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Abstract. We give a criterion for maps on ultrametric spaces to be surjective and
to preserve spherical completeness. We show how Hensel’s Lemma and the multi-
dimensional Hensel’s Lemma follow from our result. We give an easy proof that the
latter holds in every henselian field. We also prove a basic infinite-dimensional Im-
plicit Function Theorem. Further, we apply the criterion to deduce various versions
of Hensel’s Lemma for polynomials in several additive operators, and to give a cri-
terion for the existence of integration and solutions of certain differential equations
on spherically complete differential fields, for both D-fields in the sense of Scanlon,
and differentially valued fields in the sense of Rosenlicht. We modify the approach
so that it also covers logarithmic-exponential power series fields. Finally, we give a
criterion for a sum of spherically complete subgroups of a valued abelian group to be
spherically complete. This in turn can be used to determine elementary properties
of power series fields in positive characteristic.
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1 Introduction

Hensel’s Lemma (see Theorem 21) is an important tool in the theory of valued fields. In
recent years, at has witnessed several generalizations. For example, such generalizations
are important when the valued fields are enriched by additional structure like derivations.
But attempts have also been made to formulate Hensel’s Lemma in situations with less
structure. For instance, forgetting about multiplication one may consider valued abelian
groups or modules. Another interesting case is that of a non-commutative multiplication.

In view of these developments, it is logical to ask for the underlying principle that
makes Hensel’s Lemma work. This principle should be formulated using as little algebraic
structure as possible so that one can derive new versions of Hensel’s Lemma by adding
whatever structure one is interested in.

It has turned out that the structure suitable for such an underlying principle is that of
ultrametric spaces. In [P2], S. Prieß-Crampe proved an ultrametric Fixed Point Theorem.
This theorem works with contracting maps, and indeed the Newton algorithm used to
prove Hensel’s Lemma for the field of p-adic numbers readily provides such a map. But in
other situations, contracting maps are not always instantly available. For example, if one
looks for zeros of polynomial maps on a valued field, it can be more convenient to directly
study the ultrametric properties of these maps. The problem could then be solved by
showing surjectivity of such maps when restricted to suitable subsets of the field. Our
Ultrametric Main Theorem (Theorem 2) is of this nature.

In the next section, we give a quick introduction to the facts about ultrametric spaces
that are necessary to understand the Ultrametric Main Theorem. In Section 1.2 we will
then give a summary of the various applications that are derived in this paper.

1.1 The Ultrametric Main Theorem

Let (Y, u) be an ultrametric space. That is, u is a map from Y ×Y onto a totally ordered
set Γ with last element ∞, satisfying that for all x, y, z ∈ Y ,

(U1) u(y, z) = ∞ if and only if y = z,
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(U2) u(y, z) ≥ min{u(y, x), u(x, z)} (ultrametric triangle law),
(U3) u(y, z) = u(z, y) (symmetry).

It follows that

• u(y, z) > min{u(y, x), u(x, z)} ⇒ u(y, x) = u(x, z),
• u(y, x) 6= u(x, z) ⇒ u(y, z) = min{u(y, x), u(x, z)}.

We will use these properties freely. We set uY := {u(y, z) | y, z ∈ Y, y 6= z} = Γ \ {∞}
and call it the value set of (Y, u).

We recall some definitions. For y ∈ Y and α ∈ uY ∪ {∞}, we define the closed ball
around y with radius α as follows:

Bα(y) := {z ∈ Y | u(y, z) ≥ α} .

To facilitate notation, we will also use

B(x, y) := Bu(x,y)(x) .

It follows from the ultrametric triangle law that Bu(x,y)(x) = Bu(x,y)(y) and that B(x, y)
is the smallest closed ball containing x and y. Similarly, it follows from the ultrametric
triangle law that

B(x, y) ⊆ B(z, t) if and only if x ∈ B(z, t) and u(x, y) ≥ u(z, t) . (1)

(Note: the bigger u(x, y), the closer x and y; this is compatible with the Krull notation
of valuations.)

A ball is the union of any non-empty collection of closed balls which contain a common
element. If B1 and B2 are balls with non-empty intersection, then B1 ⊆ B2 or B2 ⊆ B1 .

A set of balls in (Y, u) is called a nest of balls if it is totally ordered by inclusion;
this is the case as soon as every two balls in the set have a nonempty intersection. The
intersection of the nest is defined to be the intersection of all of its balls. If it is non-
empty, then it is again a ball.

The ultrametric space (Y, u) is called spherically complete if every nest of balls has
a nonempty intersection. It is well known and easy to prove that this holds if and only
if every nest of closed balls has a nonempty intersection. If (Y, u) is spherically complete
and B is a ball in Y , then also (B, u) is spherically complete.

Let (Y, u) and (Y ′, u′) be non-empty ultrametric spaces and f : Y → Y ′ a map. For
y ∈ Y , we will write fy instead of f(y). An element z′ ∈ Y ′ is called attractor for f if
for every y ∈ Y such that z′ 6= fy, there is an element z ∈ Y which satisfies:

(AT1) u′(fz, z′) > u′(fy, z′),
(AT2) f(B(y, z)) ⊆ B(fy, z′).

Condition (AT1) says that the approximation fy of z′ from within the image of f can be
improved, and condition (AT2) says that this can be done in a somewhat continuous way.

The following are our main theorems.
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Theorem 1 Assume that z′ ∈ Y ′ is an attractor for f : Y → Y ′ and that (Y, u) is
spherically complete. Then z′ ∈ f(Y ).

The map f will be called immediate if every z′ ∈ Y ′ is an attractor for f .

Theorem 2 Assume that f : Y → Y ′ is immediate and that (Y, u) is spherically com-
plete. Then f is surjective and (Y ′, u′) is spherically complete. Moreover, for every y ∈ Y
and every ball B′ in Y ′ containing fy, there is a ball B in Y containing y and such that
f(B) = B′.

This theorem is a generalization of a result proved in [KU1] for additive maps on spheri-
cally complete abelian groups (see Section 3 for the definition). Theorem 2 also works in
the case where the map f is not additive (or even when there is no addition at all). It is
related to ultrametric fixed point theorems as proved in [P2], [PR1]. Compared to them, it
has the advantage that it can be applied to situations where a natural contracting map is
not at hand. There is also a variant of our “Attractor Theorem” (Theorem 1) which works
for ultrametric spaces with partially ordered value sets ([PR2]). For further information
and applications of ultrametric fixed point theorems, see also [SCH] and [PR3].

If f is just the embedding of an ultrametric subspace Y in an ultrametric space Y ′, then
(AT2) will automatically hold. Hence, we will say that Y is an immediate subspace of
Y ′ if it is an ultrametric subspace of Y ′ and for all z′ ∈ Y ′ and y ∈ Y there is z ∈ Y such
that u′(z, z′) > u′(y, z′). Now Theorem 2 yields:

Corollary 3 Assume that Y is an immediate ultrametric subspace of Y ′. If (Y, u) is
spherically complete, then Y = Y ′.

It should be noted that an immediate subspace is not necessarily a dense subspace.

A subspace Y of Y ′ is said to have the optimal approximation property (in Y ′) if
for every z′ ∈ Y ′ there is z ∈ Y such that u′(z, z′) = max{u′(y, z′) | y ∈ Y }. The element
z need not be uniquely determined. If the set {u′(y, z′) | y ∈ Y } has no maximum, then
z′ is an attractor for the embedding of Y in Y ′. On the other hand, if z′ ∈ Y , then the
maximum is u(z′, z′) = ∞. Thus, Theorem 1 yields:

Corollary 4 Assume that Y is an ultrametric subspace of Y ′. If (Y, u) is spherically
complete, then it has the optimal approximation property.

1.2 Applications

• The Additive Main Theorem

In some applications, the map f is a homomorphism of abelian groups and the ultrametric
u is induced by a group (or field) valuation (see Section 3 for definitions). With the
presence of addition, balls can be shifted additively to balls that contain 0. In this
way, the criteria for immediate maps become much easier to formulate and to check (see
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Proposition 11). In Section 3.1 we will prove the additive version of our Ultrametric Main
Theorem (Theorem 12), which works for homomorphisms.

In Section 3.3 we will introduce the notion of pseudo-derivative for arbitrary maps on
valued abelian groups. One can think of it as a derivative at a certain point “up to terms
of higher order”, valuation theoretically speaking. This notion will then play an essential
role when we study polynomial maps.

• Hensel’s Lemma revisited

Let (K, v) be a valued field with valuation ring O and valuation ideal M. Further, take
a polynomial f ∈ O[X] and b ∈ O such that s := f ′(b) 6= 0. In Section 4.3 we consider
f as a map on K and prove that f induces an immediate injective map from b + sM
into f(b)+s2M (Proposition 19). Here, the pseudo-derivative is simply multiplication by
s. From Theorem 2 we obtain that if (K, v) is spherically complete (i.e., its underlying
ultrametric is spherically complete), then this map is onto (Theorem 20).

This allows a new look at Hensel’s Lemma: while it is always true for (K, v) spherically
complete and f ′(b) 6= 0 that the above map is onto, the condition “vf(b) ≥ 2vf ′(b)” of
Hensel’s Lemma guarantees that 0 ∈ f(b) + s2M and consequently, there is a ∈ K
such that f(a) = 0 and v(a − b) > vf ′(b) (see Section 4.4). We generalize this result
to systems of n polynomials in n variables and use it to prove that the multidimensional
Hensel’s Lemma holds in every spherically complete valued field (Theorem 22). By an easy
argument due to F. Pop, we conclude that the multidimensional Hensel’s Lemma holds
in every henselian field (see Theorem 23). Further, we prove results on the surjectivity of
functions defined by power series in spherically complete valued fields (see Section 4.5).

Our above approach to Hensel’s Lemma has also been used in a non-commutative
setting. In [VC] it is applied to skew power series fields over skew fields.

• Towards an infinite-dimensional Implicit Function Theorem

The n-fold product of a spherically complete ultrametric space is again spherically com-
plete (see Section 2.2). We use this fact for the proof of the multi-dimensional Hensel’s
Lemma. If one thinks of generalizing this to an infinite-dimensional version, one runs
into problems when trying to define a suitable product. But if one restricts the scope to
valued rings with well ordered value sets, then this is possible. Using the above mentioned
notion of pseudo-derivative, we formulate in Section 5 a principle that can be seen as a
basic infinite-dimensional Implicit Function Theorem, as needed in B. Teissier’s approach
to local uniformization in arbitrary characteristic (cf. [T], Theorem 5.56).

• Weak D-fields

A weak D-field is a valued field (K, v) with an additive map D : K → K satisfying
conditions that are a relaxation of T. Scanlon’s axioms for D-fields (cf. [S1,2]). Scanlon’s
notion comprises both differential and difference fields. Essential features of weak D-fields
are that the value vDa depends on the value va in a sufficiently simple way and that D
induces an additive map on the residue field of K (again denoted by D). The following
result, proved in Section 7.1, shows that in this setting, the notion of immediate map

5



appears in a very natural way: If (K, v,D) is a weak D-field, then D is immediate if and
only if D is surjective on Kv (Theorem 40). Hence we obtain from Theorem 2 that if
(K, v,D) is a spherically complete weak D-field such that D is surjective on Kv, then D
is surjective on K (see Theorem 41).

In Section 7.1 we will also prove the following version of Scanlon’s D-Hensel’s Lemma
(cf. [S1,2]). By Di we denote the i-th iterate of D. The residue field Kv is said to be
linearly D-closed if each operator

∑n
i=0 ciD

i with ci ∈ Kv is surjective on Kv.

Theorem 5 Let (K, v,D) be a spherically complete weak D-field whose residue field is
linearly D-closed. Take a polynomial f ∈ O[X0, X1, . . . , Xn] and assume that there is
some b ∈ O such that

γ := min
0≤i≤n

v
∂f

∂Xi

(b,Db, . . . , Dnb) < ∞ and vf(b,Db . . . , Dnb) > 2γ .

Then there is an element a ∈ K such that f(a,Da, . . . , Dna) = 0 and v(a − b) > γ.

In fact, we will deduce this theorem from a much more general Hensel’s Lemma for
polynomials in several additive operators (Theorem 34 in Section 6.2).

• Rosenlicht valued differential fields

A valuation v on a differential field (K,D) is a differential valuation in the sense of
M. Rosenlicht (cf. [R1]) if it satisfies an axiom that is derived from de l’Hôpital’s Rule.
In this case, there is in general no simple correspondence between the values vDa and
va, and there is also no suitable map induced on the residue field. Yet again, immediate
maps appear naturally. We say that (K,D) admits integration if D is surjective, and
that (K, v,D) admits asymptotic integration (cf. [R2]) if for every a′ ∈ K \{0}, there
is some a ∈ K such that

v(a′ − Da) > va′ .

In Section 7.2, we will give the (easy) proof of the following fact: If v is a differential
valuation on (K,D), then D is immediate if and only if (K, v,D) admits asymptotic
integration (see Proposition 46). Hence we obtain from Theorem 2: Let (K,D) be a
differential field, endowed with a spherically complete differential valuation v. If (K, v,D)
admits asymptotic integration, then (K,D) admits integration (Theorem 47).

In Section 7.2 we will also prove a theorem about integration on the union of an
increasing chain of spherically complete Rosenlicht valued differential fields (Theorem 48).
It can be used to show that the derivation on the logarithmic-exponential power series
field R((t))LE (cf. [DMM3]) is surjective.

When we try to prove a “differential Hensel’s Lemma” for Rosenlicht’s differential
valuations, we experience technical problems because of the weak correspondence between
the values vDa and va. In this case, the results are not as nice and simple as in the case
of weak D-fields. The main results are Theorem 51, obtained from the more general
Theorem 36 proved in Section 6.3, and Theorem 53, obtained from the more general
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Theorem 39 proved in Section 6.4. As a simple application we obtain a result which was
proved by Lou van den Dries in [D] (see Corollary 55).

• Sums of spherically complete valued abelian groups

So far, we have been interested in the surjectivity of maps. Here is an application where
we use that the image of the map inherits spherical completeness. It is used in [KU2]
to determine elementary properties of the power series field Fp((t)) in connection with
additive polynomials. A polynomial f is called additive on an infinite field K if f(a +
b) = f(a) + f(b) for all a, b ∈ K (cf. [L], VIII, §11). For example, the polynomials
Xp and Xp − X are additive on Fp((t)) and every other field of characteristic p. For
every additive polynomial f on a field K, the image f(K) is a subgroup of the additive
group of K. If f1, . . . , fn are additive polynomials with coefficients in K, then the sum
f1(K) + . . . + fn(K) is again a subgroup of the additive group of K.

If K is a maximally valued field (like K = Fp((t)) ; cf. Section 4), then the image
f(K) of every polynomial is spherically complete. Hence the question arises whether the
subgroup f1(K) + . . . + fn(K) is again spherically complete. In Section 8 we will show
that the sum of spherically complete subgroups of a valued abelian group is spherically
complete (and hence has the optimal approximation property) if the sum is pseudo-direct
(cf. Theorem 57). The optimal approximation property of a definable subgroup in a valued
abelian group is an elementary property in the language of groups with a predicate for
the valuation. If the subgroups are definable, then also the assertion that their sum is
pseudo-direct is elementary. Hence, given additive polynomials f1, . . . , fn with coefficients
in K = Fp((t)), the assertion

if f1(K) + . . . + fn(K) is pseudo-direct, then it has the optimal approximation property

is elementary in the language of valued fields (enriched by names for the coefficients of the
polynomials fi). By Theorem 57, it holds for K = Fp((t)), and for every other spherically
complete valued field (K, v). See [KU2] and [KU3] for further details.

2 Ultrametric Spaces

2.1 Proof of the Ultrametric Main Theorem

For the proof of Theorem 1, we show the following more precise statement:

Lemma 6 Assume that z′ ∈ Y ′ is an attractor for f : Y → Y ′ and that (Y, u) is
spherically complete. Then for every y ∈ Y there is z0 ∈ Y such that fz0 = z′ and
f(B(y, z0)) ⊆ B(fy, z′).

Proof: If z′ = fy then we set z0 = y and there is nothing to show. So assume that
z′ 6= fy. Then by assumption on z′ there is z ∈ Y such that (AT1) and (AT2) hold. Take
elements yi, zi ∈ B(y, z), i ∈ I, such that the balls B(yi, zi) form a nest inside of B(y, z),
maximal with the following properties, for all i:
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i) z′ = fyi = fzi or u′(z′, fzi) > u′(z′, fyi),
ii) f(B(yi, zi)) ⊆ B(fyi, z

′),
iii) for all j ∈ I, u(yi, zi) < u(yj, zj) implies that u′(fyi, z

′) < u′(fyj, z
′).

Non-empty nests with these properties exist. Indeed, the singleton {B(y, z)} is such
a nest. Maximal nests with these properties exist by Zorn’s Lemma. Take one such
maximal nest. As soon as we find z0 ∈ B(y, z) such that z′ = fz0 we are done because
f(B(y, z0)) ⊆ f(B(y, z)) ⊆ B(fy, z′).

Assume first that this nest has a minimal ball, say, B(y0, z0). If z′ = fz0 then we are
done. So assume that z′ 6= fz0, and set ỹ := z0 . Then by assumption on z′, we can find
z̃ ∈ Y such that

u′(fz̃, z′) > u′(fỹ, z′) and f(B(ỹ, z̃)) ⊆ B(fỹ, z′) .

We have that
u′(fỹ, z′) = u′(fz0, z

′) > u′(fy0, z
′) = u′(fỹ, fy0) , (2)

where the last equality follows from the ultrametric triangle law. So we know that fy0 /∈
B(fỹ, z′) and thus, y0 /∈ B(ỹ, z̃). This shows that u(ỹ, z̃) > u(ỹ, y0) = u(z0, y0), and since
ỹ = z0 ∈ B(z0, y0), it follows that B(z̃, ỹ) ⊂

6= B(z0, y0). So we can enlarge our nest of balls
by adding B(z̃, ỹ), and conditions i) and ii) hold for the new nest. From iii) we see that
u′(fy0, z

′) is maximal among the u′(fyi, z
′), i ∈ I; so (2) shows that also iii) holds for the

new nest. But this contradicts the maximality of the chosen nest.
Now assume that the nest contains no smallest ball. Since (Y, u) is spherically complete

by assumption, there is some z0 ∈
⋂

i∈I B(yi, zi). Suppose that fz0 6= z. Then we set
ỹ := z0 . For all i, we have ỹ ∈ B(yi, zi) and fỹ ∈ f(B(yi, zi)) ⊆ B(fyi, z

′), showing
that u′(fỹ, z′) ≥ u′(fyi, z

′). We choose z̃ as before. We have f(B(ỹ, z̃)) ⊆ B(fỹ, z′) ⊆
B(fyi, z

′) for all i. On the other hand, since the nest contains no smallest ball, the set
{u(yi, zi) | i ∈ I} has no maximal element. So iii) implies that also the set {u′(fyi, z

′) |
i ∈ I} has no maximal element. Consequently, for all i ∈ I there is j ∈ I such that
u′(fỹ, z′) ≥ u′(fyj, z

′) > u′(fyi, z
′) . Consequently, fyi /∈ B(fỹ, z′), which yields that

yi /∈ B(ỹ, z̃). Therefore, B(ỹ, z̃) ⊂
6= B(yi, zi) and u(ỹ, z̃) > u(yi, zi) for all i. So we can

enlarge our nest of balls by adding B(ỹ, z̃), and conditions i), ii) and iii) hold for the new
nest. This again contradicts the maximality of the chosen nest. Hence, fz0 = z′ and we
are done. 2

Corollary 7 Assume that f : Y → Y ′ is immediate and that (Y, u) is spherically com-
plete. Then the following holds:

(BB) for every y ∈ Y and every ball B′ in Y ′ around fy, there is a ball B in Y around
y such that f(B) = B′.

Proof: Assume that y ∈ Y and that B′ is any ball in Y ′ which contains fy. Then we
can write

B′ =
⋃

z′∈B′

B(z′, fy) .
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According to the foregoing lemma, for every z′ there is z0 ∈ Y such that z′ ∈ f(B(y, z0)) ⊆
B(fy, z′) ⊆ B′. Take B to be the union over all such balls B(y, z0) when z′ runs through
all elements of B′. Then B is a ball around y satisfying f(B) = B′. 2

The next lemma proves Theorem 2:

Lemma 8 Assume that f : Y → Y ′ is a map which satisfies (BB), and that (Y, u) is
spherically complete. Then f is surjective, and (Y ′, u′) is spherically complete.

Proof: Taking B′ = Y ′, we obtain the surjectivity of f .
Now we take any nest of balls {B′

j | j ∈ J} in Y ′. We have to show that this nest
has a nonempty intersection. We claim that in Y there exists a nest of balls Bi, i ∈ I,
maximal with the property that

I ⊆ J , and for all i ∈ I, f(Bi) = B′
i . (3)

To show this, we first take any j ∈ J and choose some yj ∈ Y such that fyj ∈ B′
j , making

use of the surjectivity of f . As f satisfies (BB), we can choose a ball Bj in Y around yj

and such that f(Bj) = B′
j . So the nest {Bj} has property (3). Hence, a maximal nest

{Bi | i ∈ I} with property (3) exists by Zorn’s Lemma.
We wish to show that the balls B′

i , i ∈ I, are coinitial in the nest B′
j , j ∈ J , that is,

for every ball B′
j there is some i ∈ I such that B′

i ⊆ B′
j . Once we have shown this we are

done: as Y is spherically complete, there is some y ∈
⋂

i∈I Bi, and

fy ∈
⋂

i∈I

f(Bi) =
⋂

i∈I

B′
i =

⋂

j∈J

B′
j

shows that
⋂

j∈J B′
j is non-empty.

Suppose the balls B′
i , i ∈ I, are not coinitial in the nest B′

j , j ∈ J . Then there is
some j ∈ J such that B′

j
⊂
6= B′

i for all i ∈ I. Since Y is spherically complete, there is some
y ∈

⋂

i∈I Bi . We have that fy ∈
⋂

i∈I B′
i =: B′, and also that B′

j ⊆ B′. By assumption,
there is a ball B around y such that f(B) = B′. If B′ happens to be the smallest ball
among the B′

i , say, B′ = B′
i0

with i0 ∈ I, then we just take B = Bi0 . If B′ ⊂
6= B′

i , then

it follows that B ⊂
6= Bi . Hence in all cases, B ⊆ Bi for all i. Since B′

j ⊆ B′, we can
choose ỹ ∈ B such that fỹ ∈ B′

j . By assumption, there is a ball Bj around ỹ such that
f(Bj) = B′

j . Since ỹ ∈ Bi for all i ∈ I, we know that Bi , i ∈ I ∪{j} is a nest of balls. By
construction, it has property (3). Since j /∈ I, this contradicts our maximality assumption
on I. This proves that the balls B′

i , i ∈ I, must be coinitial in the nest B′
j , j ∈ J . 2

2.2 Products

Let (Yi, ui), i ∈ I, be ultrametric spaces whose value sets uiYi are all contained in a
common ordered set, and assume that I is finite or that

⋃

i∈I uiYi is wellordered. Then

9



their direct product will be the cartesian product
∏

i∈I Yi equipped with the ultrametric

u :
∏

i∈I

Yi ×
∏

i∈I

Yi →
⋃

i∈I

uiYi ∪ {∞}

defined by
u ((yi)i∈I , (zi)i∈I) := min

i∈I
ui(yi, zi) .

We leave it to the reader to verify that this map satisfies (U1), (U2) and (U3). Note that
indeed every element of

⋃

i∈I uiYi appears as the distance of two suitably chosen elements
of
∏

i∈I Yi .

Lemma 9 Take k ∈ I and let π :
∏

i∈I Yi → Yk denote the projection onto the k-th
component. If B is a ball in (

∏

i∈I Yi, u), then for every k ∈ I, πkB is a ball in (Yi, ui),
and

B =
∏

i∈I

πiB . (4)

Proof: Since B 6= ∅, we have that πkB 6= ∅ and we can pick an element yk ∈ πkB which
is the projection of some y = (yi)i∈I ∈ B. We claim that

πkB =
⋃

z ∈B

B(yk, πkz) , (5)

where B(yk, πkz) is understood to designate a ball in (Yk, uk). Since πkz ∈ B(yk, πkz),
the inclusion “⊆” is trivial. Now take z = (zi)i∈I ∈ B and some xk ∈ B(yk, πkz). Set
x = (xi)i∈I with xi := yi for k 6= i ∈ I. Then u(y, x) = uk(yk, xk) ≥ uk(yk, πkz) ≥ u(y, z)
and therefore, x ∈ B and xk ∈ πkB. This proves that “⊇”, and hence equality holds in
(5). As a union of balls with common element yk, πkB is itself a ball.

The inclusion “⊆” in (4) is trivial. For the converse, pick an element x = (xi)i∈I ∈
∏

i∈I πiB. Then there are elements zi ∈ B such that xi = πiz
i for all i ∈ I. Pick an

arbitrary element y ∈ B. Then for some j ∈ I, u(y, x) = min ui(yi, xi) = min ui(yi, πiz
i) =

uj(yj, πjz
j) ≥ u(y, zj). Since y, zj ∈ B, it follows that x ∈ B. This proves the inclusion

“⊇” and hence equality in (4). 2

Proposition 10 If the ultrametric spaces (Yi, ui), i ∈ I, are spherically complete, then
the same holds for their direct product (

∏

i∈I Yi , u).

Proof: Let B = {Bj | j ∈ J} be a nest of balls in the direct product. We have to
show that the intersection of B is nonempty. For every i ∈ I we consider the projections
πiBj which by the foregoing lemma are balls in (Yi, ui). Since B is a nest, all intersections
Bj ∩ Bk are non-empty and therefore, all intersections πiBj ∩ πiBk are non-empty. This
proves that for each i ∈ I, {πiBj | j ∈ J} is a nest of balls in (Yi, ui). By our assumption
that the ultrametric spaces (Yi, ui) are spherically complete, there exist elements xi ∈
⋂

j∈J πiBj for each i. By equation (4) of the foregoing lemma, (xi)i∈I ∈ Bj for every
j ∈ J , hence (xi)i∈I ∈

⋂

j∈J Bj . 2
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2.3 Embeddings and isomorphisms

Take ultrametric spaces (Y, u) and (Y ′, u′) and a map f : Y → Y ′. A map ϕ : uY → u′Y ′

will be called a value map for f if it preserves ≤ and satisfies u′(fy, fz) = ϕu(y, z)
for all y, z ∈ Y , y 6= z. From the latter it follows that f is injective since u′(fy, fz) =
ϕu(y, z) ∈ u′Y ′ means that u′(fy, fz) 6= ∞, i.e., fy 6= fz. We call f an embedding of
ultrametric spaces (with value map ϕ) if in addition, ϕ preserves < and hence is
itself injective. An embedding f is called an isomorphism of ultrametric spaces if it
is onto. In this case, also ϕ is onto. We set ϕ∞ = ∞.

3 Immediate maps on valued abelian groups

A valued abelian group (G, v) is an abelian group G endowed with a valuation v.
That is, a 7→ va is a map from G onto vG ∪ {∞}, where vG is a totally ordered set and
∞ is an element bigger than all elements of vG, and the following laws hold:

(V1) va = ∞ ⇔ a = 0 ,
(V2) v(a − b) ≥ min{va, vb} (ultrametric triangle law).

The value set of (G, v) is vG. For every valued abelian group (G, v), the set G endowed
with the map

u : G × G → vG ∪ {∞} , u(a, b) := v(a − b)

is an ultrametric space. We note the following translations of properties of the ultrametric:

• v(a − b) > min{va, vb} ⇒ va = vb,
• va 6= vb ⇒ v(a − b) = min{va, vb},
• va = v(−a).

A valued abelian group (G, v) is called spherically complete if the underlying ultra-
metric space (G, u) is spherically complete. Standard examples for spherically complete
abelian groups are the Hahn products (see, e.g., [KU4]).

Observe that in a valued abelian group, any ball around 0 is a subgroup. Since balls
are unions of closed balls, this has only to be proved for closed balls. Note that

Bα(0) = {z ∈ G | u(0, z) ≥ α} = {z ∈ G | vz ≥ α}

since u(0, z) = v(0 − z) = v(−z) = vz. Take a, b ∈ Bα(0). Then va ≥ α and vb ≥ α,
whence v(a − b) ≥ α by (V2), that is, a − b ∈ Bα(0). This proves that every Bα(0) and
every other ball B containing 0 is a subgroup of G. Let us note that since every ball B
containing 0 is a union of closed balls Bα(0), it follows that

y ∈ B and vz ≥ vy ⇒ z ∈ B .

Every ball B̃ in (G, v) can be written in the form b + B where b ∈ B̃ and B = {a− b |
a ∈ B̃} is a ball around 0. Hence the balls in (G, v) are precisely the cosets with respect
to the subgroups that are balls.

11



3.1 Immediate homomorphisms

In this section we will give a handy criterion for group homomorphisms to be immediate.

Proposition 11 Let (G, v) and (G′, v′) be valued abelian groups and f : G → G′ a group
homomorphism. Then f is immediate if and only if for every a′ ∈ G \ {0} there is some
a ∈ G such that

(IH1) v′(a′ − fa) > v′a′,
(IH2) for all b ∈ G, va ≤ vb implies v′fa ≤ v′fb .

Proof: Suppose first that f is immediate, and take any a′ ∈ G′, a′ 6= 0. Set z′ := a′

and y := 0. Take z ∈ G such that conditions (AT1) and (AT2) hold, and set a := z.
Then v′(a′ − fa) = u′(z′, fz) > u′(z′, fy) = v′(a′ − f0) = v′a′. Hence, (IH1) holds. Also,
we obtain from the ultrametric triangle law that v′a′ = v′fa. Further, condition (AT2)
shows that

f({b | vb ≥ va}) = f(B(0, a)) = f(B(y, z))

⊆ B(fy, z′) = B(0, a′) = {b′ | v′b′ ≥ v′a′ = v′fa} .

That is, va ≤ vb ⇒ v′fa ≤ v′fb, i.e., (IH2) holds.

For the converse, take any y ∈ G and z′ ∈ G′ \ {fy}. Set a′ := z′ − fy 6= 0.
Choose a ∈ G such that conditions (IH1) and (IH2) hold, and set z := y + a. Then
u′(z′, fz) = v′(z′ − fz) = v′(z′ − fy − fa) = v′(a′ − fa) > v′a′ = v′(z′ − fy) = u′(z′, fy).
So (AT1) holds. Also, we obtain from the ultrametric triangle law that v′fa = v′(z′−fy).
To show that (AT2) holds, take any x ∈ B(y, z). Then v(x − y) ≥ v(z − y) = va. Hence
by (IH2), v′(fx − fy) = v′f(x − y) ≥ v′fa = v′(z′ − fy), so fx ∈ B(fy, z′). 2

By Theorem 2, we obtain:

Theorem 12 Let (G, v) and (G′, v′) be valued abelian groups and f : G → G′ a group
homomorphism which satisfies (IH1) and (IH2). Assume further that (G, v) is spherically
complete. Then f is surjective and (G′, v′) is spherically complete.

Take valued abelian groups (G, v) and (G′, v′). For an arbitrary map f : G → G′ we
will say that a ∈ G is f-regular if it is non-zero and satisfies condition (IH2). We will
denote the set of all f -regular elements by Reg (f). Then the following holds:

Proposition 13 If f is an immediate group homomorphism, then

va 7→ v′fa

for a ∈ Reg (f) induces a well defined and ≤-preserving map from {va | a ∈ Reg (f)}
onto v′G′.
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Proof: If a, b ∈ Reg (f) such that va = vb, then by (IH2), v′fa ≤ v′fb and v′fa ≥ v′fb,
whence v′fa = v′fb. This shows that the map is well defined. Again because of (IH2), it
preserves ≤. Now take any a′ ∈ v′G′, a′ 6= 0. Then by (IH1), there is a ∈ G such that
v′(a′ − fa) > v′a′, whence v′a′ = v′fa by the ultrametric triangle law. This proves that
the map is onto. 2

3.2 Basic criteria

Even if the map f that we consider on a valued abelian group is not a homomorphism,
the presence of addition helps us to give handy and natural criteria for the map to be
immediate. We just have to work a little harder. In this section, we present basic criteria
that will cover all our applications in the non-additive case.

Proposition 14 Take valued abelian groups (G, v) and (G′, v′), an element b ∈ G, a ball
B around 0 in G, a ball B′ around 0 in G′, and a map f : b + B → fb + B′. Assume that
φ : B → B′ is a map such that for all a′ ∈ B′ \ {0} there is a ∈ Reg (φ) with the following
properties:

v′(a′ − φa) > v′a′ = v′φa , (6)

and

v′(fy − fz − φ(y − z)) > v′φa for all y, z ∈ b + B such that v(y − z) ≥ va . (7)

Then f is immediate.

If φ0 = 0 then (7) only needs to be checked for y 6= z.

Proof: Take z′ ∈ fb + B′ and y ∈ b + B such that z′ 6= fy. Applying our assumption
to a′ := fy − z′ we find that there is some a ∈ Reg (φ) such that by (6),

v′(fy − z′ − φa) > v′(fy − z′) = v′φa , (8)

and such that (7) holds. Set z := y − a ∈ y − B = y + B = b + B. Then y − z = a and
hence by (7) and (8),

v′(fy − fz − φ(y − z)) > v′φa = v′(fy − z′) .

Consequently,

v′(z′ − fz) ≥ min{v′(z′ − fy + φa) , v′(fy − fz − φa)}

= min{v′(fy − z′ − φa) , v′(fy − fz − φ(y − z))}

> v′(fy − z′) = v′(z′ − fy) .
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Hence (AT1) holds. Now take x ∈ B(y, z) ⊆ b + B, i.e., v(y − x) ≥ v(y − z) = va.
Then v′φ(y − x) ≥ v′φa because a ∈ Reg (φ), and v′(fy − fx − φ(y − x)) > v′φa by (7).
Therefore,

v′(fy − fx) ≥ max{v′(fy − fx − φ(y − x)) , v′φ(y − x)} ≥ v′φa = v′(fy − z′) ,

whence fx ∈ B(fy, z′). Hence (AT2) holds.
Assume that φ0 = 0. Observe that φa 6= 0 since a′ 6= 0 and v′a′ = v′φa. Hence if

y = z then v′(fy − fz − φ(y − z)) = v′0 = ∞ > v′φa, which shows that (7) need only be
checked for y 6= z. 2

Note that by the ultrametric triangle law, the equality in (6) is a consequence of the
inequality. Further, observe that this proposition proves the direction “⇐” of Proposi-
tion 11: if we take B = G, B′ = G′ and φ = f , then (IH1) implies (6) and (IH2) implies
that a ∈ Reg (φ), while (7) is trivially satisfied. Hence if for every a′ ∈ G′ \ {0} there
is a ∈ G such that (IH1) and (IH2) hold, then the above proposition shows that f is
immediate.

Proposition 15 Take valued abelian groups (G, v) and (G′, v′), an element b ∈ G, a ball
B around 0 in G and a map f : b + B → G′. Assume that there are

• a ball B′ around 0 in G′,

• a map ϕ : vB → v′B′ which preserves ≤ ,

• a map φ : B → B′ such that φ0 = 0 and

(BC1) v′φa ≥ ϕva for 0 6= a ∈ B ,

(BC2) for all a′ ∈ B′ \ {0} there is a ∈ B \ {0} such that

v′(a′ − φa) > v′a′ and ϕva = v′φa ,

(BC3) for all distinct y, z ∈ b + B ,

v′(fy − fz − φ(y − z)) > ϕv(y − z) .

Then f(b + B) ⊆ fb + B′, and f : b + B → fb + B′ is immediate.

If in addition equality always holds in (BC1), then f is injective and ϕ is a value
map for f . If in this situation, ϕ preserves < , then f is an immediate embedding of
ultrametric spaces with value map ϕ.

Proof: By (BC3) and (BC1),

v′(fy − fz) ≥ min{v′(fy − fz − φ(y − z)) , v′φ(y − z)} ≥ ϕv(y − z) (9)

for all distinct y, z ∈ b + B. Take y ∈ b + B, y 6= b, and set z = b. Then v′(fy − fb) ≥
ϕv(y − b) ∈ v′B′. Since B′ is a ball around 0, this implies that also fy − fb ∈ B′, that is,
fy ∈ fb + B′.
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Observe that if a ∈ B such that ϕva = v′φa, then a ∈ Reg (φ). Indeed, if ϕva = v′φa
and va ≤ vã, then by (BC1) and since ϕ preserves ≤ , we have v′φa = ϕva ≤ ϕvã ≤ v′φã,
hence a ∈ Reg (φ).

Pick some a′ ∈ B′ \ {0} and choose a according to (BC2). Then (6) is satisfied and
by what we have shown, a ∈ Reg (φ). Take distinct y, z ∈ b + B such that v(y − z) ≥ va.
Then (BC3) yields v′(fy−fz − φ(y−z)) > ϕv(y−z) ≥ ϕva = v′φa, hence (7) is satisfied.
Since φ0 = 0, we have to check (7) only for y 6= z. Now it follows from Proposition 14
that f : b + B → fb + B′ is immediate.

Assume in addition that equality always holds in (BC1). Then v′φ(y−z) = ϕv(y−z),
and we obtain the following stronger version of (9):

v′(fy − fz) = min{v′(fy − fz − φ(y − z)) , v′φ(y − z)} = ϕv(y − z) .

If y 6= z then v(y − z) ∈ vB and v′(fy − fz) = ϕv(y − z) ∈ v′B′ which implies fy 6= fz.
This proves that f is injective. If also ϕ preserves < , then it follows that f is an immediate
embedding of ultrametric spaces with value map ϕ. 2

3.3 Pseudo-derivatives

In this section, we will present a special case of the basic criterion, with nicer properties.
Take valued abelian groups (G, v) and (G′, v′), an element b ∈ G, a ball B in G around
0, a ball B′ in G′ around 0, and a map f : b + B → G′. We will say that a map φ is a
pseudo-derivative of f at b on b + B if it satisfies:

(PD1) φ : B → B′ is an isomorphism of ultrametric spaces,
(PD2) v′(fy− fz −φ(y− z)) > v′(fy− fz) = v′φ(y− z) for all distinct y, z ∈ b + B.

(Recall that by the ultrametric triangle law, the equality in (PD2) is a consequence of the
inequality).

Proposition 16 Take f , b and B as above and assume that φ : B → G′ is a pseudo-
derivative of f at b on b + B with value map ϕ. Then f(b + B) ⊆ fb + B′, and f :
b + B → fb + B′ is an immediate embedding of ultrametric spaces with value map ϕ.

If in addition (G, v) is spherically complete, then f is an isomorphism of ultrametric
spaces from b + B onto fb + B′.

Proof: Since ϕ is the value map of the isomorphism φ : B → B′ of ultrametric spaces, we
have that ϕva = ϕv(a−0) = ϕu(a, 0) = u′(a, 0) = v′a for all a ∈ B. Hence, ϕ : vB → v′B′

is a bijection which preserves < . In particular, condition (BC1) of Proposition 15 holds
with equality. Since v′φ(y − z) = ϕv(y − z) for all distinct y, z ∈ b + B, (PD2) implies
(BC3). Since φ is surjective, we can also satisfy (BC2) by simply taking a such that
φa = a′. Now the first assertion of our proposition follows from Proposition 15.

In the case of (G, v) spherically complete, the surjectivity follows from Theorem 2. 2
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4 Immediate maps on valued fields and their finite-

dimensional vector spaces

Let (K, v) be a valued field. That is, v is a valuation of its additive group, vK is a totally
ordered abelian group, and the following additional law holds:

(V3) v(ab) = va + vb.

The value group of (K, v) is vK := v(K×). Throughout this paper, its valuation ring
{y ∈ K | vy ≥ 0} will be denoted by O, and its valuation ideal {y ∈ K | vy > 0}
by M. The field O/M is called the residue field and is denoted by Kv. Note that
cO = {y ∈ K | vy ≥ vc} = Bvc(0) and cO = {y ∈ K | vy > vc}.

A valued field (K, v) is called spherically complete if the underlying valued addi-
tive group is spherically complete (i.e., if the underlying ultrametric space is spherically
complete).

Main examples for spherically complete fields are the power series fields k((G))
with their canonical valuation. Here, k can be any field and G any ordered abelian
group, and k((G)) consists of all formal sums a =

∑

g∈G cgt
g with cg ∈ k and well-ordered

support supp(a) = {g ∈ G | cg 6= 0}. The canonical valuation on k((G)) is given by
va := min supp(a) ∈ G and v0 := ∞. Its value group is G, and its residue field is k.

An extension (L,w) ⊃ (K, v) of valued fields is called immediate if the canonical
embedding of vK in wL and the canonical embedding of Kv in Lw are onto. It is well
known that this holds if and only if as ultrametric spaces, (K, v) is an immediate subspace
of (L, v) (cf. [KU4]). A valued field is called maximally valued if it admits no proper
immediate extensions. It was shown by Krull ([KR]; see also [G]) that for every valued
field (K, v) there is a maximal immediate extension field; this is maximally valued by
definition.

A valued field is maximally valued if and only if it is spherically complete (cf. [P1],
[P2], [KU4]). This was essentially proved by Kaplansky in [KA], using the notion of
“pseudo Cauchy sequence” instead of “nest of balls”. Every power series field is spherically
complete (cf. [P2], [KU4]). Hence it is maximally valued.

4.1 The minimum valuation

For every n ∈ N, the valuation v of K induces a valuation of the n-dimensional
K-vector space Kn, called the minimum valuation:

v(a1, . . . , an) := min
1≤i≤n

vai (10)

for all (a1, . . . , an) ∈ Kn. This valuation satisfies (V1) and (V2) for all a, b ∈ Kn, so
(Kn, v) is a valued abelian group. Instead of (V3), it satisfies

(V3′) v(ca) = vc + va for all c ∈ K, a ∈ Kn.

Again, u(a, b) := v(a − b) makes Kn into an ultrametric space with value set vK.
If 0 6= c ∈ K, then we write (cO)n for the n-fold product cO × . . . × cO which is the
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subgroup of vectors in Kn whose entries all have value ≥ vc ; (cM)n is defined similarly.
Note that (cO)n = {ca | a ∈ On} = cOn and (cM)n = cMn. For b ∈ Kn, c ∈ K,

b+cOn = {a ∈ Kn | v(a−b) ≥ vc} = Bvc(b) and b+cMn = {a ∈ Kn | v(a−b) > vc} .

We will say that (Kn, v) is spherically complete if its underlying ultrametric space
(Kn, u) is. Proposition 10 of Section 2.2 implies:

Lemma 17 If (K, v) is spherically complete, then so is (Kn, v).

4.2 Pseudo-linear maps

Take Y ⊆ Kn, 0 6= s ∈ K and f a map from Y into Kn. We will say that f is pseudo-
linear with pseudo-slope s if for all y, z ∈ Y such that y 6= z,

v(fy − fz − s(y − z)) > v(fy − fz) = vs(y − z) . (11)

If B is any ball in (Kn, v) around 0, then sB is again a ball in (Kn, v) around 0 and
the map B 3 x 7→ sx ∈ sB is an isomorphism of ultrametric spaces with value map
ϕ : α 7→ α + vs. Hence pseudo-linear maps are maps with a particularly simple pseudo-
derivative given by multiplication with a suitable scalar. From Proposition 16 we obtain:

Proposition 18 Take b ∈ Kn and B a ball in (Kn, v) around 0. Assume that f : b+B →
Kn is pseudo-linear with pseudo-slope s. Then f(b + B) ⊆ fb + sB, and

f : b + B → fb + sB

is an immediate embedding of ultrametric spaces with value map ϕ : α 7→ α + vs.

If in addition, (K, v) is spherically complete, then f is an isomorphism of ultrametric
spaces from b + B onto fb + sB.

4.3 Polynomial maps

Take any n ∈ N. For any system f = (f1, . . . , fn) of n polynomials in n variables with
coefficients in K, we denote by Jf (b) its Jacobian matrix at b ∈ Kn. We will denote by
J∗

f (b) the adjoint matrix of Jf (b).

Proposition 19 a) Take a polynomial f ∈ O[X] and b ∈ O such that

s := f ′(b) 6= 0 .

Then f induces a pseudo-linear map with pseudo-slope s from b + sM into f(b) + s2M,
and

f〈b〉(y) :=
1

s2
f(b + sy) .

induces a pseudo-linear map with pseudo-slope 1 from M into s−2f(b) + M.
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b) Take n polynomials in n variables f1, . . . , fn ∈ O[X1, . . . , Xn] and b ∈ On such that

s := det Jf (b) 6= 0

for f = (f1, . . . , fn). If vs = 0, then Jf (b) is a pseudo-derivative of f on b + M and f
induces an embedding from b + M into f(b) + M with value map ϕ = id.

In the general case, J∗
f (b) f induces a pseudo-linear map with pseudo-slope s from

b + sMn into J∗
f (b)f(b) + s2Mn, and

F (y) := f
(

b + J∗
f (b)(y − b)

)

(12)

induces a pseudo-linear map with pseudo-slope s from b+sMn into f(b)+s2Mn. Further,

f〈b〉(y) :=
1

s2
J∗

f (b) f(b + sy) .

induces a pseudo-linear map with pseudo-slope 1 from Mn into s−2J∗
f (b)f(b) + Mn.

Proof: Note that whenever we prove pseudo-linearity, the assertions about the range of
the functions will follow from Proposition 18.

a): For a polynomial f in one variable over a field of arbitrary characteristic, we denote
by f [i] its i-th formal derivative (cf. [KA], [KU4]). These polynomials are defined such
that the following Taylor expansion holds in arbitrary characteristic:

f(b + ε) = f(b) +
deg f
∑

i=1

εif [i](b) . (13)

Note that f ′ = f [1]. Since f ∈ O[X], we have that f [i] ∈ O[X]. Since b ∈ O, we also
have that f [i](b) ∈ O. Now take y, z ∈ b + sM. Write y = b + εy and z = b + εz with
εy, εz ∈ sM. Then by (13),

f(y) − f(z) = (εy − εz)f
′(b) +

deg f
∑

i=2

(εi
y − εi

z)f
[i](b) = s(y − z) + S(b, εy, εz) . (14)

Since

εi
y − εi

z = (εy − εz)(ε
i−1
y + (i − 1)εi−2

y εz + . . . + (i − 1)εi−2
y εi−2

z + εi−1
y ) ∈ (εy − εz)sM

for every i ≥ 2, and since f [i](b) ∈ O, we find that

S(b, εy, εz) ∈ (εy − εz)sM = s(y − z)M .

This proves that

v(f(y) − f(z) − s(y − z)) = vS(b, εy, εz) > vs(y − z) (15)
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which implies that (11) holds. This proves the first assertion of a).

If y, z ∈ M, then by what we just have proved,

v(f〈b〉(y) − f〈b〉(z) − (y − z)) = v(s−2f(b + sy) − s−2f(b + sz) − (y − z))

= v(f(b + sy) − f(b + sz) − s(sy − sz)) − vs2

> vs(sy − sz) − vs2 = v(y − z) .

This proves the second assertion of a).

b): We write J = Jf (b) and J∗ = J∗
f (b). Then JJ∗ = (det J)E = sE where E is the n×n

identity matrix. Note that J, J∗ ∈ On×n by our assumptions on f and b. If y ∈ Kn then
we can write y = cz with c ∈ K, vc = vy, z ∈ On and vz = 0. Then Jy = cJz ∈ cOn,
hence vJy = vc + vJz ≥ vc = vy. Similarly, vJ∗y ≥ vy for all y ∈ Kn.

Take ε1, ε2 ∈ sMn. The multidimensional Taylor expansion gives the following ana-
logue of (14):

f(b + ε1) − f(b + ε2) = J(ε1 − ε2) + S(b, ε1, ε2) (16)

with
vS(b, ε1, ε2) > vs(ε1 − ε2) . (17)

Assume first that vs = 0. Then also J−1 = 1
s
J∗ ∈ On×n, so for all y ∈ Kn, vJ−1y ≥ vy.

But then, vy = vEy = vJ−1Jy ≥ vJy ≥ vy, so equality must hold. We find that
for all y ∈ Kn, vJy = vy and similarly, vJ∗y = vy. In particular, this yields that J
induces a value-preserving automorphism of the valued abelian group (Mn, +), and an
isomorphism of ultrametric spaces from Mn onto Mn with value map ϕ = id, with inverse
maps induced by J−1. From (16) and (17) we obtain that for y = b + ε1 and z = b + ε2

in b + M,

v(f(y) − f(z) − J(y − z)) > vs(y − z) = v(y − z) = vJ(y − z) .

This proves that J is a pseudo-derivative of f on b + M. From Proposition 16 we infer
that f induces an embedding from b + M into f(b) + JM = f(b) + M with value map
ϕ = id.

Now we turn to the general case. We compute:

J∗f(y) − J∗f(z) = J∗(f(b + y − b) − f(b + z − b))

= J∗J(y − z) + J∗S(b, y − b, z − b)

= s(y − z) + J∗S(b, y − b, z − b) .

By (17),
vJ∗S(b, y − b, z − b) ≥ vS(b, y − b, z − b) > vs(y − z) .

Hence,

v (J∗f(y) − J∗f(z) − s(y − z)) = vJ∗S(b, y − b, z − b) > vs(y − z) .
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This proves our assertion for the map J∗
f (b) f . Further,

F (y) − F (z) = f(b + J∗(y − b)) − f(b + J∗(z − b))

= J(J∗(y − b) − J∗(z − b)) + S(b, J∗(y − b), J∗(z − b))

= s(y − z) + S(b, J∗(y − b), J∗(z − b)) .

As before, it follows that also J∗(y−b) , J∗(z−b) ∈ sMn, and that vJ∗(y−z) ≥ v(y−z).
Hence,

v (F (y) − F (z) − s(y − z)) = vS(b, J∗(y − b), J∗(z − b))

> vs(J∗(y − b) − J∗(z − b)) = vsJ∗(y − z) ≥ vs(y − z) ,

which implies that (11) holds for F in the place of f . This proves our assertion for the
map F .

To prove the last assertion, we take y, z ∈ Mn. We apply (16) with ε1 = sy and
ε2 = sz. Using that J∗J = (det J)E = sE, we obtain:

f〈b〉(y) − f〈b〉(z) = s−2J∗(f(b + sy) − f(b + sz))

= s−2J∗J(sy − sz) + s−2J∗S(b, sy, sz)

= s−2s(sy − sz) + s−2J∗S(b, sy, sz) = y − z + s−2J∗S(b, sy, sz) ,

so that

v
(

f〈b〉(y) − f〈b〉(z) − (y − z)
)

= vJ∗S(b, sy, sz) − vs2 ≥ vS(b, sy, sz) − vs2

> vs(sy − sz) − vs2 = v(y − z) .

This proves our assertion for the map f〈b〉 . 2

Note that in the one-dimensional case (n = 1), we may write det Jf (b) = f ′(b) and
J∗

f (b) = 1; in this way, the definition of f〈b〉 in the one-dimensional case becomes a special
case of the definition for the multi-dimensional case.

If vs > 0 in the multi-dimensional case, then in general Jf (b) will not be a pseudo-
derivative of f . It is necessary to transform f in order to obtain suitable pseudo-
derivatives. We have shown above that this can be done so that one even obtains pseudo-
linear functions.

From Proposition 19 together with Propositions 18 and 16, we obtain:

Theorem 20 Assume that (K, v) is spherically complete.

a) Take a polynomial f ∈ O[X] and b ∈ O such that s := f ′(b) 6= 0. Then f induces
an isomorphism of ultrametric spaces from b + sM onto f(b) + s2M, and f〈b〉 induces an
isomorphism of ultrametric spaces from M onto s−2f(b) + M.

b) Take n polynomials in n variables f1, . . . , fn ∈ O[X1, . . . , Xn] and b ∈ On such that
s := det Jf (b) 6= 0 for f = (f1, . . . , fn). If vs = 0, then f induces an embedding of
ultrametric spaces from b + M onto f(b) + M.
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In the general case, J∗
f (b) f induces an isomorphism of ultrametric spaces from b+sMn

onto J∗
f (b) f(b)+s2Mn, the map F defined in (12) induces an isomorphism of ultrametric

spaces from b + sMn onto f(b) + s2Mn, and f〈b〉 induces an isomorphism of ultrametric
spaces from Mn onto J∗

f (b)s−2f(b) + Mn.

4.4 Hensel’s Lemma revisited

Let us apply Theorem 20 to prove that Hensel’s Lemma holds for every spherically com-
plete valued field (K, v). We prove the following version of Hensel’s Lemma, which is
often called “Newton’s Lemma”:

Theorem 21 Let (K, v) be a spherically complete valued field. Then (K, v) satisfies the
one-dimensional Newton’s Lemma:
Take f ∈ O[X] and assume that b ∈ O is such that vf(b) > 2vf ′(b). Then there exists a
unique root a of f such that v(a − b) > vf ′(b).

Proof: The inequality vf(b) > 2vf ′(b) implies that s := f ′(b) 6= 0. Hence by Theorem 20,
f induces an isomorphism of ultrametric spaces from b + sM onto f(b) + s2M. Since
vf(b) > 2vf ′(b) = vs2, we have that f(b) ∈ s2M, that is, f(b) + s2M = s2M. Therefore,
0 ∈ f(b)+s2M. Since f induces a bijection from b+sM onto f(b)+s2M, there is a unique
a ∈ b + sM such that f(a) = 0. As “a ∈ b + sM” is equivalent to “v(a − b) > vf ′(b)”,
this proves our assertion. 2

Here is the multi-dimensional version:

Theorem 22 Let (K, v) be a spherically complete valued field. Then (K, v) satisfies the
multi-dimensional Newton’s Lemma:
Let f = (f1, . . . , fn) be a system of n polynomials in n variables with coefficients in O.
Assume that b ∈ O n is such that vf(b) > 2v det Jf (b). Then there exists a unique a ∈ O n

such that f(a) = 0 and v(a − b) > v det Jf (b).

Proof: The inequality vf(b) > 2v det Jf (b) implies that s := det Jf (b) 6= 0. Hence
by Theorem 20, J∗f induces an isomorphism of ultrametric spaces from b + sMn into
J∗f(b)+s2Mn, where J∗ = J∗

f (b). Since vf(b) > vs2, we have that f(b) ∈ s2Mn and hence
also J∗f(b) ∈ s2Mn (since J∗ ∈ On×n). That is, J∗f(b) + s2Mn = s2Mn. Therefore,
0 ∈ J∗f(b) + s2Mn. Since J∗f induces a bijection from b + sMn onto J∗s−2f(b) + Mn,
there is a unique a ∈ b + sMn such that J∗f(a) = 0. Since J∗ is invertible, we have that
f(a) = 0 ⇔ J∗f(a) = 0. Hence, a is the unique element in b + sMn such that f(a) = 0.
As “a ∈ b + sMn” is equivalent to “v(a− b) > v det Jf (b)”, this proves our assertion. 2

Note that like in the one-dimensional case, also in the multi-dimensional case the proof
of Newton’s Lemma can be reduced by transformation to a simpler case where we would
in fact obtain the identity as a pseudo-derivative. But as we have already shown that even
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in the general case we can derive suitable pseudo-linear maps from f , it is much easier to
employ them directly in the proof of the multidimensional Newton’s Lemma.

A valued field (K, v) is called henselian if the extension of v to the algebraic closure
K̃ of K is unique. It is well known that this holds if and only if (K, v) satisfies the
one-dimensional Newton’s Lemma (see, e.g., [KU4]). We are now going to show that the
multi-dimensional Newton’s Lemma holds in every henselian field.

Theorem 23 A valued field (K, v) is henselian if and only if it satisfies the multidimen-
sional Newton’s Lemma.

Proof: ⇒: Let (K, v) be henselian. Take (L, v) to be a maximal immediate extension
of (K, v). Then (L, v) is spherically complete. By the foregoing theorem, (L, v) satisfies
the multidimensional Newton’s Lemma. Denote by O the valuation ring of K, and by OL

that of L. Now assume that the hypothesis of the multidimensional Newton’s Lemma is
satisfied by a system f of polynomials with coefficients in O and by b ∈ O n. It follows that
there is a unique a ∈ O n

L such that f(a) = 0 and v(a − b) > v det Jf (b). From the latter,
it follows that v det Jf (a) = v det Jf (b) and in particular, det Jf (a) 6= 0. Now [L], Chapter
X, §7, Proposition 8, shows that the elements a1, . . . , an are separable algebraic over K.
On the other hand, for every σ ∈ Aut (K̃|K), the element σa = (σa1, . . . , σan) satisfies
f(σa) = σf(a) = 0 and v(σa− b) = mini v(σai − bi) = mini vσ(ai − bi) = mini v(ai − bi) =
v(a − b) > v det Jf (b) (note that vσ = v because (K, v) is henselian). By the uniqueness
of a, it follows that σa = a for every σ ∈ Aut (K̃|K), that is, a ∈ Kn, as required.

⇐: If n = 1, then det Jf (b) = f ′
1(b1), and the assertion is precisely the assertion of the

one-dimensional Newton’s Lemma. Hence the multidimensional Newton’s Lemma implies
that (K, v) is henselian. 2

4.5 Power series maps on valuation ideals

Take any field k and any ordered abelian group G. We endow k((G)) with the canonical
valuation v and denote the valuation ideal by M. Every power series

f(X) =
∑

i∈N

ciX
i ∈ k[[X]] (18)

defines in a canonical way a map f : M → M. This can be shown by use of Neumann’s
Lemma, cf. [DMM1]. We note that for every integer r > 1 and every y, z ∈ M,

v(yr − zr) > v(y − z) . (19)

Therefore, if c1 6= 0, we have that

v(f(y) − f(z) − c1(y − z)) = v
∑

i≥2

ci(y
i − zi) > v(y − z) = vc1(y − z) (20)

because vci = 0 for all i. So we see that f is pseudo-linear with slope c1 if c1 6= 0. By
Proposition 18, we obtain:
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Theorem 24 If f : M → M is defined by the power series (18), then f is an isomor-
phism of ultrametric spaces.

A similar result holds for power series with generalized exponents (which for instance
are discussed in [DS]). Take any subgroup G of R and a generalized power series of the
form

f(X) =
∑

i∈N

ciX
ri ∈ k[[XG]] (21)

where ri , i ∈ N, is an increasing sequence of positive real numbers in G. Suppose that
the power functions y 7→ yri are defined on M for all i. Then again, the generalized
power series (21) defines a map f : M → M. We note that (19) also holds for every real
number r > 1 for which y 7→ yr is defined on M. Hence if c1 6= 0 and r1 = 1, then (20)
holds, with the exponent i replaced by ri . This shows again that f is pseudo-linear with
pseudo-slope c1 . If, however, r1 6= 1, we may think of writing f(y) = f̃(yr1) with

f̃(X) =
∑

i∈N

ciX
ri/r1 .

If the power functions y 7→ yri/r1 are defined on M for all i, then f̃ defines a pseudo-linear
map from M to M with pseudo-slope c1 . So we obtain:

Theorem 25 Suppose that the power functions y 7→ yri and y 7→ yri/r1 are defined on
M for all i, and that y 7→ yr1 is surjective. If f : M → M is defined by the power series
(21) with c1 6= 0, then f is surjective.

5 Towards an infinite-dimensional Implicit Function

Theorem

From our result in Section 2.2 it follows that an infinite power Y I of an ultrametric space Y
can be equipped with an ultrametric uI (analogous to the minimum valuation) if the value
set uY is well ordered. In this case, if (Y, u) is spherically complete, then so is (Y I , uI).
So we obtain the following corollary to our Main Theorem 2 and to Proposition 16:

Corollary 26 a) Take two ultrametric spaces (Y, u) and (Y ′, u′), and an arbitrary index
set I. Assume that uY is well ordered, f : Y I → Y ′ is immediate and that (Y, u) is
spherically complete. Then f is surjective and (Y ′, u′) is spherically complete.

b) Take two valued abelian groups (G, v) and (G′, v′), and an arbitrary index set I.
Assume that vG is well ordered, b ∈ GI , B is a ball around 0 in GI , f : GI → G′ has
a pseudo-derivative at b on b + B, and that (G, v) is spherically complete. Then f is
surjective and (G′, v′) is spherically complete.

In the case of a valued field (K, v) we cannot do the same since if the valuation is
non-trivial, the value group will not be well ordered. If the valuation is not discrete (i.e.,
its value group is not isomorphic to Z), then not even the value set vO := v(O\{0}) of the
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valuation ring is well ordered. But we may be interested in infinite systems of polynomials
with coefficients in a subring R of O with well ordered value set vR := v(R \ {0}). Note
that in this case (R, v) is not necessarily spherically complete if (K, v) is. So we will
assume that (R, v) is spherically complete.

We generalize the definitions of minimum valuation and of pseudo linear map in
the obvious way. If a = (ai)i∈I ∈ RI , then va := mini∈I vai . If Y ⊆ RI , 0 6= s ∈ R and
f a map from Y into RI , then f is pseudo-linear with pseudo-slope s if (11) holds for
all y, z ∈ Y such that y 6= z. We then have the following application of Proposition 16
together with Proposition 10:

Proposition 27 Take b ∈ RI and B a ball in (RI , v) around 0. Assume that f : b+B →
RI is pseudo-linear with pseudo-slope s ∈ R and that (R, v) is spherically complete. Then
f is an isomorphism of ultrametric spaces from b + B onto fb + sB.

If the map is given by an infinite system of polynomials f = (fi)i∈I in infinitely many
variables Xi , i ∈ I, and with coefficients in R, then we may consider the infinite matrix
Jf (b) ∈ RI×I . Note that this matrix has only finitely many non-zero entries in every row.
Nevertheless, we may not be able to use determinants here. Still, we can use our approach
if Jf (b) is invertible in RI×I . Actually, we do not need that R is a subring of a valued field.
It suffices to assume that it is a valued abelian group with multiplication satisfying (V3),
and that its value set is a well ordered subset of an ordered abelian group. It then follows
that the value set does not contain negative elements. From the invertibility of Jf (b) in
RI×I it follows that the value set must contain 0. We set MR := {a ∈ R | va > 0}.

Proposition 28 Take any index set I and a system of polynomials f = (fi)i∈I in vari-
ables Xi , i ∈ I, and with coefficients in R. Assume that (R, v) is spherically complete. If
Jf (b) admits an inverse in RI×I , then Jf (b) is a pseudo-derivative of f on b + MI

R and
f induces an isomorphism from b + MI

R onto f(b) + MI
R. The system f has a zero on

b + MI
R (which then is unique) if and only if vf(b) > 0.

We leave the proof to the reader. It just needs an adaptation of the proof of the first
assertion of part b) of Proposition 19 to the infinite case, followed by an application of
part b) of Corollary 26.

6 Polynomials in additive operators

In this section, we will consider polynomials f ∈ O[X0, X1, . . . , Xn] over valued fields
(K, v) and additive operators σi : K → K and try to solve equations of the form

f(σ0X, σ1X, . . . , σnX) = 0 .
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6.1 Basic results

For any polynomial f in n+1 variables over a field of arbitrary characteristic, we denote by
f [ i ] its i-th formal derivative, where i = (i0, . . . , in) is a multi-index. These polynomials
are defined such that the following analogue of (13) holds in arbitrary characteristic:

f(b + ε) = f(b) +
∑

i∈I

εif [ i ](b) for all b, ε ∈ Kn+1 , (22)

where I = {0, 1, . . . , deg f}n+1 \ {(0, . . . , 0)} and εi = εi0
0 · . . . · εin

n . Note that if i =
(0, . . . , 0, 1, 0, . . . , 0) with the 1 in the j-th place, then f [ i ] = ∂f

∂Xj
(X0, . . . , Xn).

Lemma 29 Take f ∈ O[X0, . . . , Xn] and b ∈ On+1, s ∈ O such that

vs = min
0≤i≤n

v
∂f

∂Xi

(b) < ∞ .

Then for all distinct y = (y0, . . . , yn) and z = (z0, . . . , zn) in b + sMn+1,

v

(

f(y) − f(z) −
n
∑

i=0

(yi − zi)
∂f

∂Xi

(b)

)

> vs + min
0≤i≤n

v(yi − zi) (23)

and
v(f(y) − f(z)) ≥ vs + min

0≤i≤n
v(yi − zi) . (24)

Proof: Since f ∈ O[X0, . . . , Xn], we have that f [ i ] ∈ O[X0, . . . , Xn]. Since b ∈ On+1,
we also have that f [ i ](b) ∈ O. Write y = b + δ and z = b + ε with δ = (δ0, . . . , δn), ε =
(ε0, . . . , εn) ∈ sMn+1. Then by (22),

f(y) − f(z) =
n
∑

i=0

(δi − εi)
∂f

∂Xi

(b) +
∑

i∈I′
(δi − εi)f [ i ](b)

where I ′ = {i ∈ I | |i| ≥ 2} with |i| := i0 + . . . + in .
Choose c ∈ M such that vc = mini v(δi−εi) = mini v(yi−zi). Pick j ∈ {0, . . . , n} and

take i ∈ I ′ such that ij 6= 0. Let i′ ∈ I be the multi-index obtained from i by subtracting
1 in the j-th place. Then

δi − εi = δjδ
i′ − εjε

i′ = (δj − εj)δ
i′ + εj(δ

i′ − εi′)

Suppose we have already shown by induction on |i| that δi′ − εi′ ∈ cO. Since δj − εj ∈ cO

and δi′ , εj ∈ sM, we then find that

δi − εi ∈ scM

for every multi-index i with |i| ≥ 2. Since also f [ i ](b) ∈ O, we obtain that

f(y) − f(z) −
n
∑

i=0

(δi − εi)
∂f

∂Xi

(b) =
∑

i∈I′

(δi − εi)f [ i ](b) ∈ scM .
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This proves (23). To prove (24), we observe that

v
n
∑

i=0

(yi − zi)
∂f

∂Xi

(b) ≥ min
0≤i≤n

v(yi − zi)
∂f

∂Xi

(b) ≥ vs + min
0≤i≤n

v(yi − zi)

and therefore,

v(f(y) − f(z)) ≥

≥ min

{

v

(

f(y) − f(z) −
n
∑

i=0

(yi − zi)
∂f

∂Xi

(b)

)

, v
n
∑

i=0

(yi − zi)
∂f

∂Xi

(b)

}

≥ vs + min
0≤i≤n

v(yi − zi) .

2

Proposition 30 Take

• additive operators σi : O → O , 0 ≤ i ≤ n,

• f ∈ O[X0, . . . , Xn],

• b ∈ O such that at least one of the following derivatives is not zero:

di :=
∂f

∂Xi

(σ0b, σ1b, . . . , σnb) (0 ≤ i ≤ n), (25)

• s ∈ O such that
vs = min

0≤i≤n
vdi . (26)

Suppose that

(V≥) vσia ≥ va for all a ∈ O (0 ≤ i ≤ n) ,

holds and that the additive operator

φ :=
n
∑

i=0

diσi : sM −→ s2M

has the property that for all a′ ∈ s2M there is some a ∈ sM such that v(a′ − φa) > va′

and va = va′ − vs. Then the map

b + sM 3 x 7→ f(σ0x, σ1x, . . . , σnx) ∈ f(σ0b, σ1b, . . . , σnb) + s2M

is immediate.

Proof: We define ϕ : vsM → vs2M by ϕα := vs + α. Then ϕ is an bijection which
preserves < . For all a ∈ sM, the definition of s together with (V≥) yields

vφa = v
n
∑

i=0

diσia ≥ min
0≤i≤n

vdiσia ≥ min
0≤i≤n

vdi + va = vs + va = ϕva .
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Hence φ(sM) ⊆ s2M. We also see that φ satisfies (BC1) of Proposition 15. By as-
sumption, it also satisfies (BC2). We wish to apply Proposition 15 to the map g defined
by

gx := f(σ0x, σ1x, . . . , σnx) .

Take distinct elements y, z ∈ b + sM. From (V≥) it follows that bi := σib ∈ O, yi :=
σiy ∈ O, zi := σiz ∈ O with yi − bi = σi(y − b) ∈ sM and zi − bi = σi(z − b) ∈ sM, so
(y0, . . . , yn) , (z0, . . . , zn) ∈ (b0, . . . , bn) + sMn+1. Thus we can apply Lemma 29 to obtain

v(gy − gz − φ(y − z)) =

= v

(

f(σ0y, . . . , σny) − f(σ0z, . . . , σnz) −
n
∑

i=0

diσi(y − z)

)

= v

(

f(σ0y, . . . , σny) − f(σ0z, . . . , σnz) −
n
∑

i=0

(σiy − σiz)
∂f

∂Xi

(σ0b, . . . , σnb)

)

> vs + min
i

v(σiy − σiz) = vs + min
i

vσi(y − z)

≥ vs + v(y − z) = ϕv(y − z) .

Hence, also (BC3) is satisfied, with g in the place of f . Our assertion now follows from
Proposition 15. 2

In the next section, we give a criterion which guarantees that the hypothesis of Propo-
sition 30 on the operator φ is satisfied.

6.2 The case of operators compatible with a weak coefficient
map

Let us start with the following useful observation.

Lemma 31 Let (K, v) be any valued field. For all α ∈ vK, α 6= 0, choose elements

mα ∈ K such that vmα = α and m0 = 1 . (27)

Define co 0 := 0 and

co a := (m−va a) v for all a ∈ K \ {0} .

Then co has the following properties:

(WCM0) co a = 0 if and only if a = 0,
(WCM1) if va = 0, then co a = av,
(WCM2) if va1 = va2 = . . . = vak and

∑k
i=1 co ai 6= 0, then co (

∑k
i=1 ai) =

∑k
i=1 co ai ,

(WCM3) if co a = co b and va = vb, then v(a − b) > va,
(WCM4) if γ ∈ vK and 0 6= a ∈ Kv, then ∃a ∈ K : co a = a and va = γ.
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Proof: Since (m−va a)v 6= 0 for a 6= 0, (WCM0) holds. Since m0 = 1, also (WCM1)
holds.

If va1 = va2 = . . . = vak and
∑k

i=1 co ai 6= 0, then m−va1
= m−va2

= . . . = m−vak
and

0 6=
k
∑

i=1

co ai =
k
∑

i=1

(m−vai
ai) v =

k
∑

i=1

(m−va1
ai) v =

(

m−va1

k
∑

i=1

ai

)

v ,

whence vm−va1

∑k
i=1 ai = 0 and therefore, v

∑k
i=1 ai = va1 . Hence,

k
∑

i=1

co ai =

(

m−va1

k
∑

i=1

ai

)

v = co

(

k
∑

i=1

ai

)

.

This shows that (WCM2) holds.

If co a = co b and va = vb, then

(m−va a) v = co a = co b = (m−vb b) v = (m−va b) v ,

so 0 < v(m−vaa − m−vab) = vm−va + v(a − b) = −va + v(a − b), that is, v(a − b) > va.
This shows that (WCM3) holds.

If γ ∈ vK and 0 6= a ∈ Kv, we choose a0 ∈ O× such that a0v = a. Then we set
a = m−1

−γa0. This gives va = −vm−γ = γ and co a = (m−γ(m
−1
−γa0))v = a0v = a. Hence,

(WCM4) holds. 2

A map co with properties (WCM0) – (WCM4) will be called a weak coefficient map.
We will assume that the operators σi satisfy (V≥); hence they induce additive operators
σi on Kv:

for all a ∈ O, σi(av) = (σia)v (0 ≤ i ≤ n) . (28)

We will need some stronger compatibility of the σi with the weak coefficient map:

Lemma 32 Assume that the operators σi satisfy (V≥) and that the elements mα in (27)
can be chosen such that

for all a ∈ O, v(σim−vaa − m−vaσia) > 0 (0 ≤ i ≤ n) . (29)

Then

for all a ∈ O and all d ∈ O×, (co d) σi co a =

{

co (dσia) if vσia = va
0 if vσia > va

(30)

Proof: Take any d ∈ O×; then vd = 0 and hence, co d = dv. We have that

(co d) σico a = (dv) σi((m−vaa)v) = (dv) (σim−vaa)v

= (dv) (m−vaσia)v = (m−vadσia)v .
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Here, the second equality holds by equation (28), and the third equality holds by (29).
Now we distinguish two cases. Suppose first that vσia = va. Then

(m−vadσia)v = (m−vσiadσia)v = (m−vdσiadσia)v = co (dσia) .

Now suppose that vσia > va. Then vm−vadσia > 0 and hence, (m−vadσia)v = 0. This
proves that (30) holds. 2

Property (30) can be expressed by saying that unit multiples of the additive operators
commute with the coefficient map.

Proposition 33 Let the assumptions on f , b, di and s be as in Proposition 30. Assume
that the additive operators σi satisfy (V≥), that co is a weak coefficient map and that
(30) holds. Suppose further that the additive operator

n
∑

i=0

ciσi with ci =

{

co s−1di if vdi = vs
0 if vdi > vs

on the residue field Kv is surjective. Then the map

b + sM 3 x 7→ f(σ0x, σ1x, . . . , σnx) ∈ f(σ0b, σ1b, . . . , σnb) + s2M

is immediate.

Proof: We define φ as in Proposition 30. Now we just have to show that φ satisfies
the assumptions of that proposition. So take any a′ ∈ s2M, a′ 6= 0. Since

∑n
i=0 ciσi is

surjective on Kv by assumption, there is some a ∈ Kv such that
∑n

i=0 ciσi a = co s−1a′.
Property (WCM4) of the coefficient map allows us to choose a ∈ K such that co a = a and
va = va′ − vs. Thus, 0 6= a ∈ sM. Set I = {i | 0 ≤ i ≤ n with vdi = vs and σi co a 6= 0}.
Then by the definition of the ci ,

co s−1a′ =
n
∑

i=1

ciσi a =
∑

i∈I

co (s−1di) σi co a

=
∑

i∈I

co (s−1diσia) = co (
∑

i∈I

s−1diσia) ,

where the third equality holds by (30). The last equality follows from (WCM2) since the
left hand side is non-zero, being equal to co s−1a′, and because for each i ∈ I, σi co a 6= 0
implies vσia = va by (30), and vdi = vs then yields vs−1diσia = va so that all values are
equal. By (WCM3), it follows that

v

(

s−1a′ −
∑

i∈I

s−1diσia

)

> vs−1a′ .
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Consequently,

v

(

a′ −
∑

i∈I

diσia

)

= v

(

s−1a′ −
∑

i∈I

s−1diσia

)

+ vs > vs−1a′ + vs = va′ .

On the other hand, take i ∈ I ′ := {0, . . . , n} \ I. In the case of vdi > vs, since vσia ≥
va = va′ − vs, we find that vdiσia ≥ vdi + va′ − vs > va′. Observe that a 6= 0 implies
dσia 6= 0, and this implies co dσia 6= 0. Hence in the case of σi co a = 0, (30) shows that
vσia > va and we obtain that vdiσia > vdi + va = vdi + va′ − vs ≥ va′. Therefore,

v
∑

i∈I′

diσia ≥ min
i∈I′

vdiσia > va′ .

This gives us

v(a′ − φa) = v

(

a′ −
n
∑

i=0

diσia

)

≥ min







v

(

a′ −
∑

i∈I

diσia

)

, v
∑

i∈I′

diσia







> va′ .

So the conditions of Proposition 30 are satisfied and we are done. 2

In the same way as for the original Hensel’s Lemma (except for the uniqueness as-
sertion), Proposition 33 yields the following generalized Hensel’s Lemma in the present
setting:

Theorem 34 In addition to the assumptions of Proposition 33, suppose that (K, v) is
spherically complete and that

vf(σ0b, σ1b, . . . , σnb) > 2vs .

Then there is an element a ∈ K such that f(σ0a, σ1a, . . . , σna) = 0 and v(a − b) > vs.

6.3 The case of a dominant operator

In this section, we consider the case where one of the additive operators, say σn (without
loss of generality), is dominant on some ball B around 0, that is,

∀ a ∈ B : vσna < min
0≤j≤n−1

vσja or σ0a = σ1a = . . . = σna = 0 . (31)

We will not assume that (V≥) holds, so we cnnot apply Proposition 30. Instead, we prove:

Proposition 35 Let σi : O → O, 0 ≤ i ≤ n, be additive operators satisfying condition
(31). With f , b and di as in Proposition 30, assume that

vdn = min
0≤i≤n

vdi . (32)

Suppose further that for some balls B,B′ ⊆ dnM around 0, the map σn : B → B′ is
immediate. Then the map

b + B 3 x 7→ f(σ0x, σ1x, . . . , σnx) ∈ f(σ0b, σ1b, . . . , σnb) + dnB
′ (33)

is immediate. If σn is injective on B, then (33) is injective, too.
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Proof: We set b′ := f(σ0b, σ1b, . . . , σnb) ∈ O and s = dn . Take distinct elements
y, z ∈ b + B ⊆ b + sM and set bi := σib ∈ O, yi := σiy ∈ O, zi := σiz ∈ O. It follows
from (31) that v(yi − bi) = vσi(y− b) ≥ vσn(y− b), and our assumption on σn yields that
yi − bi ∈ B′ for 0 ≤ i ≤ n. We obtain yi ∈ bi + B′ ⊆ bi + sM and similarly, zi ∈ bi + sM.
Thus we can apply Lemma 29 to g in the place of f , and (24) shows that

gx := f(σ0x, σ1x, . . . , σnx) ∈ b′ + dnB′ for every x ∈ b + B .

We shall apply Proposition 14 in order to show that g : b + B → b′ + dnB
′ is immediate.

We set φ := dnσn . Pick any a′ ∈ dnB
′, a′ 6= 0. Since σn : B → B′ is immediate,

Proposition 11 shows that there is some a ∈ B such that a 6= 0 and

v

(

a′

dn

− σna

)

> v
a′

dn

(34)

and
va ≤ vb =⇒ vσna ≤ vσnb . (35)

From (34) we obtain that v(a′ − φa) > va′, which shows that (6) of Proposition 14 is
satisfied for g in the place of f . Now take distinct y, z ∈ b + B. As in the proof of
Proposition 30, we can apply Proposition 29 to obtain that

v

(

gy − gz −
n
∑

i=0

diσi(y − z)

)

> vs + min
i

v(σiy − σiz) = vs + min
i

vσi(y − z) .

By (31),
vs + min

i
vσi(y − z) = vs + vσn(y − z) = vdnσn(y − z) .

Again by (31),

v
n−1
∑

i=0

diσi(y − z) > vdnσn(y − z) ,

and we conclude that

v(gy−gz − dnσn(y−z)) ≥ min{v(gy−gz−
n
∑

i=0

diσi(y−z)) ,
n−1
∑

i=0

diσi(y−z)} > vdnσn(y−z) .

(36)
If v(y − z) ≥ va, then by (35), vdnσn(y − z) ≥ vdnσna and thus, (36) yields

v(gy − gz − φ(y − z)) = v(gy − gz − dnσn(y − z)) > vdnσna = vφa .

Since φ0 = 0 as φ is additive, this shows that (7) is satisfied for g in the place of f . Now
Proposition 14 proves that g is immediate.

If σn is injective on B, then y 6= z implies vdnσn(y− z) < ∞, whence gy 6= gz by (36).
Hence in this case, (33) is injective. 2

Proposition 35 yields the following Hensel’s Lemma for the case of a dominant opera-
tor:
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Theorem 36 In addition to the assumptions of Proposition 35, suppose that (K, v) is
spherically complete and that for some e ∈ B,

vf(σ0b, σ1b, . . . , σnb) ≥ vdn + vσne . (37)

Then there is an element a ∈ b + B such that f(σ0a, σ1a, . . . , σna) = 0 and vσn(a − b) ≥
vσne. If σn is injective on B, then a is unique.

Proof: It just remains to show that vσn(a − b) ≥ vσne. By (37),

vdn + vσne ≤ vf(σ0b, σ1b, . . . , σnb) = v(f(σ0b, σ1b, . . . , σnb) − f(σ0a, σ1a, . . . , σna))

= vdn + vσn(b − a) ,

where the last equality follows from (36) by the ultrametric triangle law. Hence, vσn(a−
b) = vσn(b − a) ≥ vσne. 2

In Section 7.3 we will deduce from this theorem a Hensel’s Lemma for Rosenlicht
valued differential fields. But this Hensel’s Lemma is not strong enough. To improve
it, we consider also the values of the higher derivatives of f . So we need to modify our
approach, which we will do in the next section.

6.4 Rosenlicht systems of operators

We will call σ0, σ1, . . . , σn a Rosenlicht system of operators if each σi : O → O is
additive and there exist elements ei ∈ O such that

en = 1 and ve0 ≥ ve1 ≥ . . . ≥ ven = 0 , (38)

and
vei + vσia > vσna for all a ∈ M, a 6= 0 . (39)

The latter implicitly includes the condition that σn is injective on M.

The following is an adaptation of Lemma 29.

Lemma 37 Take f ∈ O[X0, X1, . . . , Xn] and b ∈ On+1 such that

dn =
∂f

∂Xn

(b) 6= 0

and for all i ∈ I = {0, . . . , deg f}n+1 \ {(0, . . . , 0)},

vf [ i ](b) ≥ vdn + vek if k = min{j | ij 6= 0} (40)

where the elements ei ∈ K satisfy (38). Take y = (y0, . . . , yn) and z = (z0, . . . , zn) in
b + Mn+1 such that

vei + v(yi − zi) > v(yn − zn) for 0 ≤ i < n . (41)

Then the following holds:

v(f(y) − f(z) − dn(yn − zn)) > vdn(yn − zn) = v(f(y) − f(z)) . (42)
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Proof: Write y = b + δ ∈ b + Mn+1 and z = b + ε ∈ b + Mn+1, where δ = (δ0, . . . , δn)
and ε = (ε0, . . . , εn) satisfy

vei + v(δi − εi) = vei + v(yi − zi) > v(yn − zn) for 0 ≤ i < n . (43)

We note that ven + v(δn − εn) = v(yn − zn); so we have

vei + v(δi − εi) ≥ v(yn − zn) for 0 ≤ i ≤ n . (44)

Take i ∈ I, |i| ≥ 2, and let i′ be the multi-index obtained from i by subtracting 1 in the
k-th place, where k = min{j | ij 6= 0}. Then

δi − εi = (δk − εk)δ
i′ + εk(δ

i′ − εi′) .

Suppose that we have already shown by induction on |i′| that

ve` + v(δi′ − εi′) ≥ v(yn − zn) for ` = min{j | i′j 6= 0} ,

with the induction start for |i′| = 1 being covered by (44). We have that ` ≥ k, hence
vek ≥ ve` by (38); therefore, also vek + v(δi′ − εi′) ≥ v(yn − zn). Since vek + v(δk − εk) ≥
v(yn − zn) by (44), and since δi′ , εk ∈ M, we then find

vek + v(δi − εi) ≥ min{vek + v(δk − εk) + vδi′ , vek + vεk + v(δi′ − εi′)}

> v(yn − zn) . (45)

Take i ∈ I ′ := I \ {(0, . . . , 0, 1)}. Then because of (43), inequality (45) also holds in the
case of |i| = 1. Hence by hypothesis (40),

v(δi − εi)f [ i ](b) ≥ vdn + vek + v(δi − εi) > vdn + v(yn − zn) .

Since
f(y) − f(z) = dn(δn − εn) +

∑

i∈I′
(δi − εi)f [ i ](b)

by (22), this yields

v(f(y) − f(z) − dn(yn − zn)) = v(f(y) − f(z) − dn(δn − εn))

= v
∑

i∈I′

(δi − εi)f [ i ](b) > vdn + v(yn − zn) ,

which gives the inequality in(42). The equality in (42) follows from the inequality by the
ultrametric triangle law. 2

Proposition 38 Let σ0, . . . , σn be a Rosenlicht system of operators satisfying (38) and
(39). Take f , b and dn as in Proposition 37 such that (40) holds. Suppose further that
for some balls B,B′ ⊆ M around 0, the map σn : B → B′ is immediate. Then

b + B 3 x 7→ f(σ0x, σ1x, . . . , σnx) ∈ f(σ0b, σ1b, . . . , σnb) + dnB
′ (46)

is immediate and injective.
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Proof: We modify the proof of Proposition 35 as follows. As before, we set b′ :=
f(σ0b, σ1b, . . . , σnb) ∈ O. In order to apply Lemma 37, we set yi = σiy and zi = σiz.
From (39) it follows that

vei + v(yi − zi) = vei + v(σiy − σiz) = vei + vσi(y − z)

> vσn(y − z) = v(σny − σnz) = v(yn − zn)

for all y, z ∈ b + B and 0 ≤ i < n. Therefore, we can apply Lemma 37, and (42) shows
that

v(f(y) − f(z)) = vdnσn(y − z) = vdn + vσn(y − z) (47)

for all y, z ∈ b + B. It follows that

gx := f(σ0x, σ1x, . . . , σnx) ∈ b′ + dnB′ for every x ∈ b + B .

As in the proof of Proposition 35 we use Proposition 14 to show that g : b+B → b′+dnB
′

is immediate. The proof that (6) and (7) hold can be taken over literally, except that
instead of deducing (36) we just apply inequality (42) of Lemma 37 to obtain that

v(gy − gz − dnσn(y − z)) > vdnσn(y − z) .

Since σn is injective on M (as a consequence of condition (39)), it follows as in the
proof of Proposition 35 that g is injective. 2

Proposition 38 yields the following generalized Hensel’s Lemma for the case of a Rosen-
licht system of operators:

Theorem 39 The assertion of Theorem 36 also holds under the assumptions of Propo-
sition 38.

7 Immediate differentiation

7.1 Weak D-fields

We will call a valued field (K, v) with an additive map D : K → K a weak D-field if
the following conditions are satisfied:

(WDF1) vDa ≥ va for all a ∈ K,
(WDF2) vK = {va | a ∈ K with vDa > va},
(WDF3) there is e ∈ O such that D(ab) = aDb + bDa + e(Da)(Db) for all a, b ∈ K.

Together with (WDF1), the additivity of D implies:
(WDF4) D induces an additive map on Kv, again denoted by D, such that (Da)v =
D(av),

Proposition 40 Let (K, v,D) be a weak D-field. Then D is immediate if and only if D
is surjective on Kv.
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Proof: “⇒”: Take any a′ ∈ O; we have to show that D(av) = a′v for some a ∈ O.
Condition (IH1) implies that there is a ∈ K such that v(a′ − Da) > va′ ≥ 0, whence
a′v = (Da)v = D(av).

“⇐”: Take any a′ ∈ K \ {0}. By (WDF2), we choose c ∈ K such that vc = va′ with
vDc > vc, and set a′

0 = a′/c. Then va′
0 = 0, and since D is surjective on Kv, there is

some a0 ∈ O such that a′
0v = D(a0v) = (Da0)v. Hence, v(a′

0−Da0) > 0. We set a = ca0 .
We have that va0Dc = va0 + vDc ≥ vDc > vc and ve(Dc)(Da0) = ve + vDc + vDa0 ≥
vDc > vc. Hence,

v(a′ − Da) = v(ca′
0 − Dca0) = v(ca′

0 − cDa0 − a0Dc − e(Dc)(Da0))

≥ min{vc + v(a′
0 − Da0) , va0Dc , ve(Dc)(Da0)} > vc = va′ .

This shows that (IH1) holds. Since D(a0v) = a′
0v 6= 0, we know that a0v 6= 0, that is,

va0 = 0. Therefore, vDa = va′ = vc = vca0 = va. So we obtain from (WDF1) that
va ≤ vb implies vDa = va ≤ vb ≤ vDb, for all b ∈ K. Hence, also (IH2) is satisfied. 2

The next theorem is an immediate consequence of this proposition and Theorem 2.

Theorem 41 Let (K, v,D) be a spherically complete weak D-field. Assume that D is
surjective on Kv. Then D is surjective on K.

As a preparation for our “D-Hensel’s Lemma”, we need the following facts:

Lemma 42 In every weak D-field, D1 = 0.

Proof: Suppose that D1 6= 0. From (WDF3) with b = 1 we then obtain eDa = −a
for all a ∈ K. With a = 1 this yields e = −(D1)−1, so ve ≤ 0 since vD1 ≥ v1 = 0 by
(WDF1). But by (WDF2), e ∈ O, so we get ve = 0. But then eDa = −a shows that
vDa = va for all a ∈ K, in contradiction to (WDF2). 2

Recall that by Di we denote the i-th iterate of D, with D0 being the identity map.

Lemma 43 Let (K, v) be a weak D-field and m ∈ K such that vDm > vm. Then

v
(

Di(ma) − mDia
)

> vma (48)

for all a ∈ K×, and
vDm−1 > vm−1 . (49)

Proof: By assumption, vaDm = va + vDm > va + vm = vma and ve(Dm)(Da) =
ve + vDm + vDa ≥ vDm + va > vm + va = vma. Hence by (WDF3),

v (D(ma) − mDa) ≥ min{vaDm , ve(Dm)(Da)} > vma .
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Now we proceed by induction on i. Suppose that j > 1 and that we have already shown
(48) for all i < j and all a ∈ K. Then

v
(

Dj(ma) − mDja
)

=

= v
(

DDj−1(ma) − D(mDj−1a) + D(mDj−1a) − mDDj−1a
)

≥ min{vD
(

Dj−1(ma) − mDj−1a
)

, v
(

D(mDj−1a) − mDDj−1a
)

}

> min{vma , vmDj−1a} = vma

since vDj−1a ≥ va. This proves (48).

By Lemma 42 and (WDF3),

0 = D1 = D(mm−1) = mDm−1 + m−1Dm + e(Dm)(Dm−1) .

From this together with veDm ≥ vDm > vm, we infer

vDm−1 = vm−1Dm − v(m + eDm) = vm−1 + vDm − vm > vm−1 ,

which proves (49). 2

In every weak D-field, condition (V≥) holds for the additive operators σi = Di. This
follows by induction on i (and we have used it already in the last proof). Again by
induction on i, (WDF4) implies that

(Dia)v = Di(av) for every i ≥ 1 , (50)

that is, the map induced by Di on Kv is the i-th iterate of the map induced by D
on Kv. Indeed, having already shown that (Di−1a)v = Di−1(av), we obtain (Dia)v =
(D(Dia))v = D((Dia)v) = D(Di(av)) = Di(av).

Now we can prove the following theorem:

Theorem 44 Let (K, v,D) be a spherically complete weak D-field. Take a polynomial
f ∈ O[X0, X1, . . . , Xn] and assume that

1) there is b ∈ O and s ∈ K with vDs > vs such that

vs = min
0≤i≤n

v
∂f

∂Xi

(b,Db, . . . , Dnb) < ∞ and vf(b,Db . . . , Dnb) > 2vs ,

2) the differential operator

n
∑

i=0

ciD
i with ci =

(

s−1 ∂f

∂Xi

(b,Db . . . , Dnb)

)

v (51)

on the residue field Kv is surjective.

Then there is an element a ∈ K such that f(a,Da, . . . , Dna) = 0 and v(a − b) > vs.
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Proof: By (WDF2), we can choose elements mα with vmα = α and vDmα > vmα

for α ∈ vK; we set m0 = 1. By Lemma 31, this gives rise to a weak coefficient map
co . Inequality (48) of Lemma 43 shows that condition (29) of Lemma 32 holds for the
elements mα and the additive operators σi = Di. Therefore, co satisfies (30) for these
operators. Since vDs > vs, inequality (49) of Lemma 43 shows that vDs−1 > vs−1. Thus,
we can choose mvs = s and obtain that co a = (s−1a)v whenever va = vs. With di defined
as in Proposition 30, we thus obtain that the elements ci defined above coincide with the
elements ci defined in Proposition 33 and that the operator

∑n
i=0 ciD

i coincides with the
operator

∑n
i=0 ciσi of Proposition 33. The former being surjective on Kv, our theorem

now follows from Theorem 34. 2

This theorem yields Theorem 5. Indeed, if the assumptions of that theorem are satis-
fied, then by use of (WDF2) we pick s ∈ K with vDs > vs such that vs = γ. Since Kv is
assumed to be linearly D-closed, the operator (51) on Kv is surjective, and we can apply
Theorem 44.

7.2 Integration on Rosenlicht valued differential fields

Let (K,D) be a differential field with field of constants C = {a ∈ K | Da = 0}. Following
M. Rosenlicht [R1], a valuation v of K is called a differential valuation if C is a field
of representatives for the residue field of (K, v) (that is, v is trivial on C and for every
y ∈ K with vy = 0 there is a unique c ∈ C s.t. v(y − c) > 0), and v satisfies

∀a, b ∈ K : va ≥ 0 ∧ vb > 0 ∧ b 6= 0 ⇒ v

(

bDa

Db

)

> 0 . (52)

Because of our assumption on C, this condition is equivalent to

∀a, b ∈ K \ {0}, va 6= 0, vb 6= 0 : va ≤ vb ⇔ vDa ≤ vDb . (53)

Lemma 45 Assume that v is a differential valuation with respect to D. Then for every
ã ∈ K there is some a ∈ K such that va 6= 0 and Da = Dã. Moreover,

∀a, b ∈ K : (0 6= va ∧ va ≤ vb) ⇒ vDa ≤ vDb . (54)

This shows that {a ∈ K | va 6= 0} ⊆ Reg (D).

Proof: If vã = 0 then by our assumption that the field of constants is a field of
representatives for the residue field, there is some constant c such that v(ã−c) > 0; hence
for a := ã − c we have that va 6= 0 and Da = Dã − Dc = Dã.

To prove (54), assume that 0 6= va and va ≤ vb. If vb = 0, then we choose a constant
c such that v(b − c) > 0. So we can infer from (53) that vDa ≤ vD(b − c) = vDb. 2
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Proposition 46 Let v be a differential valuation on (K,D). Then D : (K, v) → (K, v)
is immediate if and only if (K,D, v) admits asymptotic integration.

Proof: “⇒”: Condition (IH1) implies that (K,D, v) admits asymptotic integration.

“⇐”: Take any a′ ∈ K \ {0}. Since (K,D, v) admits asymptotic integration, there is
some a ∈ K such that v(a′ − Da) > va′, that is, (IH1) holds. By Lemma 45, a can be
chosen such that va 6= 0 and (IH2) holds. 2

The next theorem is an immediate consequence of this proposition and Theorem 2.

Theorem 47 Let (K,D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume further that (K,D) admits asymptotic integration. Then
(K,D) admits integration.

For certain applications, one has to work with a field K which is a union of an increas-
ing sequence of power series fields Ki , i ∈ N. If this sequence does not become stationary,
then K itself will not be spherically complete. However, we still can prove the following:

Theorem 48 Let (K, v) be the union of an increasing chain (Ki, v) of spherically com-
plete valued fields, i ∈ N. Let D be a derivation on K such that v is a differential valuation
with respect to D. Assume further that for each i there are elements ai,j ∈ Ki+1 , j ∈ Ii ,
such that

1) Dai,j ∈ Ki for all j ∈ Ii ,
2) the valued Ki-subvector space Vi := Ki +

∑

j∈Ii
Kiai,j of Ki+1 is spherically complete,

3) for every b ∈ Ki there is some a ∈ Vi such that v(b − Da) > vb.

Then (K,D) admits integration.

Proof: It suffices to show that for each i, D is a surjective map from Vi onto Ki . Since
K =

⋃

i∈N
Ki it then follows that D is surjective on K.

Because of 1), we have that DVi ⊆ Ki . We set Y = Vi and Y ′ = Ki . As in the proof
of Proposition 46 one uses 3) to show that D : Y → Y ′ is immediate. From 2) together
with Theorem 2, one obtains that DVi = Ki . 2

This theorem implies that the derivation on the logarithmic-exponential power series
field R((t))LE (cf. [DMM3]) is surjective. The argument is as follows. It can be shown
that R((t))LE is the union over an increasing sequence of differential power series fields
Ki such that for every i there is just one ai ∈ Ki+1 such that Dai ∈ Ki and condition 3)
holds. In fact, ai = logi x for a certain element x, where logi denotes the i-th iterate of log.
Further, vai is rationally independent over vK. It follows that v(c+c′ai) = min{vc, vc′ai}
for all c, c′ ∈ Ki , that is, the ultrametric space underlying Vi is just the direct product of
the one underlying Ki and the one underlying Kiai . As the latter is isomorphic to the one
underlying Ki , both are spherically complete. By Proposition 10, their direct product is
spherically complete. The foregoing theorem now proves the surjectivity of D.
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7.3 Differential equations on Rosenlicht valued differential fields

Now let us assume in addition that

D(M) ⊆ M . (55)

If K contains an element x such that vDx = 0 and vx < 0 (as it is the case in R((t))LE,
see below), then (55) is a consequence of (53). In fact, (55) also holds in every Hardy
field. If (55) does not hold for a derivation D, then we may replace D by the derivation
aD, with 0 6= a ∈ K; it follows from (53) that (55) will hold for aD in the place of D for
every a of sufficiently high value va.

Assumption (55) implies that Di(M) ⊆ M for each i ∈ N. We leave it to the reader
to use this fact together with (53) to prove the following easy lemma by induction on i:

Lemma 49 If (K, v,D) admits asymptotic integration, then for each i ∈ N, the map

Di : M −→ MDi :=
⋃

e∈M

(Die)O ⊆ M (56)

is an immediate embedding of ultrametric spaces with value map va 7→ vDia.

Hence by Theorem 2, we have:

Lemma 50 If (K,D, v) is spherically complete and admits asymptotic integration, then
the map (56) is an isomorphism of ultrametric spaces.

When we try to prove a differential Hensel’s Lemma for Rosenlicht’s differential valu-
ations, we we have to deal with the problem that the connection between vDia and vDja
for i 6= j is not as nice as in the case of D-fields. The natural hypothesis on the partial
derivatives as used in Theorem 5 may not suffice. We need to set up a relation between
the values vy, vDy, . . . , vDny. The key is definition (52) of a differential valuation. By
induction, it implies that for arbitrary e ∈ M,

vDiy + (n − i)vDe > vDny for 0 ≤ i < n . (57)

Because of this relation, we will have to assume that the partial derivative of least value
appears at the variable Xn which is associated with the highest power Dn of D. The
following is a special case of Theorem 36 in Section 6.3:

Theorem 51 Let (K,D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume that (K, v,D) admits asymptotic integration. Take a poly-
nomial g ∈ O[X0, X1, . . . , Xn] and assume that there are b ∈ O and e ∈ M such that,
with d := De,

g(d−nX0, d
1−nX1, . . . , d

−1Xn−1, Xn) ∈ O[X0, X1, . . . , Xn]

and

v
∂g

∂Xn

(b,Db, . . . , Dnb) = min
0≤i≤n

vdi−n ∂g

∂Xi

(b,Db, . . . , Dnb) = 0 (58)
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and
vg(b,Db . . . , Dnb) ≥ vDne . (59)

Then there is a unique element a ∈ O such that g(a,Da, . . . , Dna) = 0. It satisfies
v(a − b) ≥ ve.

Proof: Set f(X0, . . . , Xn) = g(d−nX0, d
1−nX1, . . . , d

−1Xn−1, Xn) ∈ O[X0, X1, . . . , Xn].
With di defined as in (25) of Proposition 30, it follows from (58) that 0 = vdn = mini vdi,
which shows that (32) of Proposition 35 is satisfied. Further, we set σi := dn−iDi, B := M
and B′ := MDn ⊆ M = dnM. Then by (57), vσna < vσia for all i < n and a ∈ M,
showing that (31) holds. Since σn(M) = Dn(M) ⊆ B′ ⊆ M, it follows that also
σi(M) ⊆ M for 0 ≤ i ≤ n. Condition (59) tells us that condition (37) of Theorem 36
is satisfied. Finally, Lemma 49 tells us that Dn : M → B′ is immediate and injective.
We have proved that all conditions of Theorem 36 are satisfied. Hence, there is a unique
element a ∈ b+M such that g(a,Da, . . . , Dna) = f(σ0a, σ1a, . . . , σna) = 0, and it satisfies
vσn(a − b) ≥ vσne. The latter means that vDn(a − b) ≥ vDne, which by (53) implies
v(a − b) ≥ ve since a − b , e ∈ M. 2

This theorem can be improved if one also considers the values of the higher deriva-
tives of f . The formal higher derivatives f [ i ] have already been introduced and used in
Section 6.1. We will work with the Rosenlicht system

σi := Di , ei := (De)n−i

for fixed n ∈ N and some e ∈ M. Then condition (38) in Section 6.4 is trivially satisfied,
and condition (39) is satisfied because of (57). We will apply Theorem 39 to prove:

Proposition 52 Take f ∈ O[X0, X1, . . . , Xn] and b ∈ O such that

dn =
∂f

∂Xn

(b,Db, . . . , Dnb) 6= 0

and for all i ∈ I = {0, . . . , deg f}n+1 \ {(0, . . . , 0)},

vf [ i ](b,Db, . . . , Dnb) ≥ vdn + vek if k = min{j | ij 6= 0} . (60)

Suppose further that for some balls B,B′ ⊆ M around 0, Dn : B → B′ is immediate.
Then

b + B 3 x 7→ f(x,Dx, . . . , Dnx) ∈ f(b,Db, . . . , Dnnb) + dnB
′ (61)

is an immediate embedding of ultrametric spaces with value map va 7→ vdn + vDna. If
(K, v) is spherically complete, it is an isomorphism of ultrametric spaces.

Proof: All this follows from Proposition 38 and Theorem 2. It just remains to prove
that (61) is an embedding of ultrametric spaces with value map va 7→ vdn + vDna. But
this follows from equation (47) of Proposition 38 and the fact that va 7→ vDna preserves
< for a ∈ M. 2
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Theorem 53 Let (K,D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume that (K, v,D) admits asymptotic integration. Take a poly-
nomial f ∈ O[X0, X1, . . . , Xn] and assume that there are b ∈ O and e ∈ M such that

vf [ i ](b,Db, . . . , Dnb) ≥ v
∂f

∂Xn

(b,Db, . . . , Dnb) + (n − k)vDe if k = min{j | ij 6= 0}

(62)
and

vf(b,Db . . . , Dnb) ≥ vDne .

Then there is a unique element a ∈ M such that f(a,Da, . . . , Dna) = 0. It satisfies
v(a − b) ≥ ve.

Proof: As in the proof of Theorem 51, we set B := M and B′ := MDn . But now we
apply Theorem 39 instead of Theorem 36. 2

If K is of characteristic 0, then the usual higher derivative

f ( i )(x) :=
∂i0+...+inf

∂i0X0 · · · ∂inXn

(x)

can be substituted for f ( i )(x) in the above theorem. Indeed,

f ( i )(x) = i0! · . . . · in! · f [ i ](x)

and therefore,
vf ( i )(b,Db, . . . , Dnb) = vf [ i ](b,Db, . . . , Dnb) .

In R((t))LE, the element x = t−1 satisfies vx < 0 and Dx = 1. Suppose that 1 < r ∈ R.
Then e = 1

1−r
x1−r ∈ R((t))LE satisfies ve > 0 and De = x−r. With Ki as in the discussion

at the end of Section 7.2, take Mi to be the valuation ideal of Ki . Then 1
x

/∈ (De)Mi

and it can be shown that for every a′ ∈ (De)Mi there is some a ∈ eMi such that
v(a′ − Da) > va′. As for the proof of Lemma 49, it can thus be deduced that for every
k ≥ 1, Dk : eMi → (Dke)Mi is an immediate embedding of ultrametric spaces. Hence on
every ball of the form eMi in Ki , differential equations of the above form can be solved
without any modification of our approach.

The union of an ascending chain of henselian fields is again henselian. With the same
idea of proof, working in Ki for all i large enough to contain all coefficients of h and then
passing to the union of the Ki , one obtains, applying Theorem 53 with e as given above
to the polynomial f(X0, . . . , Xn) = g(X0, . . . , Xn) + c − Xn and b = 0 :

Theorem 54 Let O denote the valuation ring of R((t))LE. Suppose that

g(X0, . . . , Xn) ∈
n−1
∑

i=0

x−(n−i)rXi O[Xi , . . . , Xn] + X2
nO + XnM (63)
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and
c ∈ x−r−n+1 O .

Then the differential equation

Dny = g(y,Dy, . . . , Dny) + c (64)

has a unique infinitesimal solution in R((t))LE; this solution has value ≥ vx1−r.

This theorem implies the following result, which was proved by Lou van den Dries
in [D]:

Corollary 55 Suppose that p is a polynomial in one variable with coefficients in R((t))LE,
all of value ≥ vtr for some r ∈ R, r > 1. Then the differential equation

Dy = p(y)

has a unique infinitesimal solution in R((t))LE.

8 Sums of spherically complete valued abelian groups

Let (A, v) be a valued abelian group and A1, . . . , An be subgroups of A. The restrictions
of v to every Ai will again be denoted by v. We call the sum A1 + . . . + An ⊆ A
pseudo-direct if for every a′ ∈ A1 + . . . + An , a′ 6= 0, there are ai ∈ Ai such that

v
n
∑

i=1

ai = min
1≤i≤n

vai and v

(

a′ −
n
∑

i=1

ai

)

> va′ . (65)

Proposition 56 The sum A1 + . . . + An ⊆ A is pseudo-direct if and only if the group
homomorphism f : A1× . . .×An → A1 + . . .+An defined by f(a1, . . . , an) := a1 + . . .+an

is immediate.

Proof: ⇒: Assume that the sum A1 + . . . + An is pseudo-direct. Take any a′ ∈
∑

i Ai

and choose ai ∈ Ai such that (65) holds. Then a := (a1, . . . , an) ∈ A1 × . . . × An satisfies
(IH1). If b = (b1, . . . , bn) ∈ A1 × . . . × An such that vb ≥ va, then

vfb = v
∑

i

bi ≥ min
i

vbi = vb ≥ va = min
i

vai = v
∑

i

ai = vfa .

This shows that a also satisfies (IH2).

⇐: Assume that f is immediate. Take any a′ ∈
∑

i Ai , a′ 6= 0. Choose a := (a1, . . . , an) ∈
A1×. . .×An such that (IH1) and (IH2) hold. Then v (a′ −

∑

i ai) = v(a′−fa) > va′. Now
choose some j such that vaj = mini vai . Then set bj = aj ∈ Aj and bi = 0 ∈ Ai for i 6= j.
For b = (b1, . . . , bn), we thus have that va = mini vai = vaj = vbj = mini vbi = vb. Hence
by (IH2), v

∑

i ai = vfa ≤ vfb = vbj = mini vai . We have proved that the elements ai

satisfy (65). 2
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If the groups (Ai, v) are spherically complete, then by Proposition 10, the same is true
for their direct product A := A1 × . . . × An , endowed with the minimum valuation as
defined in (10). Hence, the foregoing proposition, Theorem 2 and Corollary 4 show:

Theorem 57 Assume that the subgroups (Ai, v) of (A, v), 1 ≤ i ≤ n, are spherically
complete. If the sum A1 + . . . + An is pseudo-direct, then it is also spherically complete
and has the optimal approximation property.
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