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Abstract. Assume that K is a perfect field of characteristic p > 0
that is complete with respect to an ultrametric valuation, and let
X be a rigid analytic variety over K. Suppose that X is smooth
and connected with respect to its Grothendieck topology. Let f be
a (global) function on X the differential of which vanishes locally
at some point of X; then f is the pth power of a (global) function.

1. Introduction

This note is an answer to a question that was posed to me by David
Goss, whom I thank for several helpful comments. Assume that K
is a perfect field of characteristic p > 0 that is complete with re-
spect to an ultrametric valuation, and let X be a rigid analytic variety
over K. Suppose that X is smooth and connected with respect to its
Grothendieck topology. Is a (global) function on X the differential of
which vanishes in a neighborhood of a point the pth power of a (global)
function? Theorem 2.6, below, is the positive answer to this question.
It is a consequence of the basic sheaf theory and of the fact that affinoid
algebras are excellent rings. This note provides a convenient reference
in the literature for this useful means of detecting global pth powers.

In Section 3, we assume that K is algebraically closed, and use
Lemma 3.1 to give a direct treatment of some special cases of The-
orem 2.6. In Examples 3.2 and 3.3, we treat the cases of the closed
unit polydisc and an annulus, respectively. In Example 3.4, we use the
affinoid Mittag-Leffler Theorem to give a direct treatment of the case
of a Zariski-connected, open K-affinoid subvariety of the affine line, as
well as of the case of a connected affinoid subset of the projective line
over K.
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2. Global pth powers

Let K be a field that is complete with respect to an ultrametric
absolute value | · | : K → R+. A Tate ring Tn(K) over K is a ring of
power series

Tn = K〈ξ1, . . . , ξn〉 =

{∑
aνξ

ν : aν ∈ K and lim
|ν|→∞

aν = 0

}
.

The ring Tn is a Noetherian UFD ([1], Theorem 5.2.6.1,) and it satisfies
a Nullstellensatz: for every m ∈ Max Tn, the quotient field Tn/m is a
finite extension of K ([1], Theorem 7.1.1.1.) Any quotient of a Tate
ring is called a K-affinoid algebra (see [1] or [4].)

We assume throughout that K is a perfect field of positive character-
istic p that is complete in an ultrametric absolute value | · | : K → R+.
The main point is contained in Lemma 2.1, below, which under mild
conditions shows that, for elements of K-affinoid algebras, the property
of being a pth power is quite local.

The proof of Lemma 2.1 relies on properties of G-rings. A Noetherian
ring A is said to be a G-ring if for every prime ideal p of A, the natural

homomorphism Ap → Âp is regular (where Âp is the maximal-adic
completion of the local ring Ap.) By [10], Theorem 8.8, a map from a
Noetherian local ring to its completion is faithfully flat, hence by [10],

Theorem 32.2(i), the ring Ap is reduced if, and only if, Âp is reduced.
This fact will be used in the proof of the following lemma.

A K-affinoid algebra A is an excellent ring by [2], Theorem 3.3.3,
hence, in particular, it is a G-ring.

Lemma 2.1. Suppose that A is a regular, excellent ring that is an
integral domain. Let f ∈ A and suppose that there is a maximal ideal

m of A and an element g ∈ Âm such that gp = f . Then g ∈ A.

Proof. Note that since A is an integral domain, we may regard A as a

subring of the localization Am, and since Am → Âm is faithfully flat,

we may regard Am as a subring of Âm. Since A is a regular ring, it is
normal ([10], Theorem 19.4;) hence, it suffices to show that g ∈ Am.

Suppose g ∈ Âm \Am, and put R := Am[g]. Since A is a regular ring,
Am is a UFD ([10], Theorem 20.3,) so the polynomial Xp−f = Xp−gp

is irreducible in Am[X], and

R = Am[X]/(Xp − gp).

Since Âm is reduced ([10], Theorem 32.2(i)) and R ⊂ Âm, also R is
reduced.
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Put M := m ·R, and let R̂ denote the M-adic completion of R, so

R̂ = Âm[X]/(Xp − gp) · Âm[X].

Hence X − g is a non-zero nilpotent element of R̂. Now, R is a finite

extension of the local ring Am, so by [10], Theorem 8.15, R̂ is the
direct sum of finitely many maximal-adic completions of R. Thus, some
maximal-adic completion of R is not reduced. Since R is reduced, it
follows from [10], Theorem 32.2(i) that R cannot be a G-ring.

For any G-ring A, the polynomial ring A[X] is also a G-ring ([9],
Theorem 77.) Moreover, it follows from the definition that any quotient
or localization of a G-ring is again a G-ring. Therefore, R is also a G-
ring, a contradiction. �

Remark 2.2. (i) A ring R similar to the one in the proof above is found
in [11], Section A.1, Examples 6 and 3.2, and in [7], Example 4.2.4.

(ii) By [6], Theorem 3.3, any affinoid algebra is an excellent ring; thus
Lemma 2.1 (as well as Proposition 2.4, below) holds for any complete,
valued field of characteristic p > 0.

(iii) Consider the class of K-algebras A that are quotients of a ring
Sm,n(E, K) of separated power series (see [7], Definition 2.1.1 and [7],
Remark 2.1.8.) Under any of the hypotheses of [7], Proposition 4.2.5
(e.g., when [K : Kp] < ∞ and E is a complete DVR contained in
the valuation ring of K such that E is a finite extension of Ep,) the
quasi-affinoid algebra A is an excellent ring. Thus the corresponding
analogue of Lemma 2.1 holds. This leads to a stronger form of [8],
Theorem 3.2.

The basic properties of the sheaf of functions on a rigid analytic vari-
ety over K yield Proposition 2.4, below, which generalizes Lemma 2.1.
For the definition of rigid analytic variety, we refer the reader to [1],
Definition 9.3.1.4. Among these are the affinoid varieties X = Sp A, A a
K-affinoid algebra, which may be glued together as in [1], Section 9.3.2
to form rigid analytic varieties. The simplest admissible open sets of
the affinoid variety X = Sp A are the rational subdomains (see [1],
Definition 7.2.3.5 and [1], Corollary 7.3.5.3.) These are sets of the form

X

(
f

g

)
:= {x ∈ X : |fi(x)| ≤ |g(x)|, 1 ≤ i ≤ r},

where g, f1, . . . , fr ∈ A have no common zero. Consider the affinoid
algebra

B := A

〈
f1

g
, · · · ,

fr

g

〉
= A〈η1, . . . , ηr〉/(f1 − η1g, . . . , fr − ηrg);
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by [1], Section 7.2.3, X = Sp B. The simplest admissible open covers of
X are the finite covers by rational subdomains; these are called affinoid
covers. By Lemma 2.3, below, the covering of an affinoid variety by its
Zariski-connected components is an affinoid cover. This permits the
proof of Proposition 2.4, below, to be reduced to Lemma 2.1.

Lemma 2.3. Let X = Sp A be an affinoid variety, and let Z be a
Zariski-connected component of X. Then Z is a rational subdomain of
X. It follows that the covering of X by its Zariski-connected compo-
nents is an affinoid cover.

Proof. Since Z is Zariski-closed, there are f1, . . . , fr ∈ A such that

Z = {x ∈ X : f1(x) = · · · = fr(x) = 0}.
Since Z is Zariski-open, Z ′ := X \Z is a closed affinoid set, and by [1],
Lemma 7.3.4.7,

α(x) := max
1≤i≤r

|fi(x)|

assumes its minimum on Z ′. Hence 0 < min
x∈Z′

α(x). Let ε ∈
√
|K \ {0}|

with
0 < ε < min

x∈Z′
α(x);

then

Z = X

(
f1

ε
, . . . ,

fr

ε

)
is a rational subdomain of X, as desired. �

Proposition 2.4. Let X be a smooth rigid analytic variety over K that
is connected with respect to its Grothendieck topology. Let f ∈ OX(X)

and suppose that there is a point x ∈ X and an element g ∈ ÔX,x such
that gp = f . Then there is an element g ∈ OX(X) such that gp = f .

Proof. Let {Xi}i∈I be an admissible affinoid covering of X. Passing
to a refinement if necessary, by Lemma 2.3, we may assume that each
affinoid variety Xi is Zariski-connected. Thus since X is smooth, each
K-affinoid algebra OX(Xi) is a regular ring and an integral domain (by
[10], Theorem 14.3.) Put

I1 := {i ∈ I : for some h ∈ OX(Xi), h
p = f |Xi

}, and
I2 := I \ I1.

Suppose that i ∈ I1, j ∈ I2 and that there is a point y ∈ Xi∩Xj. Since
i ∈ I1, there is an h ∈ OX(Xi) such that hp = f |Xi

; whence there is

an h ∈ ÔXj ,y such that hp = f . Since y ∈ Xj, by Lemma 2.1, there
is an h ∈ OX(Xj) such that hp = f , contradicting j ∈ I2. Since X
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is connected, it follows that I2 = ∅. Since OX is a sheaf, there is an
element g ∈ OX(X) with gp = f . �

As in [4], Theorem 3.6.1, to each K-affinoid algebra A, there is canon-

ically associated a universal finite differential module Ωf
A/K . (Note

that since we have assumed that K is perfect, Ωf
A/K coincides with the

module ΩA/K of Kähler differentials of A over K, defined as in [10],
Section 25. Indeed to see this, by the universal properties defining
these two modules, it suffices to show that ΩA/K is a finite A-module.
Since the derivation d vanishes on Ap, by [10], Theorem 25.1, it fol-
lows that ΩA/K = ΩA/Ap . Since K is perfect, A is finite over Ap, thus,
ΩA/Ap = ΩA/K is a finite A-module, as desired.)

From Ωf
A/K , one obtains the sheaf ΩY/K on the affinoid variety Y =

Sp A as in [4], Definition 4.2.1. Let U be a rational subdomain of

Y ; then Ωf
O(U)/K is canonically isomorphic to ΩY/K(U) (see [4], Exam-

ple 4.4.1.) Since each rigid analytic variety X has an admissible affinoid
covering, this yields the gluing data for the sheaf ΩX/K of differentials
on X over K.

By [2], Theorem 2.1.4, to each ring S := OX,x there is canonically

associated a universal finite differential module Ωf
S/K . By [2], Theo-

rem 2.4.4, the stalk ΩX/K,x is canonically isomorphic to Ωf
S/K .

Now suppose that the rigid analytic variety X is smooth, let x ∈ X
and consider the stalk OX,x. By the Nullstellensatz ([1], Proposi-
tion 7.1.1.1,) the residue field of the local ring OX,x is a finite field
extension K1 of K, and by [5], Theorem II.5.6, the stalk OX,x is iso-
morphic to a ring K1{ξ1, . . . , ξn} of convergent power series over K1.

Since K is perfect, K1 is a separable algebraic extension of K, so
Ωf

K1{ξ}/K = Ωf
K1{ξ}/K1

. By [2], Paragraph 2.2.5, we have:

(2.5) d : K1{ξ} → Ωf
K1{ξ}/K1

=
⊕

i

K1{ξ}dξi : f 7→
∑

i

∂f

∂ξi

dξi.

Let f ∈ OX(X), let x ∈ X, and let dx : OX,x → ΩX/K,x be the corre-
sponding derivation. Suppose that dx(f) = 0. Since K is perfect, also
K1 is perfect, hence from Equation (2.5), it follows that there is an
element g ∈ OX,x such that gp = f .

From the above and from Proposition 2.4, we now deduce the fol-
lowing.

Theorem 2.6. Let X be a smooth rigid analytic variety over K that
is connected with respect to its Grothendieck topology. Let f ∈ OX(X),
let x ∈ X, and let dx : OX,x → ΩX/K,x be the corresponding derivation.
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Then dx(f) = 0 if, and only if, there is an element g ∈ OX(X) such
that gp = f .

3. Examples

In Examples 3.2, 3.3 and 3.4, below, we give direct treatments of
some special cases of Theorem 2.6. The notion of p-basis (see [10],
Section 26) plays a key role in the computations. Let F ⊂ L be fields
of characteristic p > 0. A set ξ1, . . . , ξn ∈ L of distinct elements is said
to be p-independent over F if, and only if, the set

Γ := {ξν1
1 · · · ξνn

n : 0 ≤ νi < p, 1 ≤ i ≤ n}

of p-monomials in ξ is linearly independent over Lp(F ). Let B ⊂ L.
If every finite subset of B is p-independent over F , then we say that
B is p-independent over F . If B ⊂ L is p-independent over F and
L = Lp(F, B), then we call B a p-basis of L over F .

A differential basis of L over F is a subset B of L with the property
that {dx : x ∈ B} forms a basis of the L-vector space ΩL/F , the module
of differentials of L over F . Lemma 3.1, below, is a direct consequence
of [10], Theorem 26.5: in characteristic p > 0, the notions of p-basis
and of differential basis coincide.

With the above in mind, suppose that B ⊂ L is a p-basis of L
over Lp, and consider the derivation d : L → ΩL/Lp . A straightforward
computation shows that

{dx : x 6= 1 is a p−monomial in B}

is a basis of ΩL/Lp , considered as a vector space over Lp.

Lemma 3.1. Let R ⊂ S be integral domains of characteristic p > 0,
and let Q(S) be the field of fractions of S. Suppose that there is a set
B ⊂ R such that the p-monomials in B generate the Rp-module R and
B ⊂ Q(S) is a p-basis of Q(S) over Q(Sp), then

Rp = Sp ∩R = ker d ∩R,

where d : S → ΩS/Sp is the derivation from S to the module of differ-
entials of S over Sp.

Proof. The inclusions Rp ⊂ Sp ∩ R ⊂ ker d ∩ R are clear; hence, it
suffices to show that ker d ∩ R ⊂ Rp. Let f ∈ R; then there are
ξ1, . . . , ξn ∈ B and elements fν ∈ R for which

f =
∑

⇀
0≤ν<

⇀
p

fp
ν ξν .
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Thus,

df =
∑

⇀
0 6=ν<

⇀
p

fp
ν d(ξν).

Since the d(ξν) are linearly independent over Q(Sp), if df = 0 then
f = fp

0 ∈ Rp, as desired. �

In the following, we assume that K is algebraically closed.

Example 3.2. Consider the Tate ring Tn = K〈ξ1, . . . , ξn〉, and let
x ∈ Max Tn. By the Nullstellensatz, the x-adic completion of Tn is
isomorphic to K[[ξ1, . . . , ξn]]. For each f ∈ K[[ξ]], there are uniquely
determined fν ∈ K[[ξ]] such that

f(ξ) =
∑

⇀
0≤ν<

⇀
p

fν(ξ
p)ξν .

Note that if f belongs to Tn, the corresponding fν also belong to Tn.
From the above equation, it follows that {ξ1, . . . , ξn} is a p-basis of
Q(Tn) over Q((Tn)p) as well as of Q(K[[ξ]]) over Q((K[[ξ]])p). Now
apply Lemma 3.1.

Example 3.3. Let a, ε, δ ∈ K with |a| ≤ 1 and |ε| ≤ |δ| ≤ 1. Consider
the K-annulus

X := {x ∈ K : |ε| ≤ |x− a| ≤ |δ|} = Sp A,

A := K
〈
ξ, ξ−a

δ
, ε

ξ−a

〉
.

Claim. Let f ∈ A and α ∈ X; then there are f0, . . . , fp−1 ∈ Ap such
that

f =

p−1∑
i=0

fi · (ξ − α)i.

Proof. Indeed, we may write

f =
∑

ν≥0 cν

(
ξ−a

δ

)ν
+

∑
ν>0 eν

(
ε

ξ−a

)ν

=
p−1∑
i=0

gi

((
ξ−a

δ

)p
)
·
(

ξ−a
δ

)i
+

p−1∑
i=0

hi

((
ε

ξ−1

)p)
·
(

ε
ξ−a

)i

for some gi, hi ∈ T1. Now, observe that gi

((
ξ−a

δ

)p
)

, hi

((
ε

ξ−1

)p)
∈ Ap,

the
(

ξ−a
δ

)i
are polynomials, and

ε

ξ − a
= ε · ξp−1 + aξp−2 + · · ·+ ap−1

(ξ − a)p
,

which establishes the claim. �
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Thus the p-monomials in {ξ−α} generate the Q(Ap)-module Q(A).

Put m := (ξ − α)A and let Âm be the m-adic completion of Am; then

Âm = K[[ξ − α]]. Clearly, {ξ − α} is a p-basis of Q(Âm) over Q((Âm)p).

Let dm be the derivation from Âm to Ω bAm/( bAm)p . Applying Lemma 3.1,

we see that for any f ∈ A, dm(f) = 0 if, and only if, f ∈ Ap.

Example 3.4. For a ∈ K and r ∈ |K|, r > 0, define

B−(a, r) := {x ∈ K : |x− a| < r} and
B+(a, r) := {x ∈ K : |x− a| ≤ r},

the “open” and “closed” discs, respectively, of radius r about a.
Let X = Sp A be a non-empty, Zariski-connected, open affinoid sub-

variety of the unit disc Sp T1(K) ' B+(0, 1) in the affine line over K.
By [1], Theorem 9.7.2.2, X is a standard set; i.e., a set of the form

X = B+(a0, r0) \
n⋃

i=1

B−(ai, ri),

where a0, . . . , an ∈ B+(0, 1), r0, . . . , rn ∈ |K|, 0 < ri ≤ 1, and the discs
B−(ai, ri), 1 ≤ i ≤ n, are pairwise disjoint and are each contained in
B+(a0, r0).

Fix εi ∈ K with |εi| = ri, 0 ≤ i ≤ n, and consider the affinoid
algebra

A := K

〈
ξ,

ξ − a0

ε0

,
ε1

ξ − a1

, . . . ,
εn

ξ − an

〉
.

By [1], Section 7.2.3, X = Sp A.

Claim. Let f ∈ A and α ∈ X; then there are f0, . . . , fp−1 ∈ Ap such
that

f =

p−1∑
i=0

fi · (ξ − α)i.

Proof. By the affinoid Mittag-Leffler Theorem of [4], Proposition 2.2.6,
there are f0, . . . , fn ∈ T1 such that

f = f0

(
ξ − a0

ε0

)
+

n∑
i=1

fi

(
εi

ξ − ai

)
.

To complete the proof of the claim, proceed exactly as in Example 3.3.
�

Continuing as in Example 3.3, the claim shows that the p-monomials
in {ξ − α} generate the Q(Ap)-module Q(A). Put m := (ξ − α)A and

let Âm be the m-adic completion of Am; then Âm = K[[ξ − α]]. Clearly,
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{ξ − α} is a p-basis of Q(Âm) over Q((Âm)p). Let dm be the derivation

from Âm to Ω bAm/( bAm)p . Applying Lemma 3.1, we see that for any f ∈ A,

dm(f) = 0 if, and only if, f ∈ Ap.
A connected affinoid subset F of the projective line P over K is the

complement of a finite union of open discs (see [4], Section 2.1.) By [4],
Example 3.3.5, F may be identified with a standard set, which yields
Theorem 2.6 for the case X = F .

Remark 3.5. Example 3.4 employs the affinoid Mittag-Leffler Theo-
rem of [4], Proposition 2.2.6, the proof of which relies on the assump-
tion that the coefficient field K is algebraically closed. The extension
of that theorem to the case of more general coefficient fields will be
treated in a forthcoming paper. Closely related results can be found in
[3], Section 3.
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