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Abstract

Ground-breaking recent work by Carr and Lee extends well-known
results for variance swaps to arbitrary functions of realized variance,
provided a zero-correlation assumption is made. We give a detailed
mathematical analysis of some of their computations and work out
the cases of volatility swaps and calls on variance. The latter leads to
an ill-posed problem that we solve using regularization techniques.

The sum is divergent, that means we can do something.
-Heaviside1

1 Introduction

Since the crash of 87, the study of volatility has become central to quantita-
tive finance. In 1973, Black and Scholes introduced their lognormal model
where both the actual and risk-neutral stock-price St are driven by the same
volatility σ. With the usual notation we have the Black-Scholes SDE (as-
suming zero rates and dividends),

1Quote suggested by Peter Carr. We take this opportunity to thank him, Rama Cont,
Jining Han, Bob Kohn and Roger Lee for related discussions.
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dSt = σ St dWt,

d 〈S〉t = σ2 S2
t dt.

Pricing a financial contract by computing a risk-neutral expectation re-
quires continuous-time hedging and the impact of doing this with a wrong
σ is well studied, e.g. (Carr and Madan 1998) and the references therein.
Market option prices are quoted as implied Black-Scholes volatilities and the
resulting volatility surface is far from constant; the dependence of implied
volatility on strike and expiration is referred to as the volatility smile. For
background on how such implied volatility surfaces look and how they move
around, see Cont and da Fonseca (2002).

Dupire suggested a one factor time-dependent Markov model in which

σ = σ(St, t)

is determined by the implied volatility surface such that all European option
prices are recovered. It is a pure pricing process and σ represents an effective
volatility for pricing processes rather than a true model of the dynamics of
volatility.

More realistically, stochastic volatility models have been proposed in
which

σ = σ(t, ω)

itself follows a diffusion. These models are indeed able to generate a volatility
smile. A particularly important measure of the smile, the at-the-money-
skew, is known to be proportional to the correlation ρ. Exotic options can
be very sensitive not only the skew but also its dynamics in time in which
case a stochastic volatility model is a necessity for pricing and hedging, see
Gatheral (2004).

If the stock price is assumed to follow a continuous-path diffusion, a semi-
static model-independent hedge perfectly replicates the realized variance

∫ T

0

v(s, ω)ds ≡ 〈x〉T

and instruments with this payoff, variance swaps, are actively traded.
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In recent work (Carr and Lee 2005), Carr and Lee showed how to extend
this to instruments with arbitrary payoff

f(〈x〉T )

provided that correlation is zero. For special f of the form exp[λ.], both prices
and hedges are given explicitly in terms of associated European contracts
on ST . Consequently, the price of such volatility derivatives is determined
by European puts and calls expiring at T or, equivalently, by the time slice
T of the implied-volatility surface. Formally,

E [f(〈x〉T )] =

∫
wf (k) c(k, T ) dk (1)

where the c(k, T ) are European option prices and the wf (k) are weights to
be found.

In their paper, for a certain class of functions f , Carr and Lee use Laplace
techniques to decompose f in terms of payoffs of the form exp[λ.] to price
(and hedge) a claim with payoff f(〈x〉T ). In effect, they show how to compute
the weights for a replicating strip of European options.

Our main insight is that the weights wf used for the replicating strip
of European options do not depend nicely on f and in fact may not be
well-defined for many functions f of interest (such as variance calls).

In our paper, we implement a regularization scheme to permit computa-
tion of the weights and in so doing, demonstrate that inverting equation (1)
directly is a more appealing approach.

We exhibit the problem as an ill-posed one and show how least-squares
optimization can be used to construct solutions.

We focus on two payoffs of particular financial interest: the volatility
swap

f(〈x〉T ) =
√
〈x〉T

and the call on variance

f(〈x〉T ) = (〈x〉T −K)+ .

2 Laplace transform of quadratic variation

We assume no jumps and zero risk-free rate (for simplicity) so that the
risk-neutral stock evolution is given by

dSt = σ(t, ω) St dWt.
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Set xT = log[ST /S0] and observe that its quadratic variation 〈x〉T is exactly

the total realized variance
∫ T

0
σ2(t, ω)dt.

Proposition 1 (Carr,Lee). Assume independence between the Brownian
motion W and volatility σ. With p(λ) = 1/2±

√
1/4 + 2λ we have

E[eλ〈x〉T ] = E[ep(λ)xT ]. (2)

Proof. (sketch) Note that xt has a drift −1
2
〈x〉t. Then

yt = xt +
1

2
〈x〉t

is a martingale with associated exponential martingale

exp

(
pyt − 1

2
p2 〈y〉t

)
= exp

(
pxt − 1

2
(p2 − p) 〈x〉t

)
.

First, assume 〈x〉t =
∫ T

0
σ2(t)dt deterministic. Then taking expectations

yields the required identity. In the stochastic case, we can condition on the
volatility scenario which amounts to fixing 〈x〉t (ω) . Repeat the argument
given before and then average over all possible volatility scenarios. The
result follows.

Remark 2. We refer to Carr and Lee (2005) for a full proof and technical
conditions on the volatility process to make this statement true.

Remark 3. Either choice of the sign yields a correct expectation, interpreted
as the price of an instrument. But the hedging strategy may be different. For
instance, λ = 0 leads to p = 0, 1. The fair price 1 can be obtained be holding
one dollar or as risk-neutral value of ST /S0 at time T .

Remark 4. From (e.g.) Carr and Madan (1998), generalized European-
style payoffs such as that on the r.h.s. of equation (2), may be replicated by
an infinite strip of (out of the money) calls and puts.

Set F = S0, k = log(K/F ) and c(k) = C(K, T ; S0)/K, p(k) = P (K, T ; S0)/K.
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Note that put-call symmetry holds so that p(k) = e−k c(−k). Then

E[eλ〈x〉T − 1] =
1

F p
(E[Sp

T ]− F p)

=
p (p− 1)

F p

(∫ F

0

dKP (K)Kp−2 +

∫ ∞

F

dKC(K)Kp−2

)

= 2λ

(∫ 0

−∞
dk

P (K)

K
ekp +

∫ ∞

0

dk
C(K)

K
ekp

)

= 2λ

(∫ ∞

0

dk c(k) ek e−kp +

∫ ∞

0

dk c(k) ekp

)

= 4λ

∫ ∞

0

dk c(k) ek/2 cosh[k
√

1/4 + 2λ] (3)

where complex λ are not a problem2.
From the second line above observe the ATM-weight

p(p− 1)

F p
Kp−2|K=F =

p(p− 1)

F 2
=

2λ

S2
0

Remark 5. For the well-known variance swap,

E[〈x〉T ] = 2

(∫ F

0

dK
P (K)

K2
+

∫ ∞

F

dk
C(K)

K2

)
(4)

= 2

(∫ 0

−∞
dk p(k) +

∫ ∞

0

dk c(k)

)
(5)

= 2

(∫ ∞

0

dk c(k) ek +

∫ ∞

0

dk c(k)

)
using put-call symmetry

= 4

∫ ∞

0

dk c(k) ek/2 cosh[k/2] (6)

As a consistency check, the last expression can also be obtained from (3) by
differentiating with respect to λ at λ = 0.

For later reference we note the ATM-weight with respect to actual strikes
2/F 2 = 2/S2

0 from (4) and log-strikes 4 ek/2 cosh[k/2]|k=0 = 4 from (6).

2a) Note that the l.h.s. can become infinity for Re[λ] too large, this will only depend
on the pdf of volatility in the considered model. Any stochastic volatility model in which
volatility stay below some σmax implies finite exponential moments.

b) Note that cosh[k
√

1/4 + 2λ] is an entire function in λ.
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3 Arbitrary functions of realized variance

Assume we want to replicate f (〈x〉T ) and manage to find a way to represent
(or at least approximate) f by a linear combination of Laplace functionals
y 7→ exp[λ y], λ ∈ C.

Example 6. f(y) =
√

y. By a well-known formula,

√
y =

1

2
√

π

∫ ∞

0

1− e−λy

λ3/2
dλ. (7)

Example 7. Whenever f(y) has a Laplace-transform F (λ), for a ∈ R on
the right of all singularities of F ,

f(y) =
1

2πi

∫ a+i∞

a−i∞
F (λ) eλ y dλ. (8)

In general, an infinite number of Laplace functionals has to be combined
to recreate a given payoff. However, a finite number will suffice to approxi-
mate f . Indeed, this follows from classical results by L. Schwartz (Schwartz
1959).

In practical terms, it will suffice to find an approximation for say y =
〈x〉T ∈ [0, T ] since we are almost sure that, say, S&P 500 volatility remains
below 100%.

3.1 Volatility swaps

Using (7) and taking expectations

E
[√

〈x〉T
]

=
1

2
√

π

∫ ∞

0

1− E [
e−λ 〈x〉T ]

λ3/2
dλ. (9)

Substituting the expression for E
[
e−λ 〈x〉T ]

from equation (3), we obtain

E
[√

〈x〉T
]

=
2√
π

∫ ∞

0

dλ√
λ

∫ ∞

0

dk ek/2 c(k) cosh
[
k

(√
1/4− 2 λ

)]

=

∫ ∞

0

dk c(k) wvol(k)

with

wvol(k) ≡ 2√
π

ek/2

∫ ∞

0

dλ√
λ

cosh
[
k

(√
1/4− 2 λ

)]
. (10)
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Theorem 8. We have

wvol(k) =

√
π

2
ek/2 I1(k/2) +

√
2π δ(k) (11)

To a very good approximation, only the delta-function term counts.

Proof. From (10), the weight of the option with log-strike k in the replicating
strip is given by

2√
π

ek/2

∫ ∞

0

dλ√
λ

cosh k (
√

1/4− 2 λ) =
2√
π

ek/2 {J + K}

with

J =

∫ 1/8

0

dλ√
λ

cosh
[
k (

√
1/4− 2 λ)

]

and

K =

∫ ∞

1/8

dλ√
λ

cosh
[
ik (

√
2 λ− 1/4)

]
=

∫ ∞

1/8

dλ√
λ

cos
[
k (

√
2 λ− 1/4)

]

With the changes of variable u =
√

1/4− 2 λ and v =
√

2 λ− 1/4, we
obtain

J =
√

2

∫ 1/2

0

u du√
1/4− u2

cosh (k u) =
π

2
√

2
L−1(k/2)

where Ln(.) denotes the Struve L-function and

K =
√

2

∫ ∞

0

v dv√
1/4 + v2

cos (k v)

The K integrand clearly diverges as v → ∞. We may eliminate this singu-
larity by defining

K ′ =
√

2

∫ ∞

0

dv

(
v√

1/4 + v2
− 1

)
cos (k v)

=
π

2
√

2
{I1(k/2)− L−1(k/2)}

where In(.) represents a modified Bessel function of the first kind. Adding
together J and K, we obtain the following analytical expression for the
weights

wvol(k) =

√
π

2
ek/2 I1(k/2) +

2
√

2√
π

∫ ∞

0

dv cos k v
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We recognize the second term in this expression as the Dirac-delta function.
Integrating the second term gives

wvol(k) =

√
π

2
ek/2 I1(k/2) +

√
2π δ(k)

Remark 9. It is worth emphasizing here what has been achieved: to compute
the fair value of volatility under our standing zero-correlation assumption we
only need a knowledge of the volatility smile at expiration. Given that we
already know how to compute the expected variance the so-called convexity
adjustment 3 follows immediately. This suggests that the dynamics of volatil-
ity are highly constrained by the current implied volatility surface.

Remark 10. We give a financial interpretation of formula (11). To this
end, recall that the weights wvol are universal for all zero-correlation models.

E

[√
〈x〉T

]
=

∫ ∞

0

dk c(k) wvol(k).

In particular, we may restrict attention to a standard Black-Scholes model
where (with obvious notation) the normalized calls c(k) = cBS(k, y) only
depend on log-strike and y = 〈x〉T = σ2T. Thus

σ
√

T =

∫ ∞

0

dk c(k) wvol(k).

However, by a well-known approximation for ATM Black-Scholes calls,

cBS

(
0, σ2 T

) ≈ σ
√

T√
2π

and we recover wvol(k) ≈ √
2π δ(k).

3In market parlance, the convexity adjustment refers to the difference between the
square root of expected variance and expected volatility.
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3.2 Generalized payoffs

Using (8) and taking expectations, a formal computation yields

E [f(〈x〉T )] =
1

2πi

∫ a+i∞

a−i∞
F (λ)E

[
eλ〈x〉T

]
dλ

=
1

2πi

∫ a+i∞

a−i∞
F (λ)

[
1 + 4λ

∫ ∞

0

dk c(k) ek/2 cosh[k
√

1/4 + 2λ]

]
dλ

= f(0) +

∫ ∞

0

dk c(k) 4 ek/2

(
1

2πi

∫ a+i∞

a−i∞
F (λ) λ cosh[k

√
1/4 + 2λ] dλ

)
.

(12)

Elegant though the complex integral in (12) might look, its convergence
is not guaranteed; indeed for typical non-smooth payoffs such as calls, it
diverges. The rest of our paper concerns itself with how to deal with such
payoffs.

Example 11 (Variance call). f(y) = (y −K)+ with K ≥ 0 has Laplace-
transform F (λ) = e−λK/λ2. Formally

E
[
(〈x〉T −K)+

]
=

∫ ∞

0

dk c(k)

(
4 ek/2

2πi

∫ a+i∞

a−i∞

e−λK

λ
cosh[k

√
1/4 + 2λ]dλ

)

︸ ︷︷ ︸
=:wcall(k)=wcall(k,K)

.

(13)
Note that e−λK is a purely oscillating term as λ → a ± i∞. For k > 0 we
have the exponentially divergent term

| cosh[k
√

1/4 + 2λ]| ∼ exp
[
k
√

Im[λ]
]

as Im[λ] → +∞.

Later we will introduce the mollification technique which will provide a strong
enough decay to ensure existence of all integrals.

In anticipation of our discussion of ATM weights in Section 4, note that
for k = 0 we observe

wcall(k = 0, K) = 4

(
1

2πi

∫ a+i∞

a−i∞

eλ (−K)

λ
dλ

)
= 4 θ(−K)

using the fact that the Heaviside-function θ(.) has Laplace-transform 1/λ. In
particular,

wcall(k = 0, K) = 0 for all K > 0
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where as from the discussion of the variance swap

E[(〈x〉T − 0)+] = E[(〈x〉T ] = 4

∫ ∞

0

dk c(k) ek/2 cosh[k/2]

and we observe the discontinuity

wcall(k = 0, K = 0) = 4.

4 The structure of ATM weights

In this section only, we revert to dollar call and put prices (C, P ) and dollar
strikes K.

The following result does not require a zero-correlation assump-
tion. In particular, local volatility and arbitrary stochastic volatility under-
lying dynamics are allowed.

Theorem 12. Assume zero risk-free rate, no dividends and a decomposition

E [f(〈x〉T )] =

∫ ∞

0

dK w(K; S0)

{
P (T, S0; K) if K < S0

C(T, S0; K) if K ≥ S0
.

Note that for this decomposition in terms of out-of-the-money options to hold
we necessarily have f(0) = 0.

Then the ATM-weight w(S0, S0) is given by

2f ′(0)

S2
0

.

Proof. We only discuss two special cases, generalizations are obvious.

Case 1 (Local Volatility)

dSt = σloc(St, t)St dWt

dyt = σ2
loc(St, t) dt

Note 〈x〉T ≡ yT . As a 2-dimensional time-inhomogeneous Markov process,
its generator is written as

L =
1

2
σ2

loc(St, t) S2 ∂SS + σ2
loc(St, t) ∂y
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Observe that

E[f(〈x〉T )] = E[f (yT )]

= E[f(〈x〉T )|S0, y0 = 0]

= u(T, S0, 0)

where u(T, S, y) is a solution of the PDE

∂T u = L [u]

with initial condition
u(0, S, y) = f(y).

Pricing standard (out-of-the-money) Europeans calls and puts is based on
the same PDE but uses different inital conditions,

gK(S) := (K − S)+ when K < S0 and gK(S) := (S −K)+ otherwise.

The resulting PDE solutions (e.g. the prices) at time 0 are

P (T, S0; K) resp. C(T, S0; K).

By put-call parity,
P (T, S0; S0) = C(T, S0; S0).

By assumption,

u(T ; S0, 0) =

∫ ∞

0

dK w(K; S0)

{
P (T, S0; K) if K < S0

C(T, S0; K) if K ≥ S0
.

Now differentiate w.r.t. T and evaluate at T = 0. From the PDE

[Lf ](S0, 0) =

∫ ∞

0

dK w(K; S0) [LgK ](S0, 0).

Note that [LgK ](S, 0) = 1
2
σ2

loc(S, 0) S2 δK(S) and [Lf ](S, y) = σ2
loc(S0, 0) f ′(y).

Hence

σ2
loc(S0, 0)f ′(0) =

1

2

∫ ∞

0

dK w(K; S0) σ2
loc(S0, 0) S2

0 δK(S0)

=
1

2
σ2

loc(S0, 0) S2
0 w(S0; S0).
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Case 2 (Stochastic Volatility)

The modifications are minor. The underlying Markovian diffusion now con-
tains three components: the stock price process St, its instantaneous variance
process vt and the accumulated total variance yt. As before

dyt = vtdt

and

L =
1

2
v S2∂SS + (terms involving ∂v, ∂vv, ∂Sv) + v∂y.

The derivation goes through line by line as in the local volatility case. It
suffices to note that all the payoffs under consideration, namely f(y), (K −
S)+ and (S−K)+ are insensitive to v so differentiating w.r.t v yields a zero
contribution.

Example 13 (Variance Swap). f(z) = z. We find ATM-weight 2/S2
0 in

agreement with the well-known result (see Remark 5).

Example 14 (Volatility Swap). f(z) =
√

z leads to f ′(0) = ∞. This
implies mass-concentration of k 7→ w(k, S0) at the money (k = S0) in agree-
ment with Section 3.1.

Example 15 (Laplace payoff). f(z) = exp[λz] − 1. The ATM-weight
equals 2 λ/S2

0 in agreement with equation (3).

Example 16 (Variance Call). f(z) = (z − K)+. We have f ′(0) = 0
implying zero ATM weight in agreement with Example 11.

The last example provides a different proof of the discontinuity of ATM-
weights for variance calls as K → 0 which we found earlier.

5 Pdf of variance

Fix some strike K > 0. Assume P[〈x〉T ∈ dy] = g(y)dy. Crystallizing the
essence of the Carr-Lee result, we propose to recover the pdf of realized
quadratic variation from a strip of European calls.
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Let δ
(h)
K denote the Gaussian density with mean K and standard devia-

tion
√

h ¿ 1. Then, using (3) we obtain

g(K) = E[δK(〈x〉T )] ≈ E[δ
(h)
K (〈x〉T )]

= E
[

1

2π

∫ ∞

−∞
dp e−ip 〈x〉T ei p K e−hp2/2

]
(Fourier-inversion)

=
1

2π

∫ ∞

−∞
dp ei pK e−hp2/2 E

[
e−ip〈x〉T

]

=
1

2π

∫ ∞

−∞
dp ei pK e−hp2/2

(
1− 4ip

∫ ∞

0

dk c(k) ek/2 cosh
[
k

√
1/4− 2ip

])

= δ
(h)
K (0)︸ ︷︷ ︸

→0 as h→0

+

∫ ∞

0

c(k) wpdf (k, K; h) dk

by application of Fubini’s Theorem4 and with call option weights

wpdf (k, K; h) = 4 ek/2 1

2π

∫ ∞

−∞
dp e−hp2/2 (−ip) eipK cosh

[
k

√
1/4− 2ip

]
.

4We sketch how to justify the use of Fubini’s theorem above as we don’t believe it is
trivial. It suffices to check that the iterated integral

=
1
2π

∫ ∞

−∞
dp ei pK e−hp2/2

(
1− 4ip

∫ ∞

0

dk c(k) ek/2 cosh
[
k

√
1/4− 2ip

])

(which we know to be finite) exists as absolutely convergent iterated integral. Noting that

cosh
[
k

√
1/4− 2ip

]
∼ exp

[
k |p|1/2

]

the essence is ∫ ∞

−∞
dp e−hp2/2 p

∫ ∞

0

dk c(k) exp
[
k( 1/2 + |p|1/2)

]
.

W.l.o.g. we may consider BS-calls where c(k) ∼ exp(−ηk2) and we estimate
∫ ∞

−∞
dp e−hp2/2 p

∫ ∞

0

dk exp(−ηk2) exp
[
k( 1/2 + |p|1/2)

]

∼
∫ ∞

−∞
dp e−hp2/2

∫ ∞

0

dk exp(−ηk2 + k |p|1/2)

≤
∫ ∞

−∞
dp e−hp2/2 ep/4

√
π

< ∞.
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Now all integrals exist (and converge absolutely) thanks to the exponen-
tial damping factor e−hp2/2. Note also that wpdf is a real-valued function as
the integrand is an analytic function of ip.

We conclude that under mild technical assumptions on g (continuity and
boundedness), the pdf is given by

g(y) = lim
h→0

∫ ∞

0

c(k) wpdf (k, y; h) dk.

Remark 17. The last relation may be written as a linear integral transform

g(y) = lim
h→0

[Whc(.)] (y).

Conversely, if we know g(y) for all y, we know the pdf of volatility. Under
our standing zero-correlation assumption, calls are priced by averaging BS-
prices (Hull and White 1987),

c(k) =

∫ ∞

0

cBS(k, y) g(y) dy =: [Lg(.)](k).

We observe that limh→0 Wh= L−1. In the theory of (linear) ill-posed equa-
tions, the family {Wh : h > 0} is called a regularization scheme, see Monk
(2003).

6 Digital variance payoff

Fix some strike K > 0. We consider a claim that pays one dollar if 〈x〉T ≥ K
and zero otherwise; we denote the payoff function by I[K,∞).

As before, we compute E[I[K,∞)(〈x〉T )] as a weighted integral of European
option prices. We proceed by representing the digital payoff as an integral
of delta-function payoffs. Formally,

I[K,∞)(z) =

∫ ∞

K

δy (z) dy.

In order to ensure convergence, we again mollify the payoffs. Recall that
δ
(h)
0 is a Gaussian with peak at 0 and variance h. Set

I(h)
[K,∞)(z) := (I[K,∞) ∗ δ

(h)
0 )(z) =

∫ ∞

K

δ(h)
y (z)dy.
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Then

E
[
I[K,∞)(〈x〉T )

]

≈ E
[
I(h)
[K,∞)(〈x〉T )

]

=

∫ ∞

K

E[δ(h)
y (〈x〉T )] dy.

From Section 5, this equals

∫ ∞

K

dy

(
δ(h)
y (0) +

∫ ∞

0

c(k) 4 ek/2 1

2π

∫ ∞

−∞
dp e−hp2/2 (−ip) eipy cosh

[
k
√

1/4− 2ip
]

dk

)

= I(h)
[K,∞)(0)

︸ ︷︷ ︸
→0 as h→0

+

∫ ∞

0

c(k) 4 ek/2 1

2π

∫ ∞

−∞
dp e−hp2/2 eipK cosh

[
k
√

1/4− 2ip
]

︸ ︷︷ ︸
weights wdig=wdig(k,K;h)

dk.

The last equality is based on the fact that
∫ M

K
dy (−ip) eipy = eipK − eipM

and that eipM tends weakly to zero as M →∞5.
We note the ATM-weight (k = 0) of

4
1

2π

∫ ∞

−∞
dp e−hp2/2 eipK = 4 δ

(h)
K (0) ≈ 0 (14)

for h small enough relative to variance-strike K (a harmless and realistic
assumption). Note also that with

f(z) := I(h)
[K,∞)(z)− I(h)

[K,∞)(0) ≈ I(h)
[K,∞)(z) ≈ I[K,∞)(z)

we have a decomposition

E[f(〈x〉T )] =

∫ ∞

0

c(k) wdig(k, K; h) dk

to which our Theorem 12 applies:

wdig(0, K; h) ∼ f ′(0) ≈ 0.

which confirms (14).

5Formally set M = ∞. The oscillations of eip∞ will completely cancel the remaining
smooth integrand w.r.t. p
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7 Variance calls

Fix a strike K > 0. Once again, we propose to compute E[(〈x〉T −K)+] from
a strip of European calls. We proceed by piling up digital payoffs,

gK(z) := (z −K)+ =

∫ ∞

K

I[y,∞) (z) dy.

It is easy to check that

g
(h)
K (z) := (gK ∗ δ

(h)
0 )(z) =

∫ ∞

K

I(h)
[y,∞)(z)dy.

As before, g
(h)
K (0) ≈ 0 for K > 0 and h small enough. Hence

E
[
(〈x〉T −K)+

] ≈ E
[
g

(h)
K (〈x〉T )− g

(h)
K (0)

]

= E
[∫ ∞

K

(
I(h)
[y,∞)(〈x〉T )− I(h)

[y,∞)(0)
)

dy

]

=

∫ ∞

K

dy

∫ ∞

0

c(k) wdig(k, y; h) dk

=

∫ ∞

0

dk c(k)

(∫ ∞

K

wdig(k, y; h) dy

)

=:

∫ ∞

0

dk c(k) wcall(k, K; h)

Proposition 18. Let a > 0. We have

wcall(k,K; h) =
4 ek/2

2πi

∫ a+i∞

a−i∞
ehλ2/2 e−λK

λ
cosh

[
k

√
1/4 + 2λ

]
dλ (15)

and this integral converges absolutely due to the exponential damping factor
ehλ2/2. Setting h = 0 we recover the (divergent) weight wcall(k, K) which was
obtained by a formal computation earlier (Example 11).

Proof. Up to a factor 4 ek/2 the weights wdig(k, y; h) for the (mollified) digital
payoff are

1

2π

∫ ∞

−∞
dp e−hp2/2 eipy cosh

[
k
√

1/4− 2ip
]

=
1

2πi

∫ 0+i∞

0−i∞
dλ ehλ2/2 e−λy cosh

[
k

√
1/4 + 2λ

]
(set λ = −ip)

=
1

2πi

∫ a+i∞

a−i∞
dλ ehλ2/2 e−λy cosh

[
k

√
1/4 + 2λ

]
for any a ∈ R.
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The last equality follows by change of contour noting that the integrand
decays uniformly with Im(z) → ±∞.

In order to synthesize a variance call payoff we integrate as before

∫ M

K

e−λydy =
1

λ
(e−λK − e−λM)

and get

1

2πi

∫ a+i∞

a−i∞
dλ eλ2/2 1

λ
(e−λK−e−λM) cosh

[
k

√
1/4 + 2λ

]
=: F (K, a)−F (M,a)

Then limM→∞ F (M, a) = 0 since a > 0 and

∣∣∣∣ehλ2/2 1

λ
e−λM cosh

[
k

√
1/4 + 2λ

]∣∣∣∣ ≤ e−aM

∣∣∣∣ehλ2/2 1

λ
cosh

[
k

√
1/4 + 2λ

]∣∣∣∣
︸ ︷︷ ︸

integrable over a±i∞

7.1 Visualization of the weights

Note first that as h → 0, the integrand in (15) becomes highly oscillatory and
so direct integration is not obviously the right way to compute the weights.
To see what this means in practice, consider the examples presented in
Figures 1 and 2.

It is clear from the form of the regularization scheme that increasing h in
g

(h)
K (z) effectively smoothes the payoff gK(z) of a variance call. For reference,

in Figure 3 we graph g
(h)
K (z) for h = .0001 and h = 0.00001 respectively with

K = 0.04 in both cases.
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1 2 3 4 5
k

-20000

-15000

-10000

-5000

5000

10000

15000

20000
Weight

Figure 1: Here we see a plot of the weights wcall(k, K; h) as a function of
log-strike k with K = 0.04 and h = 0.0001. Note that the scale has been
carefully chosen so the first peak (at +10, 000 or so) can be seen. It would
be an understatement to say that the weights are oscillatory.

1 2 3 4 5
k

-1·1013
-7.5·1012
-5·1012

-2.5·1012

2.5·1012
5·1012

7.5·1012
1·1013

Weight

Figure 2: Now we see a plot of the weights wcall(k, K; h) as a function of
log-strike k with K = 0.04 and h = 0.00001 (ten times smaller than in the
figure above. The weights are even more oscillatory with this smaller value
of h.
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0.01

0.02

0.03

0.04

Payoff

Figure 3: The solid blue line is the regularized payoff g
(h)
K (z) with h =

0.00001 plotted as a function of total realized variance z and the dashed red
line, the payoff with h = 0.0001 both with K = 0.04 = 20%2.

7.2 Computing the weights: an ill-posed PDE

Adopting the same notation as in the last section, consider the reduced
weight

wred(k, K) =
wcall

4ek/2
=

1

2πi

∫ a+i∞

a−i∞
ehλ2/2 e−λK

λ
cosh

[
k
√

1/4 + 2λ
]

dλ.

Then

∂2

∂k2
wred =

1

2πi

∫ a+i∞

a−i∞
ehλ2/2 e−λK

λ
(1/4 + 2λ) cosh

[
k

√
1/4 + 2λ

]
dλ

=
1

4
wred − 2

∂

∂K
wred. (16)

This PDE lives on the domain (k,K) ∈ [0,∞) × [0,∞) with boundary
conditions (as h → 0)

wred(k = 0, K > 0) = 0, wred(k > 0, K = 0) = cosh[k/2].
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The first boundary condition follows from Example 16 and the second one
from the known variance swap weights, see (4). Note however the disconti-
nuity at k = 0, K = 0.

At first sight, equation (16) is a standard parabolic PDE with time vari-
able K and space variable k. It is the negative (wrong) sign of the K-
derivative that leads us to identify it as ill-posed. To solve it, we would
effectively have to solve a backward equation forward in time given an ini-
tial condition6.

8 Dealing with ill-posedness

We have accumulated evidence that the map

f(.) 7→ “weights”

is ill-posed in the sense that small perturbations of f in sup-topology may
result in dramatic changes in the weights.

Recall Remark 17: Given the law of realized variance g(y), and under
the standing zero-correlation assumption, calls are priced by averaging Black
and Scholes prices,

c(k) =

∫ ∞

0

cBS(k, y) g(y) dy =: [Lg(.)](k).

Formally then, we may obtain the pdf of variance by inverting the linear
integral operator L (from the discussion in section 5 we know that L is
invertible). Once this is achieved, all volatility derivatives are priced directly!

Also, we remark that the Black-Scholes integral kernel cBS (., .) is smooth.
In suited function spaces the resulting operator L would then be compact
and it follows from general principles that L−1 can not be continuous (see
Monk (2003)). The employment of regularization techniques is therefore
crucial.

8.1 Pricing of variance calls

We proceed by discretization and pick a number of variance levels

{vj} , j = 1, ..., m.

6In Fourier space, a symptom of this problem would be exponential blowup of the
modes.
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Approximating g(y) by discrete probabilities concentrated at vj, we then
use different regularization techniques to find the matching probability vec-
tor {gi}. Then, of course, pricing a variance-call struck at K amounts to
computing7 ∑

i

(vi −K)+gi =: Cvar(K).

On the other hand, in any given arbitrary stochastic volatility model, variance-
calls can be priced by (1) Monte Carlo simulation of

E

[(∫ T

0

σ2(s, ω) ds−K

)+
]

=: C̃var(K),

or by (2) solving a PDE using the ideas of Section 4. For a number of mod-
els, a third route is open to us. Namely, when the characteristic function of
quadratic variation (total realized variance) is known in closed-form then (3)
Fourier transform techniques are the best choice. With this remark in mind,
we will use the Heston model (Heston 1993) for comparison purposes. May
we remind the reader that, under Heston, σ2 (., ω) follows the Cox-Ingersoll-

Ross dynamics and the characteristic function of 〈x〉T =
∫ T

0
σ2 (s, ω) ds fol-

lows from their bond pricing formula (Cox, Ingersoll, and Ross 1985).

8.2 Ad-hoc regularization via Moore-Penrose

We need to discretize the Black-Scholes integral kernel. In addition to the
variance levels {vj : 1 ≤ j ≤ m}, we pick a number of (log) strikes

{ki} , i = 1, ..., n.

To capture the shape of total variance, {vj} should be fine enough and cover a
realistically large range of variances. Setting ci = c(ki) and Aij = cBS(ki, vj)
we obtain

ci =
m∑

j=1

Aij gj

7We assume our spacing of variance is fine enough to ignore the error introduced by the
“step” approximation of the call payoff. Otherwise, consider trapezoidal approximations.
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where g = {gj} is a probability vector. Provided m > n, the linear mapping
A : Rm → Rn may be assumed injective (since L is) and we have an under-
determined linear system, whose minimal solution (|g|2 =

∑
g2

j → min!) is
computed using the Moore-Penrose pseudo-inverse,

g = AT(AAT)−1 c =: Mc.

The numerical quality of this procedure is determined by the condition-
ing number γ, the ratio of the largest to the smallest eigenvalue of AAT.
Observe that at no point we did we impose on g that it should be an actual
probability vector, that is

gj ≥ 0,
∑

j

gj = 1.

In fact, from the consistency of the European call option prices used as input
(assuming they come from a zero-correlation world so that Hull-White ap-
plies), these conditions are automatically satisfied, at least for a sufficiently
fine discretization. We note that stability has been implicitly introduced by
forcing the inversion (AAT)−1 to take place in the smaller dimension. There
is no particular reason that penalizing the Euclidean norm of a probability
vector should be the “right” regularization. On the other hand, the above
algorithm can be readily implemented on a spreadsheet and moreover works
well in our first example.

Example 19. Consider the Heston model with the well-known Bakshi, Cao
and Chen parameters (Bakshi, Cao, and Chen 1997). In particular, the
volatility of volatility η is 0.39. We price n one-year European calls with
reasonably spread out (log-)strikes in increments of ∆k. We also pick m
levels of total variance in increments of ∆v. We choose

n = 5, ∆k = 0.14, m = 45, ∆v = 0.005

Comparison with direct integration against the characteristic function yields
the nearly perfect fit shown in Figure 4. The maximum numerical error in
our regularization procedure in this case was 0.00043 which is around 1% of
the variance swap value.

Whilst this example demonstrates the potential of regularization tech-
niques, the results deteriorate for high values of η. The more involved tech-
niques presented in the following sections, will solve this problem.
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Figure 4: Value of one-year variance call vs variance strike K with Bakshi,
Cao and Chen Heston model parameters. The solid blue line is the Fourier
transform computation. The dashed red line comes from our Moore-Penrose
regularization procedure.

8.3 A prior pdf of quadratic variation

Define the realized quadratic variation

〈x〉T :=

∫ T

0

σ2 (s, ω) ds

We make an a priori lognormal assumption for realized volatility so that

log
(√

〈x〉T
)

has a normal distribution with mean µ and variance s2. We note that the
logarithm of realized variance log (〈x〉T ) is then also normally distributed,
with mean 2µ and variance 4s2. As a consequence,

E
[√

〈x〉T
]

= eµ+s2/2, E [〈x〉T ] = e2µ+2s2

. (17)

Although, like many practitioners, we choose lognormal as an empirically
reasonable assumption for the distribution of realized volatility, in our case
we are only selecting this distribution as a prior in the Bayesian sense.
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From our earlier results, we may express the fair value of the variance

swap and the volatility swap (E [〈x〉T ] and E
[√

〈x〉T
]

respectively) explicitly

in terms of the European option prices c(k, T ). Solving equation (17) for µ
and s, we find that

s2 = log


 E [〈x〉T ]

E
[√

〈x〉T
]2




µ =
1

2
log



E

[√
〈x〉T

]4

E [〈x〉T ]


 .

Remark 20. From Jensen’s inequality, the square root of the variance swap
must always be worth more than the volatility swap. As mentioned earlier,
the difference is known as the convexity adjustment; under our lognormal
assumption, the convexity adjustment is given by

√
E [〈x〉T ]− E

[√
〈x〉T

]
=

(
es2/2 − 1

)
E

[√
〈x〉T

]
.

8.4 An approximate formula for valuing variance calls

Assuming a lognormal distribution of realized volatility, we may derive a
Black-Scholes style formula for calls on variance:

E [〈x〉T −K]+ = e2µ+2s2

N(d̃1)−K N(d̃2)

with

d̃1 =
−1

2
ln K + µ + 2s2

s

d̃2 =
−1

2
ln K + µ

s
.

Example 21. Consider the Heston model with parameters

λ = 1.15, ρ = 0, σ2
0 = σ̄2 = 0.04, η = 0.39 resp. 1.0.

In Figures 5 and 6 we compare prices of variance calls obtained from the
approximate formula with those obtained from a direct numerical integration
using the closed-form Heston characteristic function of realized variance.
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Figure 5: Value of one-year variance call vs variance strike K with the Heston
model parameters detailed in Example 21, here η = 0.39. The solid blue line
is the Fourier transform computation. The dashed red line comes from our
lognormal approximation.
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0.03

0.04
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Figure 6: Value of one-year variance call vs variance strike K with the Heston
model parameters detailed in Example 21, here η = 1.0. The solid blue line
is the Fourier transform computation. The dashed red line comes from our
lognormal approximation.
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8.5 Discretization of the prior pdf

By construction, the mean and variance of the prior pdf match the mean
and variance of the true pdf of realized variance. This leads to a natural
discretization of the variance space: we simply make sure to cover, say, 4
standard deviations in log-space. In more detail, we approximate the law of

z := log
( √

E [〈x〉T ]
)
∼ N(µ, s2)

by a convex combination of Dirac-deltas
∑

i

qi δzi

where the points {zi} cover the interval [µ− 4s, µ + 4s] and

qi ∝ 1√
2πs2

e
(zi−µ)2

2s2

(up to normalization of order ∆z). Clearly,
∑

qi ≈ 1 provided ∆z ¿ s and
enough points are used, for instance 8s /∆z to cover 4 standard-deviations.

8.6 The posterior pdf of quadratic variation

We keep the points {zi} but allow variations of the (approximate) probability-

vector {qi}. To this end, assume the law of log
( √

E [〈x〉T ]
)

is given by

∑
i

pi δzi

with, initially, pi := qi for all i. Following Hull-White, a call with log-strike
k is now priced as ∑

i

pi cBS(k, e2zi).

On the other hand, (zero-correlation) market prices c(k) for all log-strikes
k are available by assumption. This provides the necessary feedback to
change qi Ã pi. Fixing a set of log-strikes {kj : j = 1, ..., nStrikes}, we choose
to minimize the following functional:

p 7→ O(p) =

nStrikes∑
j=1

∣∣∣∣∣

{
nV ar∑
i=1

pi cBS(kj, e
2zi)

}
− c (kj)

∣∣∣∣∣

2

+ β d (p, q)
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Remark 22. The term β d (p, q) allows us to penalize an appropriately de-
fined distance between the prior and posterior measures. Clearly β → ∞
imposes p = q and guarantees “lognormal regularity”. For the Heston ex-
ample, excellent results are obtained without penalizing distance (i.e. setting
β = 0). Obviously, this is only one of many ways of penalizing the distance
between prior and posterior measures.

Remark 23. 8 One possibility would be to fix “hard” constraints

nV ar∑
i=1

pi = 1

nV ar∑
i=1

pi cBS

(
kj, e

2zi
)

= c (kj)

with 0 ≤ pi ≤ 1 subject to which we would minimize the functional

p 7→ Õ (p) = d (p, q) .

A common choice for d is the relative entropy distance

d (p, q) =
∑

i

log (pi/qi) qi.

We now present evidence of the superiority of the algorithm of Section
8.6 for high volatility of volatility.

Example 24. Consider the Heston model with parameters

λ = 1.15, ρ = 0, σ2
0 = σ̄2 = 0.04, η = 1.0.

In Figure 7, we compare prices obtained from the posterior pdf generated
from the algorithm presented in Section 8.6 with those obtained from a direct
numerical integration using the closed-form Heston characteristic function
of realized variance.

8This regularization scheme was suggested to us by Rama Cont in a recent conversa-
tion.
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Figure 7: Value of one-year variance call vs variance strike K with Heston
model parameters as detailed in Example 24. The solid blue line is the
Fourier transform computation. The solid red points are generated from the
approximate posterior pdf of Section 8.6.

9 Relaxing the zero-correlation assumption

Throughout this paper, we have depended on the assumption of zero-correlation
between quadratic variation and underlying returns, an assumption that
appears both very strong and unreasonable. However, in the context of
stochastic volatility for example, the prices of volatility derivatives clearly
do not depend on the correlation assumption.

To make this observation concrete, suppose we were to fit a stochastic
volatility model such as the Heston model to European option prices. We
would obtain values for all the parameters of the model including the corre-
lation ρ. Suppose we were to take that same model and regenerate option
prices with a different value of ρ (e.g. ρ = 0): clearly the fair values of
volatility derivatives would not change.

We further note that the correlation ρ that is estimated from a fit of a
stochastic volatility model to option price data is roughly independent of the
precise dynamics assumed for the volatility process. In stochastic volatility
models, the correlation parameter effectively determines the orientation of
the volatility smile:

• If ρ = 0, the smile must be symmetric around k = 0.
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• If ρ = −1, the high-strike wing is flat. Above a certain strike, implied
volatility is constant.

• Similarly, if ρ = +1, the low-strike wing is flat and below a certain
strike, implied volatility is constant.

If follows that we may take whichever stochastic volatility model we think
best fits option price data, set ρ = 0 and apply the results of this paper to
compute the values of other volatility derivatives under the zero-correlation
assumption with confidence that these values will be robust to the choice of
model.

Another way of looking at this might be to note that the lognormal
variance call option formula of Section 8.4 seems reasonably accurate for
practical purposes yet a call on variance expiring at time T depends only on
the T -maturity variance swap and volatility swap values. The variance swap
value clearly only depends on options expiring at time T . It is reasonable
to suppose that the value of a volatility swap on the other hand, although
perhaps not exactly uniquely determined by the prices of options expiring
at time T , is at least very tightly constrained by these prices. It follows once
again that the prices of calls on variance expiring at time T should be very
tightly constrained by the prices of European options expiring at T .

Finally, we note that in the most recent version of Carr and Lee (2005)
that we have just received from the authors, the value of a volatility deriva-
tive (under the zero correlation assumption) is expressed in terms of a ρ-
neutralized portfolio of European options that is by construction insensitive
to small perturbations in ρ from ρ = 0. From numerical computations in the
Heston context, they confirm that their approximation remains reasonably
accurate over the entire range of possible choices of the correlation ρ.

10 Concluding remarks

In this paper, we have studied in detail a formal expression for the value
of volatility derivatives in terms of the prices of standard European options
under the zero-correlation assumption. After showing that this formal ex-
pression for the weights diverges in many cases of interest, we showed how
to determine the value of volatility derivatives as the solution of a linear
system.
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Taken together with our observations on the extension to non-zero cor-
relation, our results strongly suggest that under diffusion assumptions, and
given the prices of European options of all strikes and expirations, the values
of volatility derivatives are highly constrained.

We emphasize here that if indeed we had a proper model with dynamics
that we really believed in, neither the Carr-Lee results nor our proposed
methods for their implementation would be of great interest; we could value
volatility derivatives directly (by Monte Carlo for example). On the contrary,
the value of this work lies in its applicability to the case where all we have
is a parameterization of the implied volatility surface.

Finally, it should be clear from the graphs of the weights that we pre-
sented that this work does not concern itself with how to hedge volatility
derivatives. All we have done is to indicate how they should be priced rela-
tive to the prices of European options on the underlying.
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