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Abstract. We work in an o-minimal expansion of a real closed field. Using

piecewise smoothness of definable functions we define the topological degree
for definable continuous functions. Using this notion of the degree we obtain a

new proof for the existence of torsion points in a definably compact group, and

also a new proof of an o-minimal analogue of the Brouwer fixed point theorem.

1. Introduction

We work in an o-minimal expansion R of a real closed field R.
In the last few years there has been a significant progress in applying the ideas

and methods from algebraic topology to sets definable in R (see, for example,
[1, 2, 6, 11, 19]). Probably one of the biggest achievements in this direction was a
positive answer by M. Edmundo to the following problem posted by the first author
and C. Steinhorn (see [14]):

The Torsion Point Problem. Let G be a definable group. If G is definably
compact then G has a p-torsion point for every prime p.

In fact, using methods of algebraic topology, M. Edmundo and M. Otero in [6]
gave a precise count of torsion points for abelian definably compact groups. This
count of the torsion points required the introduction of classical invariants, such as
orientation and degree of a map, into the o-minimal setting. It was done, in the
category of definable C0-manifolds and continuous maps, using definable homology.

In this paper we propose a more tangible definition of orientation and degree
for definable manifolds. Our approach is based on piecewise differentiability of
definable functions. For example, if U is a definable open subset of Rn and f : U →
Rn is a definable locally injective function, then, outside of a set of small dimension,
f is differentiable and has non-singular Jacobian. We prove in Section 3.1 that if,
in addition, U is definably connected, then the determinant of the Jacobian of f
has a constant sign on U \X, for some X of small dimension. It allows as to use
the sign of the determinant of the Jacobian of f to decide whether f is orientation
preserving or reversing.

In Section 3.2 we introduce a notion of orientability for definable manifolds that
is based on comparing the signs of determinants of Jacobians of transition maps.
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In Section 3.3 we show that this notion of orientation for definable manifolds
coincides with combinatorial orientation based on triangulation. As it was proved
in [2], in the case of definably compact manifolds, the combinatorial orientation
coincides with one obtained via local homology groups. Thus, at least in definably
compact case, all three notions of orientation agree.

In Section 3.4 we define a notion of degree for definably proper maps between
definable orientable manifolds of the same dimension, based on analogous definition
for differentiable maps. Once again, as in the case of orientation, the definition of
degree is homology-free.

In Section 3.5, as an illustration of our approach, we give another prove of
Brouwer fixed point theorem in the o-minimal setting.

In Section 4 we turn to definable smooth manifolds. The main goal in this section
is to give a homological-free proof of the Torsion Point Problem. We do it by using
methods from differential geometry. As in the classical case, we compute the Euler
characteristic of a definable smooth manifold using Morse functions. For example,
we prove that every definably compact C4-manifold with trivial tangent bundle has
zero Euler characteristic. It implies that every definably compact group has Euler
characteristic zero and therefore (see [18]) a positive answer to the Torsion Point
Problem. Using Morse function we also prove that for a definably compact C4-
manifold, the Euler characteristic equals Lefschetz number. It provides a missing
link between the topological point of view and the differential one, which was left
as an open question in [1].

The proofs of properties of Morse functions that we are using are almost iden-
tical to the corresponding proofs in the classical case R = R. We present them in
Appendix.

Part of the work on this paper was done when the second author was visiting
McMaster University (Hamilton, Canada), and also during the semester in Model
Theory and Applications to Algebra and Analysis at Isaac Newton Institute for
Mathematical Sciences (Cambridge, UK). We thank them for hospitality. We also
thank Margarita Otero for her helpful comments on an earlier draft of this paper.

2. Preliminaries

We fix an o-minimal expansion R of a real closed field R. For convenience we
will assume that R is ω-saturated, however all our results hold in an arbitrary
o-minimal expansion of a real closed field.

For definitions and basic properties of o-minimal structures we refer to [4].
We assume familiarity with definable Cp-manifolds. For a definition of a de-

finable Cp-manifold we refer to [1, Section 10.1] where they are called abstract-
definable Cp-manifolds. We also refer to [13, 14] for additional information on
definable Cp-manifolds. By a definable manifold we mean a definable topological
(i.e. C0) manifold. We don’t assume that a definable manifold is definably con-
nected, however we will always assume that its definably connected components
have the same dimension.

For a differentiable map f from an open subset of Rn to Rm, we will denote by
J(f)x the Jacobian matrix of f at x, and by |J(f)x| its determinant.
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For a definable manifold M and a subset V of M , we will denote by cl(V ) the
topological closure of V in M . We will also write clM (V ) if we want to emphasize
that the closure is taken in the ambient manifold M .

We will use frequently the following result that was proved for o-minimal expan-
sions of fields in [19], and for arbitrary o-minimal structures in [8].

Theorem 2.1 (Invariance of Domain). Let U be a definable open subset of Rn and
f : U → Rn a definable continuous injective map. Then f(U) is open in Rn and f
is a homeomorphism between U and f(U).

The following fact follows from [8, Proposition 2].

Fact 2.2. Let M be a definably connected definable manifold of dimension n and
V a definable open dense subset of M . Consider the graph Γ whose vertices are the
definably connected components of V with two components Vi and Vj connected by
an edge if and only if dim

(
cl(Vi)∩ cl(Vj)

)
> n− 1. Then the graph Γ is connected.

2.1. Generic points. We will be using generic points. In this section we review
briefly their basic properties and refer to [15, Section 1] for more details.

Let A ⊆ R and a ∈ Rn, then dim(a/A), the dimension of a over A, is the least
cardinality of a subtuple a′ of a such that a ∈ dcl(A ∪ a′).

Let X ⊆ Rn a set definable over A ⊆ R, and a ∈ X. We say that a is a generic
point in X over A if dim(a/A) = dim(X).

Let X1, X2 be sets definable over A ⊆ R. We say that a1 ∈ X1 and a2 ∈ X2

are independent generics if a1 is generic in X1 over A and a2 is generic in X2 over
A ∪ a1. It is not hard to see that a1 ∈ X1 and a2 ∈ X2 are independent generics
over A if and only if (a1, a2) is a generic point in X1 ×X2 over A.

Existence of generics. Since we assume that R is ω-saturated, if X ⊆ Rn is
a set definable over finite A ⊆ R then there is always a ∈ X generic over A.

In the proof, whenever we say a is generic in X, we mean that a is a generic
point in X over A, where A is the set of all elements of R appearing in the proof
so far.

2.2. On local connectedness. For the notion of a definable space and their basic
properties we refer to [4, Chapter 10]. The only definable spaces we will need in
this paper are definable subsets of definable manifolds. Namely, if M is a definable
manifold then M with its definable atlas is also a definable space; and every defin-
able subset X of M can be considered as a definable subspace of M in the sense of
[4, page 158]. Since all such spaces are regular, from now on by definable space we
will mean a regular definable space.

In this section we consider the following question:
Let X and Y be definable spaces such that X × Y is a definable manifold. Does it
imply that X is also a definable manifold?

In a private communication, M. Shiota informed us that, for o-minimal structure
over the reals, affirmative answer follows from his X-Hauptvermutung [17, Chapter
3]. We expect that the answer is also positive for any o-minimal expansion of a real
closed field, and in this section we prove it when the dimension of X is 1.

We first review local connectedness and related notions that were introduce in
[12].

For a definable space X we will denote by #(X) the number of definably con-
nected components of X. Since definable connectedness coincide with definable
path-connectedness, the following fact is elementary.
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Fact 2.3. If X and Y are definable spaces then #(X × Y ) = #(X) ·#(Y ).

Let X be a definable space and x ∈ X. For α > 0, a definable family {Ut, t ∈
(0, α)} of definable open neighborhoods of x in X is called a good definable basis
for the topology of X at a if the following conditions are satisfied:

(1) every Ut is definably connected;
(2) t < t′ implies Ut ⊆ Ut′ ;
(3) for every definable open subset V of X containing x there is t such that

Ut ⊆ C.

Example 2.4. Let X be a definable subset of Rn considered as a definable space
and x ∈ X. For r > 0 let B(x, r) be the open ball of radius r in Rn centered at x,
and Ur the definably connected component of B(x, r) ∩X containing x. Then the
family {Ur : r ∈ (0, 1)}, is a good definable basis for the topology of X at x.

Since, by [4, Chapter 10 (1.8)]), every definable regular space is definably home-
omorphic to a definable subspace of Rn, the above example shows that in every
definable space X each point x ∈ X has a good definable basis for the topology of
X at x. Moreover such a basis can be chosen definably uniformly in x ∈ X.

The proof of the following lemma is contained in [12, Lemma 2.3].

Lemma 2.5. Let X be a definable space, Y ⊆ X a definable subset of X, x ∈ X,
and {Ut, t ∈ (0, α)} a good definable basis for the topology of X at x. Then for all
sufficiently small t > 0 every definably connected component of Ut ∩ Y has x in its
closure.

LetX be a definable space, Y a definable subset ofX, x ∈ X, and {Ut, t ∈ (0, α)}
a good definable basis for topology of X at x. Then, by o-minimality, #(Ut ∩Y ) =
#(Ut′ ∩ Y ) for all sufficiently small t, t′. Moreover, Lemma 2.5 implies that if Vτ

is another good basis for X at x, then #(Vt ∩ Y ) = #(Uτ ∩ Y ) for all sufficiently
small t, τ . We will denote this number by #(Y )x.

Claim 2.6. Let X be a definable space of dimension one. Then X is a definable
manifold if an only if #(X \ {x})x = 2 for all x ∈ X.

Proof. Follows from the cell decomposition. �

Claim 2.7. Let M be a definable n-dimensional manifold and Y ⊆M a definable
subset of dimension n − 1. Then for every generic y ∈ Y the number #(M \ Y )y

equals 2.

Proof. Since the number #(M \Y )y is computed locally in M near y, we can work
in a definable chart containing y and assume that M is an open subset of Rn. Since
y ∈ Y is generic, there is an open U ⊆ M containing y such that Y ∩ U is a C1-
submanifold of U . Working locally after applying an appropriate diffeomorphism,
we are reduced to the case when M is an open subset of Rn and Y is the intersection
of M with the hyper-plane {xn = 0}. Taking open balls centered at y as a good
basis of the topology of U at y, we obtain #(M \ Y )y = 2. �

Theorem 2.8. Let X,Y be definable spaces with dim(X) = 1 and M = X × Y . If
M is a definable manifold then X is also a definable manifold .

Proof. By Claim 2.6 we need to show that #(X \ {x})x = 2 for any x ∈ X.
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We fix x ∈ X and denote by Yx the set {x}×Y ⊆M . Let y ∈ Y be generic over
x. Then (x, y) is generic in Yx and, by Claim 2.7, #(M \ Yx)(x,y) = 2. Also, since
y ∈ Y , we have #(Y )y = 1.

Let Ut be a good definable basis for the topology of X at x, and Vt be a good
definable basis for the topology of Y at y. Obviously, Ut × Vt is a good definable
basis for the topology of M at (x, y). For all sufficiently small t we have

#
(
(Ut × Vt) \ Yx

)
= 2 and #(Vt) = 1

Since (Ut × Vt) \ Yx = (Ut \ {x}) × Vt, by Claim 2.3, #(Ut \ {x}) = 2, hence
#(X \ {x})x = 2. �

3. Orientation on C0-manifolds, and the degree of continuous maps.

3.1. Locally injective maps. Let f : M → N be a definable continuous map
between definable manifolds, and a ∈ M . We say that f is locally injective at a if
there is a definable open neighborhood U of a in M such that f is injective on U .
We say that f is locally injective if it is locally injective at every a ∈M .

Let U ⊆ Rm be a definable open set and f : U → Rn a definable continuous
map. A point a ∈ U is called a regular point of f if f is C1 on a neighborhood
of a and the rank of J(f)a equals n. We will denote the set of all regular points
of f by Reg(f). Obviously, Reg(f) is a definable open set. Notice that if m = n
then a point a ∈ U is regular if and only if f is a diffeomorphism from an open
neighborhood of a onto an open subset of Rn.

Let U ⊆ Rn be a definable open set and f : U → Rn a definable continuous
locally injective map. It is easy to see that in this case the set Reg(f) is a dense
open subset of U and the function x 7→ Sign(|J(f)x|) is locally constant on Reg(f).
Our goal is to prove that it is constant on all Reg(f), provided U is definably
connected.

We will need the following lemma.

Lemma 3.1. Let W ⊆ Rn−1 and U ⊆ Rn be definable open sets such that the set
W̃ = W ×{0} is contained in the boundary of U . Let F : U ∪W̃ → R be a definable
continuous C1-function on U , f : W → R be the function y 7→ F (y, 0), and w ∈W
a generic point. Then f is differentiable at w and, for all i = 1, . . . , n− 1,

∂f

∂xi
(w) = lim

u→(w,0),u∈U

∂F

∂xi
(u).

Proof. We will assume i = 1.
We will denote by x the n-tuple of variables (x1, . . . , xn) and by y the (n − 1)-

tuple (y1, . . . , yn−1).
Since w is generic in W , the map f is differentiable near w, and we will just

assume that f is differentiable everywhere on W .
After replacing F (y, t) by F (y, t) − F (y, 0), we may also assume that f(y) ≡ 0

on W .
For x ∈ U , let F ′(x) denote ∂F

∂x1
(x). We need to show that

(3.1) lim
u→(w,0),u∈U

F ′(u) = 0.
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We divide U into two sets U+ = {x ∈ U : xn > 0} and U− = {x ∈ U : xn < 0}.
Obviously, to show (3.1) it is sufficient to show that for ε ∈ {−,+}

if (w, 0) ∈ cl(Uε) then lim
u→(w,0),u∈Uε

F ′(u) = 0

We will consider only the case of U+ and assume (w, 0) ∈ cl(U+).
Since w is generic in W , there is an open definable neighborhood V of w in W

and d > 0 such that V × (0, d) ⊆ U+. Shrinking W if needed, we can assume that
W × (0, d) ⊆ U+.

Since (w, 0) is a generic point of the boundary of U+ and U+ is locally connected
at (w, 0), by o-minimality, the limit of F ′(u), as u ∈ U+ approaches (w, 0), exists
in R ∪ {±∞}. Let L be the limit.

Towards getting a contradiction we assume that L 6= 0, say L > 0. Then, since
w is generic in W , there is C > 0 and ε1, ε2 > 0 such that the set {y : ‖y−w‖ 6 ε1}
is contained in W and

(3.2) F ′(y, t) > C for all (y, t) ∈ Rn with ‖y − w‖ 6 ε1, 0 < t < ε2.

Since F is continuous on U ∪ W̃ and vanishes on W̃ , for every y ∈ W there is
δ(y) > 0 such that |F (y, t)| < ε1

2 C for 0 < t < δ(y). The set {y ∈W : ‖y−w‖ 6 ε1}
is definably compact, hence we can find δ > 0 such that

(3.3) |F (y, t)| < ε1
2
C on the set {(y, t) : ‖y − w‖ 6 ε1, 0 < t < δ}.

Decreasing δ if needed, we will assume δ < ε2.
Let w′ = (w1 + ε1, w2, . . . , wn−1), b = (w, δ/2), and b′ = (w′, δ/2), where

(w1, . . . , wn−1) = w. We have w′ ∈W and b, b′ ∈ U+. From (3.3) we obtain

|F (b)− F (b′)| 6 |F (b)|+ |F (b′)| < Cε1.

Consider the map g(t) = F (w1 + tε1, w2, . . . , wn−1, δ/2). We have g(0) = F (b)
and g(1) = F (b′). By the Mean Value Theorem, there is τ ∈ (0, 1) such that g′(τ) =
F (b′)−F (b), hence |g′(τ)| < Cε1. Since g′(τ) = ε1

∂F
∂x1

(w1+τε1, w2, . . . , wn−1, δ/2),
we obtain ∣∣∣∣ ∂F∂x1

(w1 + τε1, w2, . . . , wn−1, δ/2)
∣∣∣∣ < C,

contradicting (3.2). �

Now we are ready to prove the main theorem of this section.

Theorem 3.2. Let U ⊆ Rn be a definable open definably connected set and F : U →
Rn a definable continuous locally injective map. Then the function x 7→ |J(F )x|
has constant sign on Reg(F ).

Proof. Let V1, . . . , Vk be all definably connected components of Reg(F ). Obviously
|J(F )x| has constant sign on each Vi. By Fact 2.2, we need to show that for any
two components Vi, Vj with dim

(
clU (Vi) ∩ clU (Vj)

)
= n − 1 the sign of |J(F )| on

Vi is the same as on Vj . We consider two such components Vi, Vj and assume they
are V1 and V2. Let D = clU (V1) ∩ clU (V2). (Thus dim(D) = n− 1.)

Let w0 be a generic point of D. By o-minimality, the set D is a C1-submanifold
of Rn near w0. Thus there is a definable open ball B ⊆ Rn containing w0 and a
definable diffeomorphism g from B onto an open subset of Rn such that g(B∩D) ⊆
{xn = 0}. Shrinking B and composing g with the reflection in the plane {xn = 0}
if needed, we may assume that g(B ∩ V1) ⊆ {xn > 0} and g(B ∩ V2) ⊆ {xn < 0}.
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Since g is a diffeomorphism, the sign of |J(g)x| is constant on B. Hence we may
replace U with g(B ∩ U), F with F ◦g−1 and assume that

V1 ⊆ {xn > 0}, V2 ⊆ {xn < 0} and D ⊆ {xn = 0}.

Shrinking U again if needed, we can also assume that F is injective on U . By
the Invariance of Domain Theorem we have that F (U) is open in Rn and F maps
U homeomorphicaly onto its image.

Let w1 be a generic point of F (D). Since F (D) is a C1-submanifold of Rn near
w1, we can apply an appropriate diffeomorphism of an open neighborhood of w1

and assume that F (D) ⊆ {xn = 0}.
As before, we may assume that

F (V1) ⊆ {xn > 0} and F (V2) ⊆ {xn < 0}.

Let (a, 0) be a generic point of D. (In particular, a is a generic point in Rn−1.)
Writing F = (F1, . . . , Fn), since Fn(a, 0) = 0 and Fn(a, z) is increasing in z near 0,

we can find ε > 0 small enough such that
∂Fn

∂xn
(a, y) > 0 for all y ∈ (−ε, ε) different

from 0. Since a is generic in Rn−1 we may assume, by shrinking U if needed, that

for all (x1, . . . , xn) ∈ U , if xn 6= 0 then
∂Fn

∂xn
(x1, . . . , xn) > 0. If this last change of

U affects the genericity of (a, 0), we replace (a, 0) with another generic point and
continue to assume that (a, 0) is generic in D.

We define the map Ψ: U → Rn by

Ψ(x1, . . . , xn) = (x1, . . . , xn−1, Fn(x1, . . . , xn)).

Claim. Ψ is continuous, injective on U , identity on D, differentiable on U \D, and
|J(Ψ)x| > 0 for all x ∈ U \D.
Proof of Claim. Obviously Ψ is continuous and differentiable on U \ D. It is
injective since for every (x1, . . . xn−1) ∈ D the function xn 7→ Fn(x1, . . . , xn) is
strictly increasing.

We have |J(Ψ)x| =
∂Fn

∂xn
(x), hence it is positive outside of D.

End of Claim.

The above claim allows us to replace the map F with the map F ◦Ψ−1 without
changing the sign of the Jacobean matrix of F on U \D. We therefore may assume
from now on that Fn(x1, . . . , xn) = xn on U .

For x = (x1, . . . , xn) ∈ U \D we have

(3.4) |J(F )x| =

∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

(x) · · · ∂F1
∂xn−1

(x) ∂F1
∂xn

(x)
...

. . .
...

...
∂Fn−1

∂x1
(x) · · · ∂Fn−1

∂xn−1
(x) ∂Fn−1

∂xn
(x)

0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂F1
∂x1

(x) · · · ∂F1
∂xn−1

(x)
...

. . .
...

∂Fn−1
∂x1

(x) · · · ∂Fn−1
∂xn−1

(x)

∣∣∣∣∣∣∣∣
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Let W = {y ∈ Rn−1 : (y, 0) ∈ D}, and f : W → Rn−1 be the map y 7→
(F1(y, 0), . . . , Fn−1(y, 0)). It is not hard to see that f is continuous and injec-
tive on W . Also, since a is a generic point in W , a is a regular point of f . Hence
|J(f)a| 6= 0.

By lemma 3.1, for 1 6 i, j 6 n − 1, the limit of ∂Fi

∂xj
(u), as u approaches (a, 0)

from U , equals ∂fj

∂xj
(a). It follows then from (3.4) that

lim
u→(a,0),u∈U

|J(F )u| = |J(f)a|.

Hence, for u ∈ U close enough to (a, 0), whether in V1 or in V2, the sign of |J(F )u|
is the same as the sign of |J(f)a|. In particular, the sign of |J(F )| is the same in
V1 and in V2. �

Example 3.3. To illustrated the above theorem, we consider a very simple exam-
ple. Let F : R → R be defined as x 7→ 3

√
x. This is a semi-algebraic homeomorphism

with Reg(F ) consisting of two connected components, R>0 and R<0. Even though
the function F is not differentiable at 0, the above theorem guarantees that the
sign of the differential of F to the right of 0 is the same as to the left.

3.2. Orientable definable manifolds. An orientation for definable manifolds
was developed by A. Berarducci and M. Otero in [2] using local homology groups.
In this section we use Theorem 3.2 to give an alternative definition, that does not
use homological methods. It resembles the definition of orientation for definable
smooth manifolds, and indeed, in the case of definable C2-manifolds our definition
coincides with the corresponding definition in [1].

Definition 3.4. Let U ⊆ Rn be an open definable set and f : U → Rn a definable
continuous injective map. The map f is orientation preserving if |J(f)a| > 0 for
every a ∈ Reg(f), and it is orientation reversing if |J(f)a| < 0 for every a ∈ Reg(f).

Remark 3.5. If U ⊆ Rn is an open definable set that is definably connected then, by
Theorem 3.2, every definable injective f : U → Rn is either orientation preserving or
reversing. However if U is not definably connected then f may be neither orientation
preserving nor reversing.

Let M be a definable manifold of dimension n. Recall that a definable chart on
M is a pair 〈U,ϕ〉, where U is a definable open subset of M and ϕ : U → Rn is a
definable homeomorphism between U and f(U). A definable atlas on M is a finite
set A = {〈Ui, ϕi〉 : i ∈ I} of definable charts on M such that M = ∪i∈IUi.

Definition 3.6. A definable oriented manifold 〈M,A〉 is a definable manifold M
together with a definable atlas A = {〈Ui, ϕi〉 : i ∈ I} such that all transition maps
ϕi◦ϕ−1

j are orientation preserving.
A definable manifold M is called orientable if there is a definable atlas A on M

such that 〈M,A〉 is a definable oriented manifold.

Let 〈M,A〉, 〈N,B〉 be definable oriented manifolds of the same dimension and
f : M → N a definable continuous injective map. We say that f is orientation
preserving (orientation reversing) if for all charts 〈U,ϕ〉 ∈ A, 〈V, ψ〉 ∈ B the map
ψ◦f ◦ϕ−1 is orientation preserving (orientation reversing).

Let 〈M,A〉 is a definable oriented manifold, and V a definable open subset of M .
It is easy to see that A�V = {〈U ∩ V, ϕ�V 〉 : 〈U,ϕ〉 ∈ A, U ∩ V 6= ∅} is a definable



O-MINIMAL TOPOLOGICAL INVARIANTS 9

atlas on V , and 〈V,A �V 〉 is a definable oriented manifold. This orientation on V
is called induced.

The following lemma follows from Theorem 3.2.

Lemma 3.7. Let 〈M,A〉, 〈N,B〉 be definable oriented manifolds of the same di-
mension and f : M → N a definable continuous injective map. If M is definably
connected then f is either orientation preserving or orientation reversing.

Let M be a definable manifold and A, B two definable atlases on M such that
both 〈M,A〉 and 〈M,B〉 are definable orientable manifolds. We say that the orien-
tations given by A and B are equivalent if the identity map id: 〈M,A〉 → 〈M,B〉
is orientation preserving, and we say that the orientations given by A and B are
opposite if the identity map id: 〈M,A〉 → 〈M,B〉 is orientation reversing. It follows
from Lemma 3.7 that for a definably connected orientable definable manifold, upto
equivalence, there are exactly two definable orientations.

The following lemma provides a useful criterion when a definable manifold is
orientable.

Lemma 3.8. Let M be a definable manifold and B = {〈Ui, ϕi〉 : i ∈ I} a definable
atlas on M such that every Ui is definably connected. Then M is definably orientable
if and only if there is a function λ : I → {−1,+1} such that Sign

(
|J(ϕi◦ϕ−1

j )|a
)

=
λ(i)λ(j) for all i, j ∈ I and every generic a ∈ ϕI(Ui ∩ Uj).

Proof. Assume A is a definable atlas on M such that 〈M,A〉 is definably oriented.
The required function λ can be obtained as follows. For i ∈ I we assign λ(i) to
be +1 if the map ϕi : Ui → Rn is orientation preserving and −1 if it is orientation
reversing, with the orientation on Ui induced from 〈M,A〉.

For the opposite direction, assume that B and λ are as in the statement. For
i ∈ I let ϕ̂i be the map from Ui into Rn that equals ϕi if λ(i) = +1 and r◦ϕi if
λ(i) = −1, where r : Rn → Rn is the reflection in the hyper-plane xn = 0. It is not
hard to see that M , with the definable atlas A = {〈Ui, ϕ̂i〉 : i ∈ I} is a definably
oriented manifold. �

3.3. Orientation on Polyhedra. If M is a definable manifold then, by Triangula-
tion Theorem, M is definably homeomorphic to a simplicial complex. In this section
we show that our notion of orientation coincides with a combinatorial orientation
for simplicial complexes. In [2] it was also shown that in the case of definably com-
pact manifolds, the combinatorial orientation coincides also the orientation given
via local homology groups. It follows than that at least in the case of definably
compact manifolds all these three notions of orientation coincide.

If M is a definable manifold then we have two notion of orientation. One is from
the previous section, and another given in [2] using local homology groups.

We review briefly simplices and simplicial complexes. We refer to [4, Chapter 8]
for more details.

3.3.1. Simplices and their orientations. An n-simplex σ in Rk is a set spanned by
n+ 1 affine independent points a0, . . . an ∈ Rk, i.e. the set {ai − a0 : 1 6 i 6 n} is
linearly independent and

σ =
{∑

tiai : ti > 0,
∑

ti = 1
}
.

We will often denote this n-simplex by 4{a0, . . . , an}.
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A face of4{a0, . . . , an} is a simplex spanned by a nonempty subset of {a0, . . . , an}.
Let σ be an n-simplex and O(σ) be the set of all orderings of vertices of σ. A

(combinatorial) orientation on σ is a map o : O(σ) → {+1,−1} that changes sign
under a transposition of a pair of elements in an ordering. Obviously, to define an
orientation on an n-simplex 4{a0, . . . , an} it is sufficient to assign a sign to one of
the orderings of {a0, . . . , an}.

Let σ = 4{a0, . . . , an}, σ0 = 4{b0, . . . , bn} be oriented n-simplexes with orien-
tations o, o1 respectively, and f : σ → σ1 the simplicial isomorphism induced by the
vertex map ai 7→ bi. We say that f is orientation preserving, if o(a0, . . . , an) =
o1(b0, . . . , bn); otherwise we say that it is orientation reversing.

If σ = 4{a0, . . . , an} is an n-simplex in Rn then it inherits an orientation from
Rn by assigning to (a0, . . . , an) the sign of the determinant of the matrix whose
columns are the vectors (a1 − a0, . . . , an − a0). We will call this orientation the
induced orientation on σ.

If σ is an n-simplex then a map i : σ → Rn is called a simplicial embedding if
i is a simplicial isomorphism from σ onto an n-simplex in Rn. If σ is an oriented
n-simplex and i : σ → Rn is a simplicial embedding, then considering i(σ) with
the orientation induced from Rn we obtain the notion of an orientation preserving
(reversing) embedding.

The following claim is elementary.

Claim 3.9. Let σ, σ′ be n-simplexes in Rn with induced orientations and f : σ → σ′

a simplicial isomorphism. Then f is orientation preserving, as a simplicial map, if
and only if f preserves orientation as a map from an open subset of Rn into Rn.

Let σ be an oriented n-simplex, U an open subset of Rn, and f : U → σ a defin-
able continuous injective map. We say that f is orientation preserving (reversing)
if for some some orientation preserving simplicial embedding i : σ → Rn the map
i◦f is orientation preserving (reversing), as a map from an open set U to Rn. It
follows from Claim 3.9 that this definition does not depend on the choice of i. If U
is definably connected then every definable continuous injective map from U into
σ is either orientation preserving or reversing.

3.3.2. Contiguous simplices. Two disjoint n-simplices σ, σ1 are called contiguous if
they share a common (n− 1)-face.

Let σ = 4{b, a1, . . . , an}, σ1 = 4{c, a1, . . . , an} be contiguous n-simplices with
orientations o, o1, respectively. We say that o and o1 are compatible if o(b, a1, . . . , an) =
−o(c, a1, . . . , an).

Claim 3.10. Let σ, σ1 be contiguous n simplexes in Rn. Then the induced orien-
tations are compatible.

Proof. Easy. �

3.3.3. Simplicial complexes and their orientation. A coherent orientation on an
n-dimensional simplicial complex K is a choice of an orientation oσ for each n-
simplex σ in K such that contiguous n-simplices have compatible orientations. (In
particular, each (n− 1)-simplex in K is a face of at most two n-simplices in K). If
K has such an orientation then it is called orientable.

It follows from Claim 3.10 that if K is an n-dimensional simplicial complex in Rn

then the induced orientation on every n-simplex in K gives a coherent orientation
on K.
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A simplicial complex K of dimension n is said to be strongly connected if the
graph Γ, whose vertices are n-simplices of K with edges connecting contiguous
simplices, is connected.

As usual, if K is a simplicial complex in Rk then by |K| we will denote the
polyhedron in Rk spanned by K, i.e. |K| = ∪σ∈Kσ.

Claim 3.11. If σ1 and σ2 contiguous n-simplices which the common (n−1)-face σ′

then there is a simplicial isomorphism i∗ sending the simplicial complex {σ1, σ1, σ
′}

onto a complex in Rn. Moreover, if σ1 and σ2 are equipped with compatible orien-
tations, then we can choose i∗ to be orientation preserving on each σ1 and σ2. (As
usual we use orientation induced from Rn on the image of i∗.)

Proof. Easy. �

Let K be an oriented n-dimensional simplicial complex, U an open subset of Rn

and f : U → |K| a definable continuous injective map. We say that f is orientation
preserving (reversing) if for each n-simplex σ ∈ K with f(U) ∩ σ 6= ∅ the map f
restricted to f−1(σ) is orientation preserving (reversing), as a map from an open
subset of Rn into n-simplex.

Lemma 3.12. Assume |K| is an n-dimensional polyhedron in Rk spanned by an
oriented simplicial complex K, U a definably connected open subset of Rn, and
f : U → |K| a definable continuous injective map. Then either f is orientation
preserving or orientation reversing.

Proof. We consider all n-simplices σ ∈ K such that f(U) ∩ σ 6= ∅, and for each
such σ we consider the connected components of U ∩ f−1(σ). Thus we can thus
find in U finitely many definably connected open sets V1, . . . , Vl such that:
(1) For each Vr, there is an n-simplex σr ∈ K such that f(Vr) is contained in σr

(2) the set (V1 ∪ · · · ∪ Vl) is dense in U .
By Fact 2.2, it is sufficient to show that if dim

(
cl(Vr)∩ cl(Vs)

)
= n−1 and f �Vr

is orientation preserving then f �Vs is orientation preserving as well. We fix such
Vr and Vs and assume f �Vr is orientation preserving. Since dim

(
cl(Vr)∩ cl(Vs)

)
=

n − 1, there is a definable subset D ⊆
(
cl(Vr) ∩ cl(Vs)

)
such that f(D) is an open

subset of an (n − 1)-simplex σ′ of K. Obviously, σ′ is a common face of σr, σs,
hence σr, σs are contiguous, and the set W = Vr ∪D ∪ Vs is a definably connected
open subset of U .

By Lemma 3.11 we can find a simplicial isomorphism i∗ from {σr, σs, σ
′} onto a

simplicial complex in Rn that preserves orientation on each σr and σs.
Since W is a definable connected open set of Rn, the map i∗ ◦f restricted to

W is either orientation preserving or orientation reversing. Its restriction to Vr is
orientation preserving, hence the restriction to Vs must be orientation preserving
as well. �

Theorem 3.13. Assume that M is a definably connected definable manifold, de-
finably homeomorphic to a polyhedron |K| ⊆ Rk spanned by a complex K. Then
any orientation on M induces a coherent orientation on K and vice versa.

Proof. Let n be the dimension of M . First note that since M is a definably con-
nected manifold, the complex K is strongly connected. Let F : M → |K| be a
definable homeomorphism.
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Assume first that K is equipped with a coherent orientation. We are going to
use Lemma 3.8 to produce a definable orientation on M .

Let B = {〈Ui, ϕi〉 : i ∈ I} be a definable atlas on M with all Ui definably con-
nected. We need to produce a function λ : I → {−1,+1} as in Lemma 3.8.

Let i ∈ I. By Lemma 3.12, the map F ◦ϕ−1
i is either orientation preserving or

orientation reversing, as a map from ϕi(U) into |K|. We assign λ(i) = +1 if F◦ϕ−1
i

is orientation preserving and λ(i) = −1 otherwise.
It is left to verify that λ satisfies the assumptions of Lemma 3.8. Assume that a

is a generic point in ϕi(Ui ∩ Uj). Let σ be the n-simplex in K with F (a) ∈ σ, and
i : σ → Rn an orientation preserving simplicial embedding. We have

λ(i) = Sign
(
|J(i◦F ◦ϕ−1

i )a|
)
, and λ(j) = Sign |J(i◦F ◦ϕ−1

j )a|

It immediately follows that λ(i)λ(j) = Sign
(
|J(ϕi◦ϕ−1

j )a|
)
.

We now need to prove the opposite direction. Namely, that any orientation
on the manifold M induces a coherent orientation on K. This is done as follows:
for each n-simplex σ ∈ K, consider the restriction of F to the oriented, definably
connected manifold Mσ = F−1(σ). We choose a simplicial embedding iσ : σ → Rn

so that iσ ◦F : Mσ → Rn preserves orientation. We orient σ by transferring via i
the orientation induced by Rn on iσ(σ). We need to show that this orientation is
a coherent orientation on the whole of K.

Consider contiguous n-simplices, σ and σ1 in K with an (n− 1)-simplex σ′ as a
common face. By definition, the maps iσ◦F and iσ1◦F preserve orientation on Mσ

and Mσ1 , respectively.
Consider the map i∗ from the simplicial complex {σ, σ1, σ

′} onto a simplicial
complex in Rn as in Lemma 3.10. Modifying i∗ if needed, we can assume that i∗◦F
is orientation preserving on F−1(σ ∪ σ1 ∪ σ′).

But then, the maps i∗◦i−1
σ and i∗◦i−1

σ1
both preserve orientations, as maps from

open subsets of Rn into Rn. It follows then that the combinatorial orientations of
σ and σ1, each agree with that of i∗(σ) and i∗(σ1). But, the complex i∗(σ∪σ1∪σ′)
inherits from Rn a coherent orientation. Therefore, the orientation on σ ∪ σ1 ∪ σ′
is coherent. �

3.4. Degree of a Map. A degree of a definable continuous map was defined by
M. Edmundo and M. Otero in [6] using homological methods. In this section we
will give an alternative definition that does not use homology.

Definition 3.14. Let 〈M,A〉 and 〈N,B〉 be definable oriented manifolds of the
same dimension and f : M → N a definable continuous map. Let x ∈ M be such
that f is injective on an open neighborhood of x in M . Then the local degree of
f at x, denoted by degx f , is defined to be +1 if f � U : U → N is orientation
preserving on an open neighborhood of x (with respect to the induced orientation),
and degx f = −1 if it is orientation reversing.

Let f : 〈M,A〉 → 〈N,B〉 be a definable continuous map between two definable
oriented manifolds of the same dimension and b ∈ N . We say that b is a topological
regular value of f if f−1(b) is finite (or empty), and f is locally injective at every
a ∈ f−1(b). If b is a topological regular value of f then we will denote by degb(f)
the integer

∑
f(x)=b degx(f). (If b is not in the image of f then degb(f) = 0.)



O-MINIMAL TOPOLOGICAL INVARIANTS 13

Notice that if f : M → N is a definable continuous map between two manifolds
of the same dimension then every generic y ∈ N is a topological regular value of f ,
in particular the set of topologically regular values is a dense subset of N .

Recall that a definable continuous map f : M → N between definable manifolds
is called definably proper if the preimage f−1(S) of every definably compact subset
S ⊆ N is definably compact.

Claim 3.15. Let f : M → N be a definable continuous map between definable
manifolds.

(1) If M is definably compact then f is definably proper.
(2) If f is definably proper then f(M) is a closed subset of N .
(3) If f is definably proper and A ⊆ N a definable open set, then f �f−1(A) is

definably proper ( as a map from f−1(A) into A).

Proof. Easy. �

The next theorem is the main goal of this section.

Theorem 3.16. Let 〈M,A〉, 〈N,B〉 be definably oriented manifolds of the same
dimension n, and f : M → N a definable continuous map which is definably proper.
Assume N is definably connected. Then degy(f) is the same for all topological
regular values y ∈ N .

Proof. Let V reg ⊆ N be the set of all topological regular values of f .
Claim. V reg is definable, open, dim(N \ V reg) < n, and the function b 7→ degb(f)
is locally constant on V reg.
Proof of Claim. Definability of V reg is easy. Since V reg contains all generic
points of N , dim(N \ V reg) < n.

Let b ∈ V reg. We need to find an open definable W ⊆ N containing b such that
W ⊆ V reg and y 7→ degy(f) is constant on W .
Case 1: b 6∈ Image(f).
Since f is definably proper, the image of f is closed in N and we can take W =
N \ Image(f).
Case 2: b ∈ Image(f).
Let a1, . . . ak be all preimages of b under f , and U1, . . . , Uk are open definable
pairwise disjoint subsets of M such that ai ∈ Ui and f is injective on each Ui.
By the Invariance of Domain Theorem, every f(Ui) is open in N . Since f is
definably proper, there is a definably connected open neighborhood W of b such
that f(W ) ⊆ f(Ui) for each i. Obviously the function y 7→ degy(f) is constant on
W .
End of Claim.

For a tuple x ∈ Rn we will denote by xn the n-th component of x.
We first consider a special case.

A special case. Let us assume in addition the following:
(a1) N = Rn with the standard orientation;
(a2) every y ∈ Rn with yn 6= 0 is a topological regular value of f ;
(a3) {y ∈ Rn : yn > 0} ⊆ Image(f);
(a4) Image(f) ⊆ {y ∈ Rn : yn > 0};
(a5) M = Rn with the standard orientation ;
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(a6) π ◦f = π, where π : Rn → Rn−1 is the projection onto the first n − 1
coordinates.

Proof of the special case. In order to prove the theorem in this case, it is sufficient
to show that degy(f) = 0 for all topological regular values y of f .

Since f is definably proper, its image is closed in N , hence Image(f) = {y ∈
Rn : yn > 0}.

If y ∈ Rn with yn = 0 then y belongs to the frontier of f(M), hence, by
Invariance of Domain, it can not be a topological regular value. Thus the set of
topological regular values of f is {y ∈ Rn : yn 6= 0}, it has two definably connected
components {yn > 0} and yn < 0}, and degy(f) = 0 for all y ∈ {yn < 0}. To finish
this special case we need to show that degy(f) = 0 for some y ∈ {yn > 0}.

Let c ∈ Rn−1 be arbitrary. According to the assumption (a6) and (a4), f({c} ×
R) ⊆ {c}×R>0. Let hc : R → R>0 be the function such that f((c, t)) = (c, hc(t)).
Since f is definably proper, we obtain that I0 = h−1

c (0) is a definably compact
subset of R, so it consists of finitely many closed intervals of R (we treat points as
closed intervals). If t0 6∈ I0 then f((c, t0)) is a topological regular value of f , hence
f is locally injective at (c, t0) and hc(t) must be strictly monotone near t0. Since
hc(t) is continuous it implies that hc(t) is strictly monotone outside of I0. By (a4),
hc has only non-negative values, hence I0 must be just one interval [α−c , α

+
c ], and

hc(t) has the following form:
It is strictly decreasing on (−∞, α−c ), zero on [α−c , α

+
c ], and strictly increasing on

(α+
c ,+∞).
Notice also that, since f is definably proper, the limit limhc(t) does not exist in

R, as t goes to +∞ or −∞. Hence this limit must be +∞.
Thus for any positive t0 ∈ R the preimage of the point p = (c, t0) under f

consists of two points: p+ = (c, t+0 ) with t+0 > 0, and p− = (c, t−0 ) with t−0 < 0. The
function hc(t) is increasing at t+0 and decreasing at t−0 . Since the map f(x1, . . . , xn)
has form

(x1, . . . , xn) 7→ (x1, . . . , xn−1, h(x1,...,xn−1)(xn))

it is easy to see that degp−(f) = −1, degp+(f) = +1, and degp(f) = 0.
End of the special case.

We now return to the general case, and reduce it to the special case above.
Let V1, . . . , Vk be the definably connected components of V reg. By the claim

above, the function y 7→ degy(f) is constant on each Vi. Let di be the value of this
function on the component Vi. By Fact 2.2, we need to show that di = dj for Vi, Vj

with dim
(
cl(Vi) ∩ cl(Vj)

)
= n− 1.

We assume that V, V ′ are two such components and D = cl(V )∩cl(V ′). We need
to show that degy(f) = degy′(f) for some y ∈ V, y′ ∈ V ′. If both V and V ′ are not
in the image of f then both degrees are zeroes and there is nothing to prove. Thus
we may assume that V ⊆ Image(f).

By o-minimality, outside of a set of smaller dimension, the set D is a submanifold
of N . Hence we can find an open definable set B ⊆ N and an orientation preserving
homeomorphism λ from B onto Rn such that λ(B ∩D) = {y ∈ Rn : yn = 0}. We
may assume that λ(B∩V ) = {y ∈ Rn : yn > 0} and λ(B∩V ′) = {y ∈ Rn : yn < 0}.
Replacing the manifold N with Rn, M with f−1(B), and the map f with λ◦f we
can assume that the conditions (a1)–(a2) hold.
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To obtain the condition (a3), we compose f with the following map:
Let σ : Rn → Rn be the mapping

(y1, . . . , yn) 7→ (y1, . . . , |yn|)

It is easy to see that σ is a continuous proper map injective on each half-space {y ∈
Rn : yn > 0} and {y ∈ Rn : yn < 0}. It is orientation preserving on {yn > 0} and
orientation reversing on {yn < 0}. Consider the map f1 = σ◦f . If y = (y1, . . . , yn) ∈
{yn > 0}, then degy(f1) = degy(f) − degỹ(f), where ỹ = (y1, . . . ,−yn). Hence to
prove the theorem it is sufficient to show that degy(f1) = 0 for some y ∈ {yn > 0}.
Since the image of σ is {y ∈ Rn : yn > 0}, we replace f by f1 if needed and assume
that condition (a4) also hold.

We now turn to the conditions (a5),(a6). Consider the map g = π◦f : M → Rn−1,
where π : Rn → Rn−1 is the projection onto the first n− 1 coordinates. Since the
image of f contains the half-space {y ∈ Rn : xn > 0}, the map g is surjective.
Obviously it is definable and continuous. By the Trivialization Theorem [4], there
is an open ball B ⊆ Rn−1 such that g is trivial over B, i.e. there is a definable
set J ⊆ Rk and a definable homeomorphism ν : g−1(B) → B × J such that the
following diagram is commutative.

Rn ⊃ B ×R g−1(B) B × J

B

Q
Q

Q
Q

Q
Qs

π

-ν

?

g

�f

�
�

�
�

�
�+

π1

where π1 : B × J → B is the natural projection.
We now replace N with B ×R, M with g−1(B), and f with f � g−1(B). After

this replacement, conditions (a1)–(a4) are not satisfied anymore. However, the open
ball B is definably homeomorphic to Rn−1. Therefore, after applying such a home-
omorphism, we can replace B with Rn−1, and assume that conditions (a1)–(a4)
are satisfied, and we also may assume that the following diagram is commutative

Rn M Rn−1 × J

Rn−1

HH
HHjπ

� f -ν

�
��� π1

where ν : M → Rn−1 × J is a definable homeomorphism.
By Theorem 2.8, J is a definable one-dimensional manifold. Let J1, . . . , Jk be the

definably connected components of J and Mi = ν−1(Rn−1×Ji), i = 1, . . . , k. Since
ν is a homeomorphism, Mi, i = 1, . . . , k, are the definably connected components of
M . We will consider each Mi as a definable oriented manifold with the orientation
induced from M .

Let fi = f � Mi. Clearly, degy(f) = degy(f1) + · · · + degy(fk). Thus we can
consider each fi separately and assume that J is definably connected.

Case 1: J is definably compact.
Pick any a ∈ Rn−1. Then f({a} × J) is contained in {a} × R and is definably
compact, hence bounded. Thus (a, t) is not in the image of f for any sufficiently
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large positive t, therefore deg(a,t)(f) = 0 for any large enough t > 0.

Case 2: J is not definably compact.
In this case, by [16], J is homeomorphic to R, so we can assume J = R and
M = Rn. This is exactly the setting of the special case. Theorem is proved. �

The above theorem allows us to give a homology-free definition of the degree of
a map.

Definition 3.17. Let 〈M,A〉, 〈N,B〉 be definable oriented manifolds of the same
dimension and f : M → N a definably proper continuous definable map. If N is
definably connected then we define the degree of f , denoted by deg(f), to be the
integer dega(f), where a ∈ N is any topologically regular value of f .

Claim 3.18. Let 〈M,A〉, 〈N,B〉 be definable oriented manifolds of the same di-
mension and f : M → N a definable continuous definably proper map. Assume M
is definably compact, N is definably connected and not definably compact. Then
deg(f) = 0.

Proof. Since M is definably compact, f(M) is also definably compact. Hence
f(M) 6= N , N \ f(M) is open and contains a topologically regular value a. By
the definition, deg(f) = dega(f) = 0. �

3.5. Definable homotopies and the Brouwer fixed point theorem.

3.5.1. Definable Homotopy. Let U , V be definable spaces, and f0, f1 : U → V defin-
able continuous maps. As usual, a definable homotopy from f0 to f1 is a definable
continuous map F : U× [0, 1] → V such that f0(x) = F (x, 0) and f1(x) = F (x, 1).A
definable homotopy F (x, t) from f0 to g0 is called proper if F is a proper map from
U × [0, 1] to V .

Theorem 3.19. Let U, V be definably oriented manifolds of the same dimension
with V definably connected and f0, f1 : U → V definably proper continuous maps. If
f0 and f1 are homotopic via a proper definable homotopy then they have the same
degree.

Proof. Let F : U × [0, 1] be a definable homotopy from f0 to f1 that is proper. We
extend F to a definable map from U ×R into V by setting F (u, t) = F (u, 0) for
t < 0 and F (u, t) = F (u, 1) for t > 1. Consider the map H : U ×R → V ×R given
by

H : (u, t) 7→ (F (u, t), t)

It is not hard to see that H is a definably proper continuous map. We orient
U ×R and V ×R with product orientations. Let a ∈ V be a generic point, and
t0, t1 ∈ R be such that each ti is generic over a, t0 < 0 and t1 > 1. Then (a, t0)
and (a, t1) are topological regular values of H, and, by Theorem 3.16, we have that
deg(a,t0)(H) = deg(a,t1)(H). Since both (a, t0), (a, t1) are generic points in V ×R,
they are regular values of H, the degrees can be computed as the sums of the signs
of the corresponding Jacobians, and it is easy to see that for each t0, t1 the degree
deg(a,ti)(H) is the same as the degree of the map u 7→ F (u, ti) for i = 0, 1. �
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3.5.2. Brouwer fixed point theorem. In this section we present a proof of a theorem
that, as in the classical case, implies the Brouwer fixed point theorem. In o-minimal
setting this theorem has already been proved by various methods (e.g., see [2, 19,
20]), however we think that the proof presented here is a good illustration of the
usefulness of our notion of degree.

We fix n ∈ N+. Let B̄ be the unit closed ball in Rn, S the unit sphere, and B
the open unit ball B̄ \S. We will consider B as a definably oriented manifold, with
the orientation induced from Rn.

Recall that a definable continuous map f : B̄ → S is called a retraction if f �S =
idS .

Theorem 3.20. There is no definable continuous retraction from B̄ to S.

Proof. Towards getting a contradiction we assume thatf : B → S is a definable
continuous retraction.

Consider the map F : B̄ × [0, 1] → Rn given by

F : (u, t) 7→ tf(u) + (1− t)u.

For each r ∈ [0, 1) the map x 7→ F (x, r) is identity on S and maps B into B.
Let r ∈ [0, 1) be fixed. It is not hard to see that the restriction of F to B× [0, r]

is a is a definably proper map, as a map into B. Thus the map u 7→ F (u, r) is
homotopic (as a map from B to B) to the identity map via a proper definable
homotopy. By Theorem 3.19, its degree is 1, hence its image is everywhere dense
in B.

Thus, by the definable choice, there is a definable curve γ(r) : [0, 1) → B such
that ‖F (γ(r), r)‖ 6 1/2. Let a be the limit of γ(r) as r approaches 1. Obviously, a ∈
B̄ and ‖F (a, 1)‖ 6 1/2. But F (a, 1) = f(a) and f(B̄) ⊆ S. A contradiction. �

4. Euler characteristic and Lefschetz number for smooth manifolds

4.1. The gradient and the Hessian matrix of a function. Whenever we con-
sider Rn as a vector space, we assume that the elements of R are the column
vectors. If U ⊆ Rn is a definable open set and x ∈ U then the tangent space to U
at x will be always identified with Rn in a standard way. Under this identification,
if f : Rn → Rm is a definable C1-function and x ∈ Rn, then the differential of
D(f)x is a linear map from Rn to Rm and the Jacobian J(f)x is its matrix with
respect to the standard coordinates.

Let U ⊆ Rn be an open definable set and f : U → R a definable C1-function. For
x ∈ U the Jacobian of f at x is an 1×n-matrix, its transpose can be considered as
an element of Rn, and is called the gradient of f at x. We will denote the gradient
of f at x by ∇f(x). Thus ∇f(x) =

(
J(f)x

)T . If 〈 · , · 〉 is the standard inner
product on Rn, then for every v ∈ Rn we have D(f)x(v) = J(f)xv = 〈∇f(x), v〉.

Let U ⊆ Rn be an open definable set and f : U → R a definable C2-function.
The map x 7→ ∇f(x) is a definable C1-map from U into Rn, and for a ∈ U , the
Jacobian of this map at a is called the Hessian matrix of f at a. It is the square
n × n matrix of the second order partial derivatives of f computed at a. We will
denote the Hessian matrix of f at a by H(f)a.

4.2. On definable Morse functions.
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4.2.1. Critical Points of Functions. Let M be a definable Cr-manifold of dimension
n, where r > 2, and f : M → R a definable C2-function.

As usual, we say that a point p ∈M is a critical point of f if the differential of
f at p is zero, and if p is a critical point of f then f(p) is called a critical value of
f .

Let p be a critical point of f and 〈U, u〉 a definable C2-coordinate system on M at
p (i.e. U is an open definable subset ofM containing p and u is a C2-diffeomorphism
from U onto an open subset of Rn with u(p) = 0). The critical point p is called
non-degenerate if the Hessian matrix of f◦u−1 at 0 is nonsingular. If v : V → Rn is
another definable C2-coordinate system on M at p then, by direct computations,
the Hessian matrix of f ◦v−1 at 0 is

(4.1) H(f ◦v−1)0 =
(
J(v◦u−1)0

)T
H(f ◦u−1)0J(v◦u−1)0.

Hence the notion of non-degeniricity does not depend on the choice of a local
coordinate system.

If p is a non-degenerate critical point of f and u : U → Rn a definable C2-
coordinate system on M at p, then the Hessian H(f ◦u−1)0 is a symmetric, hence
diagonalizable, matrix. The index of f at p is defined to be the number of negative
eigenvalues of H(f ◦u−1)0 (counted with multiplicity). It follows from (4.1) that
this number does not depend on the choice of the local coordinate system at p.

4.2.2. Definable Morse Functions. Let M be a definable C2-manifold and f : M →
R a definable C2-function. As usual, we say that f is a definable Morse function if
it has finitely many critical points and all critical point of f are non-degenerate.

For embedded manifolds the existence of definable Morse functions was proved
in [9].

Fact 4.1 ([9, Theorem3]). Let M be a definable Cr-submanifold of Rm, r > 2.
Then there is a definable Cr-function f : Rm → R such that the restriction of f to
M is a definable Morse function on M and all critical values of f are distinct.

Since the proof of the following theorem is almost identical to the corresponding
proof from [10], we will present it in Appendix.

Theorem 4.2. Let M be a definably compact C4-manifold and f : M → R a de-
finable Morse C4-function with distinct critical values. Let p1, . . . , pn be the critical
points of f and for each i = 1, . . . , n let λi be the index of f at pi. Then the
o-minimal Euler characteristic χ(M) of M equals the sum (−1)λ1 + · · ·+ (−1)λn .

4.3. Euler characteristic. Let M be a definably compact Cp-manifold of dimen-
sion n with p > 1. By the Embedding Theorem [1], M is definably Cp-diffeomorphic
to a definable Cp-submanifold of Rm, therefore we may always assume that such a
manifold is Cp-submanifold of Rm, for some m.

If M is a Cp-submanifold of Rm then the tangent bundle T (M) of M can consid-
ered as Cp−1-submanifold of the tangent bundle T (Rm) of Rm. Since T (Rm) can
be identified with Rm×Rm, the tangent bundle T (M) can be canonically identified
with a Cp−1 submanifold of Rm ×Rm (see [1, Section 2.5] for more details). The
same procedure can be applied to the cotangent bundle T ∗(M) of M , so we may
always consider both T (M) and T ∗(M) as Cp−1-submanifolds of Rm ×Rm.

Let M be a definable submanifold of Rm, as usual, we say that the tangent
bundle T (M) is definably trivial if there is a definable Cp−1-isomorphism of vector
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bundles Θ: T (M) →M ×Rn. Namely, Θ: T (M) →M ×Rn is a definable Cp−1-
diffeomorphism such that for each m ∈ M , the restriction of Θ onto T (M)m is
R-linear isomorphism from T (M)m onto {m} ×Rn.

Theorem 4.3. Let M be a definably compact C4-manifold whose tangent bundle
is definably trivial. Then the o-minimal Euler characteristic of M is zero.

Proof. We may assume that M is a C4-submanifold of Rm.
Considering definably connected components of M separately, we are reduced to

the case when M is definably connected.
Let Θ: T (M) →M ×Rn be a definable C3-isomorphism of vector bundles. For

x ∈M we can use Θ to identify definably T (M)x with Rn.
Let U ⊆ M be an open subset, h : U → Rm a definable C1-map, and x ∈ U .

The differential of h at x is a linear map from T (M)x to Rm. Using Θ, we identify
T (M)x with Rn, and consider D(h)x as a linear map from Rn to Rm. We will
denote by

[
D(h)x

]
the corresponding m× n-matrix. If V ⊆ Rl is a definable open

set, g : V → M a definable C1-map, and y ∈ V , then identifying again T (M)f(y)

with Rn, in the same way as above, we can consider D(g)y as a linear map from Rl

to Rn and will denote by
[
D(g)y

]
the corresponding matrix. If h and g as above

and in addition x = h(y), then, by the Chain Rule, we obtain

(4.2)
[
D(h)x

] [
D(g)y

]
= J(h◦g)y

Claim 4.4. M is definably orientable.

Proof of Claim. Let {〈Ui, ϕi〉 : I} be a definable C4-atlas such that every Ui is
definably connected. The map x 7→ det

[
D(ϕi)x

]
has constant sign on each Ui. We

can apply Lemma 3.8 with λ(i) being this sign.
End of Claim.

We fix a definable orientation A on M , and changing it to the opposite if needed,
we can assume that for all 〈U,ϕ〉 ∈ A and x ∈ U the determinant of

[
D(ϕ)x

]
is

positive.
By Fact 4.1, we can choose a definable Morse C4-function f : M → R with

distinct critical values. Let p1, . . . , pk be all critical points of f and λi, i = 1, . . . , k,
the correspondent indexes.

If x ∈M then
[
D(f)x

]
is an n×1-matrix, and its transpose is a vector in Rn. We

will denote this vector by Ω(x). Thus we obtain a map Ω: M → Rn and it is not
hard to see that it is a definable C3-map. Since M is definably compact, by Claim
3.18, deg(Ω) = 0. Our goal is to show that this degree equals Euler characteristic
of M .

Obviously, Ω(x) = 0 if and only if x is a critical point of f , hence Ω−1(0) =
{p1, . . . , pk}. If 0 is a regular value of Ω, then 0 = deg(Ω) = deg0(Ω). Hence, by
Theorem 4.2, to finish the proof it is sufficient to show that each pi is a regular
point of Ω and degpi

(Ω) = (−1)λi .
We consider only the point p1. We fix a chart 〈U,ϕ〉 ∈ A with p1 ∈ U . Let

V = ϕ(U) and q = ϕ(p1). To show that degp1
(Ω) = (−1)λ1 it is sufficient to

prove that the Jacobian of Ω◦ϕ−1 at q is a nonsingular matrix, and the sign of its
determinant is (−1)λ1 . According to the definition of the index of a function at a
critical point, (−1)λ1 equals to the sign of the determinant of the Hessian matrix
H(f ◦ϕ−1)q, and this Hessian matrix is the Jacobian of ∇(f ◦ϕ−1) at q. Thus to
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finish the proof we need to show that the sign of the determinant of J(Ω◦ϕ−1)q is
the same as the sign of the determinant of J

(
∇(f ◦ϕ−1)

)
q
.

According to the definition, for x ∈ U and y = ϕ(x), we have

Ω◦ϕ−1(y) =
[
D(f)x

]T

and
∇(f ◦ϕ−1)(y) =

(
J(f ◦ϕ−1)y

)T
.

By (4.2),(
J(f ◦ϕ−1)y

)T =
([

D(f)x

] [
D(ϕ−1)y

])T =
[
D(ϕ−1)y

]T [
D(f)x

]T
.

Since
[
D(ϕ−1)y

]
=

[
D(ϕ)x

]−1, we obtain

Ω◦ϕ−1(y) = B(y)∇(f ◦ϕ−1)(y),

where B(y) denotes the transpose of the matrix
[
D(ϕ)x

]
. Using standard differ-

ential calculus, taking into account that q is a critical point of f ◦ϕ−1, we obtain
that the Jacobian of Ω◦ϕ−1 at q is equal to B(q)J(∇(f ◦ϕ−1))q. Since the matrix[
D(ϕ)q

]
= B(q)T has positive determinant, the sign of the determinant of the Ja-

cobian of Ω◦ϕ−1 at q is the same as to the sign of the determinant of the Jacobian
of ∇(f ◦ϕ−1) at q. �

If G is a definably compact group and p > 1 then, by [15], G can be equipped
with a structure of a definable Cp-manifold such that the group operation is also
Cp. Thus we can consider a definable group as a definable Cp-manifold with p as
large as we need.

Claim 4.5. If G is definably compact group then the tangent bundle of G is definably
trivial.

Proof. For g ∈ G let αg(x) be the diffeomorphism of G defined as

αg : x 7→ g−1x.

The differential of αg at g maps T (G)g isomorphically onto T (G)e. Thus we have the
map Θ: T (G) → G× T (G)e that maps (g, v), where v ∈ T (G)g,to

(
g,D(αg)g(v)

)
.

Fixing a basis for T (G)e we can identify definably T (G)e with Rn and use Θ to
obtain a trivialization of T (G). �

The following result was proved by M. Edmundo.

Corollary 4.6. Let G be a definably compact definable group. Then χ(G) = 0.

4.4. Lefschetz number. Let X be a definably compact definably orientable de-
finable Cp-manifold with p > 2. In [1] A. Berarducci and M. Otero introduced
the Lefschetz number Ξ(X) as the self-intersection number of the diagonal ∆X in
X × X. They conjectured that, as in the classical case, Ξ(X) coincides with the
o-minimal Euler characteristic χ(X). In this section we prove this conjecture for
the case p = 4.

Theorem 4.7. Let X be a definably compact definably oriented definable C4-
manifold. Then Ξ(X) = χ(X).
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Proof. Since the proof consists of putting together results of the previous section
and results in [1], we will be brief.

We can assume that X is C4-submanifold of Rm. We will denote by n the
dimension of X.

Let X be as in the statement. By Tubular Neighborhood Theorem 2 (see Ap-
pendix, Theorem A.4), there is an open neighborhood U of ∆X in X × X that
is definably C3-diffeomorphic to an open neighborhood of the zero section of the
normal bundle of ∆X in X × X. It is not hard to see that the normal bundle of
∆X in X ×X is C3-diffeomorphic to the cotangent bundle T ∗(X) of X. Therefore
we can find a definable C3-diffeomorphism ϕ from an open neighborhood U of ∆X

in X ×X onto an open neighborhood V of the zero section of X in T ∗(X).
We are going to using a Morse function to compute the self-intersection index of

the zero section of X in T ∗(X), and then use ϕ to compute Ξ(X).
We consider T ∗(X) as a definable C3-manifold with the definable orientation

induced by X in the following way. Let 〈U,ϕ〉 be a definable C4-chart on X. Denote
by TX(U) the subset ∪a∈U{a} × T (X)a of T (X). Then the pair (ϕ(x),D(ϕ)x) is a
definable C3-chart on T (X). If A is a definable C4-atlas on X such that 〈X,A〉 is
a definable oriented manifold, then {〈(T (U), (ϕ,D(ϕ))〉 : (U,ϕ) ∈ A} is a definable
C3-atlas on T (X), and with this atlas T (X) is a definable oriented manifold. Using
the dot product on Rm we can identify each T (X)a with its dual, and get an
isomorphism between T (X) and T ∗(X). This way we obtain a definable orientation
on T ∗(X).

Let f0 : Rm → R be a definable C4-function whose restriction f = f0 �X is a
definable Morse function on X. The differential D(f) of f defines a C3-section of
the cotangent bundle T ∗(X), that we will denote by δ. Namely, δ is the C3-map
from X into T ∗(X) that assigns to each x in X the differential of f at x. Identifying
X with the zero section of T ∗(X), we obtain that δ(p) ∈ X if and only if p is a
critical point of f . Let p be a critical point of f . Locally near p, the cotangent
bundle T ∗(X) is trivializable. The same computations as in the previous section
show that δ is transversal to X at p, and the intersection number of δ and X at p
is (−1)λ, where λ is the index of f at p. By Theorem 4.2, the intersection number
I(δ,X) is equal to the o-minimal Euler characteristic χ(X). It is left to show that
I(δ,X) equals to the self-intersection number of ∆X in X ×X.

We first construct a definable homotopy from δ to the zero section of T ∗(X).
Considering T ∗(X) as a definable submanifold of Rm×Rm we use the dot product
from Rm to induce a dot product 〈·, ·〉 and a norm ‖ · ‖ on each cotangent space
T ∗(X)x, x ∈ X.

For t ∈ [0, 1] let δt : X → T ∗(X) be the section defined as δt(x) = (t‖δ(x)‖)δ(x).
Since each T ∗(X)x is an R-vector space, these sections are well-defined.

It is not hard to see that the map δt, t ∈ [0, 1] is a definable proper C3-homotopy
between δ and the zero section. Moreover, for each t ∈ (0, 1] the section δt is
transversal to the zero section and the intersection number I(δt, X) is the same as
I(δ,X), namely χ(X).

Since X is definably compact. we can find ε > 0 such that δt(x) ∈ V for all
x ∈ X, t ∈ [0, ε). Since ϕ is a C3-diffeomorphism from U to V , we can use ϕ to
transfer this information to X × X and obtain a definable C3-submanifold Y of
X ×X that is definably C3-homotopic to ∆X with I(∆X , Y ) = χ(X). �
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Appendix A. On definable Morse Functions

We will outline the proof of Theorem 4.2. The arguments follow closely the
corresponding proofs in [10, pages 4–21].

Let M be a definably compact definable Cr-manifold M and f : M → R a
definable Cr-function, where r > 1. Using the Embedding Theorem [1] we can
assume that M is a definable Cr-submanifold of Rm. Also replacing M with
the graph of f if needed, we can assume that f is the projection onto the last
coordinates.

For a definable subset I ⊆ R we will denote by MI the set f−1(I). For I = {a}
we will use Ma instead of M{a}.

Since M is definably compact, M6a = ∅ for all sufficiently large negative a, and
M6b = M for all sufficiently large positive b. In particular, if a is sufficiently large
negative and b sufficiently large positive then χ(M) = χ(M6b)−χ(M6a). Thus, by
the additivity of the Euler characteristic, Theorem 4.2 will follow from the following
two statements.

Theorem A.1. Assume r > 2. Let a < b ∈ R be such that [a, b] does not contain
a critical value of f . Then χ(M6a) = χ(M6b).

Theorem A.2. Assume r > 4. Let q ∈ R be a critical value of f such that f−1(q)
contains unique critical point p, and p is non-degenerate. Then for all sufficiently
small ε > 0

χ(M6p+ε)− χ(M6p−ε) = (−1)λ,

where λ is the index of f at p

Before proving above theorems we review the notion of tubular neighborhoods.
We refer to [1] and [3] for more details.

A.1. Normal Tubular Neighborhoods. In this subsection we assume that Z
is definable Cr-submanifold of Rm of dimension n with r > 2. We identify the
tangent bundle T (Z) with a subset of Rm ×Rm in a natural way and consider it
as a Cr−1-submanifold of Rm ×Rm.

Let a ∈ Z. The normal space of Z at a, denoted by N (Z)a, is the set of all
v ∈ Rm orthogonal to T (Z)a. Obviously each N (Z)a is a vector subspace of Rm

of dimension m− n. The normal bundle of Z is

N (Z) =
⋃
a∈Z

a×N(Z)a.

It is Cr−1-submanifold of Rm ×Rm of dimension m.
For the proof of the following Theorem we refer to [3, Theorem 6.11]. There

it was proved for o-minimal structures over R but the same proof works for any
o-minimal expansion of a field.

Theorem A.3 (Tubular Neighborhood Theorem 1). Let Z be a definable Cr-
submanifold of Rk with r > 2. Then there an open neighborhood U of the zero
section Z×{0} in N (Z) such that the map (a, v) 7→ a+v is a Cr−1-diffeomorphism
from U onto an open neighborhood of Z in Rm.

Let X be a definable closed Cr-submanifold of Z of dimension k. For a ∈ X
the normal space of X in Z at a, that we will denote by N (X/Z)a, is the set
{v ∈ T (Z)a : v is orthogonal to T (X)a}. Obviously, N (X/Z)a is a vector subspace



O-MINIMAL TOPOLOGICAL INVARIANTS 23

of T (Z)a of dimension n− k. The normal bundle of X in Z is the set {N (X/Z) =⋃
a∈X N (X/Z)a}. It is easy to see that N (X/Z) is a definable Cr−1-submanifold

of T (Z) of dimension n. For ε > 0 we will denote by N ε(X/Z) the set {(a, v) ∈
N (X/Z) : ‖v‖ < ε}.

Theorem A.4 (Tubular Neighborhood Theorem 2). Let r > 2, Z a definable
Cr-submanifold of Rm and X a definably compact Cr-submanifold of Z. Then
there is ε > 0 and a definable Cr−1-diffeomorphism ρ from N ε(X/Z) onto an open
neighborhood of X in Z such that ρ(x, 0) = x for all x ∈ X.

Proof. Using Theorem A.3 we can find an open definable neighborhood U of the
zero section Z × {0} in N (Z) and an open definable neighborhood U of Z in Rm

such that then map (a, v) 7→ a+ v is a Cr−1-diffeomorphism from U onto V .
Let π : V → Z be the map that assigns to v ∈ V the unique a ∈ Z such that

v = a + w for some (a,w) ∈ U . Obviously π is a definable Cr−1-map. Since X is
definably compact, there is C > 0 such that x+ w ∈ U for all x ∈ X and w ∈ Rm

with ‖w‖ < C.
Consider the map ρ : NC(X/Z) → Z defined as (x,w) 7→ π(x + w). It is not

hard to see that ρ is definable Cr−1-map with ρ(x, 0) = x and the differential of ρ
at (x, 0) is invertible for all x ∈ X. Using definable compactness of X we can find
ε > 0 such that the differential of ρ is invertible at all (x,w) ∈ N ε(X/M). �

A.2. Proof of Theorem A.1. Theorem A.1 is a corollary of the following theorem.

Theorem A.5. Let M be a definably compact C2-submanifold of Rm and f : M →
R a definable C2-function. If a ∈ R is a regular value of f then there is an open
interval I containing a such that f has a definable trivialization over I.

Proof. We need to find a definable X ⊆ Rm and a definable homeomorphism
ϕ : X × I →MI such that the following diagram is commutative.

X × I MI

I

-ϕ

?

π2

�
�

�
�	

f

Considering the graph of f if needed, we can assume that f is the projection onto
the last coordinate.

Let X = f−1(a). Since a is a regular value of f , by Lemma 3.1 [1], X is a closed
C1-submanifold of M . In particular, X is definably compact.

Denoting by ξ ∈ Rm the vector (0, . . . , 0, 1), we obtain that f(x) = 〈ξ, x〉. Since
X is a submanifold of M of co-dimension one, for every x ∈ X the vector space
N (X/M)x is one dimensional, and, since a is a regular value of f , the vector ξ is
not orthogonal to it. Thus for every x ∈ X there is a unique vector ex ∈ N (X/M)x

such that ‖ex‖ = 1 and 〈ξ, ex〉 > 0. It is easy to see that the function x 7→ ex is a
definable C1-function on X.

Let ε and ρ be as in Theorem A.4 and J = (−ε, ε). Consider the function
ψ : X × J → R defined as (x, t) 7→ f(ρ(x, tex)). It is not hard to see that for each
x ∈ X the differential of the function t 7→ ψ(x, t) at 0 is not zero.

Since ψ(x, 0) = a for x ∈ X, by the Implicit Function Theorem, for every
x ∈ X there is an open Ux ⊆ X ×R containing (x, a) and a definable C1-function
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βx : Ux → J such that ψ
(
y, βx(y, τ)

)
= τ for all (y, τ) ∈ Ux. Using definable

compactness of X we can find an open interval I ⊆ R containing a and a definable
function β : X × I → J such that ψ

(
y, β(y, τ)

)
= τ for all (y, τ) ∈ X × I.

It is easy to see that the map ϕ : (y, τ) 7→ ρ
(
τ, β(y, τ)

)
is a trivialization of f

over I. �

Now we are ready to prove Theorem A.1. Let M and a < b be as in Theorem
A.1. We can find an open interval I containing a, b such that I does not contain
a critical value of f . By o-minimality, the function t 7→ χ(Mt) is definable. By
Theorem A.5, it is locally constant on I, hence it has a constant value C on I.
Then

χ(M6b)− χ(M6a) = χ(M(a,b]) = Cχ((a, b]) = 0.

Theorem A.1 is proved.

A.3. Proof of Theorem A.2. The following lemma and its proof are due to Chris
Miller.

Lemma A.6 (C.Miller). Let U be an open subset of Rn containing 0, r > 1,
and f : U → R a definable Cr-function. Then there are definable Cr−1-functions
fi : U → R such that f = x1f1(x) + · · ·xnfn(x) on U .

Proof. By induction on n.
The case n = 1: Let

f1(x) =

{
f(x)/x x 6= 0
f ′(0) x = 0

It is easy to see that f1 is Cr−1 and f(x) = xf1(x).
The case n + 1: By induction hypothesis we can find definable Cr−1-functions
f1, . . . , fn such that f(x1, . . . , xn, 0) = x1f1(x1, . . . , xn) + · · ·xnfn(x1, . . . , xn). We
define fn+1(x1, . . . , xn+1) as

fn+1(x1, . . . , xn+1) =

f(x1, . . . , xn+1)/xn+1 if xn+1 6= 0
∂f

∂xn+1
(x1, . . . , xn, 0) if xn+1 = 0

It is easy to check that the functions fi satisfy the requirement. �

Lemma A.7 (Morse’s Lemma). Let r > 0, M a definable Cr+2-manifold of dimen-
sion n, f : M → R a definable Cr+2-function and p ∈ M a nondegenerate critical
point of f . Then there is a definable coordinate Cr-system 〈U,ϕ〉 on M at p such
that

f ◦ϕ−1(y) = f(p)− y2
1 − · · · − y2

λ + y2
λ+1 + y2

n,

where λ is the index of f at p.

Proof. Using Lemma A.6 twice we can find a definable coordinate Cr+2-system
(W,ψ) on M at p such that

f ◦ψ−1(y) = F (p) +
n∑

i,j=1

bij(y)yiyj

where bij are definable Cr-functions. For the rest of the proof we refer to the proof
of Lemma 6.1.1 in [7]. �
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We mow proceed with the proof of Theorem A.2.
Replacing f with f(x)− f(p) we can assume f(p) = 0.
Let 〈U,ϕ〉 be as in Lemma A.7 with r = 4. We have

f(x) = −ϕ1
1(x)− · · · − ϕ2

λ(x) + ϕ2
λ+1(x) + · · ·+ ϕ2

n(x)

on U .
Let ε > 0 be sufficiently small such that the interval [−ε,+ε] does not contain

any other critical values of f besides zero, and ϕ(U) contains the open ball B2ε of
radius 2ε centered at the origin. .

We choose a definable C2-function µ : R → R>0 such that

µ(0) > ε

µ(t) = 0 for t > 2ε

−1 < µ′(t) 6 0 for all t ∈ R.

It is not hard to see that such µ exists and we can even find a semi-algebraic one.
We consider a new function g : M → R that coincides with f outside of U and

g = f − µ
(
ϕ2

1 + · · ·+ ϕ2
λ + 2ϕ2

λ+1 + · · ·+ 2ϕ2
n

)
on U .

It is easy to see that g is a definable C2-function.
We introduce two new functions ξ, η : U → R:

ξ = y2
1 + · · ·+ y2

λ and η = y2
λ+1 + · · ·+ y2

n.

In these notations we have

f ◦ϕ−1 = −ξ + η and g◦ϕ−1 = −ξ + η − µ(ξ + 2η).

Claim A.8. The critical points of g and f are the same.

Proof. Since f and g coincide outside of U we need to consider only points in
U . Working in the chart 〈U,ϕ〉, computing partial derivatives, and taking in the
account that −1 < µ′ 6 0, it is easy to see that all partial derivatives of g◦ϕ−1

vanish simultaneously only at 0. �

Claim A.9. g−1
(
(−∞, ε]

)
= f−1

(
(−∞, ε]

)
.

Proof. Since g(x) 6 f(x) everywhere on M we have f−1
(
(−∞, ε]

)
⊆ g−1

(
(−∞, ε]

)
.

Thus we only need to show the opposite inclusion.
Let m ∈ g−1

(
(−∞, ε]

)
.

If m 6∈ U then f(m) = g(m) and we are done.
Assume m ∈ U and let a = ϕ(m). If ξ(a) + 2η(a) > 2ε then again f(a) = g(a).
Assume now ξ(a)+2η(a) < 2ε. It is not hard to see that the maximum value of −ξ+
η on ξ + 2η 6 2ε is ε. Hence f(a) = −ξ(a) + η(a) 6 ε and a ∈ f−1

(
(−∞,+ε]

)
. �

From the previous claim we obtain
χ(M6+ε) = χ

(
g−1

(
(−∞,+ε]

))
.

Since g(p) = −µ(0) < −ε, g does not have critical values in [−ε, ε]. Hence, by Fact
A.1,

χ
(
g−1

(
(−∞,+ε]

))
= χ

(
g−1

(
(−∞,−ε]

))
.

To prove the theorem we need to show that

(A.1) χ
(
g−1

(
(−∞,−ε]

))
− χ

(
M6−ε

)
= (−1)λ
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Since g 6 f on M , the set M6−ε is contained in g−1
(
(−∞,−ε]

)
and the equation

(A.1) is equivalent to

χ
(
g−1

(
(−∞,−ε]

)
\M6−ε

)
= (−1)λ

Since f and g coincide outside of U , and µ vanishes outside of the set ξ + 2η > 2ε,
the theorem reduces to showing that for the sets

Sf = {y ∈ Rn : ξ(y) + 2η(y) < 2ε,−ξ(y) + η(y) 6 −ε}
Sg = {y ∈ Rn : ξ(y) + 2η(y) < 2ε,−ξ(y) + η(y)− µ

(
ξ(y) + 2η(y)

)
6 −ε}

we have
χ(Sg \ Sf ) = (−1)λ.

The set Sg \ Sf can be described by the following system of inequalities:

ξ + 2η < 2ε

−ξ + η − µ(ξ + 2η) 6 −ε
−ξ + η > −ε

The set {(η, ξ) ∈ R2 : ξ, η > 0} satisfying
the above inequalities consists of 4 com-
ponents:
The origin (0, 0);
a point (P, 0);
an open interval {(t, 0) : 0 < t < P};
an open interval {(0, t) : 0 < t < ε};
an open 1-cell L in
R>0 ×R>0;
and an open 2-cell D ⊆ R>0 ×R>0.

ξ

η

ε

D

P

L

For t > 0 the set ξ−1(t) is (λ− 1)-sphere and its o-minimal Euler characteristic
is (−1)λ−1 + 1. The o-minimal Euler characteristic of a half-open interval is 0, and
also χ(D ∪ L) = 0.Hence

χ(Sg \ Sf ) = 1− [(−1)λ−1 + 1] = (−1)λ

This finishes the proof of Theorem A.2.
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