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Abstract. Let R be an o-minimal expansion of the real field, and let
P(R) be its Pfaffian closure. Let L be the language consisting of all Rolle
leaves added to R to obtain P(R). We prove that P(R) is model complete
in the language L, provided that R admits analytic cell decomposition.
We do this by proving a somewhat stronger statement, the theorem of the
complement for nested sub-Pfaffian sets over R. As a corollary, we obtain
that P(R) is obtained by adding to R all nested Rolle leaves over R, a
one-stage process.

Introduction

The basic objects we study in this paper are nested Pfaffian sets over a given
o-minimal expansion of the real field. Before defining them, let us briefly recall
some of the history around the notion of Pfaffian functions: roughly speaking,
Pfaffian functions are maximal solutions of triangular systems of partial differ-
ential equations with polynomial coefficients, see Khovanskii [10], Gabrielov [7]
and Wilkie [17]. In his thesis [10], Khovanskii proves (among other things) that
any set defined by finitely many equations and inequalities between Pfaffian
functions has a finite number of connected components. In the early 1980s,
Van den Dries conjectured that the expansion of the real field by all Pfaffian
functions was model complete, which, together with Khovanskii’s theorem,
would imply that this expansion is o-minimal. Wilkie [18] proved that the real
field expanded by all totally defined Pfaffian functions is o-minimal. Based on
Lion and Rolin [11], this theorem was strengthened in the following way: given
an o-minimal expansion R of the real field, we call a function Pfaffian over R if
it is a maximal solution of a triangular system of partial differential equations
with coefficients definable in R. Then [16] there is an o-minimal expansion
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P(R) of R, called the Pfaffian closure of R, such that every Pfaffian function
over P(R) is definable in P(R).

However, to our knowledge none of the above o-minimality proofs establish
the model completeness of the respective structures. Based on techniques used
in [13], we give here a proof of the model completeness of P(R) in the case
where R admits analytic cell decomposition. To do this, we follow the setting
in [10], where Pfaffian functions are replaced by nested Rolle leaves. We need
a few definitions to state the precise theorem.

Let M ⊆ Rn be a differentiable submanifold of dimension m, and let d
be a distribution on M of (m − 1)-dimensional subspaces of Rn such that
d(x) ⊆ TxM for all x ∈M . An immersed manifold V ⊆M of dimension m−1
is called an integral manifold of d if TxV = d(x) for all x ∈ V . A leaf of d
is a maximal connected integral manifold of d. A leaf V of d is a Rolle leaf
(see Moussu and Roche [14]) if for every differentiable γ : [0, 1] −→ M such
that γ(0), γ(1) ∈ V , there exists a t ∈ [0, 1] such that γ′(t) ∈ d(γ(t)). The
following criterium for the Rolle property is crucial to our paper:

Haefliger’s Theorem [9, 15]. Assume that M and d are analytic and that
M is simply connected. Then every leaf of d is a Rolle leaf.

A tuple d = (d0, . . . , dk) of distributions on a manifold M ⊆ Rn is called
nested, if d0(x) = TxM for all x ∈M and for j = 1, . . . , k, the distribution dj

is an integrable (dim(M)− j)-distribution on M such that dj(x) ⊆ dj−1(x) for
all x ∈ M . In this situation, a tuple V = (V0, . . . , Vk) of manifolds contained
in M is a nested Rolle leaf of d, if V0 = M and for j = 1, . . . , k, the set
Vj is a Rolle leaf of dj|Vj−1

; in particular, dim(Vj) = dim(M) − j. If, in the
previous situation, both M and d are definable in an o-minimal expansion R
of the real field, we call V a nested Rolle leaf over R.

Let R be an o-minimal expansion of the real field; Khovanskii Theory as
in [14, 16] generalises in a straightforward way to the setting of nested Rolle
leaves (Section 2) over R. A set X ⊆ Rn is a basic nested Pfaffian set
over R, if there are a definable set A ⊆ Rn, a definable manifold M ⊆ Rn,
a definable nested distribution d = (d0, . . . , dk) on M and a nested Rolle leaf
V = (V0, . . . , Vk) of d, such that X = A ∩ Vk. A nested Pfaffian set over
R is a finite union of basic nested Pfaffian sets over R, and a nested sub-
Pfaffian set over R is a projection of a nested Pfaffian set over R. We
denote by N (R) the expansion of R by all nested Rolle leaves over R. (Note
that every set definable in R is quantifier-free definable in N (R), since every
manifold definable in R is a nested Rolle leaf over R.)

Main Theorem. Assume that R admits analytic cell decomposition. Then
the complement of every nested sub-Pfaffian set over R is again nested sub-
Pfaffian over R, that is, N (R) is model complete.
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Every component leaf of a nested Rolle leaf overR is quantifier-free definable
in P(R) (Corollary 2.9 below). On the other hand, the Main Theorem implies
that, in the construction of P(R) in [16], every Rolle leaf added to R is a
nested sub-Pfaffian set (Proposition 12.1). Therefore:

Corollary 1. If R admits analytic cell decomposition, then N (R) is existen-
tially interdefinable with P(R); in particular, P(R) is model complete. �

The model completeness of P(R) or N (R) remains an open problem if R
does not admit analytic cell decomposition. Also, even in the analytic case,
we do not know if the reduct of P(R) generated by all Pfaffian functions over
R is model complete. Finally, it is unclear to us whether our proof can be
used to find a minimal model complete expansion of R containing any specific
Pfaffian function over R; in particular, we do not know if our proof provides
an alternative proof of the model completeness of the exponential real field
[17].

The proof of the Main Theorem goes as follows: by Corollary 2.9 of [6]—with
Λ there equal to the collection of all nested Pfaffian sets over R contained in
[−1, 1]n, for n ∈ N—it suffices to establish Axioms (I)–(IV) there. Axioms (I)–
(III) follow from Khovanskii Theory for nested Pfaffian sets over R (Corollary
2.7); thus, the main difficulty is to show that every nested Pfaffian set over
R has the Λ-Gabrielov property. By the Fiber Cutting Lemma for nested
Pfaffian sets over R (Corollary 9.3), we therefore need to establish (Theorem
11.4):

Theorem. Let V = (V0, . . . , Vk) a nested Rolle leaf over R, and assume that
R admits analytic cell decomposition. Then fr(Vk) is contained in a finite union
of nested sub-Pfaffian sets over R of dimension strictly less than dim(Vk).

The theorem was proved in the special case k = 1 by Cano et al. [3]. For
the proof of the general case, we consider fr(Vk) as a Hausdorff limit of a
certain type of leaves of a definable nested distribution on M derived from d
(Section 3). We then use the method of blowing up in jet space (Section 5),
similar to [13], to recover distributions along the boundary of (blowings-up of)
M , such that fr(Vk) is almost everywhere an integral manifold of one of these
distributions. The main problems solved in this paper are the following: we
did not know if (a) the distributions recoverd in this way were components
of definable nested distributions, and if (b) the integral manifolds in question
were Rolle leaves. Here we deal with (a) and (b) seperately; indeed, we solve
(a) for the case that R is any o-minimal expansion of the real field, but need
to assume that R admits analytic cell decomposition for our solution of (b).

For (a), we define the degree of a definable nested distribution d on M to be
the number of component distributions of d whose associated foliation of M
is not definable in R (Section 3). For example, we show in Section 4 that the
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nested distribution derived from d used to study fr(Vk), as mentioned in the
previous paragraph, has at most degree equal to that of d. Moreover, we also
prove in Section 4 that the negligeable set, off which fr(Vk) is a finite union of
integral manifolds of the recovered distributions, is a union of Hausdorff limits
obtained from distributions of degree at most that of d. These observations
and a refinement of the blow-up method in [13] yield Theorem 6.4 by induction
on the degree of d and the dimension of Vk, which implies in particular the
following:

Proposition 1. There are nested integral manifolds W j = (W j
0 , . . . ,W

j
l ) of

corresponding definable nested distributions, for finitely many j, such that
fr(Vk) is contained in the union of the projections Πn(W j

l ), and such that W j
l

is definable in P(R) and dim(W j
l ) < dim(Vk) for each j.

For (b), it now remains to show that each of the nested integral manifoldsW j
l

in the previous proposition is in turn contained in a finite union of projections
of nested Rolle leaves over R of dimension at most dim(W j

l ). To establish the
Rolle property, we want to use Haefliger’s Theorem; this is one of the reasons
for our assumption that R admits analytic cell decomposition. If the degree
of the corresponding nested distributions is 1, we can easily recover the Rolle
property from Haefliger’s Theorem using analytic cell decomposition. If the
degree is larger than 1, however, we can only apply it once we know that
W j

l−1 is simply connected—alas, the latter is not definable in R. Proceeding

by induction on l, we may assume that W j
l−1 is a Rolle leaf; so it remains to

establish (Corollary 11.2):

Proposition 2. Assume that R admits analytic cell decomposition. Then Vk

is a finite union of simply connected nested sub-Pfaffian sets over R.

To prove this, we introduce in Section 10 the notion of proper nested sub-
Pfaffian set. These are certain projections of nested Pfaffian subsets X of
[−1, 1]n that are restricted off {0}, that is, for every r > 0, the set X \(−r, r)n

is a restricted nested Pfaffian set similar to Gabrielov [8] or [17]. Remarkably,
based on the ideas in [8]—adapted to our situation in Sections 7, 8 and 9—we
obtain a cell decomposition theorem for proper nested sub-Pfaffian sets over
R (Theorem 10.3). Proposition 2 then follows from the observation that, up
to an analytic inversion of the ambient space, Vk is a restricted Pfaffian set off
{0} (Proposition 11.1).

1. Preliminaries

Throughout this paper, all manifolds, functions, maps, etc. are of class
C1, and manifolds are embedded, unless otherwise specified. We start with a
lemma on o-minimal structures needed in Section 6.
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Lemma 1.1. Let S be an o-minimal expansion of the real field and p ≥ 1, and
let M ⊆ Rn be a Cp manifold of dimension d definable in S. Let also m ≤ n,
and assume that Πn

m|M is an immersion. Then M is the union of finitely many
definable submanifolds N for which there exist a permutation σ of the first m
coordinates and a definable Cp map f : U −→ Rn−d with U ⊆ Rd open, such
that σ(N) = gr(f).

Proof. Given a permutation σ of the first m coordinates, the set

Mσ :=
{
y ∈M : Πd|Tyσ(M) is an immersion

}
is an open subset ofM . Thus by replacingM with each σ(Mσ), we may assume
that Πd|M is an immersion. Hence U := Πd(M) is open, and Πd : M −→ U is
a local diffeomorphism.

Now we let C be a Cp-cell decomposition of Rn compatible with M such
that D := Πd(C) is a stratification, and we put CM := {C ∈ C : C ⊆M}. For
y ∈ M , we let M(y) be the union of all C ∈ CM such that y ∈ cl(C). Fix an
arbitrary y ∈ M ; we claim that (i) U(y) := Πd(M(y)) is open, and (ii) M(y)
is the graph of a Cp function fy : U(y) −→ Rn−d. This claim implies Lemma
1, since there are only finitely many different M(y) as y ranges over M .

To see (i), for x ∈ U we let Dx ∈ D be the unique cell containing x and put

D(x) :=
⋃
{D ∈ D : x ∈ cl(D)} .

Since Πd|M is a local diffeomorphism, we have U(y) = D(Πd(y)); hence it
suffices to show that D(x) is open for every x ∈ U . Fix an arbitrary x ∈ U ;
since D is a stratification and cells are connected, we get that

(∗) Dx ⊆ D(x) and D(z) = D(x) for all z ∈ Dx.

In particular, D(x) contains an open neighborhood of z for every z ∈ Dx. From
(∗) and the definition of D(x), it follows that D(z) ⊆ D(x) for all z ∈ D(x).
On the other hand, dim(Dz) > dim(Dx) for every z ∈ D(x) \ Dx. Thus (i)
follows by reverse induction on dim(Dx).

For (ii), we proceed by reverse induction on dim(DΠd(y)), using the fact that
Πd|M is a local diffeomorphism. �

Next, we recall some basic notions from [12] and adapt them to the present
situation. Let M ⊆ Rn be a bounded manifold, and for i ∈ N, let Vi ⊆ M
be an closed submanifold of dimension p. Let η > 0, and assume that each Vi

is η-bounded, that is, for all x ∈ Vi there is a matrix L = (lij) ∈ Mn−p,p(R)
such that ‖L‖ := maxi,j |li,j| ≤ η and

TxVi = {(u, Lu) : u ∈ Rp} .

We also assume there is an N ∈ N such that for every i and every open box
U ⊆ Rn, the set Vi ∩ U has at most N connected components, and that both
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limVi and lim fr(Vi) exist. (Here and throughout this paper, we write limVi

instead of lim cl(Vi).)
Under these assumptions, the proof of Lemma 5 in [12] goes through:

Lemma 1.2. For every x ∈ limVi \ lim fr(Vi), there are a box U ⊆ Rn con-
taining x and pη-Lipschitz functions f1, . . . , fN : Πp(U) −→ Rn−p such that

limVi ∩ U = (gr f1 ∩ U) ∪ · · · ∪ (gr fN ∩ U).

Proof. For simplicity of notation, we assume throughout the proof that η = 1;
the proof for general η is similar. Let x ∈ limVi \ lim fr(Vi), and choose ε > 0
such that B(x, 3ε) ∩ fr(Vi) = ∅ for all i (after passing to a subsequence if
necessary). We let U := B(x, ε) and U ′ := W ×W ′, where W := Πp(U) and

W ′ :=
{
w ∈ Rn−p : |wk − xp+k| < 3pε for k = 1, . . . , n− p

}
.

We now fix an i. By our assumptions, for any z ∈ W
(∗) there is a δ > 0 such that Vi ∩ (B(z, δ) ×W ′) is the union of at most

N disjoint graphs of p-Lipschitz functions from B(z, δ) to W ′.

Let x ∈ Vi ∩ U ; we claim that the component C of Vi ∩ U ′ that contains x is
the graph of a p-Lipschitz function g : W −→ W ′.

To see this, we choose δ as in (∗) for z := Πp(x) and let g : B(z, δ) −→ W ′

be the corresponding p-Lipschitz function such that g(z) = (xp+1, . . . , xn). We
extend g to all of W as follows: for each v ∈ bdW , we let v′ ∈ [z, v] be the
point closest to v such that g extends to a p-Lipschitz function gv along the
line segment [z, v′] satisfying gr(gv) ⊆ Vi ∩ U ′. Then (∗) implies that v′ = v
for each v ∈ bdW .

Moreover, the extension g : W −→ W ′ defined in this way is continuous
(and hence p-Lipschitz): let v ∈ W be such that g is continuous at v′ for
every v′ ∈ [z, v). Let δ′ be obtained for this v in place of z as in (∗), and
let h1, . . . , hq : B(v, δ′) −→ W ′ be the corresponding distinct p-Lipschitz func-
tions. We assume that g(v) = h1(v). Shrinking δ′ if necessary, we may assume
that there is µ > 0 such that for any s, t ∈ B(v, δ′) and any 1 ≤ k < l ≤ q
we have |hk(s) − hl(t)| > µ. Let v′ ∈ [z, v) ∩ B(v, δ′) be close enough to v so
that |g(v′)− g(v)| < µ/4; then g(v′) = h1(v

′) as well. Since g is continuous at
v′, it follows that g(s) = h1(s) for all s sufficiently close to v′. But then the
continuity of g along the radial segments [z, t], t ∈ bdW , and our choice of δ′

imply that g = h1 in a neighbourhood of v. This proves the claim.
By the claim, for all i there are definable p-Lipschitz functions f1,i, . . . , fN,i :

W −→ Rn−p such that every connected component of Vi ∩ U ′ intersecting
U is the graph of some fl,i, either fl,i = fl′,i or gr fl,i ∩ gr fl′,i = ∅ for all
l, l′ ∈ {1, . . . , N}, and

Vi ∩ U = (gr f1,i ∩ U) ∪ · · · ∪ (gr fN,i ∩ U).



7

Passing to a subsequence if necessary, we may therefore assume that each
sequence (fl,i)i converges to a p-Lipschitz function fl : W −→ Rn−p. Clearly
gr fl ⊆ limVi. On the other hand, if x′ ∈ limVi ∩ U , then x′ ∈ lim(Vi ∩ U), so
by the above x′ ∈ lim(gr fl,i ∩ U) for some l, that is, x′ ∈ gr fl. �

We denote by Gl
n the Grassmannian of all l-subspaces of Rn, identified

with its representation as an algebraic subvariety of Rn2
as in Bochnak et al. [1,

Section 3.4.2]. We putGn :=
⋃

l G
l
n, and below we write Π : Rn×Gn −→ Rn for

the projection on the first n coordinates. For a manifold W ⊆M of dimension
k, we let gW : W −→ Gk

n be the Gauss map defined by gW (x) := TxW , and
we put T 1W := gr(gW ).

Next, we let η > 0 and d : M −→ Gp
n be a p-distribution.

Definition 1.3. The distribution d is called η-bounded at x ∈ M if there
is a matrix L = (lij) ∈ Mn−p,p(R) such that ‖L‖ := maxi,j |li,j| ≤ η and
d(x) = {(u, Lu) : u ∈ Rp}. The distribution d is η-bounded if d is η-bounded
at every x ∈M .

Remark. If d is η-bounded, then every integral manifold of d is η-bounded.

Let Σn be the collection of all permutations of {1, . . . , n}. For σ ∈ Σn, we
write σ : Rn −→ Rn for the map defined by σ(x1, . . . , xn) := (xσ(1), . . . , xσ(n)),
and we define

Mσ,η := {x ∈M : σ∗d is η-bounded at x} .
Each set Mσ,η is open in M ; moreover, the proof of Corollary 4 in [12] yields:

Lemma 1.4. If η > 1, then M =
⋃

σ∈Σn
Mσ,η. �

Finally, we make the following conventions in this paper: given two distribu-
tions d, e : M −→ Gn, we write d ∩ e : M −→ Gn for the distribution defined
by (d∩e)(x) := d(x)∩e(x), and we write d ⊆ e if d(x) ⊆ e(x) for all x ∈M . If
d : M −→ Gn is a distribution, we say that d has dimension if d(M) ⊆ Gm

n

for some m ≤ n; in this situation, we put dim(d) := m.

2. Nested distributions

We fix an o-minimal expansion R of the real field and denote by P(R) its
Pfaffian closure [16]. Let M ⊆ Rn be a definable manifold of dimension m and

d = (d0, . . . , dk) : M −→ Gm
n × · · · ×Gm−k

n

be a definable nested distribution on M .

Definitions 2.1. A tuple V = (V0, . . . , Vk) is a nested integral manifold
of d if each Vi is an integral manifold of di and V0 ⊇ · · · ⊇ Vk. Moreover, V
is a nested (Rolle) leaf of d if V0 = M , V1 is a (Rolle) leaf of d1 and for all
i = 2, . . . , k, Vi is a (Rolle) leaf of di|Vi−1

.
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A setW ⊆M is a Rolle leaf of dk if there is a nested Rolle leaf (W0, . . . ,Wk)
of d with Wk = W ; in this situation, the leaves W0, . . . ,Wk are uniquely de-
termined by W . Let d = (d0, . . . , dk) be a nested distribution on M .

We call d integrable if for every x ∈M , there is a nested integral manifold
V = (V0, . . . , Vk) of d such that x ∈ Vk.

Remark. The theorem of Froebenius implies the following: if M and d are of
class C2, then d is integrable if and only if each di is integrable in the sense
of Definition 1.3 in [13], that is, if and only if for each i, the definable set
I(di) ⊆M is equal to M .

In view of the previous remark, we call d nowhere integrable if I(di) = ∅
for some i ∈ {1, . . . , k}.

Convention. From now on, we always assume that a definable nested distri-
bution on M is integrable unless explicitely stated otherwise.

Example 2.2. Let M ⊆ Rn be a manifold of dimension m, and let Ω =
(ω1, . . . , ωk) be a nested Pfaffian system on M . For i = 1, . . . , k, we put

di(x) := kerω1(x) ∩ · · · ∩ kerωi(x);

then d := (gM , d1, . . . , dk) is a nested distribution on M .
Conversely, let d = (d0, . . . , dk) be a nested distribution on M . We define

unit vector fields ai = (ai1, . . . , ain) on M , for i = 1, . . . , n, by induction on
i as follows: let a1 be the unit vector field orthogonal to d1, and for i >
1 let ai be the unit vector field orthogonal to the vector space spanned by
di ∪ {a1, . . . , ai−1}. Finally, put ωi := ai1dx1 + · · · + aindxn for i = 1, . . . , k.
Then Ω := (ω1, . . . , ωk) is a nested Pfaffian system on M .

In the above notation, it is clear that d is definable if and only if Ω is, and
that d is integrable if and only if Ω is. Moreover, (V0, V1, . . . , Vk) is a nested
integral manifold (leaf, Rolle leaf) of d if and only if (V1, . . . , Vk) is a nested
integral manifold (leaf, Rolle leaf) of Ω.

Let N ⊆ M be a submanifold of M and assume that, for all i = 0, . . . , k,
the distribution gN ∩ di has dimension. In this situation, the restriction d|N
of d to N is the nested distribution on N obtained by listing, in order of
decreasing dimension, the set {gN ∩ d0|N , . . . , gN ∩ dk|N}. (Note that d|N can
be a tuple of length less than k.)

Let D be a set of distributions on M . We adapt the following definition
from [14] to our setting: a submanifold N of M is compatible with D if
gN ∩ g|N has dimension for every g ∈ D. A collection C of submanifolds of M
is compatible with D if every C ∈ C is compatible with D. Similarly, we
say that N (resp. C) is compatible with d if N (resp. C) is compatible with
the set {d0, . . . , dk}.
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Lemma 2.3. Let A ⊆ Rn be a definable set, and assume that each g ∈ D is
definable. Then there is a finite partition P of M into definable C2 cells such
that P is compatible with A and each D.

Proof. This is a straightforward adaptation of Lemma 2.1 in [16] along the
lines of Example 2.2. �

Next, we review Khovanskii Theory for nested Rolle leaves. Let ∆ =
{d1, . . . , dq} be a family of definable nested distributions on M ; we write
dp = (dp

0, . . . , d
p
k(p)) for p = 1, . . . , q.

We associate to ∆ the following set of distributions on M :

D∆ :=
{
d0

0 ∩ · · · ∩ d
p−1
k(p−1) ∩ d

p
j : p = 1, . . . , q and j = 0, . . . , k(p)

}
,

where we put d0
0 := gM . If N ⊆ M is a submanifold such that gN ∩ g has

dimension for every g ∈ D∆, we let d∆,N =
(
d∆,N

0 , . . . , d∆,N
k(∆,N)

)
be the nested

distribution on N obtained by listing the set {g|N : g ∈ D∆} in order of de-
creasing dimension. In this situation, if Vp is an integral manifold of dp

k(p), for

p = 1, . . . , q, then the set N ∩ V1 ∩ · · · ∩ Vq is an integral manifold of d∆,N
k(∆,N).

Definition 2.4. Let C ⊆ Rn be a definable manifold. A definable function
φ : C −→ (0,∞) is a carpeting function for C if φ is continuous and 1/φ
is proper.

Adapting Lemma 2.5 in [16] to our setting, we obtain:

Lemma 2.5. Let N be a definable C2 cell contained in U and compatible
with D∆, and suppose that dim

(
d∆,N

k(∆,N)

)
> 0. Then there is a C1 carpeting

function φ : N −→ (0,∞) for N such that the definable set

B :=
{
a ∈ N : d∆,N

k(∆,N)(a) ⊆ ker dφ(a)
}

=
{
a ∈ N : ∇Nφ(a) is orthogonal to d∆,N

k(∆,N)(a) in TaN
}

has dimension less than dim(N). �

Theorem 2.6. Let A ⊆ Rn be a definable set. Then there exists a K ∈ N
such that, whenever Lp is a Rolle leaf of dp

k(p) for each p = 1, . . . , q, then

A ∩ L1 ∩ · · · ∩ Lq is a union of at most K connected manifolds.

Proof. We proceed by induction on dim(A) and k := k(1) + · · · + k(q). The
cases d = 0 or k = 0 being trivial, we assume that d > 0 and k > 0 and that
the result holds for lower values of d and k. After shrinking p, we may also
assume that k(p) > 0 for each p = 1, . . . , q. By a straightforward adaptation
of Lemmas 1.4 and 1.6 in [16] to the present setting and by Lemma 2.3, it
suffices to consider the case where A = N is a C2 cell contained in U and
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compatible with D∆. For each p = 1, . . . , q, we let Lp be a Rolle leaf of dp
k(p),

and we put L := L1 ∩ · · · ∩ Lq.

Case dim
(
d∆,N

k(∆,N)

)
= 0. Let ∆′ := {d1, . . . , dp−1, (dp

0, . . . , d
p
k(p)−1)}, let L′p be

the Rolle leaf of dp
k(p)−1 containing Lp and put L′ := L1 ∩ · · · ∩ Lp−1 ∩ L′p.

Then dim(N ∩L′) ≤ 1; if dim(N ∩L′) = 0, we are done by Lemma 1.6 in [16]
and the inductive hypothesis, so we assume that dim(N ∩L′) = 1. Since N is

compatible with D∆ and N ∩ L′ is an integral manifold of d∆′,N
k(∆′,N), it follows

that dim
(
d∆′,N

k(∆′,N)

)
= 1 as well.

By the inductive hypothesis, there is a K ∈ N (depending only on N and
∆′, but not on the particular Rolle leaves) such that the manifold N ∩ L′ has
at most K components. Let C be a component of N ∩ L′. If |C ∩ Lq| > 1,
then by the Rolle property of Lq in L′q (and the fact that C is a connected C1

manifold of dimension 1), C is tangent at some point x ∈ C to dp
k(p)|L′

q
, which

contradicts the assumption that dim
(
d∆′,N

k(∆′,N)

)
= 1. So |C ∩ Lq| ≤ 1 for each

component C of N ∩ L′. Hence |N ∩ L| ≤ K.

Case dim
(
d∆,N

k(∆,N)

)
> 0. Let φ and B be obtained from Lemma 2.5. Then

dim(B) < dim(A); so by the inductive hypothesis, there is a K ∈ N, inde-
pendent of the particular Rolle leaves chosen, such that B ∩ L has at most K
components. Since N ∩L is a closed, embedded submanifold of N , φ attains a
maximum on every component of N∩L, and any point in N∩L where φ attains
a local maximum belongs to B. Hence N ∩L has at most K components. �

Corollary 2.7. (1) Let C be a partition of M into definable C2 cells com-
patible with D∆. Then there is a K ∈ N such that, for every C ∈ C and
every Rolle leaf Lp of dp

k(p) with p = 1, . . . , q, the set C ∩ L1 ∩ · · · ∩ Lq

is a union of at most K Rolle leaves of d∆,C
k(∆,C).

(2) Let A be a definable family of sets. Then there is a K ∈ N such that
whenever A ∈ A and Lp is a Rolle leaf of dp

k(p) for each p, the set

A ∩ L1 ∩ · · · ∩ Lq is a union of at most K connected manifolds.

Proof. For (2), proceed as in the proof of Corollary 2.7 of [16]. �

It follows from part (1) above that the collection of all nested Pfaffian sets
over R is closed with respect to taking finite intersections and Cartesian prod-
ucts. Since definable Cp cells are definable diffeomorphic to some appropriate
Rl, we also get the following corollary from part (1) above:

Corollary 2.8. Let A ⊆M be a definable set and p ∈ N∪{∞, ω} with p ≥ 1,
and assume that R admits Cp cell decomposition. Then there are N ∈ N and
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a finite collection (Cj, ψj, ej)1≤j≤s such that the collection (Cj)j is a Cp cell
decomposition of A and for each j = 1, . . . , s,

(i) ψj : Rdj −→ Cj is a definable Cp diffeomorphism;
(ii) ej = (ej,0, . . . , ej,kj

) is a definable nested distribution on Rdj of class
Cp−1;

(iii) if V is a Rolle leaf of dk, there are Rolle leaves Vj,r of ej,kj
for j =

1, . . . , s and r = 1, . . . , N such that A ∩ V =
⋃

j,r ψj(Vj,r).

�

Finally, we let Ω be associated to d as in Example 2.2, and we let V =
(V0, V1, . . . , Vk) be a nested Rolle leaf of d (and hence of Ω). Then in the
notation of Definition 4.3 in [16], we have Vi ∈ L(Ri−1) for i = 1, . . . , k.
Therefore:

Corollary 2.9. Every Rolle leaf of dk in M is quantifier-free definable in
P(R). �

3. Admissible nested Pfaffian limits

Let M ⊆ Rn be a manifold of dimension m definable in R, let g : M −→ Gp
n

be a p-distribution on M tangent to M , and suppose that g is integrable.
There is an equivalence relation ∼g on M associated to g, given by

x ∼g y iff x and y belong to the same leaf of g.

Clearly, if ∼g is definable, then so is g; however, the converse is not true in
general.

Lemma 3.1. Assume that ∼g is definable. Then there is a finite partition N
of M into definable manifolds such that, for each N ∈ N ,

(1) dim(N) ≥ p and g is tangent to N , and
(2) there is a definable nested distribution e = (e0, . . . , ek) on N such that

each ∼ej
is definable and ek = g|N .

Proof. By o-minimality, there is a definable set E ⊆ M such that x �g y for
all x, y ∈ E and for all x ∈ M , there is a y ∈ E with x ∼g y. Let C be a
finite decomposition of E into definable C1 cells. Refining C if necessary, we
may assume that for each C ∈ C, the distribution gC ∩ g has dimension 0. For
C ∈ C, we now set FC := {x ∈M : x ∼g y for some y ∈ C} and put

N := {FC : C ∈ C} .
We claim that this N works. To see this, first note that N is a partition of M .
Next, it follows from foliation theory (see for instance Chapter III in Camacho
and Lins Neto [2]) that each N ∈ N is a manifold, and clearly g is tangent to
each N ∈ N . Since each N ∈ N is definable, we assume from now on, after
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replacing M by N , m by dim(N) and g by g|N for each N ∈ N , that E is a
definable C1 cell in M that is transverse to g, and we prove the lemma for this
case with N = {M}; in particular, dim(E) = m− p. We let pE : M −→ E be
the definable map defined by

pE(x) := the unique y ∈ E such that x ∼g y.

Since E is a cell, there is a definable diffeomorphism φE : E −→ Rp for
some p < n. This implies that there is a definable nested distribution e′ =
(e′0, . . . , e

′
m−p) on E such that each ∼e′j

is definable. For each j = 1, . . . ,m−p,
we now define an equivalence relation ∼j on M by

x ∼j y iff pE(x) ∼e′j
pE(y).

Then each ∼j is definable, and by foliation theory again, ∼j = ∼ej
for some

definable distribution ej : M −→ Gm−j
n such that g is tangent to ej. The

lemma now follows with e := (gM , e1, . . . , em−p). �

For the rest of this section, we fix a definable nested distribution d =
(d0, . . . , dk) on M . We put dim(d) := m − k, and we define the degree
of d as

deg(d) := | {i ∈ {0, . . . , k} : ∼di
is not definable} |.

We call d separated if there is an l ∈ {0, . . . , k} such that ∼di
is definable if

and only if i ∈ {0, . . . , l}.

Remark. If d is separated, then so is d′ := (d0, . . . , dk−1), and deg(d′) < deg(d).

For a p-distribution g on M tangent to M , we put

deg(g) := inf{deg(e) : e = (e0, . . . , em−p) is a definable nested

distribution on M and g = em−p} ∈ R ∪ {∞}.
Lemma 3.1 now implies:

Corollary 3.2. Let g be a p-distribution on M tangent to M such that
deg(g) < ∞, and let e = (e1, . . . , em−p) be a definable nested distribution
on M such that g = em−p and deg(e) = deg(g). Then e is separated. �

Remark 3.3. Let C ⊆ Rn be a definable cell of dimension n − k, where
0 ≤ k ≤ n. Then there are a definable nested distribution e = (e0, . . . , ek) of
degree 0 on an open set U ⊆ Rn and a nested leaf V = (V0, . . . Vk) of e such
that C = Vk. (The proof is elementary and left to the reader.)

Let e = (e0, . . . , el) be a definable nested distribution on M with l ≤ k. We
call e a core distribution of d if

(i) ∼di
is definable for i = 1, . . . , k − l, and

(ii) di = dk−l ∩ ei−k+l for i = k − l + 1, . . . , k.
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Remarks. (1) Let e be a core distribution of d. Then deg(d) ≤ deg(e), and
if e is separated, then so is d. Moreover, if f is a core distribution of
e, then f is also a core distribution of d.

(2) Let N ⊆ M be a definable submanifold of M such that gN ∩ di has
dimension for each i. If d has core distribution e = (e0, . . . , el) and
each gN ∩ ej has dimension, then d|N has core distribution e|N .

Example 3.4. Let φ : M −→ R be a definable function, and define dφ :
M −→ Gn by dφ(x) := ker dφ(x) ⊆ TxM . Let C be a cell decomposition of
M compatible with d and such that for every C ∈ C and j = 0, . . . , k, the
distribution gC ∩ dj ∩ dφ : C −→ Gn has dimension.

Let C ′ be the set of all C ∈ C such that gC∩dk * dφ, and fix an arbitrary C ∈
C ′. We associate to C a nested distribution dC on C derived from d as follows:
writing d|C = (eC

0 , . . . , e
C
l ) with l = l(C) ≤ k, we put dC := (dC

0 , . . . , d
C
l+1),

where dC
0 := gC , dC

1 := gC∩dφ and dC
j+1 := eC

j ∩dφ for j = 1, . . . , l. Then dC has

core distribution d|C and dim(dC) < dim(d); in particular, deg(dC) ≤ deg(d).
Finally, after refining C we may assume that C is a Whitney stratification

(Theorem 4.8 in Van den Dries and Miller [5]). In this situation, the union of
all cells in C ′ is an open subset M ′ of M , and d′ = (d′0, . . . , d

′
k+1) is a definable

nested distribution on M ′ with core distribution d|M ′ , where d′0 := gM ′ and
d′j+1 := (dj ∩ dφ)|M ′ for j = 0, . . . , k.

Remarks. In the situation of the previous example, if d is separated, then d|M ′

and d′ are separated, and if d has a separated core distribution, then so do
d|M ′ and d′.

An integral manifold V of dk is admissible if either

(i) V is a definable leaf of dk, or
(ii) V is a Rolle leaf of dk, or
(iii) k > 1 and d has a core distribution e = (e0, . . . , el) with l < k, and

there is a definable leaf B of dk−l and an admissible integral manifold
W of el such that V = W ∩B.

In case (iii) above, we call W an core of V (corresponding to e).

Remark. Let e = (e0, . . . , el) be a core distribution of d, and let W be an
admissible integral manifold of el. By Corollary 2.7(2), there is an N ∈ N
such that every admissible integral manifold of dk with core W is the union of
at most N (embedded) leaves of dk.

A sequence (Vi) of integral manifolds of dk is admissible if k > 1 and
there are a core distribution e = (e0, . . . , el) of d with l < k, a sequence of
definable leaves (Bi) of dk−l and an admissible integral manifold W of el such
that Vi = W ∩Bi for every i ∈ N. In this situation, we call W an core of the
admissible sequence (Vi) (corresponding to e).
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Remark. By the previous remark, for every admissible sequence (Vi) of integral
manifolds of dk, there is an N ∈ N such that each Vi is the union of at most
N (embedded) leaves of dk.

Let (Vi) be an admissible sequence of integral manifolds of dk. If the sequence
(clVi) converges in the Hausdorff metric to a compact set K, we call K an
admissible nested Pfaffian limit over R, or admissible limit over R
for short, and write K = limVi. (In this paper, if R is clear from context, we
will not explicitely mention it.) In this situation, we say that K is obtained
from d, and we put

deg(K) := min {deg(f) : K is obtained from f} .
Also in the above situation, if W is a core of the sequence (Vi), we say that K
has core W .

Remarks. (1) We leave it to the reader to verify that if K is an admissible
limit of degree p, then there is a definable nested distribution d =
(d1, . . . , dk) on a definable manifold M with core distribution e such
that e is separated and deg(e) = p, and there is an admissible sequence
(Vi) of integral manifolds of dk with core corresponding to e, such that
K = limVi.

(2) We think of the core W above as representing the “non-definable con-
tent” of the admissible sequence (Vi) or the admissible limit K, and it
is crucial to our arguments in Section 4 that only the “definable con-
tent”, represented by the sequence (Bi) above, is allowed to vary with
i.

(3) Following Example 2.2, it follows from Corollary 2.7(2) that every Pfaf-
fian limit over R, as defined in [13], is a finite union of admissible limits
over R.

The following situation is central to our use of admissible limits.

Example 3.5. In the situation of Example 3.4, we let e = (e0, . . . , el) be
a core distribution of d and W an admissible leaf of el; note that e|M ′ is a
core distribution of d|M ′ and hence of d′. Then W ∩ M ′ is a finite union
of admissible integral manifolds W ′

1, . . . ,W
′
q of e|M ′ , and by Corollary 2.7(2),

there is a ν ≥ 0 such that for every admissible integral manifold V of dk

with core W , the set V ∩M ′ is the union of ν admissible integral manifolds
V ′

1,V , . . . , V
′
ν,V (not necessarily distinct) of d′k with cores among W ′

1, . . . ,W
′
q

corresponding to e|M ′ . By o-minimality, there is a µ ≥ 0 such that for every
r > 0, the set φ−1(r) ∩M ′ has µ components Φ′

1,r, . . . ,Φ
′
µ,r (not necessarily

distinct). Then each Φ′
l,r ∩ V ′

j,V is an admissible integral manifold of d′k+1

with core V ′
j,V corresponding to d|M ′ (and hence with core among W ′

1, . . . ,W
′
q

corresponding to e|M ′).
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Assume now that φ(x) > 0 for all x ∈ M . Let V be an admissible inte-
gral manifold of dk with core W , and let (rι) be a sequence of positive real
numbers such that rι → 0 and K := limι (φ

−1(rι) ∩ V ) exists. (This sit-
uation arises for instance when expressing fr(V ) as an admissible limit; see
the beginning of Section 4.) Then for each j = 1, . . . , ν and l = 1, . . . , µ,
the sequence

(
Φ′

l,rι
∩ V ′

j,V

)
is an admissible sequence of integral manifolds

of d′k+1 with core V ′
j,V corresponding to d|M ′ (and hence with core among

W ′
1, . . . ,W

′
q corresponding to e|M ′). Passing to a subsequence, we may assume

that Kj,l(V ) := lim
(
Φ′

l,rι
∩ V ′

j,V

)
exists for each j and l.

Lemma 3.6. In the above situation, we have K =
⋃ν

j=1

⋃µ
l=1Kj,l(V ).

Proof. To see this, let N ∈ N be such that for every C ∈ C, the set V ∩ C
is the union of N admissible integral manifolds V C

1 , . . . , V
C
N (not necessarily

distinct) of eC
l , where l := l(C), and for every r > 0 the set φ−1(r) ∩ C has

N components ΦC
1,r, . . . ,Φ

C
N,r (not necessarily distinct). Moreover, if C ∈ C ′

then each ΦC
j,r is a leaf of dC

1 ; in particular, for each j and l the sequence(
V C

j ∩ ΦC
l,rι

)
ι
is an admissible sequence of integral manifolds of dC

l+1. Since M
is bounded and after passing to a subsequence if necessary, we may assume
that KC

j,l := limι

(
V C

j ∩ ΦC
l,rι

)
exists for every C ∈ C ′ and j, l = 1, . . . , N .

Clearly
ν⋃

j=1

µ⋃
l=1

Kj,l(V ) =
⋃

C∈C′

N⋃
j,l=1

KC
j,l.

Thus, to finish our argument, we let z ∈ K and show that z ∈ KC
j,l for some

C ∈ C ′ and j, l ∈ {1, . . . , N}. Let xι ∈ V ∩φ−1(rι) be such that lim xι = z. Let
C ∈ C be such that infinitely many xι belong to C; passing to a subsequence,
we may assume that xι ∈ C for all ι. Then C ∈ C ′: otherwise, we have
gC ∩ dk ⊆ dφ, which implies that V ∩ φ−1(r) ∩ C = ∅ for all but finitely
many r. (It is crucial here that V , representing the “non-definable content”
of K, is fixed, while only the “definable content”, represented by φ, is allowed
to vary.) Thus, passing again to a subsequence, we may assume that there
are j, l ∈ {1, . . . , N} such that xι ∈ V C

j ∩ ΦC
l,rι

for all i. Hence z ∈ KC
j,l, as

required. �

4. Some basic facts about admissible limits

Let M ⊆ Rn be a bounded, definable manifold and d = (d0, . . . , dk) be a
definable nested distribution on M with core distribution e = (e0, . . . , el); we
assume that M , d and e are of class Cp with p ≥ 1. The goal of this section
is to prove that the various exceptional sets obtained in Sections 5 and 6 have
“small” dimension and degree. These are technical results; the reader may
wish to go directly to Sections 5 and 6 and refer back here as needed.
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We first look at the interplay between taking the frontier and taking an ad-
missible limit. For the next lemma, suppose there is a definable Cp carpeting
function φ on M such that the definable set B := {x ∈M : dk ⊆ dφ} has di-
mension less than m, where dφ(x) := ker dφ(x) for all x ∈M . (By Lemma 2.5,
such an φ exists whenever M is a definable Cp cell.) We adopt the notations
introduced in Examples 3.4 and 3.5; refining C, we may assume C is compatible
with B. Then dim(M \M ′) < m, and we get:

Lemma 4.1. (1) Let V be an admissible integral manifold of dk, and let
V ′

1 . . . . , V
′
q be the admissible integral manifolds of d|M ′ whose union is

V ∩M ′. Then

fr(V ) = lim
ι

(
φ−1(rι) ∩ V

)
=

ν⋃
j=1

µ⋃
l=1

Kj,l(V ),

that is, fr(V ) is a finite union of admissible limits obtained from d′

whose cores corresponding to d|M ′ are among V ′
1 , . . . , V

′
q .

(2) Assume that l < k, let W be an admissible integral manifold of el,
and let W ′

1, . . . ,W
′
q be the admissible integral manifolds of el|M ′ whose

union is W ∩M ′. Let (Vi) be an admissible sequence of integral man-
ifolds of dk with core W such that K := limi fr(Vi) exists. Then K
is a finite union of admissible limits obtained from d′ whose cores are
among W ′

1, . . . ,W
′
q.

Proof. The properties of φ imply that fr(V ) = limι (φ
−1(rι) ∩ V ), so part (1)

follows from Lemma 3.6. For part (2), note that by part (1) we have

K = lim
i

(
lim

ι

(
φ−1(rι) ∩ Vi

))
=

ν⋃
j=1

µ⋃
l=1

lim
i
Kj,l(Vi).

Hence K =
⋃ν

j=1

⋃µ
l=1 limi

(
Φ′

l,rι(i)
∩ V ′

j,Vi

)
for some subsequence (ι(i))i. How-

ever, by Corollary 2.7(2), there is a ρ ∈ N such that each set Φ′
l,rι(i)

∩ V ′
j,Vi

is

the union of admissible integral manifolds G′
l,j,1,i, . . . , G

′
l,j,ρ,i (not necessarily

disjoint) of d′k+1 with cores among W ′
1, . . . ,W

′
q. Passing to a subsequence again

and reindexing, we may assume that for each l, j and s, the sequence (G′
l,j,s,i)

is admissible with core among W ′
1, . . . ,W

′
q, and that limiG

′
l,j,s,i exists. Then

K =
⋃ν

j=1

⋃µ
l=1

⋃ρ
s=1 limiG

′
l,j,s,i, which finishes the proof. �

Next, we study some (very simple) intersections involving admissible limits.
For the next two lemmas, we assume that l < k. We let (Vi) be an admissible
sequence of integral manifolds of dk with core W corresponding to e, and we
assume that K := limi Vi exists. We define the following distributions on M ×
Rn×(0,∞), where we write (x, y, ε) for the typical element of M×Rn×(0,∞)
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with x ∈M , y ∈ Rn and ε > 0:

d̃0 := gM×Rn×(0,∞),

d̃1 := ker dε ∩ d̃0,

d̃1+j := ker dyj ∩ d̃j for j = 1, . . . , n,

d̃1+n+j(x, y, ε) := (dj(x)× Rn+1) ∩ d̃n+j(x, y, ε) for j = 1, . . . , k,

ẽj(x, y, ε) := ej(x)× Rn+1 for j = 0, . . . , l.

We also put W̃ := W ×Rn× (0,∞). Then d̃ := (d̃0, . . . , d̃1+n+k) is a definable
nested distribution on M×Rn× (0,∞) with core distribution ẽ := (ẽ0, . . . , ẽl).

Thus, deg(d̃) ≤ deg(d) and if e is separated, then so is ẽ. Moreover, whenever
(yi, εi) ∈ Rn × (0,∞) for i ∈ N, the sequence

(
Vi × {(yi, εi)}

)
is an admissible

sequence of integral manifolds of d̃ with core W̃ corresponding to ẽ.

Lemma 4.2. Let C ⊆ Rn be a definable cell. Then there is a definable open

subset M̃ of M × Rn × (0,∞) such that

fr(K ∩ C) =

p⋃
q=1

Πn(Kq),

where K1, . . . , Kp ⊆ R2n+1 are admissible limits obtained from d̃|fM with cores

among the admissible integral manifolds of ẽ|fM whose union is W̃ ∩ M̃ .

Proof. We let φ be a C1 carpeting on C (as obtained from Lemma 2.5, say).
Put

M̃ :=
{
(x, y, ε) ∈M × Rn × (0,∞) : d(x, φ−1(y1)) < ε

}
,

an open, definable subset of M × Rn × (0,∞), where we put d(x, ∅) := ∞ for
all x ∈ M . Since K is compact, we have fr(K ∩ C) = limr→0(φ

−1(r) ∩ K).

Moreover, for every r > 0 we have φ−1(r) ∩K = limε→0 limi(Vi ∩ M̃er,ε), where
r̃ := (r, . . . , r). Hence there are ri → 0 and εi → 0 such that

fr(K ∩ C) = lim
(
Vi ∩ M̃eri,εi

)
= lim

(
(Vi × {(r̃i, εi)}) ∩ M̃

)
.

The proposition now follows from the remark preceding this lemma and an
argument similar to that used in the proof of Proposition 4.1. �

A similar, but somewhat easier, proof yields the following lemma; we leave
the details to the reader.
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Lemma 4.3. Let C ⊆ Rn be a definable cell. Then there is a definable open

subset M̃ of M × Rn × (0,∞) such that

cl(K ∩ C) =

p⋃
q=1

Πn(Kq),

where K1, . . . , Kp ⊆ R2n+1 are admissible limits obtained from d̃|fM with cores

among the admissible integral manifolds of ẽ|fM whose union is W̃ ∩ M̃ . �

Finally, we establish some crucial facts about the dimension of admissible
limits.

Lemma 4.4. Let K ⊆ Rn be an admissible limit obtained from d. Then K
is definable in P(R) and dim(K) ≤ dim(d).

Proof. Write k = m−dim(d), let also (Vi) be an admissible sequence of integral
manifolds of dk such that K = limi Vi, and let V be an admissible integral
manifold of ek−l and (Bi) a sequence of leaves of dl such that Vi = V ∩Bi for
each i ∈ N. Since the family {V ∩B : B is a leaf of dl} is definable in P(R),
the lemma follows from the main theorem in [12]. �

Definition 4.5. Let K ⊆ Rn be an admissible limit obtained from d. We say
that K is proper if dim(K) = dim(d).

The next proposition is adapted from Lemma 3.6 in [13]; it may be inter-
preted as a “fiber cutting” lemma for admissible limits.

Proposition 4.6. Let K ⊆ Rn be an admissible limit obtained from d and
m ≤ n. Then there are proper admissible limits K1, . . . , Kp ⊆ Rn such that
Πm(K) = Πm(K1) ∪ · · · ∪ Πm(Kp), and such that deg(Kq) ≤ deg(K) and
dim Πm(Kq) = dim(Kq) for each q = 1, . . . , p.

Proof. We proceed by induction on r := dim(M); the case r = 0 is trivial,
so we assume that r > 0 and that the proposition holds for lower values of
r. Let (Vi) be an admissible sequence of integral manifolds of dk such that
K = limi Vi, and let V be an admissible integral manifold of ek−l and (Bi) a
sequence of leaves of dl such that Vi = V ∩Bi for each i ∈ N. Without loss of
generality, we may assume that l is minimal; then by Corollary 3.2, we may
also assume that e is separated. If l = 0, we are done by Theorem 3.1 in [4]
or the Main Theorem of [12], so we assume that l > 0. In this situation, the
fact that V is an admissible integral manifold of el implies that V is a Rolle
leaf of el.

Choosing a suitable C2-cell decomposition of M compatible with d and us-
ing the inductive hypothesis, we reduce to the case where M is a definable
C2 manifold such that for every l ≤ m and every strictly increasing map
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λ : {1, . . . , l} −→ {1, . . . ,m}, the rank of Πn
λ|TxVi

is constant on Vi and inde-
pendent of i; we denote this rank by rλ.

Let s := dim(Πm(X)); if s = dim(d), then we are done by Lemma 4.4, so
we assume that s < dim(d). Let λ : {1, . . . , s} −→ {1, . . . ,m} be strictly
increasing; since s < dim(d), we have dim(Vi ∩ (Πn

λ)−1(y)) ≥ dim(d) − s > 0
if Vi ∩ (Πn

λ)−1(y) 6= ∅, that is, rλ < dim(d). Hence by Lemma 2.5, there is a
closed, definable set Bλ ⊆M such that dim(Bλ) < r and

• for all y ∈ Rs and i ∈ N, each component of the fiber Vi ∩ (Πn
λ)−1(y)

intersects the fiber Bλ ∩ (Πn
λ)−1(y).

In particular Πn
λ(Vi∩Bλ) = Πn

λ(Vi) for all i, and for all y ∈ Rs, every component
of Πm(Vi) ∩ (Πm

λ )−1(y) intersects the fiber Πm(Vi ∩Bλ) ∩ (Πm
λ )−1(y).

Passing to a subsequence if necessary, we may assume that the sequence
(Vi∩Bλ)i converges for every strictly increasing λ : {1, . . . , s} −→ {1, . . . ,m},
and we put Xλ := lim(Vi ∩ Bλ). Choosing a C2-cell decomposition of Bλ and
using the inductive hypothesis, we see that the proposition holds with each
Xλ in place of X. It therefore remains to show that Πm(X) =

⋃
λ Πm(Xλ). To

see this, we fix a strictly increasing λ : {1, . . . , s} −→ {1, . . . ,m}; since each
Πm(Xλ) is closed, it suffices by Remark 3.5 of [13] to establish the following

Claim. Let y ∈ Πλ(X), and let x ∈ Πm(X) ∩ (Πm
λ )−1(y) be isolated. Then

x ∈ Πm(Xλ).

Proof. Note that Πm(X) = lim Πm(Vi) since M is bounded. Let xi ∈ Πm(Vi)
be such that xi → x, and put yi := Πm

λ (xi). Let Ci ⊆ Rm be the component
of Πm(Vi) ∩ (Πm

λ )−1(yi) containing xi, and let x′i belong to Ci ∩ Πm(Vi ∩ Bλ).
Since also Πm(Xλ) = lim Πm(Vi ∩ Bλ), we may assume, after passing to a
subsequence if necessary, that x′i → x′ ∈ Πm(Xλ). We show that x′ = x,
which then proves the claim. Assume for a contradiction that x′ 6= x, and let
δ > 0 be such that δ ≤ ‖x− x′‖ and

(4.1) B(x, δ) ∩ Πm(X) ∩ (Πm
λ )−1(y) = {x},

where B(x, δ) is the open ball with center x and radius δ. Then for all suffi-
ciently large i, there is an x′′i ∈ Ci such that δ/3 ≤ ‖x′′i − xi‖ ≤ 2δ/3, because
xi, x

′
i ∈ Ci and Ci is connected. Passing to a subsequence if necessary, we may

assume that x′′i → x′′ ∈ Πm(X). Then x′′ ∈ B(x, δ) with x′′ 6= x, and since
x′′i ∈ Ci implies that Πm

λ (x′′i ) = yi, we get Πm
λ (x′′) = y, contradicting (4.1). �

5. Blowing-up in jet space

We fix a bounded, definable manifoldM ⊆ Rn of dimensionm and a tangent,
definable nested distribution d = (d1, . . . , dk) on M , and we assume that both
are of class C2. We fix an arbitrary j ∈ {1, . . . , k}.
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Definition 5.1. Put n1 := n+n2 and let Π : Rn1 −→ Rn denote the projection
on the first n coordinates. We define

M1 := gr(dj) ⊆ Rn1 ,

d1
l := (Π|M1)∗dl, the pull-back to M1 of dl via Π, for l = 1, . . . , k.

We call d1 := (d1
1, . . . , d

1
k) the blow-up of d along dj (we do not need to

explicitely indicate its dependence on j). Finally, for l ∈ {1, . . . , k} and an
integral manifold V of dl, we define

V 1 := (Π|M1)−1(V ),

the lifting of V along dj. Note that, in this situation, V 1 is an integral
manifold of d1

l , and if l = j, then V 1 = T 1V .

Next, we write M =
⋃
Mσ,2, where σ ranges over Σn and the Mσ,2 are as in

Lemma 1.4 with d there equal to dj here.

Definition 5.2. For a leaf V ⊆M of dj and σ ∈ Σn, we put Vσ := V ∩Mσ,2,
and we define

F 1(V ) :=
⋃

σ∈Σn

fr
(
(Vσ)1

)
.

For the next proposition, we let D ⊆ cl(M1) be a definable cell such that
C := Π(D) has the same dimension as D and for every σ ∈ Σn, either C ∩
cl(Mσ,2) = ∅ or C ⊆ cl(Mσ,2). Then D = gr(g), where g : C −→ Gm−j

n is a
definable distribution, and we assume that the following hold:

(i) the distribution g ∩ gC has dimension;
(ii) if g is tangent to C, then either g is integrable or g is nowhere integrable.

We also assume that there is a definable set W ⊆ cl(M1) such that both W
and W ∪ D are open in cl(M1). In this situation, for any sequence (Vi) of
leaves of dj such that limV 1

i and limF 1(Vi) exist, we put

L(Vi) := (D ∩ limV 1
i ) \

(
limF 1(Vi) ∪ cl(W ∩ limV 1

i )
)
.

Finally, we let g1 : D −→ Gm−j
n1

be the pullback of g to M1 via Π.

Proposition 5.3 (see also Propositions 2.3 in [13] and 8 in [12]). Assume
that d is admissible, and let D and W be as above. Then exactly one of the
following holds:

(1) L(Vi) = ∅ for every admissible sequence (Vi) of leaves of di such that
limV 1

i and limF 1(Vi) exist;
(2) g is tangent to C and integrable, and for every admissible sequence

(Vi) of leaves of di such that limV 1
i and limF 1(Vi) exist, the set L(Vi)

is an embedded integral manifold of g1 and is open in limV 1
i .

In particular, if D is open in M1, then D ∩ limV 1
i is a union of leaves of d1

j |D.
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Remark. Let σ ∈ Σn. Then the conjugate map

gσ := σ ◦ g ◦ σ−1 : σ(C) −→ Gm−j
n

satisfies
g(x) ⊆ TxC if and only if gσ(σ(x)) ⊆ Tσ(x)σ(C).

Moreover, σ induces a diffeomorphism σ1 : Rn × Gn −→ Rn × Gn defined
by σ1(x, y) = (σ(x), σy), where σy denotes the element of Gn corresponding
to the linear subspace of Rn obtained as the image under σ from the linear
subspace of Rn corresponding to y. (Note that σ1 is also just a permutation
of coordinates.) Then

(gσ)1 = σ1 ◦ g1 ◦ (σ1)−1,

and if (Vi) is a sequence of Rolle leaves in M of dj such that limV 1
i and

limF 1(Vi) exist, then limσ(V 1
i ) also exists and

σ(C) ∩ limσ(V 1
i ) = σ1(C ∩ limV 1

i ).

Proof of Proposition 5.3. By the remark, after replacing M by σ(Mσ,2) for
each σ ∈ Σn, we may assume for the rest of this proof that dj is 2-bounded;
in particular, for every embedded leaf V of dj, we have F 1(V ) = fr(V 1).

Let (Vi) be an admissible sequence of leaves of dj such that limV 1
i and

lim fr(V 1
i ) exist, and write L := L(Vi). Let N ∈ N be such that for every

open box U ⊆ Rn and every i ∈ N, the set U ∩ Vi has at most N connected
components.

Assume that L 6= ∅, and choose an arbitrary (x, y) ∈ L with x ∈ Rn and
y ∈ Gn. Since W ∪D is open in cl(M1) and (x, y) /∈ cl(W ∩ limV 1

i ), there is
an open box B ⊆ Rn1 such that (x, y) ∈ B and

cl(B) ∩ limV 1
i ⊆ D \

(
lim fr(V 1

i ) ∪ cl(W ∩ limV 1
i )

)
.

Writing B = B0 × B1 with B0 ⊆ Rn and B1 ⊆ Rn2
, we may also assume that

D ∩
(
cl(B0) × fr(B1)

)
= ∅, because D is the graph of the continuous map g

and C is locally closed.
On the other hand, B ∩ limV 1

i = B ∩ lim(B ∩ V 1
i ) = B ∩ limV 1

i,B, where
Vi,B := {x ∈ Vi : (x, TxVi) ∈ B}. We now claim that x /∈ lim fr(Vi,B): in fact,
the previous paragraph implies that fr(Vi) ∩ cl(Vi,B) = ∅ for all sufficiently
large i, and hence fr(Vi,B) ⊆ fr(B0) for all sufficiently large i, which proves the
claim.

Since each Vi is an embedded, closed submanifold of M , we now apply
Lemma 1.2 with Vi,B in place of Vi and η = 2, to obtain a corresponding open
neighbourhood U ⊆ B0 of x and f1, . . . , fN : Πm−j(U) −→ Rn−m+j. We let
l ∈ {1, . . . , N} be such that x ∈ gr(fl). We claim that fl is differentiable at
z := Πm−j(x) with Tx gr(fl) = g(x); since x is arbitrary, this then implies that
each gr(fl) is an embedded, connected integral manifold of g. Assumption (ii)
and [13, Lemma 1.6] now imply that g is tangent to C and integrable. Since
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(x, y) ∈ L was arbitrary, it follows that L is an embedded integral manifold of
g1, as desired.

To prove the claim, let fl,i : Πm−j(U) −→ Rn−m+j be the functions corre-
sponding to fl as in the proof of Lemma 1.2. After a linear change of coor-
dinates if necessary, we may assume that g(x) = Rm−j × {0} (the subspace
spanned by the first m − j coordinates). It now suffices to show that fl is
η-Lipschitz at x for every η > 0, since then Tx gr(fl) = Rm−j × {0}. So let
η > 0; since limV 1

i,B ⊆ D = gr(g) and x ∈ C, and because C is locally closed
and g is continuous, there is a neighborhood U ′ ⊆ U of x such that gr(fl,i)∩U ′

is η
m−j

-bounded for all sufficiently large i. Thus by Lemma 1.2 again, fl is

η-Lipschitz at x, as required.
Finally, if D is open in M1, then we can take W := ∅, and by assumption

we have C ∩Mσ,2 = ∅ or D ⊆ Mσ,2 for each σ ∈ Σn. Hence F 1(Vi) ∩ D = ∅
for every σ ∈ Σn, and it follows that L(Vi) = D ∩ limVi in this case. �

6. Rewriting admissible limits

We fix a p ∈ N∪{∞, ω} such that p ≥ 1. Let N ⊆ Rm be a definable Cp cell
and f = (f0, . . . , fl) a definable nested Cp distribution on N . Let also n ≤ m
and D ⊆ Rn a definable Cp cell such that Πn(N) ⊆ D, and let h : D −→ Gν

n be
a tangent, definable, integrable Cp distribution on D, with ν ≤ dim(D). We
assume that for all d ≤ n and all λ : {1, . . . , d} −→ {1, . . . , n}, the dimension
of the spaces

Fλ(y) := Πm
λ (fl(y)) and F h

λ (y) := Πn
λ

(
Πm

n (fl(y)) ∩ h(Πm
n (y))

)
is constant as y ranges over N ; we denote these dimensions below by dim(Fλ)
and dim(F h

λ ), respectively. For the identity map λ : {1, . . . , n} −→ {1, . . . , n},
we write F := Fλ and F h := F h

λ and put d := dim(F h) ≤ ν. Finally, we
assume that dim(fl) = dim(F ) = ν + 1.

Definition 6.1. Our assumptions imply that there is a λ : {1, . . . , d+ 1} −→
{1, . . . , n} such that dim(Fλ) = d + 1 and dim(F h

λ ) = d. We let fl+1 : N −→
Gν

m be the distribution defined by

fl+1(y) := fl(y) ∩ (Πm
λ )−1 (

F h
λ (y)

)
.

Clearly, the distribution fl+1 is definable, fl+1 ⊆ fl and dim(Πm
n (fl+1(y)) =

dim(fl+1(y)) = ν for all y ∈ N .
Next, let Z ⊆ N be an (embedded) integral manifold of fl, and let L ⊆ D

be an (embedded) integral manifold of h. By our assumption on fl, Πm
n |Z is

an immersion; we assume here in addition that Πm
n (Z) is a submanifold of

Rn. Then by our assumptions and the Rank Theorem, Πm
n (Z) ∩ L is either

empty or a submanifold of D of dimension d. Let also L′ ⊆ Πm
n (Z) ∩ L be

a submanifold of dimension d. Again by our assumption on F h
λ , Πn

λ|L′ is an
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immersion; we also assume here that Πn
λ(L′) is a submanifold of Rd+1. In this

situation, we define

Z(L′) := Z ∩ (Πm
λ )−1 (Πn

λ(L′)) .

Note that, by the Rank Theorem, the set Z(L′) is an integral manifold of fl+1.

Lemma 6.2. The tuple f ′ := (f0, . . . , fl, fl+1) is a definable nested distribu-
tion on N .

Proof. It remains to show that fl+1 is integrable. The integrability of fl and
h and our assumptions imply that for every y ∈ N , there are an integral
manifold Z of fl containing y and an integral manifold L of h containing
Πm

n (y) such that L′ := Πm
n (Z)∩L and Πn

λ(L′) are embedded manifolds. So by
the remarks in Definition 6.1, the corresponding Z(L′) is an integral manifold
of fl+1 containing y. �

Next, we let Z be an integral manifold of fl and L ⊆ D an integral manifold
of h, and we assume that both Z and L are definable in P(R).

Lemma 6.3. There are integral manifolds Z ′1, . . . , Z
′
q of fl+1, contained in Z

and definable in P(R), such that

(6.1) Πm
n (Z) ∩ L ⊆

q⋃
p=1

Πm
n (Z ′p).

Proof. By Lemma 1.1, we may assume that Πm
n (Z) is a submanifold of N .

Again by Lemma 1.1, we have Πm
n (Z) ∩ L = L′1 ∪ · · · ∪ L′q, where each L′p

is an open subset of Πm
n (Z) ∩ L such that Πn

λ(L′p) is a submanifold of Rd+1.
Now we take Z ′p := Z(L′p), and we claim that these Z ′p work. To see this, it
remains to prove (6.1). Let x ∈ Πm

n (Z) ∩ L, and let p ∈ {1, . . . q} be such
that x ∈ L′p; we show that x ∈ Πm

n (Z ′p). Then Z ∩ (Πm
λ )−1(Πn

λ(x)) ⊆ Z ′p, and

since (Πm
n )−1(x) ⊆ (Πm

λ )−1(Πn
λ(x)), it follows that Z ∩ (Πm

n )−1(x) ⊆ Z ′p, as
required. �

We are now ready to prove Proposition 1 of the introduction.

Theorem 6.4 (see also Theorem 5.1 in [13]). Let X ⊆ Rn be an admis-
sible limit. Then there exists a q ∈ N, and for each p = 1, . . . , q there exist
np ≥ n, a definable manifold Np ⊆ Rnp , a definable nested distribution fp =(
fp,1, . . . , fp,k(p)

)
on Np and a nested integral manifold Up =

(
Up,1, . . . , Up,k(p)

)
of fp such that

X ⊆
q⋃

p=1

Πn

(
Up,k(p)

)
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and for each p, the tuple Up is definable in P(R), dim(Up,k(p)) ≤ dim(X) and
Πn|Up,k(p)

is an immersion.

Proof. By induction on the pair (deg(X), dim(X)) (simultaneously for all n),
where we consider N2 with its lexicographic ordering. If deg(X) = 0, then X
is definable in R by Theorem 3.1 in [4] or the Main Theorem in [12], so the
proposition follows from cell decomposition and Remark 3.3. If dim(X) = 0,
then X is finite and the proposition follows again from Remark 3.3. There-
fore, we assume that deg(X) > 0 and dim(X) > 0 and that the proposition
holds for admissible limits Y such that (deg(Y ), dim(Y )) < (deg(X), dim(X)).
Moreover, by Proposition 4.6, we may assume that X is a proper admissible
limit.

Let M ⊆ Rn be a definable manifold of dimension m, d = (d1, . . . , dk) an
admissible nested distribution on M and (Vi) an admissible sequence of leaves
of dk such that X = limVi, deg(X) = deg(d) and dim(X) = dim(d). By Cm+2

cell decomposition, we may assume that M and d are of class Cm+2; we adopt
all the corresponding notions introduced before this proposition. Passing to a
subsequence if necessary, we may assume that Xj := limi V

j
i and limi Fj(Vi)

exist for j = 0, . . . ,m (so X0 = X). Since X is proper, each Xj is also proper.
By o-minimality, Proposition 4.1(2), Lemma 4.4 and the inductive hypothesis,

(6.2) for every j = 0, . . . ,m,

the proposition holds with lim
i
Fj(Vi) in place of X.

For each j = 0, . . . ,m + 1 the nested distribution ej := (dj
1, . . . , d

j
k−1) is

admissible and satisfies deg(ej) < deg(d). Moreover, by assumption there is
an admissible sequence (Ui) of leaves of d0

k−1 such that Vi ⊆ Ui for all i ∈ N.

Passing to a subsequence if necessary, we may assume that Y j := limi U
j
i exists

for all j, where

U0
i := Ui and for j = 1, . . . ,m, U j

i := gr
(
dj−1

k |Uj−1
i

)
.

By the inductive hypothesis, there is a qj ∈ N and for each p = 1, . . . , qj,
there exist mj,p ≥ nj, a definable manifold Nj,p ⊆ Rmj,p , a definable nested
distribution fj,p =

(
fj,p,1, . . . , fj,p,k(j,p)

)
on Nj,p and a nested integral manifold

Zj,p =
(
Zj,p,1, . . . , Zj,p,k(j,p)

)
of fj,p such that

Y j ⊆
qj⋃

p=1

Πnj

(
Zj,p,k(j,p)

)
and for each j and p, the tuple Zj,p is definable in P(R), dim(Zj,p,k(j,p)) ≤
dim(X) + 1 and Πnj

|Zj,p,k(j,p)
is an immersion.
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For j = 0, . . . ,m+1, we let Cj be a C2 cell decomposition of Rnj compatible
with M , fr(Mm), {M j

σ : σ ∈ Σnj
} and {fr(M j

σ) : σ ∈ Σnj
}, and we put

Cj
M :=

{
C ∈ Cj : C ⊆ cl(M j)

}
.

Refining each Cj if necessary, we may assume for j = 0, . . . ,m,

(i) Cj is a stratification compatible with Πj+1
j (Cj+1);

and for every D ∈ Cj+1 that is the graph of a distribution g : C −→ Gm−k
nj

,

where C := Πj+1
j (D),

(ii) the distribution g ∩ gC has dimension;
(iii) if g is tangent to C, then either g is integrable, or g is nowhere inte-

grable.

Refining the collections {Nj,1, . . . , Nj,qj
} if necessary, we may furthermore as-

sume for each j, C and D as above that

(iv) the collection {Πnj+1
(Nj+1,p) : p = 1, . . . , qj+1} is compatible with

Cj+1;
(v) for each p ∈ {1, . . . , qj+1} such that Πnj+1

(Nj+1,p) ⊆ D, the dimension
of the spaces Πnj+1

(f(y)) and Πnj+1
(f(y)) ∩ g1(x)) is constant as y

ranges over Nj+1,p, where f := fj+1,p,k(j+1,p) and x := Πnj+1
(y).

By Proposition 4.2, o-minimality, Proposition 4.5 and the inductive hypoth-
esis,

(6.3) for every j = 0, . . . ,m and every E ∈ Cj,

the proposition holds with fr(Xj ∩ E) in place of X.

We now fix a cell C ∈ Cj
M for some j ∈ {0, . . . ,m} such that j ≤ dim(C).

Claim: There exists Xj
C ⊆ Xj such that Xj ∩ C ⊆ Xj

C and the proposition

holds with Xj
C in place of X.

The proposition follows by applying this claim to each C ∈ C0
M .

To prove the claim, we proceed by reverse induction on dim(C). Let

DC :=
{
D′ ∩ (Πj+1

j )−1(C) : D′ ∈ Cj+1
M , C ⊆ Πj+1

j (D′)
}
,

and fix an arbitrary D ∈ DC ; it clearly suffices to prove the claim with Xj+1

and D in place of Xj and C. Let D′ ∈ Cj+1 be such that D ⊆ D′; if dim(D′) >
dim(C), then the claim with Xj+1 and D in place of Xj and C follows from
the inductive hypothesis, so we also assume that dim(D′) = dim(C). Thus,
there is a distribution g : C −→ Gm−k

nj
such that D = gr(g), and D is open in

D′. Let

W :=
⋃ {

E ∈ Cj+1
M : dim(E) > dim(C)

}
;
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since Cj+1 is a stratification, both W and W ∪D′ are open in cl(M j+1), and
since D is open in D′, the set W ∪ D is also open in cl(M j+1). Hence by
Proposition 5.3, the set (Xj+1 ∩ D) \

(
limi Fj+1(Vi) ∪ cl(W ∩ Xj+1)

)
is an

embedded integral manifold of g1. But D ∩ cl(W ∩Xj+1) ⊆ F , where

F :=
⋃ {

fr(Xj+1 ∩ E) : E ∈ Cj+1
M and dim(E) > dim(C)

}
,

so the set

L := (Xj+1 ∩D) \
(
lim

i
Fj+1(Vi) ∪ F

)
is a finite union of connected integral manifolds of g1 definable in P(R). Thus
by (6.2) and (6.3), to prove the claim with Xj+1 and D in place of Xj and C,
it now suffices to prove the proposition with L in place of X.

Let p ∈ {1, . . . , qj+1} be such that Πnj+1
(Nj+1,p) ⊆ D. If the dimension of

Zj+1,p,k(j+1,p) is at most that of dim(X), we let Zj+1,p be one of the Up we
are looking for. Otherwise, by (iv) and (v) we can apply Lemma 6.3 with
m := mj+1,p, N := Nj+1,p, f := fj+1,p, Z := Zj+1,p, l := k(j+1, p) and h := g1

to obtain finitely many new Up. This finishes the proof of the proposition. �

7. Some properties of analytic o-minimal structures

We assume from now on that R admits analytic cell decomposition.

Definition 7.1. An open set U ⊆ Rn is R-normal if there exists an analytic
carpeting function on U .

Throughout this paper, since R is fixed, we shall simply say “normal” in-
stead of “R-normal”.

Remark. If U, V ⊆ Rn are normal, then so are U ∩ V and U × V .

Example 7.2. Every open, analytic and definable cell is normal.

Proposition 7.3. Let A ⊆ Rn be open and definable. Then A can be covered
by finitely many normal sets.

Proof. By induction on n; we may assume that A 6= Rn. The case n = 0 is
trivial, so we assume that n > 0 and that the proposition holds for lower values
of n. By analytic cell decomposition, it suffices to show that every analytic
cell contained in A is in turn contained in a finite union of normal subsets of
A.

So we let C ⊆ A be an analytic cell; we proceed by induction on the dimen-
sion d of C. If d = 0, then C is a singleton and any ball centered at C and
contained in A will do. So we assume that d > 0 and that every analytic cell
of dimension less than d contained in A is in turn contained in a finite union of
normal subsets of A. If d = n, then C is open and hence normal by Example
7.2; so we also assume that d < n.
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After permuting coordinates if necessary, there is an open, analytic cell
D ⊆ Rd and a definable, analytic map g : D −→ Rn−d such that C = gr(g).
For x ∈ Rn, we write x = (y, z) with y ∈ Rd and z ∈ Rn−d. Define β : D −→
(0,∞) by

β(y) := dist
(
(y, g(y)),Rn \ A

)
.

By the inductive hypothesis and analytic cell decomposition, we may assume
that β is analytic. Now we put

U :=
{
(y, z) ∈ A : y ∈ D and ‖z − g(y)‖2 < β2(y)

}
.

This U is normal: given an analytic carpeting function γ : D −→ (0,∞), we
define φ : U −→ (0,∞) by

φ(y, z) := γ(y)
(
β2(y)− ‖z − g(y)‖2

)
,

which is easily seen to be an analytic carpeting function on U . �

Definition 7.4. Let U ⊆ Rn be normal and A ⊆ U . We say that A is normal
in U if A is a finite union of sets of the form

{x ∈ U : g(x) = 0, h(x) > 0} ,

where g : U −→ Rq and h : U −→ Rr are definable and analytic. A normal
leaflet in U (of codimension p) is a set of the form

A = {x ∈ U : f(x) = g(x) = 0, h(x) > 0} ,

where f : U −→ Rp, g : U −→ Rq and h : U −→ Rr are analytic and definable
and for all x ∈ A, the rank of f at x is p and ker df(x) ⊆ ker dg(x).

Remark. Let A ⊆ U be a normal leaflet in U of codimension p, say A =
{x ∈ U : f(x) = g(x) = 0, h(x) > 0} as in the previous definition; then TxA =
ker df(x) for all x ∈ A. Moreover, the restriction of φ := δ ·

∏r
s=1 hs : U −→ R

to A takes values in (0,∞), and 1/φ|A is a proper map. Thus, we call φ an
analytic carpeting function for A in U .

Example 7.5. Let U ⊆ Rn be normal; then U is a normal leaflet in U . Let
also f : U −→ Rp and h : U −→ Rr be analytic and definable; then the set

{x ∈ U : f(x) = 0, h(x) > 0, and f has rank p at x}
=

{
x ∈ U : f(x) = 0, h(x) > 0, |df |2(x) > 0

}
is a normal leaflet in U .

The following lemma is elementary, and its proof is left to the reader.

Lemma 7.6. Let U ⊆ Rn and V ⊆ Rm be normal.

(1) If A and B are normal in U , then so are A ∪B, A ∩B and A \B.
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(2) Let A be normal in U and B be normal in V . Then A × B is normal
in U × V . Moreover, if A and B are normal leaflets in U and V ,
respectively, then A×B is a normal leaflet in U × V .

(3) Let φ : U −→ V be definable and analytic, and let B be normal in V .
Then φ−1(B) is normal in U .

(4) Let A be a normal leaflet in U of codimension p, and assume that
there is a definable, analytic embedding φ : A −→ Rn−p. Then φ(A) is
normal. Moreover, if B ⊆ A is normal (resp., a normal leaflet) in U ,
then φ(B) is normal (resp., a normal leaflet) in φ(A). �

For the next proposition, we need a lemma (used again in Section 9):

Lemma 7.7. Let η : X −→ (0,∞) and be definable in P(R) and put

Y := {(x, t) : x ∈ X and 0 < t < η(x)} .

Let also α : Y −→ [0,∞) be definable in P(R), and assume that for every
x ∈ X, the function αx : (0, η(x)) −→ [0,∞) defined by αx(t) := α(x, t)
is semianalytic. Then there exists an N ∈ N such that for all x ∈ X, either
ultimately αx(t) = 0 or ultimately αx(t) > tN (where “ultimately” abbreviates
“for all sufficiently small t > 0”).

Proof. By cell decomposition, for every x ∈ X the function αx is ultimately
of constant sign. By Puiseux’s Theorem, for every x ∈ X such that αx is
ultimately positive, there are cx > 0 and rx ∈ Q such that ultimately αx(t) =
cxt

rx + o(trx). However, the set RX := {rx ∈ R : x ∈ X} is definable, since
for all x ∈ X we have rx = limt→0+ tα′x(t)/αx(t). Since each rx is rational, it
follows that RX is finite, so any N > maxRX will do. �

Proposition 7.8 (Gabrielov [8]). Let U ⊆ Rn be normal and A be normal
in U . Then A is a finite union of normal leaflets in U .

Proof. Let g : U −→ Rq and h : U −→ Rr be definable and analytic such that
A = {x ∈ U : g(x) = 0, h(x) > 0}; we proceed by induction on d := dim(A).
If d = 0, the proposition is trivial, so we assume that d > 0 and the proposition
holds for lower values of d.

Let C be a finite decomposition of A into analytic cells; we shall show that
for each C ∈ C, there is a normal leaflet AC ⊆ A such that dim(C \ AC) < d.
The proposition then follows from the inductive hypothesis, since A\

⋃
C∈C AC

is a normal subset of U of dimension less than d.
Fix a C ∈ C, and let G be the set of all partial derivatives (of all orders)

of g1, . . . , gq. Let M be the set of all natural numbers m for which there
exist f1, . . . , fm ∈ G such that C ⊆ {x ∈ U : f1(x) = · · · = fm(x) = 0} and
df1(a) ∧ · · · ∧ dfm(a) 6= 0 for some a ∈ C.
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Put p := supM ≤ n − d; we claim that p = n − d. To see this, let
f1, . . . , fp ∈ H, a ∈ C and an open ball B centered at a be such that C ∩B is
a connected submanifold of

Γ := {x ∈ U : f1(x) = · · · = fp(x) = 0} ∩B,
and such that Γ is a connected, analytic submanifold of codimension p con-
tained in

{x ∈ U : h(x) > 0, df1(x) ∧ · · · ∧ dfp(x) 6= 0} .
The maximality of p now implies that g(x) = 0 for all x ∈ Γ, that is, C∩B = Γ,
which proves the claim.

Put f := 0 if M = ∅ and f := (f1, . . . , fp) otherwise, where f1, . . . , fp ∈ H
are as in the previous paragraph. Let

X := {x ∈ U : f(x) = 0, h(x) > 0, and f has rank p at x} ,
a normal leaflet in U . For d ∈ N, we also let S(f, g, d) be the set of all
φ : U −→ R for which there exist d′ ≤ d and functions φ0, . . . , φd′ : U −→ R
such that

(i) φ0 ∈ {g1, . . . , gq};
(ii) for i ∈ {0, . . . , d′}, φi+1 is one of the coefficient functions of dφi ∧ df if

M 6= ∅, or of dφi if M = ∅, respectively;
(iii) φ = φd′ ,

and we put Xd := {x ∈ X : φ(x) = 0 for all φ ∈ S(f, g, d)}.
Next, we let η : X −→ (0,∞) be a definable function such that for all

x ∈ X,

B(x, 2η(x)) ⊆ {x ∈ U : h(x) > 0, and f has rank p at x} .
For x ∈ X and t ∈ (0, η(x)), we put

α(x, t) := max {|h|(y) : y ∈ X, ‖y − x‖ ≤ t} .
Note that α is definable, and for each x ∈ X the function αx : (0, η(x)) −→
[0,∞) is semianalytic. Hence by Lemma 7.7, there is an N ∈ N such that
either ultimately αx = 0 or ultimately αx(t) > tN .

On the other hand, for all x ∈ X we have that x ∈ XN if and only if αx is
ultimately positive. Hence XN is the union of all those connected components
of X on which g is equal to 0. Since XN is a normal leaflet in U , we can take
XC := XN . �

8. Fiber cutting using normal leaflets

We describe in this section stratifications by leaflets adapted to nested dis-
tributions, building on the techniques found in Moussu and Roche [14], Lion
and Rolin [11] and [16]. The goal is to obtain a corresponding fiber cutting
lemma for nested distributions. We proceed along the lines of Section 2.
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Let U ⊆ Rn be normal and D be a finite collection of definable, analytic
distributions on U . Using Lemma 7.6 and Proposition 7.8 in place of cell
decomposition, we obtain:

Lemma 8.1. Let A be a normal subset of U . Then there is a finite partition
P of A into normal leaflets in U such that P is compatible with D. �

For the rest of this section, we let ∆ = {d1, . . . , dp} be a set of definable,
analytic nested distributions on U ; we write dp = (dp

0, . . . , d
p
k(p)) for p = 1, . . . , q

and associate D∆ to ∆ as in Section 2. Let also A be a normal subset of U .

Lemma 8.2. Assume that A is a normal leaflet in U compatible with D∆, and
suppose that dim

(
d∆,A

k(∆,A)

)
> 0. Then there is an analytic carpeting function

φ on A in U such that the definable set

B :=
{
a ∈ A : ∇Aφ(a) is orthogonal to d∆,A

k(∆,A)(a) in TaA
}

has dimension less than dim(A).

Proof. Let ψ be an analytic carpeting function on A in U . For u ∈ (0,∞)n,
we define ψu : A −→ (0,∞) by ψu(x) := ψ(x)φu(x), where

φu(x) := (u1x
2
1 + · · ·+ unx

2
n);

note that ψu is an analytic carpeting function on A in U . Now consider the
definable set

D :=
{

(u, a) ∈ Rn × A : ∇Aψu(a) is orthogonal to d∆,A
k(∆,A)(a) in TaA

}
.

If dim(Du) < dim(A) for some u ∈ (0,∞)n, we take φ := ψu; so we assume
for a contradiction that dim(Du) = dim(A) for all u ∈ (0,∞)n. Then by
o-minimality, there are a nonempty, open V ⊆ (0,∞)n and a nonempty, open
subset W of A such that V ×W ⊆ D. Since W is a manifold of dimension
m := dim(A), there are 1 ≤ j1 < · · · < jm ≤ n and a = (a1, . . . , an) ∈ W such
that ajl

6= 0 for l = 1, . . . ,m. On the other hand,

∇Aψu(a) = φu(a)∇Aψ(a) + 2ψ(a)∇A(φu|A)(a);

hence an elementary calculation shows that the subset {∇Aψu(a) : u ∈ V } of

TaA generates TaA as an R-vector space, which contradicts dim
(
d∆,A

k(∆,A)

)
>

0. �

Next, for I ⊆ {1, . . . , q} we put ∆(I) := {dp : p ∈ I}. Combining Lemmas
8.1 and 8.2, we obtain

Proposition 8.3. Let I ⊆ {1, . . . , q}. Then there is a finite collection P of
normal leaflets in U contained in A such that P is compatible with D∆(J) for
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every J ⊆ {1, . . . , q}, and such that whenever Vp is a Rolle leaf of dp
k(p) for

p = 1, . . . , q, we have

(i) dim
(
d

∆(I),N
k(∆(I),N)

)
= 0 for every N ∈ P ;

(ii) every component of A ∩
⋂

p∈I Vp intersects some leaflet in P .

Proof. By induction on m := dim(A); if m = 0, the proposition is trivial, so
we assume that m > 0 and the proposition holds for lower values of m. Let P
be a partition obtained from Lemma 8.1; replacing A by any of the leaflets in
P , we may assume by the inductive hypothesis that A is a normal leaflet in U

compatible with D∆. If dim
(
d

∆(I),A
k(∆(I),A)

)
= 0, we are done; otherwise, let φ and

B be as in Lemma 8.2 with ∆I in place of ∆.
Let Vp be a Rolle leaf of dp

k(p) for p = 1, . . . , q. By Lemma 8.1 and the

inductive hypothesis, it now suffices to show that every component of X :=

A∩
⋂

p∈I Vp intersects B. However, since d
∆(I),A
k(∆(I),A) has dimension, X is a closed,

embedded submanifold of A. Thus, φ attains a maximum on every component
of X, and any point in X where φ attains a local maximum belongs to B. �

Corollary 8.4. Let d = (d0, . . . , dk) be a definable, analytic nested distribu-
tion on U and m ≤ n. Then there is a finite collection P of normal leaflets in
U contained in A such that for every Rolle leaf V of dk, we have

Πm(A ∩ V ) =
⋃

N∈P

Πm(N ∩ V )

and for every N ∈ P , the set N ∩V is an analytic submanifold of U such that
for every n′ ≤ n, the projection Πn′|(N∩V ) has constant rank, and such that
Πm|(N∩V ) is an immersion.

Proof. Apply Proposition 8.3 with dp the nested distribution associated to
Ωp := {dx1, . . . , dxp} as in Example 2.2, for p = 1, . . . , n, and with dn+1 := d
and I := {1, . . . ,m, n+ 1}. �

9. Regular closure

Let U ⊆ Rn be normal and A a normal subset of U . Let also d = (d0, . . . , dk)
be a definable, analytic nested distribution on U and V a Rolle leaf of dk in
U . Following [8], we study in this section the closure in U of A ∩ V .

Proposition 9.1. There are normal sets B and C in U such that

U ∩ cl(A ∩ V ) = B ∩ V and U ∩ fr(A ∩ V ) = C ∩ V.
For the proof of Proposition 9.1, we need the following preliminary observa-

tions. Let Σn be the finite set of all permutations of {1, . . . , n}, considered as
a definable subset of R2n. For every σ ∈ Σn, we let Uσ be the set of all x ∈ U
such that σ(dk(x)) is the graph of a linear map L : Rn−k −→ Rk satisfying
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‖L‖ < 2. Then U =
⋃

σ∈Σn
Uσ by Lemma 1.4, and by definable choice there

is a definable map x 7→ σx : U −→ Σn such that x ∈ Uσx for all x ∈ U . Since
each Uσ is open, there is a definable map x 7→ ηx : U −→ (0,∞) such that
y ∈ Uσx for all y ∈ B(x, 2ηx); we put

G0 := {(x, y) ∈ U × U : y ∈ B(0, 2ηx)} .
Finally, for x ∈ Rn, we write x− := (x1, . . . , xn−k) and x+ := (xn−k+1, . . . , xn),
and for ε > 0 we put

Bk(x, ε) := B(x−, ε)×B(x+, 2ε).

Lemma 9.2. For each ν ∈ N there is a definable map Pν : G0 −→ Rk such
that for all x ∈ U ,

(i) the map Pν,x : B(0, 2ηx) −→ Rk defined by Pν,x(y) := Pν(x, y) is a
homogeneous polynomial of degree ν;

(ii) the leaf Vx of dk|Bk(x,ηx) is an analytic submanifold of Bk(x, ηx);

(iii) the sum
∑∞

l=0 Pν,x(y−x) converges to analytic map φx : Bk(x, ηx) −→
Rk definable in P(R) such that σx(Vx) =

{
y ∈ Bk(x, ηx) : φx(y) = 0

}
.

Proof. Let G := {(x, y) ∈ U × U : y ∈ B(x, 2ηx)}, and define L : G −→
GL(Rn−k,Rk) such that σx(dk(y)) is the graph of L(x, y) for all (x, y) ∈ G.
Then L is definable and for every x ∈ U , the map Lx : B(x, 2ηx) −→
GL(Rn−k,Rk) defined by Lx(y) := L(x, y) is analytic.

By the proof of Lemma 5 of [12] and the definition of Vx, for every x ∈ U
the set σx(Vx) is the graph of a Lipschitz map Fx : B(x−, ηx) −→ B(x+, 2ηx)
such that

dFx(z) = Lx(z, Fx(z)) for all z ∈ B(x−, ηx).

Differentiating with respect to z (as in . . . ), one finds by induction on |α| =
α1 + · · · + αn−k for α ∈ Nn−k that there is a definable function Lα : G −→ R
such that for all x ∈ U and z ∈ B(x−, ηx),

∂α

∂zα
Fx(z) = Lα(x, z, Fx(z)),

and such that for all x ∈ U , the function Lα
x : B(x, 2ηx) −→ R defined by

Lα
x(y) := Lα(x, y) is analytic. For x ∈ U , we now define φx : Bk(x, ηx) −→

Rk by φx(y) := y+ − Fx(y−); then φx is analytic and definable in P(R),
and σx(Vx) =

{
y ∈ Bk(x, ηx) : φx(y) = 0

}
. Moreover, from the computa-

tion above we get φx(y) =
∑∞

q=0 Pq,x(y − x), where P0,x(y) := x+ − Fx(x−),

P1.x(y) := y+ − Lx(x−) · y− and

Pν,x(y) :=
∑
|α|=ν

Lα
x(x−, Fx(x−)) · (y−)α for ν > 1;

hence Pν(x, y) := Pν,x(y) will do. �
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Given an analytic map h = (h1, . . . , hl) : U −→ Rl, ν ∈ N and x ∈ U , we
denote by hν

x : U − x −→ Rl the Taylor expansion of order ν of h at x.

Proof of Proposition 9.1. Assume that

A = {x ∈ U : g(x) = 0, h(x) > 0} ,

with g : U −→ Rq and h : U −→ Rr definable and analytic, and put Z(h) :=
{x ∈ U : h(x) = 0}. It suffices to find a normal set C ⊆ Z(h) in U such that
U ∩ fr(A ∩ V ) = C ∩ V , since then B := A ∪ C will do. Below we work with
the notations from Lemma 9.2 and the paragraph preceding it.

Let Y := {(x, t) ∈ U × (0,∞) : x ∈ V ∩ Z(h), 0 < t < ηx}. First, we de-
fine α : Y −→ [0,∞) by

α(x, t) := max
(
{hmin(y) : y ∈ V, g(y) = 0, ‖y − x‖ ≤ t} ∪ {0}

)
.

By Lemma 7.7, there exists an N ∈ N such that for all x ∈ V ∩ Z(h), either
ultimately αx(t) = 0 or ultimately αx(t) > tN .

Fix an arbitrary x ∈ V ∩Z(h). Then x ∈ fr(A∩V ) if and only if ultimately
αx(t) > tN . However, we have ultimately αx(t) > tN if and only if x belongs to
the closure of

{
y ∈ V : g(y) = 0, h(y) > ‖y − x‖N > 0

}
, and the latter clearly

holds if and only if x belongs to the closure of {y ∈ Dx : g(y) = 0}, where

Dx :=
{
y ∈ V : 2hN

x (y − x) ≥ ‖y − x‖N > 0
}
.

Second, we define β : Y −→ [0,∞) by

β(x, t) := min
({
|(g, φx)|(y) : 2hN

x (y − x) ≥ ‖y − x‖N , ‖y − x‖ = t
}
∪ {1}

)
.

Again by Lemma 7.7, there exists an M ∈ N such that for all x ∈ V ∩ Z(h),
either ultimately βx(t) = 0 or ultimately βx(t) > tM .

Fix again an arbitrary x ∈ V ∩ Z(h). Then x is not in the closure of
{y ∈ Dx : g(y) = 0} if and only if ultimately βx(t) > tM . However, if ulti-
mately βx = 0, then x is in the closure of{

y ∈ Dx : 4|(g, φx)|(y) < ‖y − x‖M
}
,

which implies that x is in the closure of

Ex :=
{
y ∈ Dx : 2|(gM

x , (φx)
M
x )|(y − x) < ‖y − x‖M

}
.

Conversely, if x ∈ cl(Ex), then x is in the closure of{
y ∈ Dx : |(g, φx)|(y) < ‖y − x‖M

}
,

which implies that ultimately βx = 0. It follows from the above that

(∗) for all x ∈ V ∩ Z(h), x ∈ fr(A ∩ V ) if and only if x ∈ cl(Ex).
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Let G ∈ R[a, y]q be the general q-tuple of polynomials in y of degree M
and coefficients a ∈ Rm1 , H ∈ R[b, y]r the general r-tuple of plynomials in y
of degree N and coefficients b ∈ Rm2 and Φ ∈ R[c, y]k the general k-tuple of
polynomials in y of degree M and coefficients c ∈ Rm3 . Let S ⊆ Rn × Rm1 ×
Rm2 × Rm3 × Rn be the semialgebraic set

S :=
{
(x, a, b, c, y) : 2H(b, y − x) ≥ ‖y − x‖N > 0,

2|(G(a, y − x),Φ(c, y − x)‖ < ‖y − x‖M
}
.

Then there are definable, analytic functions a : U −→ Rm1 , b : U −→ Rm2 and
c : U −→ Rm−3 such that for all x ∈ U ,

Ex = {y ∈ V : (x, a(x), b(x), c(x), y) ∈ S} .
Thus by (∗),

(∗∗) for all x ∈ V ∩Z(h), x ∈ fr(A∩V ) if and only if x ∈ cl(S(x,a(x),b(x),c(x))).

By Tarski’s Theorem, there is a semialgebraic set T ⊆ Rn+m1+m2+m3+n such
that for all (x, a, b, c) ∈ Rn+m1+m2+m3 , we have T(x,a,b,c) = cl(S(x,a,b,c)). There-
fore, the set

C := {x ∈ U : (x, a(x), b(x), c(x), x) ∈ T}
is normal in U and satisfies fr(A ∩ V ) = C ∩ V . �

Combining Corollary 8.4 with Proposition 9.1, we obtain

Corollary 9.3. Let m ≤ n. Then there is a finite collection P of normal
leaflets in U contained in A such that

(i) Πm(U ∩ cl(A ∩ V )) =
⋃

N∈P Πm(N ∩ V );
(ii) Πm(A∩V ) and Πm(U ∩ fr(A∩V )) are unions of some of the Πm(N ∩V )

with N ∈ P ;
(iii) for every N ∈ P, the set N ∩ V is an analytic submanifold of U , the

restriction of Πm to N ∩ V is an immersion, and for every m′ ≤ m the
restriction of Πm′ to N ∩ V has constant rank. �

10. Proper nested sub-Pfaffian sets

In this section, we put I := [−1, 1] and I ′ := I \ {0}.

Definition 10.1. Let Y ⊆ Rn. Let U ⊆ Rn\Y be normal such that In\Y ⊆ U ,
d = (d0, . . . , dk) a definable, analytic nested distribution on U , V ⊆ U a Rolle
leaf of dk and A a normal subset of U . In this situation, we say that the nested
Pfaffian set V ∩ A ∩ In is restricted off Y .

Example 10.2. Let X ⊆ In be restricted nested Pfaffian off {0}. Then
X \ ({0} ×Rn−1) is restricted nested Pfaffian off {0} ×Rn−1 and the fiber X0

is restricted nested Pfaffian off {0}.
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Let Z ⊆ Rm. A nested sub-Pfaffian set W ⊆ Im is proper off Z if W is
a finite union of sets of the form Πn

m(X), where X ⊆ In is restricted nested
Pfaffian off Z × Rn−m.

Notation. In this section, we are only interested in nested sub-Pfaffian sets
W ⊆ Im that are proper off {0} × Rm−1; thus, we shall simply call such a W
proper.

Theorem 10.3. Let W1, . . . ,Wq ⊆ Im be proper nested sub-Pfaffian sets.
Then there is a finite partition C of I ′ × Im−1 into analytic cells definable in
P(R) such that each C ∈ C is proper nested sub-Pfaffian and for every C ∈ C
and p ∈ {1, . . . , q}, either C ⊆ Wp or C ∩Wp = ∅.

To prove Theorem 10.3, we need certain closure properties for proper nested
sub-Pfaffian sets.

Lemma 10.4. The collection of all proper nested sub-Pfaffian sets is closed
with respect to taking finite unions, coordinate projections and topological
closure inside Im \ ({0} × Rm−1).

Proof. Closure with respect to taking finite unions and coordinate projections
is obvious; closure with respect to taking topological closure inside Im \ ({0}×
Rm−1) follows from Proposition 9.1. �

Unfortunately, the collection of all proper nested sub-Pfaffian sets is obvi-
ously not closed with respect to Cartesian products. However, we have the
following weaker statement:

Lemma 10.5. (1) Let W ⊆ Im be proper nested sub-Pfaffian. Then W ×
I is proper nested sub-Pfaffian.

(2) Let W ⊆ Im and W ′ ⊆ Im′
be proper nested sub-Pfaffian and 1 ≤ k ≤

min{m,m′}. Write (x, y) and (x, y′) for the elements of Rm and Rm′
,

respectively, where x ∈ Rk, y ∈ Rm−k and y′ ∈ Rm′−k. Then the fiber
product

W ×k W
′ :=

{
(x, y, y′) ∈ Rm+m′−k : (x, y) ∈ W, (x, y′) ∈ W ′

}
is proper nested sub-Pfaffian.

Sketch of proof. (1) It suffices to consider the case where W = Πm(X) for
some Pfaffian set X ⊆ In that is restricted off {0} × In−1. But in this case,
the set

Y :=
{
(x, t, y) ∈ In+1 : x ∈ Im, y ∈ In−m, t ∈ I and (x, y) ∈ X

}
is restricted nested Pfaffian off {0} × In by Corollary 2.7(1), and W × I =
Πm+1(Y ).
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(2) It suffices to consider the case where W = Πm(X) for some nested
Pfaffian set X ⊆ In that is restricted off {0} × In−1 and W ′ = Πm′(X ′) for
some nested Pfaffian set X ′ ⊆ In′ that is restricted off {0} × In′−1. Below, we
let z range over In−m and z′ range over In′−m′

. Since k ≥ 1, the set

Y :=
{

(x, y, y′, z, z′) ∈ In+n′−k : (x, y, z) ∈ X and (x, y′, z′) ∈ X ′
}

is restricted nested Pfaffian off {0}× In+n′−k−1 by Corollary 2.7(1), and W ×k

W ′ = Πm+m′−k(Y ). �

Corollary 10.6. LetW,W ′ ⊆ Im be proper nested sub-Pfaffian. ThenW∩W ′

is proper nested sub-Pfaffian. �

Also using Lemma 10.5, we obtain the following lemmas; we leave the details
to the reader.

Lemma 10.7. Let W1, . . . ,Wq ⊆ Im be proper nested sub-Pfaffian. Then the
following subsets of Im−1 are proper nested sub-Pfaffian:

(1) the set

W ′ :=
{
x′ ∈ Im−1 : ∃y1 < · · · < yq, (x′, yp) ∈ Wp, p = 1, . . . , q

}
;

(2) for each p < q the set

W := {(x′, y) ∈ Im : ∃y1 < · · · < yp < y < yp+1 < · · · < yq,

(x′, yl) ∈ Wl, l = 1, . . . , q};
(3) for each p ≤ q the set

W := {(x′, y) ∈ Im : ∃y1 < · · · < yp = y < · · · < yq,

(x′, yl) ∈ Wl, l = 1, . . . , q}. �

Proof of Theorem 10.3. By induction on m; the case m = 0 is trivial and the
case m = 1 follows from the o-minimality of P(R), so we assume that m > 1
and the theorem holds for lower values of m. Increasing q if necessary, we may
assume that the singleton set {0} and the sets Im−1×{−1} and Im−1×{1} are
among the Wi. Decomposing each Wi if necessary, we may also assume that
each Wi is proper nested sub-Pfaffian. Thus, for each p ∈ {1, . . . , q} there are
np ≥ m, a normal set Up ⊆ Rnp \ ({0}×Rnp−1) containing Inp \ ({0}× Inp−1),
a definable, analytic nested distribution dp = (dp

0, . . . , d
p
k(p)) on Up, a Rolle leaf

Vp of dp
k(p) and a set Ap normal in Up such that Wp = Π

np
m (Ap ∩ Vp).

For each p ∈ {1, . . . , q}, we now apply Corollary 9.3 with np, Up, d
p, Vp and

Ap in place of n, U , d, V and A. (Here we use the fact that the collection of
all proper nested sub-Pfaffian subsets of Im is closed with respect to taking
topological closure inside Im \ ({0} × Im−1).) We let Pp be the corresponding
collection of normal leaflets in Up obtained for m and P ′

p be the corresponding
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collection of normal leaflets in Up obtained with m− 1 in place of m, and we
put

Q := {Πnp
m (N ∩ Vp) : p ∈ {1, . . . , q}, N ∈ Pp, dim(N ∩ Vp) < m}

and

Q′ :=
{
Π

np

m−1(N ∩ Vp) : p ∈ {1, . . . , q}, N ∈ P ′
p, dim(N ∩ Vp) < m− 1

}
.

By definition, the elements of Q and Q′ are proper nested sub-Pfaffian sets.
Moreover, each Z ∈ Q is an immersed, analytic manifold in Rm with empty
interior such that the restriction of Πm

m−1 to Z has constant rank; we let F be
the union of all sets in Q. Similarly, each Z ′ ∈ Q′ is an immersed, analytic
manifold in Rm−1 with empty interior.

Let N ∈ N be such that Zx′ has at most N components for every x′ ∈ Rm−1

and every Z ∈ Q. For k ≤ N |Q| and Z1, . . . , Zk ∈ Q, we put

Z ′(Z1, . . . , Zk) :=
{
x′ ∈ Im−1 :

∃y1 < · · · < yk such that (x′, yj) ∈ Zj for j = 1, . . . , k
}
,

and we denote by Q′′ the collection of these sets. By Lemma 10.7, each set in
Q′′ is proper nested sub-Pfaffian. Hence by the inductive hypothesis applied
to the collection Q′∪Q′′, there is a finite partition C ′ of I ′×Im−2 into analytic
cells definable in P(R) such that C ′ is compatible with Q′ ∪ Q′′ and each
C ′ ∈ C ′ is proper nested sub-Pfaffian.

Fix now a C ′ ∈ C ′; it suffices to show that C ′ × I admits a finite parti-
tion C into analytic cells definable in P(R) such that C is compatible with
{W1, . . . ,Wq} and each C ∈ C is proper nested sub-Pfaffian. However, for
each p ∈ {1, . . . , q}, the set Wp ∩ (C ′ × I) is the union of some of the sets
Z ∩ (C ′ × I) with Z ∈ Q and some of the components of (C ′ × I) \ F . There-
fore, it suffices to show that C ′ × I admits a finite partition C into analytic
cells definable in P(R) such that C is compatible with Q and each C ∈ C is
proper nested sub-Pfaffian.

By construction, Lemma 10.5 and Corollary 10.6, if Z ∈ Q then the set
Z ∩ (C ′ × I) is proper nested sub-Pfaffian and an analytic submanifold of
I ′ × Im−1, and each of its components is the graph of an analytic function
from C ′ to R. In particular, F ∩ (C ′ × I) is a closed subset of C ′ × I.

Moreover, if Y ∈ Q also, then (Z ∩Y )∩ (C ′× I) is the union of some of the
components of Z∩(C ′×I). On the other hand, each component of Z∩(C ′×I)
is of the form{

(x′, y) ∈ C ′ × I : ∃y1 < · · · < yk such that

y = yl and (x′, yj) ∈ Zj for j = 1, . . . , k
}
,
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where k ≤ N |Q|, l ≤ k and Z1, . . . , Zk ∈ Q. Hence by Lemma 10.7, each
such component is proper nested sub-Pfaffian and an anlytic cell definable in
P(R). It follows that each component of (C ′ × I) \ F is an open analytic cell
definable in P(R), and each such component is proper nested sub-Pfaffian by
Lemma 10.7 again, because it is of the form{

(x′, y) ∈ C ′ × I : ∃y1 < · · · < yk such that

yl < y < yl+1 and (x′, yj) ∈ Zj for j = 1, . . . , k
}

with k ≤ N |Q|, l < k and Z1, . . . , Zk ∈ Q. �

11. Proof of the Main Theorem

Assume that R admits analytic cell decomposition. Let M ⊆ Rn be an
analytic, definable manifold, and let d = (d0, . . . , dk) be an analytic, definable
nested distribution on M . Let also A ⊆M be definable.

Proposition 11.1. There are n1, . . . , ns ∈ N, and for each j = 1, . . . , s there
exist an analytic, definable nested distribution ej = (ej,0, . . . , ej,k(j)) on Cj :=
{y ∈ Rnj : 0 < ‖y‖ < 2} and a definable, analytic embedding ψj : Cj −→ M
such that, with Bj := {y ∈ Rnj : 0 < |yi| < 1 for i = 1, . . . , nj},

(i) ψj(Cj) ⊆ A for each j, and {ψj(Bj) : j = 1, . . . , s} covers A;
(ii) for every Rolle leaf V of dk, we have A ∩ V =

⋃s
j=1 ψj(Bj ∩ Vj), where

each Vj is either empty or a Rolle leaf of ej,k(j).

In particular, each Bj ∩ Vj is a restricted nested Pfaffian set off {0}.

Proof. By Proposition 2.8, we may assume that A = M = Rn. If dk has no
Rolle leaves, the proposition is now trivial. So we also assume that dk has a
Rolle leaf; in particular, d1 has a Rolle leaf V1, say. Then V1 is embedded, closed
and of codimension 1 in Rn, so V1 separates Rn. Let D1 and D2 be two closed
balls in Rn\V1 of positive radius and contained in different components of Rn\
V1, and denote by c1 and c2 their centers and by U1 and U2 their complements
in Rn. For j = 1, 2, we let φj : Rn \ {cj} −→ Rn \ {0} be a definable,
analytic diffeomorphism such that φj(Uj) = C := {x ∈ Rn : 0 < ‖x‖ < 2},
and we let ej be the push-forward of d via φj and put ψj := φ−1

j . With
B := {x ∈ Rn : 0 < |xi| < 1 for i = 1, . . . , n}, we may assume that each ψj(B)
does not intersect V1.

By our choice of φ1 and φ2, any Rolle leaf of dk that intersects U1 does not
intersect ψ2(B), and any Rolle leaf of dk that intersects U2 does not intersect
ψ1(B). On the other hand, by Corollary 2.7(2), there is an N ∈ N such that
for every Rolle leaf V of dk and each j = 1, 2, the set V ∩ Uj has at most N
connected components. The corollary now follows. �
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Corollary 11.2. Let V be a Rolle leaf of dk. Then A ∩ V is a finite union of
simply connected nested sub-Pfaffian sets that are analytic manifolds definable
in P(R).

Proof. Let Cj, ψj, ej, etc., be as in the previous proposition; it suffices to prove
the corollary with each ej and Cj in place of d and A. In other words, we may
assume that M = {x ∈ Rn : 0 < ‖x‖ < 2} and A = {x ∈ Rn : 0 < |xi| < 1
for i = 1, . . . , n}, and we let V be a Rolle leaf of dk. Since A∩V is a restricted
nested Pfaffian set off {0}, the corollary now follows from Example 10.2 and
Theorem 10.3. �

Proposition 11.3. Let W = (W0, . . . ,Wk) be a nested integral manifold of d
definable in P(R). Then there exists a q ∈ N, and for each p = 1, . . . , q there
exist np ≥ n, a definable manifold Np ⊆ Rnp , a definable nested distribution
dp = (dp

0, . . . , d
p
k(p)) on Np and a nested Rolle leaf V p = (V p

0 , . . . , V
p
k(p)) of dp

such that

Wk ⊆
q⋃

p=1

Πn(V p
k(p)) and dim(V p

k(p)) ≤ dim(Wk) for each p.

Proof. By induction on k. If k = 1 we let C be a definable analytic cell
decomposition of Rn such that for each C ∈ C with C ⊆ M , the distribution
gC ∩ d1 has dimension and d1|C is analytic. Then by Haefliger’s Theorem [14],
for every C ∈ C such that C ⊆ M , every leaf of d1|C is a Rolle leaf. The
proposition now follows easily in this case.

Assume now that k > 1 and the proposition holds for lower values of k. By
the inductive hypothesis and Lemma 6.3, we may assume that Wk−1 is a Rolle
leaf of dk−1. Hence by Corollary 11.2, we may actually assume that Wk−1 is a
simply connected nested sub-Pfaffian set that is an analytic manifold definable
in P(R). Hence by Haefliger’s Theorem, the leaf of dk|Wk−1

containing Wk is a
Rolle leaf. The proposition now follows from Corollary 8.4 and Lemma 6.3. �

Combining Lemma 4.1, Theorem 6.4 and Proposition 11.3, we obtain

Theorem 11.4. Let V be a Rolle leaf of dk. Then there are nested sub-
Pfaffian sets W1, . . . ,Wl ⊆ Rn such that fr(V ) ⊆ W1∪· · ·∪Wl and dim(Wk) <
dim(V ) for k = 1, . . . , l. �

The main theorem now follows from the above theorem and Section 2 of [6].

12. Conclusion

We conclude by proving the corollary in the introduction; we continue to
assume that R admits analytic cell decomposition. Let L ⊆ Rn be one of
the Rolle leaves added to R in the construction of P(R) in [16]; it suffices to
establish the following:
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Proposition 12.1. L is a nested sub-Pfaffian set over R.

Proof. By construction of P(R) and Example 2.2, there are a l ∈ N and a
1-distribution e on Rn definable in Rl such that L is a Rolle leaf of e. We
proceed by induction on l; if l = 0, we are done, so we assume that l > 0 and
the proposition holds for all lower values of l; in particular, every set definable
in Rl is definable in N (R). Thus, by analytic cell decomposition and the Main
Theorem, we may assume that e is analytic and there are a definable manifold
M ⊆ Rn′ , a definable nested distribution d = (d0, . . . , dk) on M and a Rolle
leaf V of dk such that gr(e) = Πn(V ). By Corollary 8.4, we may further assume
that Πn|V is an immersion and dim(Πn◦dk(y)) = dim(dk(y)) = n for all y ∈M .
Since Πn(V ) ⊆ Rn × Gn−1

n , we may also assume that Πn(M) ⊆ Rn × Gn−1
n .

Let now dk+1 be the (n− 1)-distribution on M defined by

dk+1(y) := dk(y) ∩ (Πn′

n )−1(π(Πn+n2(y))),

where π : Rn+n2 −→ Rn2
is the projection on the last n2 coordinates and

π(Πn(y)) is identified with the (n − 1)-dimensional subspace of Rn that it
represents. Then d′ := (d0, . . . , dk+1) is a definable nested distribution on M
and V ′ := V ∩ (Πn′

n )−1(L) is a Rolle leaf of dk+1, as required. �
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