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Abstract

We prove conjugacy and generic disjointness of generous Carter sub-

groups in groups of finite Morley rank. We elaborate on groups with a

generous Carter subgroup and on a minimal conterexample to the Gener-

icity Conjecture.

1 Introduction

This paper is a contribution to the theory of groups of finite Morley rank as
developped in [BN94] and in an extensive body of work aiming at transfering
ideas from the classification of finite simple groups to groups of finite Morley
rank. This is motivated by the ultimate Algebraicity Conjecture which postu-
lates that infinite simple groups of the latter class are algebraic over algebraically
closed fields. Here we rather tend to focus on aspects that might be very useful
in case of a failure of this conjecture.

As usual, we say that a definable subset X of a group G of finite Morley
rank is generic in G if it has the same rank as G. In this paper we are mostly
interested in the weaker property that only the union of the G-conjugates of
X is generic in G, that is rk (XG) = rk (G), and we say in this case that X is
generous in G.

The main theorem of the present note will be the following.

Theorem 3.1 In any group of finite Morley rank, generous Carter subgroups
are conjugate and generically disjoint.

Recall from [FJ05] that any group G of finite Morley rank contains a Carter
subgroup, that is a definable connected nilpotent subgroup of finite index in
its normalizer. Carter subgroups in this abstract context are a good approxi-
mation of maximal tori in the algebraic context. There are several genericity
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conjectures around these Carter subgroups, inspired by the fact that maximal
tori are generous in algebraic groups. The most natural generalization would
be the following.

Genericity Conjecture 4.1 In any group of finite Morley rank, Carter sub-
groups are generous.

In [FJ05] it is asked whether the verification of this conjecture implies a
conjugacy theorem for Carter subgroups, which would be an abstract version of
the conjugacy of maximal tori in the algebraic context. Theorem 3.1 answers
this question positively and proves even more, as it does not require the full
force of the Genericity Conjecture 4.1.

The generic disjointness conclusion in Theorem 3.1 means that, given a
generous Carter subgroup C, there is a definable generic subset Y of C such
that each element of Y is in no other generous Carter subgroup than C. In fact,
this is an important step toward the proof of the conjugacy and we will even
prove in this process the following stronger property.

Corollary 3.6 Let G be a group of finite Morley rank, C a Carter subgroup of
G, and y an element in C which is contained in only finitely many conjugates
of C. Then C is the unique maximal definable connected nilpotent subgroup of
G containing y.

Our proof of Theorem 3.1 uses the fact that if C is a generous Carter sub-
group, then the finiteness assumption of Corollary 3.6 is satisfied for y generic
in C. Such a finiteness property is indeed proved in Proposition 2.1 below for
any generous definable connected subgroup. The conjugacy of generous Carter
subgroups follows then easily from this property and Corollary 3.6.

The paper is organized as follows. In Section 2 we start with a general theory
of generous subgroups. We give two proofs of Proposition 2.1, a complicated
one and a simpler one noticed by G. Cherlin. The first one is not more useful
than the second one here, but we kept it as the kind of analysis done here
might be relevant for other purposes. In Section 3 we prove Theorem 3.1, using
merely the finiteness result just shown in Section 2 and properties of Carter
subgroups via Corollary 3.6. Theorem 3.1 is also applied shortly to elaborate
on the theory of groups with a generous Carter subgroup. In Section 4 we give
several (and a priori nonequivalent) versions of the Genericity Conjecture 4.1
and develop on rudimentary tools for the analysis of a minimal conterexample
to that conjecture. (Theorem 3.1 has originaly been proved like this for that
purpose). The conclusion here is that the problem looks very much like the
analog problem in the specific case of minimal simple groups.

The operators C and N denote respectively the centralizer and the normal-
izer in the ambiant group, unless another group is specified.

2



2 Generous subgroups

In this section we develop a mini theory of definable connected generous
subgroups. Hence G will denote throughout the ambiant group of finite Morley
rank and the operative assumption for this section will typically be

(∗) H is a definable connected generous subgroup of G.

The main goal of this section is to show that under the assumption (∗) a generic
element of H can only be in a finite number of conjugates of H.

Proposition 2.1 Let H be a definable connected subgroup of a group G of finite
Morley rank. If H is generous in G, then there is a definable generic subset Y
of H such that each element of Y belongs to only finitely many conjugates of H.

We are going to give two proofs of Proposition 2.1. The first one is rather
complicated and involves elementary considerations on conjugacy classes of el-
ements, more specifically centralizers and fusion in H of generic elements of H.
All this is done assuming H connected, and this detailed analysis of conjugacy
classes might be relevant for other purposes. The second one is a very short and
conceptual proof noticed by G. Cherlin, which consists in looking at a geometry
naturally associated to the problem.

We start with general lemmas implied by assumption (∗).

2.1 Generic lemmas

Our two first lemmas are true independantly of the connectedness of H.

Lemma 2.2 Assume (∗), but H not necessarily connected. Then N(H)/H is
finite.

Proof.
A general rank computation gives rk (HG) ≤ rk (H) + rk (G/N(H)) =

rk (G) − rk (N(H)/H), and thus the result follows. ¤

Lemma 2.3 Assume (∗), but H not necessarily connected. Let X be a definable
subset of H. If X is generous in G, then X is generous in H.

Proof.
By Lemma 2.2, N(H)/H is finite. Assume toward a contradiction that

Y := XH is not generic in H. Then, as Z := Y N(H) is the union of finitely
many conjugates of Y , Z is thus also nongeneric in H. Now the same rank
computation as in the preceding lemma gives rk (ZG) ≤ rk (Z)+rk (G/N(H)) =
rk (Y ) + rk (G) − rk (H) < rk (G). But ZG = (XN(H))G = XG must be generic
in G, a contradiction. ¤

We also mention the following consequence of Lemma 2.3 when H is con-
nected.
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Lemma 2.4 Assume (∗). Then any definable generic subset X of H is generous
in G.

Proof.
Assume toward a contradiction that X in not generous in G. Let Z = H \X.

As HG = XG ∪ZG is generic in G, Z must be generous in G. Let Z1 = Z ∩XG

and Z2 = Z \ Z1. Now Z1 is not generous in G, as otherwise X would be. As
ZG = ZG

1 ∪ ZG
2 is generic in G, it follows that Z2 is generous in G. By Lemma

2.3, Z2 must be generous in H as well. Then ZH
2 and X are two definable generic

subsets of H. By connectedness of H, they have a nontrivial intersection [BN94,
Theorem 5.12], a contradiction to the definition of Z2. ¤

2.2 Fusion in generous connected subgroups

In this subsection we give our first proof of Proposition 2.1. As the next
subsection will give a shorter and more conceptual proof, the reader may skip
this one.

We start by looking at properties equivalent to assumption (∗). For an
element x ∈ H we consider the two following properties concerning respectively
its centralizer in G and its fusion in H:

(I) C◦(x) ≤ H,

(II) rk (xG ∩ H) = rk (xN(H)).

The next lemma relates property (∗) with properties (I) and (II).

Lemma 2.5 Let G be a group of finite Morley rank and H a definable subgroup.
If H connected and generous in G, then properties (I) and (II) hold generically
in H. Conversely, if H has finite index in its normalizer (but is not necessarily
connected) and satisfies properties (I) and (II) generically, then H is generous
in G.

Proof.
Assume first H connected and generous in G. Consider the map

Ψ : H × G −→ G
(x, g) 7−→ xg.

We first claim that the fiber of an element Ψ(x, g), with (x, g) ∈ H × G, has
a rank equal to rk (xG ∩ H) + rk (C(x)). When solving an equation xg = x′g′

,
with (x′, g′) ∈ H × G, then x′ varies freely in xG ∩ H, and then g′ varies freely
in a coset C(x′)g′0, where g′0 is a fixed element conjugating x′ to xg. Hence our
rank equality follows.

Let H1 be the unique definable generic subset of H on which rk (C(x)),
rk (CH(x)), and rk (xG ∩H) are constant. Assuming HG generic, then HG

1 has
to be generic in G by Lemma 2.4. By additivity of rank we get rk (H1)+rk (G) =

4



rk (HG
1 ) + rk (xG ∩ H) + rk (C(x)) where the two last terms are constant not

depending on x, as the latter varies in H1. Hence rk (H1) = rk (xG ∩ H) +
rk (C(x)) and we indeed get

(†) rk (H) = rk (xG ∩ H) + rk (C(x)).

As xN(H) ⊆ xG ∩ H, we have on H1 that (recall that H has finite index in
its normalizer by Lemma 2.2) rk (xG ∩ H) ≥ rk (xN(H)) = rk (xH), that is
rk (xG ∩ H) ≥ rk (H) − rk (CH(x)). Replacing rk (H) in this inequality by its
expression in (†) gives

rk (CH(x)) ≥ rk (C(x)),

which means that C◦(x) = C◦
H(x). Now, (†) also gives rk (xG ∩ H) = rk (H) −

rk (C(x)) = rk (H)−rk (C◦
H(x)) = rk (xH) = rk (xN(H)). Properties (I) and (II)

are shown for x ∈ H1.
The converse is just a converse: assuming that (I) and (II) hold generically

in H, consider the set H1 where they hold generically, and the same map Ψ as
above. Then the same computation rk (H1)+ rk (G) = rk (HG

1 )+ rk (xG ∩H)+
rk (C(x)) gives, with properties (I) and (II) holding on H1, the genericity of HG

1

and, a fortiori, that of HG. ¤

From now on we assume that H is a definable connected subgroup satisfying
(∗). We will study the fusion in H of generic elements of H in the following
series of three lemmas, leading eventually to our first proof of Proposition 2.1.

Lemma 2.6 Assume (∗). Then there is an integer α ≥ 1, an integer β ≥ 0, and
a definable generic N(H)-invariant subset X of H such that, for every x ∈ X:

(I) C◦(x) ≤ H and rk (C◦(x)) = α,

(II) rk (xG ∩ H) = rk (H) − α,

(III) xG ∩ X is the union of exactly β distinct N(H)-conjugacy classes.

Proof.
By Lemma 2.5, there is an integer α ≥ 0 such that the definable subset X

of H defined by:

(I) C◦(x) ≤ H and rk (C◦(x)) = α,

(II) rk (xG ∩ H) = rk (H) − α,

is generic in H. Note also that X, defined as such, is N(H)-invariant. By (I),
each N(H)-conjugacy class in X has rank rk (H) − α. Now each G-conjugacy
class in X has the same rank: it has rank at least rk (H)− α by the preceding,
and at most rk (H) − α by property (II). Hence each G-conjugacy class in X
of an element x ∈ X is a finite union of N(H)-conjugacy classes. This gives
a definable map from the set of N(H)-conjugacy classes in X to the set of G-
conjugacy classes in X which has finite fibers. By the “elimination of infinite
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quantifier” Borovik-Poizat Axiom (cf. [BN94], p. 57), there is a uniform bound
on the size of these fibers. Now X is definably partitioned into finitely many
sets depending on the size of these fibers, and there is a β ≥ 1 such that, for x
generic in X, xG ∩X is the union of exactly β distinct N(H)-conjugacy classes.
By imposing this new condition to X, shrinking it by a nongeneric subset if
necessary, we can furthermore impose that

(III) xG ∩ X is the union of exactly β distinct N(H)-conjugacy classes.

It remains just to notice that X, defined as such, is still N(H)-invariant. ¤

Lemma 2.7 Assume (∗). Then there is a definable generic N(H)-invariant
subset Y of X such that yG ∩ H ⊆ Y for every y ∈ Y .

Proof.
It suffices to prove that Y := {x ∈ X | xG ∩ H ⊆ X} is generic in X, as

this definable set is clearly N(H)-invariant. So assume toward a contradiction
that Y is not generic in X. Then X \ Y meets α G-conjugacy classes (as each
G-conjugacy class in X meets X in rk (H) − α elements).

For every z ∈ X \ Y , there exists a G-conjugate z′ of z in H \ X. As
z ∈ X, it satisfies property (II), that is rk (zG ∩H) = rk (zH). In particular, as
z′H ⊆ zG ∩ H, rk (z′H) ≤ rk (zH); which proves that rk (C◦

H(z)) ≤ rk (C◦
H(z′));

i.e. that C◦(z′) ≤ H as C◦(z) = C◦
H(z) (property (I) of z in H) and z and z′

are G-conjugate. In particular rk (C◦
H(z′)) = rk (C◦

H(z)) = α and rk (z′H) =
rk (H) − α.

As z was varying in α distinct G-conjugacy classes, we find α distinct H-
conjugacy classes of the form z′H , each of rank equal to rk (H) − α. Thus the
union of these H-conjugacy classes has rank equal to rk (H). Furthermore, as
X is N(H)-invariant, an element z′ as above satisfies z′H ∩ X = ∅, and the
union of these H-conjugacy classes also meets X trivially. This gives a subset
of H \X which is generic in H, and contradicts the connectedness of H as X is
already generic in H. ¤

Lemma 2.8 Assume (∗). Then any element y ∈ Y can only be in a finite
number of conjugates of H.

Proof.
Assume y ∈ Hg for some g ∈ G. Our claim is that g can vary in only finitely

many right cosets of N(H).
Fix β representatives y1, ..., yβ in Y of the β distinct N(H)-conjugacy classes

of Y belonging to yG. Fix also β elements g1, ..., gβ ∈ G such that ygi = yi.
We have y ∈ (yG ∩ H)g, thus y ∈ Y g by definition of Y . Hence

yg−1

= yγ
i for some i ∈ {1, · · · , β} and some γ ∈ N(H).

As ygi = yi, it follows that y
g−1

i
g−1

i = yγ
i , i.e. γggi ∈ C(yi), i.e. g ∈

γ−1C(yi)g
−1
i . We have shown that

g ∈
⋃

1≤i≤β

N(H)C(yi)g
−1
i
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and as C◦(yi) ≤ H for each i (recall that each yi is in Y , thus in X, and thus
satisfies property (I) in H), this latter set is composed of finitely many right
cosets of N(H), as desired. ¤

Now Lemmas 2.6, 2.7, and 2.8 give our first proof of Proposition 2.1. ¤

2.3 A geometric proof

This subsection is devoted to our second proof of Proposition 2.1. This much
more conceptual proof, mentionned by G. Cherlin, consists in the examination
of the geometry naturally associated to the problem. Assuming again that G is
the ambiant group of finite Morley rank with a definable connected subgroup
H satisfying assumption (∗), this geometry is defined as follows. The set P of
points is HG and the set L of lines consists of the set of conjugates of H. As we
may work inside Geq throughout, the set of lines is interpreted by G/N(H), so
that this geometry is well definable inside the structure.

We let F denote the flag associated to this geometry, that is

F = {(y, `) ∈ P × L | y ∈ `}.

Let also πP and πL denote the projections of F on P and L respectively. For
r ≤ rk (G/N(H)), let

Hr = {h ∈ H | rk (π−1
P (h)) = r}.

By definability of the rank, each Hr is definable. Notice that Hr is the set of
elements h of H such that the set of conjugates of H containing h has rank r.
This gives a definable partition

HG = (H0)
G t · · · t (Hrk (G/N(H)))

G

and also a definable partition

F = F0 t · · · t Frk (G/N(H))

where Fr = π−1
P (HG

r ). Assume now Hr nonempty. We are going to project
Fr on L and P , using πL and πP respectively, and taking advantage of the
additivity of the rank.

We first project on L. As Hr 6= ∅, there exists an element h ∈ H such that
the set of conjugates of H containing h has rank r. Now each conjugate of H
has the same property, and thus a preimage in Fr. Hence the restriction of πL

to Fr is surjective onto G/N(H). On the other hand, given a line Hg, the set
of elements y ∈ Hg contained in exactly r conjugates of H has a rank equal to
rk (Hg

r ) = rk (Hr). Hence:

rk (Fr) = rk (G/N(H)) + rk (Hr).

7



We now project Fr on P . By definition, πP (Fr) = HG
r . Now, given y ∈ HG

r ,
the set of conjugates of H containing y has rank r and rk (π−1

P (y)) = r. Hence:

rk (Fr) = rk (HG
r ) + r.

As the above analysis used only the definability of H, we get by combining these
two expressions for rk (Fr) the following general rank equality.

Proposition 2.9 Let G be a group of finite Morley rank, H a definable sub-
group, and, for r ≤ rk (G/N(H)), Hr the definable subset of H consisting of
those elements of H having the property that the set of conjugates of H contain-
ing them has rank r. If Hr 6= ∅, then rk (HG

r ) = rk (G)−rk (N(H))+rk (Hr)−r.

Incorporating the full assumption (∗), that is the connectedness of H and
the genericity of HG, we can now deduce our second

Proof of Proposition 2.1.
Assume (∗), that is H definable, connected, and generous in G, and define

Hr as above. There exists an r such that Hr is generic in H. As H is generous
in G, rk (Hr) = rk (H) = rk (N(H)) by Lemma 2.2. As H is connected and
generous in G, Hr is generous in G by Lemma 2.4, that is rk (HG

r ) = rk (G).
Incorporating these two equalities in the equality provided by Proposition 2.9
gives r = 0. Hence the set Y = Hr is the desired one. ¤

We conclude by mentioning the following converse of Proposition 2.1.

Proposition 2.10 Let G be a group of finite Morley rank, H a definable (not
necessarily connected) subgroup of G. Assume that the set H0 of elements of H
contained in finitely many conjugates of H is generic in H. Assume also H of
finite index in its normalizer. Then H0 and H are generous in G.

Proof.
Applying Proposition 2.9 with r = 0 gives rk (HG

0 ) = rk (G) − rk (N(H)) +
rk (H0). By assumption, rk (H0) = rk (H) = rk (N(H)), and it follows that H0

is generous in G. In particular H is also generous in G. ¤

3 Main theorem

The main result of the present paper is the following.

Theorem 3.1 In any group of finite Morley rank, generous Carter subgroups
are conjugate and generically disjoint.

Our proof of Theorem 3.1 uses a crucial ingredient which will fully exploit
the finiteness results obtained in Section 2.
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3.1 The fondamental lemma

The next lemma is the crucial ingredient which encapsulates the main idea
of the present paper. It is indeed a mere elaboration on the following well known
basic tool.

Fact 3.2 [BN94, Lemma 5.9] Let G be a connected group of finite Morley
rank acting definably on a finite set S. Then G fixes S pointwise.

The fondamental lemma in question is the following.

Lemma 3.3 Let G be a group of finite Morley rank, H a definable subgroup of
G, and Y the definable subset of H consisting of those elements of H which are
in only finitely many conjugates of H. Then, for any definable subset U of H
meeting Y in a nonempty subset, N◦(U) ≤ N◦(H).

Proof.
We may work inside Geq throughout, and identify the set of conjugates of

H with G/N(H). Let U1 = U ∩ Y . As U1 is exactly the subset of U consisting
of those elements of U which are in finitely many conjugates of H, N◦(U)
normalizes U1. In particular, its action on G by conjugation induces an action
on the set of conjugates of H containing U1. But there are finitely many such
conjugates of H containing U1, so N◦(U) fixes all of them by Fact 3.2. In other
words, N◦(U) normalizes each of these conjugates. As H is one of them, our
claim follows. ¤

3.2 Proof of Theorem 3.1

The last ingredient for the proof of Theorem 3.1 will be the definition of
Carter subgroups, the fact that they are of finite index in their normalizers
on the one hand, and their nilpotence on the other hand. Concerning the
nilpotence, we will more specifically use the following version of the normalizer
condition in nilpotent groups of finite Morley rank.

Fact 3.4 [BN94, Lemma 6.3] Let G be a connected nilpotent group of finite
Morley rank, and H a proper definable subgroup of G. Then [N(H) : H] is
infinite.

Gluing together the fondamental Lemma 3.3 with the two main properties
of Carter subgroups gives the following conclusion.

Lemma 3.5 Let G be a group of finite Morley rank, H a definable connected
subgroup of G of finite index in its normalizer, and C a definable connected
nilpotent subgroup of G. Let Y be the definable subset of H consisting of those
elements of H which are in finitely many conjugates of H. If Y ∩ C 6= ∅, then
C ≤ H. In this case, C is also a Carter subgroup of H whenever it is a Carter
subgroup of G, and C = H whenever C and H are two Carter subgroups of G.
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Proof.
Let U = H ∩C. As U ∩Y is nonempty, N◦(U) ≤ N◦(H) by Lemma 3.3. As

N◦(H) = H, N◦(U) ≤ H. In particular N◦
C(U) ≤ U◦, and hence U is of finite

index in its normalizer in C. By Fact 3.4, U = C and our first claim follows.
Our second claim is immediate. Our third claim is now another application of
Fact 3.4 in H. ¤

Corollary 3.6 Let G be a group of finite Morley rank, C a Carter subgroup of
G, and y an element in C which is contained in only finitely many conjugates
of C. Then C is the unique maximal definable connected nilpotent subgroup of
G containing y.

As Carter subgroups are maximal definable connected nilpotent subgroups
by Fact 3.4, it is noticeable that, under the circumstances of Corollary 3.6, C is
in particular the unique Carter subgroup of G containing y.

Now it suffices to shake the preceding preparations together with the gener-
icity ingredient to show our main result.

Proof of Theorem 3.1.
Let C1 and C2 be two generous Carter subgroups of a group G of finite Mor-

ley rank. For i = 1 and 2, let Yi denote the definable subset of Ci consisting of
those elements of Ci which are in finitely many conjugates of Ci. By Proposition
2.1, Yi is generic in Ci for each i. By Lemma 3.5 or Corollary 3.6,

(†) Y1 ∩ Y2 = ∅ or C1 = C2.

For each i, Yi is generic in Ci, and thus Yi is generous in G by Lemma 2.4. Of
course, Y G

i ⊆ G◦, and it follows that Y G
i is generic in G◦. By connectedness of

G◦, Y G
1 meets Y G

2 nontrivially. Hence, after conjugacy in G, we have Y1 ∩ Y2

nonempty, and hence C1 = C2 by (†). Our conjugacy result is proved.
The generic disjointness follows also, as the definable generic subset Y1 of C1

has the property that its elements are in no other generous Carter subgroups
than C1. ¤

Of course, we would prefer a conjugacy theorem inside connected compo-
nents.

Corollary 3.7 In any group G of finite Morley rank, generous Carter subgroups
in G are generous in G◦ and, thus, conjugate in G◦.

Proof.
If C denotes a generous Carter subgroup in G, then, as C is connected, CG

is a generic subset of G◦. As G is the union of finitely many right cosets of
G◦, our first claim follows. Our second claim corresponds now to Theorem 3.1
applied in G◦. ¤

We finish this subsection with necessary and sufficient conditions for a Carter
subgroup to be generous.
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Corollary 3.8 Let G be a group of finite Morley rank and C a Carter subgroup
of G. Then the following are equivalent:

a. C is generous in G.

b. There exists a definable generic subset Y of C such that, for each y ∈ Y ,
C is the unique maximal definable connected nilpotent subgroup containing
y.

c. C is generically disjoint from its conjugates.

d. There exists a definable generic subset Y of C such that each y ∈ Y is
contained in only finitely many conjugates of C.

Proof.
Clause (a) implies clause (b) by Proposition 2.1 and Corollary 3.6. Clearly,

clause (b) implies clause (c) and clause (c) implies clause (d). Finally, clause
(d) implies clause (a) by Proposition 2.10. ¤

3.3 Applications

The presence of a generous Carter subgroup in a group of finite Morley
rank has a strong impact on its overall structure. This subsection is devoted to
miscellaneous such corollaries which can be derived from Theorem 3.1. We first
take afresh by rephrasing the early general lemmas of Subsection 2.1.

Lemma 3.9 Let L ≤ H ≤ G be groups of finite Morley rank, with L and H
definable. Then:

a. If H is connected, L generous in H, and H generous in G, then L is
generous in G.

b. Conversely, if L is generous in G, then L is generous in H and H is
generous in G.

In particular, in any of these two cases, L and H are both of finite index in
their normalizers in G.

Proof.
The first item, concerning transitivity, is a mere rephrasing of Lemma 2.4.

The converse item is a mere rephrasing of Lemma 2.3, or can also be seen as a
corollary of Lemma 2.2 and Propositions 2.1 and 2.10. Our final claim is just
Lemma 2.2. ¤

We now return to generous Carter subgroups. Let start with centralizers of
their generic elements.

Lemma 3.10 Let G be a group of finite Morley rank with a generous Carter
subgroup C. Then C(x) ≤ N(C) holds for x generic in C
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Proof.
By Theorem 3.1, C is the only conjugate of C containing x. ¤

Theorem 3.1 gives an extra conjugacy result.

Lemma 3.11 Let C ≤ H ≤ G be groups of finite Morley rank, with C a gen-
erous Carter subgroup of G, and H a definable subgroup of G. Then any G-
conjugate of C in H is H◦-conjugate to C.

Proof.
Let Cg ≤ H with g ∈ G. Then C and Cg are both generous in H◦ by

Lemma 3.9 (b). It follows that they are H◦-conjugate by Theorem 3.1. ¤

By analogy with algebraic groups, it is natural to call W = N(C)/C the
Weyl group associated to a given Carter subgroup C. This group is finite by
definition of Carter subgroups. By Theorem 3.1, the Weyl group associated to
a generous Carter subgroup is well defined.

Lemma 3.12 Let C ≤ H1, H2 ≤ G be groups of finite Morley rank, with C
a generous Carter subgroup of G, and H1 and H2 two definable connected sub-
groups containing C. If H1 and H2 are G-conjugate, then they are N(C)-
conjugate (and, thus, in particular N(C)/C-conjugate).

Proof.
We assume H2 = Hg

1 for some g in G, and C ≤ H1 ∩ Hg
1 . Then Cg−1

= Cγ

for some γ ∈ H1 by Lemma 3.11, γg ∈ N(C) and Hg
1 = Hγg

1 . ¤

As another application of Lemma 3.11, a Frattini Argument precises the last
item of Lemma 3.9 (b) in the presence of a generous Carter subgroup.

Corollary 3.13 Let C ≤ H ≤ G be groups of finite Morley rank, with C a
generous Carter subgroup and H definable. Then N(H) ⊆ N(C)H◦.

Proof.
If g ∈ N(H), then Cg = Cγ , with γ ∈ H◦, and g = gγ−1γ ∈ N(C)H◦. ¤

If G is a group of finite Morley rank with a generous Carter subgroup C,
then it is natural to call standard any Borel subgroup containing a conjugate of
C. Similarly, a standard parabolic subgroup would be a definable connected sub-
group containing a standard Borel subgroup, a standard root group a minimal
definable connected subgroup normalized by a conjugate of C, and so on. Prob-
ably, most of the theory of algebraic groups à la Tits could be recovered in this
context. One would like first a conjugacy theorem of standard Borel subgroups
and a finiteness theorem on the number of standard parabolic subgroups, up to
conjugacy. Unfortunately, nothing like this has been proved yet.
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4 Around genericity

We finish this paper with a few prospects concerning the relations between
the genericity conjectures and Carter subgroups.

4.1 Genericity conjectures

As it has been said in the introduction already, there are several natural
genericity conjectures around Carter subgroups. The most natural one is the
one formulated in the introduction, and corresponds to item (b) in the list of
successively weaker genericity conjectures below.

There are many issues concerning nonconnected subgroups. Recently some
pathological configurations involving Sylow 2-subgroups in groups of finite Mor-
ley rank have been disposed of in [BBC05], allowing to kill some pathological
configurations involving torsion in general. These results probably have to deal
with issues relating genericity conjectures and nonconnected subgroups. Here
we prefer to concentrate on connected groups throughout.

Genericity Conjecture 4.1 One of the following statement is true for any
connected group G of finite Morley rank:

a. Any definable connected subgroup of G of finite index in its normalizer is
generous in G.

b. Any Carter subgroup of G is generous in G.

c. There is a generous Carter subgroup in G.

d. If G is nonnilpotent, there is a proper definable connected generous sub-
group in G.

e. There is a definable generic subset of G all of whose elements are contained
in a Carter subgroup.

f. There is a definable generic subset of G all of whose elements are contained
in a definable connected nilpotent subgroup of G.

The fact that the above conjectures are successively weaker follows readily,
once one has noticed that Conjectures 4.1 (c) and (d) are equivalent. Indeed,
assuming Conjecture 4.1 (d) verified, than a minimal definable connected sub-
group has to be nilpotent and selfnormalizing, thanks to Lemma 2.2, and hence
a Carter subgroup of the ambiant group.

Conjecture 4.1 (a) is really strong. For example, it has the following impli-
cation.

Lemma 4.2 Let G be a group of finite Morley rank, all of those definable con-
nected subgroups verify Conjecture 4.1 (a). If C ≤ H ≤ G, with H a definable
connected subgroup of finite index in its normalizer, and C a Carter subgroup
of H, then C is a generous Carter subgroup of G.
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Proof.
By Lemma 3.9 (a), C is generous in G. Then C is of finite index in its

normalizer by Lemma 2.2, and C is also a Carter subgroup of G. ¤

For example, this would kill the problematic configurations left in [CJ04].
Such configurations would a priori not be killed by a verification of the weaker
Conjecture 4.1 (b), but this latter conjecture would kill the configurations left
in [Jal01].

A verification of any of Conjectures 4.1 (a)–(d) would imply a generic cover-
ing of groups by a single conjugacy class of nilpotent subgroups. This is a priori
lost with the weaker Conjecture 4.1 (e), where it becomes unclear how to prove
a conjugacy theorem like Theorem 3.1.

Conjecture 4.1 (f) a priori loses all connection with Carter subgroups. This
latter conjecture has been verified in [BBC05] in the case of minimal simple
groups.

4.2 Mini minimal counterexample theory

We conclude this paper with a primitive study of a minimal counterexample
to the Genericity Conjecture. We could of course study minimal couterexamples
to each of the Genericity Conjectures 4.1 (a)-(f), but we focus only on Conjecture
4.1 (b). Hence we work here with the following assumption:

G is a connected minimal counterexample to the Genericity
Conjecture 4.1 (b), with a nongenerous Carter subgroup C.

(1)

The thesis here is that the problem looks very much like the analogous well
known problem in the specific case of minimal simple groups. We start by a
mere application of the inductive assumption.

Lemma 4.3 In any proper definable connected subgroup of G, Carter subgroups
are generous, generically disjoint, and conjugate. (And Sylow subgroups of the
minimal unipotence degree are also conjugate in such proper definable connected
subgroups).

Proof.
Immediate from Theorem 3.1. For Sylow subgroups and unipotence degree,

the reader may consult [Bur05] and [FJ05]. The point concerning Sylow sub-
groups of the minimal unipotence degree is that they are always in a Carter
subgroup by the construction of Carter subgroups in [FJ05]. ¤

It is worth mentioning that nongenerocity propagates to supergroups, as well
as some consequence of the Frattini Argument.

Lemma 4.4 Let H be a proper definable subgroup of G containing C. Then
H◦ is not generous in G, and N(H) ⊆ N(C)H◦.
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Proof.
As H◦ < G, C is generous in H◦ and Lemma 3.9 (a) gives our first claim.

If g ∈ N(H), then Cg, C ≤ H◦, Cg = Cγ for some γ ∈ H◦, and g = gγ−1γ ∈
N(C)H◦. ¤

Of course, the group G has tendancy to be simple.

Lemma 4.5 One can assume G simple.

Proof.
We first claim that R◦(G) = 1, where R(G) denotes the solvable radical

of G (cf. [BN94, Section 7.2]). Notice first that CR◦(G) < G, as otherwise
G is solvable and the theory of solvable groups applies (cf. [CJ04, Lemma
3.5]). By that theory again, or merely by induction here, Carter subgroups of
CR◦(G) are generous in CR◦(G). By Corollary 3.8, the CR◦(G)-conjugates of
C distinct from C do not cover C generically. By Lemma 4.4, N◦(CR◦(C)) ≤
N◦(C)CR◦(G) = CR◦(G). Hence C is a Carter subgroup of G = G/R◦(G),
generically covered by its distinct conjugates by Corollary 3.8. By Corollary 3.8
again, C is nongenerous in G. By minimality, R◦(G) = 1, as claimed.

Hence R(G) is finite and equal to Z(G). Now G/Z(G) has a finite solvable
radical, which must be trivial, and we may replace G by G/Z(G) to get a
semisimple group satisfying our assumptions.

Let now H be a definable normal subgroup of G. We claim that H◦ = 1.
Assume H◦ 6= 1. As H◦ is normal and proper in G, its Carter subgroups are
not generous in G, and we may assume that C is one of them. By Lemma 4.4,
G = N(C)H◦, and it follows that H◦ has finite index in G. This gives H◦ = G,
a contradiction. Hence H◦ = 1 as claimed and H is finite. As H is normal in
G, H ≤ Z(G) = 1. ¤

One more trivial structural information, showing the nontriviality of the
problem:

Lemma 4.6 G = 〈Cg | g ∈ G〉.

Proof.
〈Cg | g ∈ G〉 E G, and Lemma 4.4 applies. ¤

We can also remark the following on Sylow subgroups.

Lemma 4.7 Any Sylow subgroup of the minimal unipotence degree of any Car-
ter subgroup of G is a Sylow subgroup of G.

Proof.
Let T be the Sylow subgroup of the minimal unipotence degree of a Carter

subgroup C1 of G. As G is semisimple, N(T ) < G. Of course C1 ≤ N◦(T ),
and C1 is a Carter subgroup of N◦(T ). As Carter subgroups of N◦(T ) are all
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conjugate in N◦(T ), C1 can be obtained by the construction of Carter subgroups
as in [FJ05]. In this construction, a Sylow subgroup of the minimal unipotence
degree of a Carter subgroup is a Sylow subgroup of the ambiant group. Hence T
is a Sylow subgroup of N◦(T ) and it follows by a normalizer condition [Bur05,
Lemma 2.4] that T is a Sylow subgroup of G. ¤

Of course, one may wish to specialize the above theory to the specific cases
C abelian and/or W trivial, where W denotes the Weyl group associated to
C. But it seems that the failure of none of these too assumptions could be the
real core of the problem. In the same vein, one may really wonder whether the
nilpotency of C is really important, and should maybe try to focus on the more
ambitious Conjecture 4.1 (a).
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