A NOTE ON GLOBAL p®* POWERS OF RIGID
ANALYTIC FUNCTIONS

Z. ROBINSON

ABSTRACT. Assume that K is a perfect field of characteristic p > 0
that is complete with respect to an ultrametric valuation, and let
X be a rigid analytic variety over K. Suppose that X is smooth
and connected with respect to its Grothendieck topology. Let f be
a (global) function on X the differential of which vanishes locally
at some point of X; then f is the p*® power of a (global) function.

1. INTRODUCTION

This note is an answer to a question that was posed to me by David
Goss, whom I thank for several helpful comments. Assume that K
is a perfect field of characteristic p > 0 that is complete with re-
spect to an ultrametric valuation, and let X be a rigid analytic variety
over K. Suppose that X is smooth and connected with respect to its
Grothendieck topology. Is a (global) function on X the differential of
which vanishes in a neighborhood of a point the p'® power of a (global)
function? Theorem 2.6, below, is the positive answer to this question.
It is a consequence of the basic sheaf theory and of the fact that affinoid
algebras are excellent rings. This note provides a convenient reference
in the literature for this useful means of detecting global p' powers.

In Section 3, we assume that K is algebraically closed, and use
Lemma 3.1 to give a direct treatment of some special cases of The-
orem 2.6. In Examples 3.2 and 3.3, we treat the cases of the closed
unit polydisc and an annulus, respectively. In Example 3.4, we use the
affinoid Mittag-Leffler Theorem to give a direct treatment of the case
of a Zariski-connected, open K-affinoid subvariety of the affine line, as
well as of the case of a connected affinoid subset of the projective line
over K.
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2. GLOBAL p' POWERS

Let K be a field that is complete with respect to an ultrametric
absolute value |- |: K — Ry. A Tate ring T,,(K) over K is a ring of
power series

K{&,...,6,) = {Zayf a, € K and |V1|1£nooay 0}.
The ring T, is a Noetherian UFD ([1], Theorem 5.2.6.1,) and it satisfies
a Nullstellensatz: for every m € Max T, the quotient field 7,,/m is a
finite extension of K ([1], Theorem 7.1.1.1.) Any quotient of a Tate
ring is called a K-affinoid algebra (see [1] or [4].)

We assume throughout that K s a perfect field of positive character-
istic p that is complete in an ultrametric absolute value | - |: K — R.
The main point is contained in Lemma 2.1, below, which under mild
conditions shows that, for elements of K-affinoid algebras, the property
of being a p'" power is quite local.

The proof of Lemma 2.1 relies on properties of G-rings. A Noetherian
ring A is said to be a G-ring if for every prime ideal p of A, the natural
homomorphism A, — Ap is regular (where A,J is the maximal-adic
completion of the local ring A,.) By [10], Theorem 8.8, a map from a
Noetherian local ring to its completion is faithfully ﬂat, hence by [10],
Theorem 32.2(i), the ring A, is reduced if, and only if, A\p is reduced.
This fact will be used in the proof of the following lemma.

A K-affinoid algebra A is an excellent ring by [2], Theorem 3.3.3,
hence, in particular, it is a G-ring.

Lemma 2.1. Suppose that A is a reqular, excellent ring that is an
integral domain. Let f € A and suppose that there is a maximal ideal
m of A and an element g € Ay, such that g° = f. Then g € A.

Proof. Note that since A is an integral domain, we may regard A as a
subring of the localization A, and since A, — Ay is faithfully flat,
we may regard A, as a subring of 2m. Since A is a regular ring, it is
normal ([10], Theorem 19.4;) hence, it suffices to show that g € Ay,.

Suppose g € fAlm\Am, and put R := Aplg]. Since A is a regular ring,
A is a UFD ([10], Theorem 20.3,) so the polynomial X? — f = X? —gP
is irreducible in A,[X], and

R = A[X]/(X" — 7).

Since Ay is reduced ([10], Theorem 32.2(i)) and R C An, also R is
reduced.
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Put 91 :=m- R, and let R denote the M-adic completion of R, so
R = Au[X]/(X? = g") - An[X].

Hence X — ¢ is a non-zero nilpotent element of R. Now, R is a finite
extension of the local ring Ay, so by [10], Theorem 8.15, R is the
direct sum of finitely many maximal-adic completions of R. Thus, some
maximal-adic completion of R is not reduced. Since R is reduced, it
follows from [10], Theorem 32.2(i) that R cannot be a G-ring.

For any G-ring A, the polynomial ring A[X] is also a G-ring ([9],
Theorem 77.) Moreover, it follows from the definition that any quotient
or localization of a G-ring is again a G-ring. Therefore, R is also a G-
ring, a contradiction. U

Remark 2.2. (i) A ring R similar to the one in the proof above is found
n [11], Section A.1, Examples 6 and 3.2, and in [7], Example 4.2.4.

(ii) By [6], Theorem 3.3, any affinoid algebra is an excellent ring; thus
Lemma 2.1 (as well as Proposition 2.4, below) holds for any complete,
valued field of characteristic p > 0.

(iii) Consider the class of K-algebras A that are quotients of a ring
Sman(E, K) of separated power series (see [7], Definition 2.1.1 and [7],
Remark 2.1.8.) Under any of the hypotheses of [7], Proposition 4.2.5
(e.g., when [K : KP] < oo and F is a complete DVR contained in
the valuation ring of K such that F is a finite extension of EP)) the
quasi-affinoid algebra A is an excellent ring. Thus the corresponding
analogue of Lemma 2.1 holds. This leads to a stronger form of [§],
Theorem 3.2.

The basic properties of the sheaf of functions on a rigid analytic vari-
ety over K yield Proposition 2.4, below, which generalizes Lemma 2.1.
For the definition of rigid analytic variety, we refer the reader to [1],
Definition 9.3.1.4. Among these are the affinoid varieties X = Sp A, A a
K-affinoid algebra, which may be glued together as in [1], Section 9.3.2
to form rigid analytic varieties. The simplest admissible open sets of
the affinoid variety X = Sp A are the rational subdomains (see [1],
Definition 7.2.3.5 and [1], Corollary 7.3.5.3.) These are sets of the form

1Y = x | filz x 1<
X(E) = {r e X @) <lgla)], 1<i<r),

where g, f1,..., fr € A have no common zero. Consider the affinoid
algebra

B::A<%,--- ,%>:A(nl,...,nr>/(f1—7719,-~-,fr—77rg);
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by [1], Section 7.2.3, X = Sp B. The simplest admissible open covers of
X are the finite covers by rational subdomains; these are called affinoid
covers. By Lemma 2.3, below, the covering of an affinoid variety by its
Zariski-connected components is an affinoid cover. This permits the
proof of Proposition 2.4, below, to be reduced to Lemma 2.1.

Lemma 2.3. Let X = Sp A be an affinoid variety, and let Z be a
Zariski-connected component of X. Then Z is a rational subdomain of
X. It follows that the covering of X by its Zariski-connected compo-
nents is an affinoid cover.

Proof. Since Z is Zariski-closed, there are fi,..., f,. € A such that

Z={rxeX: fi(x)=---= f.(x) =0}
Since Z is Zariski-open, Z' := X \ Z is a closed affinoid set, and by [1],
Lemma 7.3.4.7,

o(w) = max | fi(w)]

assumes its minimum on Z’. Hence 0 < ImZn a(z). Let e € \/|K \ {0}
zeZ’
with
0 < e < mina(z);

zeZ’
then
zzx(ﬂ,...,ﬁ>
€ €
is a rational subdomain of X, as desired. O

Proposition 2.4. Let X be a smooth rigid analytic variety over K that
is connected with respect to its Grothendieck topology. Let f € Ox(X)
and suppose that there is a point x € X and an element g € (/’)\X@ such
that g* = f. Then there is an element g € Ox(X) such that g* = f.

Proof. Let {X;};c; be an admissible affinoid covering of X. Passing
to a refinement if necessary, by Lemma 2.3, we may assume that each
affinoid variety X; is Zariski-connected. Thus since X is smooth, each
K-affinoid algebra Ox (X;) is a regular ring and an integral domain (by
[10], Theorem 14.3.) Put

I, :={iel:forsome h e Ox(X;),h” = f|x,}, and

I ==1\1I.
Suppose that ¢ € I, j € I, and that there is a point y € X;N.X;. Since
i € I, there is an h € Ox(X;) such that h* = f|x,; whence there is

an h € Ox,, such that h? = f. Since y € Xj, by Lemma 2.1, there
is an h € Ox(Xj) such that h? = f, contradicting j € I,. Since X
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is connected, it follows that I, = @. Since Oy is a sheaf, there is an
element g € Ox(X) with ¢ = f. d

Asin [4], Theorem 3.6.1, to each K-affinoid algebra A, there is canon-
ically associated a universal finite differential module QQ K (Note

that since we have assumed that K is perfect, QJ;‘ K coincides with the
module Q4 of Kahler differentials of A over K, defined as in [10],
Section 25. Indeed to see this, by the universal properties defining
these two modules, it suffices to show that (4, is a finite A-module.
Since the derivation d vanishes on AP, by [10], Theorem 25.1, it fol-
lows that Q4,5 = Q4/4». Since K is perfect, A is finite over AP, thus,
Qa/ar = Qa/k is a finite A-module, as desired.)

From Qf‘ /x> One obtains the sheaf 2y, x on the affinoid variety ¥ =

Sp A as in [4], Definition 4.2.1. Let U be a rational subdomain of
Y'; then Qé(U) /i 1s canonically isomorphic to Qyx(U) (see [4], Exam-
ple 4.4.1.) Since each rigid analytic variety X has an admissible affinoid
covering, this yields the gluing data for the sheaf Qx,x of differentials
on X over K.

By [2], Theorem 2.1.4, to each ring S := Ox, there is canonically
associated a universal finite differential module Qg i~ By [2], Theo-

rem 2.4.4, the stalk Q0 is canonically isomorphic to Qé K
Now suppose that the rigid analytic variety X is smooth, let x € X
and consider the stalk Ox,. By the Nullstellensatz ([1], Proposi-
tion 7.1.1.1,) the residue field of the local ring Ox, is a finite field
extension K of K, and by [5], Theorem IL.5.6, the stalk Ox, is iso-
morphic to a ring K1{,...,&,} of convergent power series over K.
Since K is perfect, K, is a separable algebraic extension of K, so

qu{g}/K = Qfﬁ{{}/m. By [2], Paragraph 2.2.5, we have:

o
(25)  d: Ki{€} = Qe = @Kl{g}d&: [ Z 8—§d§i.

Let f € Ox(X), let x € X, and let d,: Ox, — Qx/k, be the corre-
sponding derivation. Suppose that d,(f) = 0. Since K is perfect, also
K is perfect, hence from Equation (2.5), it follows that there is an
element g € Ox , such that ¢¥ = f.

From the above and from Proposition 2.4, we now deduce the fol-
lowing.

Theorem 2.6. Let X be a smooth rigid analytic variety over K that
is connected with respect to its Grothendieck topology. Let f € Ox(X),
let x € X, and let d,: Ox, — Qx/k. be the corresponding derwation.
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Then d.(f) = 0 if, and only if, there is an element g € Ox(X) such
that g* = f.

3. EXAMPLES

In Examples 3.2, 3.3 and 3.4, below, we give direct treatments of
some special cases of Theorem 2.6. The notion of p-basis (see [10],
Section 26) plays a key role in the computations. Let F' C L be fields
of characteristic p > 0. A set &1,...,&, € L of distinct elements is said
to be p-independent over F' if, and only if, the set

Di={& - &r:0<y <p 1<i<n}

of p-monomials in £ is linearly independent over LP(F'). Let B C L.
If every finite subset of B is p-independent over F', then we say that
B is p-independent over F. If B C L is p-independent over F' and
L = LP(F, B), then we call B a p-basis of L over F.

A differential basis of L over F is a subset B of L with the property
that {dx : v € B} forms a basis of the L-vector space {2;,/p, the module
of differentials of L over F'. Lemma 3.1, below, is a direct consequence
of [10], Theorem 26.5: in characteristic p > 0, the notions of p-basis
and of differential basis coincide.

With the above in mind, suppose that B C L is a p-basis of L
over LP, and consider the derivation d: L — Qp/r». A straightforward
computation shows that

{dz : x # 1 is a p—monomial in B}
is a basis of {1;,/1», considered as a vector space over L”.

Lemma 3.1. Let R C S be integral domains of characteristic p > 0,
and let Q(S) be the field of fractions of S. Suppose that there is a set
B C R such that the p-monomials in B generate the RP-module R and
B C Q(95) is a p-basis of Q(S) over Q(S?), then

R =SPNR=kerdNR,

where d: S — Qg/gp 1s the derwation from S to the module of differ-
entials of S over SP.

Proof. The inclusions RP C SP N R C kerd N R are clear; hence, it
suffices to show that kerd N R C RP. Let f € R; then there are
&1,...,&, € B and elements f, € R for which

f= > e

0o<v<p
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Thus,
df = D fLd().
6#V<?
Since the d(£”) are linearly independent over Q(S?), if df = 0 then
f=f¥ e RP, as desired. 0

In the following, we assume that K is algebraically closed.

Example 3.2. Consider the Tate ring T,, = K(&,...,&,), and let
xr € MaxT,. By the Nullstellensatz, the z-adic completion of T, is
isomorphic to K[&,...,&,]. For each f € K[¢], there are uniquely
determined f, € K[¢] such that

> hE)E

0<v<p

Note that if f belongs to T}, the corresponding f, also belong to T,.
From the above equation, it follows that {&;,...,&,} is a p-basis of

Q(T,) over Q((T,)?) as well as of Q(K[E]) over Q((K[E])P). Now
apply Lemma 3.1.

Example 3.3. Let a,¢,§ € K with |a| <1 and |¢| < |§] < 1. Consider
the K-annulus

X ={xeK:|g|<|r—a|l <|§|} =SpA,
A=K (655 &

&—a

Claim. Let f € A and o € X; then there are fy,..., f,—1 € AP such
that

Proof. Indeed, we may write
f = Zy>o Gy (%) +2 06 <5_) |
=S () @ En((&)) (&)

for some g;, h; € T7. Now, observe that g; ((gTa)p> , h; ((%)p) € AP,
the (%a) are polynomials, and
e &l 4aP 4 4a!
€-a ° €—ay |
which establishes the claim. 0
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Thus the p-monomials in {f a} generate the Q(AP)-module Q(A).
Put m := (£ — a)A and let A be the m-adic completion of Ap; then
Aw = K[€ — a]. Clearly, {¢ — a} is a p-basis of Q(Aw) over Q((An)P).
Let d., be the derivation from A to Q# A /(Ao Applying Lemma 3.1,
we see that for any f € A, dn(f) = 0 if, and only if, f € AP.

Example 3.4. For a € K and r € | K|, r > 0, define

B~ (a,r) :={re€ K :|rx—a| <r}and
Bt(a,r) ={r e K:|x—a|<r},

the “open” and “closed” discs, respectively, of radius r about a.

Let X = Sp A be a non-empty, Zariski-connected, open affinoid sub-
variety of the unit disc Sp T (K) ~ B*(0,1) in the affine line over K.
By [1], Theorem 9.7.2.2, X is a standard set; i.e., a set of the form

X = B*(ag,r0) \ | J B (ai, 1),
i=1
where ag, ...,a, € BY(0,1), ro,...,m, € |K]|, 0 <r; <1, and the discs
B~ (a;,r;), 1 < i < n, are pairwise disjoint and are each contained in
BJr (ao, ’T‘Q) .
Fix ¢; € K with |g;| = 7, 0 < i < n, and consider the affinoid
algebra
§—ay & En >
A=K, >—0nu ——, ..., ——— ).
<§ g0 §—a §—an

By [1], Section 7.2.3, X = Sp A.

Claim. Let f € A and o € X; then there are fy,..., f,—1 € AP such
that

Proof. By the affinoid Mittag-Leffler Theorem of [4], Proposition 2.2.6,
there are fy,..., f, € T} such that

-0 (552) 2 (5)

To complete the proof of the claim, proceed exactly as in Example 3.3.

O

Continuing as in Example 3.3, the claim shows that the p-monomials
in {£ — a} generate the Q(AP)-module Q(A). Put m := (£ — a)A and
let Ay, be the m-adic completion of Ay; then Ay, = K[¢ — «f. Clearly,
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~

{¢ — a} is a p-basis of Q(An) over Q((An)P). Let dyy, be the derivation
from Ay to ng/(gm)p. Applying Lemma 3.1, we see that for any f € A,
dw(f) = 0if, and only if, f € AP.

A connected affinoid subset ' of the projective line P over K is the
complement of a finite union of open discs (see [4], Section 2.1.) By [4],
Example 3.3.5, F' may be identified with a standard set, which yields
Theorem 2.6 for the case X = F.

Remark 3.5. Example 3.4 employs the affinoid Mittag-Leffler Theo-
rem of [4], Proposition 2.2.6, the proof of which relies on the assump-
tion that the coefficient field K is algebraically closed. The extension
of that theorem to the case of more general coefficient fields will be

treated in a forthcoming paper. Closely related results can be found in
3], Section 3.
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