Hp and thus aH, = bH,. But we showed above that the
elements of order p in aH, are conjugate.

Now we pass to the case p = 2, and we claim there is no element of order four. If
on the contrary a is an element of order four, then the cosets aH, and a®H, consist
of elements ¢ such that modulo H¢ the element c is of order four or two, respectively.
But J(aH,)% and |J(a®H,)® are both generic, and this is a contradiction. O

This is about as far as the genericity arguments take us, and it is time to focus
on the case p = 2 and black box methods.

5. BLACK BOX METHODS

Now we specialize condition () to the case p = 2. Our hypotheses will therefore
be as follows.

G is a degenerate type simple group of finite Morley
(1) rank, GG contains involutions, and no proper definable
connected subgroup of G contains involutions

For the moment we need not rely on the results of the previous section. Rather
we introduce a crucial case division, dispose of one case using so-called black box
group theoretic methods, and then return to the other case using the information
from the last section.

We turn to the case division. Fix a conjugacy class of involutions C, and note
that as this set can be identified definably with G/C(i) for any fixed i € C, it has
Morley degree one. Thus the notion of “generic element” or pair of elements in C
is robust. The first case we will treat is the following one.

For generic and independent 7,5 € C the

(Case I) group d(ij) contains no involution.

The following two facts are elementary but important, and are used in combina-
tion.
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Lemma 5.1. Let G be a group of finite Morley rank and a an element of G.
Suppose that the Sylow 2-subgroups of G have bounded exponent. Then the following
conditions on the group d(a) are equivalent.

(1) d(a) contains no involutions.
(2) d(a) is 2-divisible.
(3) d(a) is uniquely 2-divisible.
On the other hand, if d(a) does contain an involution, then that involution is unique.

Lemma 5.2. Let G be a group of finite Morley rank and i,j involutions of G. Let
a =1j. Then d(i,j) = d(a) x (i), where i acts by inversion on d(a). Furthermore,
i and j are conjugate under the action of d(a) if and only if d(a) contains no
imvolution.

This is well known in the finite case and the infinite case is much the same. The
only noteworthy point is the fact that in the absence of 2-torsion the group is 2-
divisible, a point already used repeatedly but relying essentially on the definability
of the group in question.

This leads to consideration of the following partial functions from the group G
to C(i), for any fixed involution 4, under the hypothesis that the Sylow 2-subgroups
of G have bounded exponent.

(1) Co(g) is the unique involution in d(i - i9), if d(i - ¥9) contains an involution;
(2) (1(g) is the unique element in gd(i-i9)NC (%), if d(i-79) contains no involution

Indeed, under our hypothesis we have just seen that (y is well-defined on its
domain. On the other hand, if d(i - i) contains no involution then this group is
2-divisible, and there is an element = € d(i-i9) conjugating i to i, so gz ~! belongs
to C'(i)Ngd(i-i9). As far as uniqueness is concerned, if z,y € C(i) N gd(i-9), then
x~ly € C(i) Nd(i-i9) is both centralized and inverted by i, hence an involution
or trivial, and as we have ruled out involutions we conclude x = y. One could also
compute more directly that ! = 2 = z[z,i] = 2% and thus 2? = ii9, so that
x is uniquely determined within d(i - i%), symbolically 2 = v/ii9, with the square
root operation restricted to d(i-49), though this extra precision is useful mainly as
a way of verifying the existence of x.

The functions (y and (; are definable, because we can replace d by d everywhere
in their definitions, and the Sylow 2-subgroups remain the same. The uniqueness
argument also relies on the properties of d given at the outset, which mimic the
properties of d.

Lemma 5.3. Case (I) does not occur.

Proof. We fix i € C and consider the definable partial function {; : G — C(i)
discussed above, which is defined on a generic subset of GG, namely

Ci(g) € C(i) N gd(ii?)

It follows by inspection of the definition that we have the covariance property

Ci(eg) = cCi(g)
for g in the domain of ¢; and ¢ € C(¢). This implies that the fibers of (; are of
constant rank, say f, and hence that any subset of C(i) of rank r lifts under (; to a
subset of G of rank r+ f. Now since i € C(i)\ C°(4), the group C(4) is disconnected
and hence has disjoint subsets of full rank, and these lift under (; to disjoint generic
subsets of G, which contradicts the connectivity of G. (]
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6. PROOF OF THEOREM 1

We suppose toward a contradiction that G is a group of degenerate type con-
taining an involution. Applying Lemma 3.2 we may suppose
e (G is simple;
e 1o proper definable connected subgroup of G' contains an involution.
We fix a conjugacy class of involutions C in G, and in view of Lemma 5.3 we
suppose that the following holds.

For generic and independent 4,5 € C the
(Case II) i . L .
group d(ij) contains a unique involution.

Applying Lemma 4.6 we find that the Sylow 2-subgroups of G are elementary
abelian. This then yields the following.

Lemma 6.1. If4,j are involutions and k € d((ij)) is an involution, then i and j
are not conjugate under the action of C(k).

Proof. We show first that i and ik are not conjugate in C(k). Suppose on the
contrary % = ik with v € C(k). Then i** =i and u acts on the group (i, k) as
a nontrivial automorphism of order two. It follows that d(u) contains a 2-element
with the same action, and as G has abelian Sylow 2-subgroups this is impossible.
On the other hand, as in the case of ordinary dihedral groups one may see that
the group d(i,7) has two conjugacy classes of noncentral involutions, represented
by i and j, and in particular j is conjugate to ik under the action of d((ij)), and
in particular under C'(k). If ¢ is conjugate to j under C'(k) then i is conjugate to
ik under C(k) and we have a contradiction. O

Now we may conclude the proof of Theorem 1 by a model theoretic argument.

Fix a Sylow 2-subgroup S of G and consider a pair i, j of involutions in C which
are independent and generic over S, that is to say with the elements of S treated
as constants. Define a subset S; ; € S x S as follows:

{(s,8) €8x S (i,k) ~ (s,8)}

7

Here k is the unique involution in d((if)), and “~” refers to conjugacy under the
action of G. As ¢ and k commute, the set S; ; is nonempty.

Now the pair (7,7) and the pair (j,¢) have the same type over S, so S; ; = S ;.
As the involution k is also the unique involution in d((j7)), this means that (i, k)
and (4, k) are conjugate to the same pairs in S x S, and hence to each other. But
to conjugate (i,k) to (4,k) in G means that ¢ is conjugated to j in C(k). This
contradicts the preceding lemma and completes the proof of Theorem 1.

As mentioned in the introduction, we can also strengthen Theorem 1 as follows.

Theorem 2. Let G be a connected group of finite Morley rank, and i € G an
involution. Then the Sylow 2-subgroup of C(i) is infinite.

Proof. Suppose toward a contradiction that G and i are a counterexample with
rk(G) minimal. Then 4 belongs to no proper definable connected subgroup of G.
Let S be a Sylow® 2-subgroup of G normalized by i. If S is trivial we contradict
Theorem 1. If S contains a nontrivial unipotent subgroup then Cs(¢) is infinite and
we contradict our hypothesis. So S is a 2-torus and 4 acts on S by inversion. By
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[Ch057] the generic element of G lies in a conjugate of N°(T) with T' a maximal
decent torus, and, in particular, in a proper definable connected subgroup of G.

Now by hypothesis C°(7) is of degenerate type and hence contains no involution.
Hence for ¢ € C°(i) we have i € d(ci) and H.; = H;. Thus for z € [J(iC° ()i we
have H, = H;.

Now for h € H;, if (iC°(i)) N (iC°(i))" # 0 and =z lies in the intersection, then
i,i" € d(z) and thus i = i", h € C(i). It follows that the distinct conjugates
(iC°())" are generically disjoint for h € H; with stabilizer contained in C(i). So
by Lemma 4.5 (taking G = H,{i)) we have rk({J[iC°(i)]*?) = rk(H;), and hence
(UiC°(i))H: is generic in iH;.

Let X = J(iC°(i))#i. Then for # € X% we have some involution j € d(x)
conjugate to ¢, and hence lying outside every proper definable connected subgroup
of G. Again, if X N X9 # () then we have H; = H;s and thus g € N(H;), and it
follows by another application of Lemma 4.5 that |J X is generic in G. So the
generic element of G lies outside every proper definable connected subgroup, but
this contradicts our analysis above. O

7. GENERIC EQUATIONS
Now we take up Proposition 1.3, concerning generic equations of the form
(%) " =1

In the statement of that proposition it was assumed that n was the precise order
of the generic element of GG, but it will be convenient here to work with the slightly
broader condition (*), so that the order of a generic element is a fixed divisor of n.
As we have noted, Altinel suggested that Theorem 1 supplies the missing piece of
the puzzle to treat a substantial portion of this problem.

In the solvable case, with n arbitrary, Jaber has shown by an argument that uses
results of Bryant and Wagner that when such an equation holds generically then it
holds everywhere.

Let G satisfy the equation () generically and let U be a Sylow® 2-subgroup of
G. We break the proof into three steps. We will be arguing inductively.

(1) U is 2-unipotent.
(2) U is normal in G.
3) G=U-Cg(U).

For the first point, one may use the theory of [Ch057], already cited above. If
G contains a nontrivial decent torus in the sense of that reference, and if T is
a maximal such, then H = N°(T) is almost disjoint from its conjugates, that is
H\ Uy¢n(m) H? is nongeneric in H, and JH @ is generic in G. Tt follows easily,
under our present hypotheses, that H also satisfies the equation (*) generically.
But H = C°(T) as well, and some coset of T' in H must satisfy 2" = 1 generically,
which is impossible. So there is no nontrivial p-torus in G for any p. In particular,
taking p = 2, we find that U is 2-unipotent.

Now we show that U is normal in G. Let K be a minimal nontrivial definable
connected normal subgroup of G. We may suppose inductively that UK/K is
normal in G/K and thus that UK is normal in G. Either K < U, or UK splits as
U x K with K of degenerate type. In either case it follows at once that U is normal

in G.
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Finally, take a maximal connected definable G-invariant series
1=Uy<U; <---<U,=U

for U under the action of G. As U acts trivially on each successive factor U;/U;_1,
G/U acts on each factor as a group of degenerate type, and hence acts trivially on
each factor by Lemma 3.2 of [AC03]. It follows that each definable 2*-subgroup of
G (including the finite ones) acts trivially on U. But G is generated by U and its
21 -subgroups, as it suffices to look at d(g) as g runs over G, and thus G = U-Cg(U),
as claimed.

Finally, since U is normal in G, we may consider the group G/U, which again
satisfies (x) generically. As G/U is of degenerate type it contains no involutions,
and thus we may replace n by its odd part. Note that the precise order of the
generic element may change in passing from G to G/U.

8. THE CASE OF ODD PRIMES
We now prove Theorem 3. This reads as follows.

Theorem 3. Let G be a connected group of finite Morley rank whose Sylow p-
subgroups are finite. Then G contains no elements of order p.

Here, as it happens, the two possible notions of Sylow p-group (maximal p-group
or maximal locally nilpotent p-group) give the statement in question two possible
meanings, and we prove this actually in the stronger of the two possible forms,
which may be put as follows.

A connected p-degenerate group of finite Morley rank has no p-torsion.

Suppose toward a contradiction that G is a p-degenerate group of finite Morley
rank with nontrivial p-torsion. Applying Lemma 3.2 we may suppose that G is
simple and that no proper definable connected subgroup of G contains nontrivial
p-torsion.

By Theorem 1, the prime p is odd.

Now we apply the material of §4. This involves the groups H, and we need to
know that C°(a) is nontrivial for each (or at least some) element of order p. But
we have proved Proposition 1.3 and in particular 1.1, so this is known.

Now applying Lemma 4.6, it follows that all elements of order p are conjugate in
G, and in particular each such element is conjugate to its inverse. Hence G contains
involutions, and is not of degenerate type.

If G contains a nontrivial unipotent 2-subgroup, then by the results of [ABC]|, G
is a simple algebraic group over an algebraically closed field of characteristic two.
But then G contains unbounded p-torsion for all odd primes p.

It follows that the Sylow® 2-subgroup of G is a nontrivial 2-torus. In particular
G contains nontrivial “decent tori” in the sense of [Ch05?], and by the analysis
given at the end of that reference, if T is a maximal decent torus (that is, maximal
among definable abelian subgroups of the form d(7,) with Tj a divisible torsion
subgroup), then [ J(N°(T))% is generic in G.

At the same time, by Lemma 4.3, if a € G is an element of order p then the
subset U(aHa)G is also generic in G, and thus we may suppose there is a nontrivial
intersection aH, N N°(G). But for each element ¢ € aH,, the group d(c) contains
an element of order p. In particular taking ¢ € N°(G), we find that N°(T) contains
an element of order p. But this contradicts our hypothesis on G.
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As an application, we can prove the Genericity Conjecture 1 for minimal con-
nected simple groups.

Proposition 8.1. Let G be a minimal connected simple group of finite Morley rank.
Then the set of elements of G which belong to some connected nilpotent subgroup
of G contains a definable generic subset of G.

Proof. Assume the contrary. Then the group contains no decent torus, in view of
the results of [Ch05?7] and a result of Frécon [CJ04, 3.5]. So G is of degenerate
type. On the other hand, there must be p-torsion for some prime p, so G is not
p-degenerate. So there is an infinite abelian p-subgroup of G, and as there is no
decent torus there is a nontrivial p-unipotent subgroup in G.

Let B be a Borel subgroup of G with U,(B) nontrivial. As B contains no decent
torus, B/Up(B) contains no p-torsion, and B = U,(B)Cg(U,(B)).

A generic element g of B has the property that d(g) meets U,(B); otherwise,
we would have a generic subset X of B such that for ¢ € X the group d(g) is
p-torsion free, and then multiplying X by a nontrivial element of U,(B) yields a
contradiction.

It follows that B is generically disjoint from its conjugates as otherwise we would
have distinct Borel subgroups meeting U,(B) nontrivially, contradicting [Bu0x2,
2.1].

So a generic element of G is conjugate to a generic element of B, which lies in a
Carter subgroup of B by a result of Frécon [CJ04, 3.5]. O

9. GENERATION

We turn to Theorem 4, or rather the following, which is marginally stronger in
view of Theorem 1 and Lemma 9.2 below.

Proposition 9.1. Let H be a group of finite Morley rank without involutions, and
V' a 4-group acting definably on H. Then

H=(C(v):veV#)
Proof. Work in G = H -V, with V = (3, j).
Fix h € H. Then i and j" are not conjugate in G, so there is some u € I(G)
commuting with both (indeed, u € d(i, j*)).
As V is a Sylow 2-subgroup of C(i) and u € C(i), there is some hy € C(4) so that
uM € V. Similarly there is hy € C(u"0) so that (j"h0)h € V. Then jhtot = j
and hhohy € C(35), so h € C(§)C(u"*)C(i). This proves the claim. O

Now in order to recover the statement of Theorem 4, we apply Theorem 1 and
also the following general lemma.

Lemma 9.2. Let G be a connected group of finite Morley rank without involutions,
and i an involutory automorphism of G. Then Cg(i) is connected.

Proof. We use a “black box” argument in the style of §5.
We consider the group G = G % (i). For any pair of involutions ¢, 7 € G we have
ij € G and thus d(ij) is torsion-free. It follows that the map

Cl . G — Cé (’L)
introduced in §5 is well-defined. Observe that the restriction of (3 to G carries G

into C(7), and is Cg(7)-covariant. Thus we find as usual deg(Cg (7)) < deg(G) =1
and Cg(4) is connected. O
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We also give a “lifting” lemma, in the spirit of extending as much as possible of
the solvable theory to the general case.

Lemma 9.3. Let G be a group of finite Morley rank and i an involution acting on
G. Let H <« G be definable and i-invariant, without involutions, and with i acting
trivially on G/H. Then G = H - C(3).

Proof. Let g € G, and set h = [i,g] € H. Then i inverts h.
As H contains no involutions, the group d(h) is 2-divisible. Take hy € d(h) with
h? = h. Then i inverts h; and hence

[i, ] = hi = [i, g]
Thus gh;' € C(i), and g € C(i)H = HC(i). O
10. AFTERWORD: BLACK-BOX GROUPS

The methods used for the proof of the main result are relatively self-contained.
One of the main ingredients comes from an unusual source: “black box group
theory” [KS00], via a line of thought represented by [Br00, AlBo01, Bo02]. The
subject as a whole deals with the problem of computing in large finite groups
which are given in such a form that one can extract elements at random, and
perform limited operations or tests on these elements. Among the problems in
this area are the determination as to whether the group in question is simple,
and its identification if it is. The issue of identification of black box groups is a
subject which has remarkable affinities with the subject of groups of finite Morley
rank, which can be traced back to a preoccupation with “generic” elements. In the
probabilistic setting, this refers to the kinds of elements that appear with probability
1, while in the model theoretic setting this refers to the sets of elements which have
maximal dimension (Morley rank). Of course, here one may only consider sets which
are either measurable or definable, respectively. In black box group theory one
can fall back on the classification of the finite simple groups [GLS94-05], whereas
in groups of finite Morley rank this is the problem which is under investigation.
However the analogy can be maintained, because with or without a classification
theorem, the problem is one of recognition of the specific group with which one is
presented, by methods allowed by the corresponding framework. The difference is
in outcome: black box group theory delivers practical algorithms (implemented, for
example, in GAP) while the theory of groups of finite Morley rank is a conventional
mathematical theory dealing in theorems.

In either case, at a certain point, just as in the case of conventional group theory,
one requires information about centralizers of involutions. Heretofore in dealing
with groups of finite Morley rank we have followed the lead of the finite group
theorists, who have a powerful and elegant range of techniques for dealing with this
problem. But there is another very direct way to gain a measure of control over the
centralizer of an involution which appears to have surfaced first within black box
group theory. It is based on elementary properties of dihedral groups which are
essential to classical fusion analysis, but via a certain (partial) function ¢ from the
group G to the centralizer of an involution which appears to be entirely useless in
conventional group theory, probably because it is a partial function, and comes into
its own only when it is generically defined (that is, its domain is a generic subset of
(). This is the function ¢; which we encountered in §5 along with its companion

Co-
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From a technical point of view, the virtue of the function ( is that it preserves
uniform distribution in the probabilistic setting and connectivity in the finite Morley
rank setting. Accordingly, if the function ( is generically defined, then in the black
box setting one can deduce that the centralizer of an involution is again a black box
group, and in the finite Morley rank setting one can deduce that the centralizer
of an involution is connected if the original group was. We insist here on these
parallels because they appear to go more than skin deep.

We mention for the sake of finite group theorists that this technique produces
a version of the celebrated Z*-theorem [Gl66], proved by methods that have no
known analog in the finite case. Indeed, our version assumes connectivity of the
ambient group.

Theorem 5 (Z*). Let G be a connected group of finite Morley rank, S a Sylow
2-subgroup in G and i € S an involution. Then either

(a) i is conjugate in G to another involution in S, or
(b) Cg(7) is connected.

Proof. Let C be the conjugacy class i“. Consider a generic, independent pair of
involutions 4, j € C, and suppose condition (a) fails. Then in particular ¢ € Z(S).

If d(ij) contains an element u of order four, then i* = ik with k = u? and thus
i,1* commute. Hence the pair (¢,7%) is conjugate to a pair of elements in S, one of
which at least is not ; so we contradict (a).

So either d(ij) contains a unique involution k, or d(ij) contains no involution.
In the former case, one argues as we did earlier that ¢ and j are not conjugate in
C(k). But k* € S for some x € C(i), and 5% and ¢ are not conjugate in C(k*). But
on the other hand 5% is conjugate to some element of S, which cannot be 4, and
hence i is also conjugate to this element, contradicting (a).

So we conclude that d(ij) contains no involutions. Now we need to vary i, j and
consider d(ij) as a function of the pair ¢, j, and we need a definable function. Let
¢(x,y) be a formula such that ¢(x,ij) defines d(ij). The set of pairs j° € C such
that ¢(x,ij") defines an abelian group containing ij’, inverted by ¢, and without in-
volutions, is a generic subset of C. So letting d(ij’) be the group defined by ¢(z, ij’)
for such j’, we can use d as a definable approximation to d and define a covariant
function ¢; : G — C(i) as we did earlier, and deduce from the connectedness of G
that C(7) is connected. O

The methods coming from black box group theory offer the outstanding advan-
tage that they do not rely much on induction. In this they resemble the transfer
method, which however does not have a direct analog in our context. As degenerate
groups are very poorly understood, this is an essential point. We do in fact use an
inductive argument, but only with respect to the presence of involutions; we do not
assume anything else about the simple sections which may be present in the group.

The arguments given here emerged gradually, and have been considerably sim-
plified over time. Earlier arguments used the Alperin-Goldschmidt Theorem and
some of the 0-unipotence theory developed by the second author. As these give
only special cases of the results given here, we will not elaborate on this point, but
as there is a good deal more to be done in the study of groups of degenerate type,
these alternative techniques may yet have a role to play.
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