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Abstract. The aim of this paper is to apply the theory of coherent risk measures
to the problems of finance.

1. First, we study several problems in the theory of coherent risk measures
needed for the applications in finance. In particular,

e we give a simple solution to the problem of the capital allocation between
several units of a firm;

e this result is applied to introduce the notion of risk contribution for coherent
risk measures;

e furthermore, this result is applied to the problem of finding the optimal
structure of a firm consisting of several units.

2. We consider the pricing technique known as No Good Deals and establish the
fundamental theorem of asset pricing as well as the form of the fair price intervals.
We consider two forms of this technique:

e utility-based pricing (employing the assumption that there is no trade with
a negative risk);

¢ RAROC-based pricing (employing the upper limit on a possible RAROC).
Our general model applies to a wide class of coherent risk measures (satisfying only
a compactness condition) and to various financial models, including dynamic ones
as well as models with an infinite number of assets (in particular, this allows us to
consider models with traded derivatives as basic assets, which makes it possible to
narrow considerably fair price intervals). Moreover, the proposed approach takes
into account such market imperfections as transaction costs, portfolio constraints,
liquidity effects, and ambiguity of a historic probability measure.

3. Next we study the optimization problem based on coherent risk measures.
This problem is considered in several setups:

e agent-independent optimization (based on RAROC maximization);

e single-agent global optimization;

e single-agent local optimization.
The results are obtained for a general model and are illustrated by a static model
with a finite number of assets, where they admit a simple geometric interpretation.

4. Furthermore, the results described above are applied to the optimality pricing.
We present several techniques:

e agent-independent optimality pricing;

e single-agent optimality pricing;

e multi-agent optimality pricing.
The results are obtained for a general model and are illustrated by a static model
with a finite number of assets, where they admit a simple geometric interpretation.

5. Finally, we consider the equilibrium problem. We establish the equivalence
between different definitions and present a criterion for equilibrium.

Furthermore, the equilibrium technique is applied to pricing. Thus, altogether
there are at least eight different pricing techniques based on coherent risk measures
that are considered in this paper.

Key words and phrases: Ambiguity, capital allocation, coherent risk mea-
sure, extreme measure, equilibrium, intersection of risk measures, liquidity, No Good
Deals, No Better Choice, portfolio constraints, RAROC, optimality pricing, op-
timization, risk contribution, risk-neutral measure, Tail VQR, transaction costs,
Weighted VQR.
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Introduction

In their landmark papers [1] and [2], Artzner, Delbaen, Eber, and Heath introduced
the notion of a coherent risk measure. Since these papers, the theory of coherent risk
measures has been evolving rapidly. Let us mention, in particular, the papers [15], [21],
[29]. Surveys of the modern state of the theory are given in [16], [22; Ch. 4], [33], and [38].

Another interesting topic that has recently emerged in financial mathematics is the
theory of No Good Deals (NGD) pricing. Let us illustrate its idea by an example. Con-
sider a contract that with probability 1/2 yields nothing and with probability 1/2 yields
1000 USD. The No Arbitrage (NA) price interval for this contract is (0,1000). But if
the price of the contract is, for instance, 15 USD, then everyone would be willing to buy
it, and the demand would not match the supply. Thus, 15 USD is an unrealistic price
because it yields a good deal, i.e. a trade that is attractive to most market participants.
The technique of NGD pricing is based on the assumption that good deals do not exist.
This technique yields finer price intervals than the NA pricing (the NA price intervals are
known to be unacceptably large in incomplete models).

A problem that arises immediately is how to define a good deal. There is no canonical
answer, and several approaches have been proposed in the literature. Cochrane and
Sad-Requejo [13] defined a good deal as a trade with an unusually high Sharpe ratio,
Bernardo and Ledoit [5] based their definition on another gain to loss ratio, while Cerny
and Hodges [9] proposed a generalization of both definitions (see also the paper [6] by
Bjork and Slinko, which extends the results of [13]).

The technique of the NGD pricing can also be motivated as follows. When a trader
sells a contract, he would charge for it a price, with which he will be able to superreplicate
the contract. In theory the superreplication is typically understood almost surely, but in
practice an agent looks for a offsetting position such that the risk of his overall portfolio
would stay within the limits prescribed by his management. These considerations lead
to the NGD pricing with a good deal defined as a trade with a negative risk. Now, if
the risk is measured by V@R, this technique leads to the quantile hedging introduced by
Follmer and Leukert [20]. But instead of V@R, one can take a coherent risk measure.
The corresponding pricing technique has already been considered in several papers. Carr,
Geman, and Madan [8] (see also the paper [31] by Madan) studied this technique in a
probabilistic framework (although they do not use the term “good deal”), while Jaschke
and Kiichler [25] studied this technique in an abstract framework in the spirit of Harrison
and Kreps [23] (see also the paper [37] by Staum, which extends the results of [25]).

As a starting point, we consider the NGD pricing in the probabilistic framework on
a fairly general level. Our approach is similar to that of [8] (in fact, several parts of
the present paper have been inspired by [8]), but our model is general in the sense that
we consider an arbitrary (not only finite) €2; we consider a general class of coherent
risk measures (satisfying only a sort of compactness condition); our approach applies to
dynamic models, to models with an infinite number of assets, to models with transaction
costs, and to models with convex portfolio constraints. Furthermore, we introduce a
variant of the NGD pricing based on the upper limit of a possible Risk-Adjusted Return
on Capital (RAROC) defined through coherent risk measures.

Next we pass on from the pricing problem to the optimization problem. Let us mention
that some settings of this problem based on coherent risk measures were considered by
Barrieu and El Karoui [3], [4] and by Sekine [34]. Here we consider three settings of the
optimization problem, which are different from the ones in these papers. The three settings
are: agent-independent optimization, single-agent global optimization, and single-agent



local optimization.

Then we turn back to the pricing problem and apply the results on optimization to
the optimality pricing (three forms of this technique are proposed).

Finally, we study the equilibrium problem and again apply the obtained results to
pricing (there are three forms of the equilibrium pricing technique). Our approach has
been inspired by the paper [24] by Heath and Ku, and some of the results described
below are extensions of the results of [24]. Let us also mention the paper [4] by Barrieu
and El Karoui and the paper [27] by Jouini, Schachermayer, and Touzi, which contain
a detailed study of two-agent equilibrium and, in particular, the explicit solution of this
problem for some classes of risk measures.

1. Coherent risk measures. Before considering pricing, optimality, and equilib-
rium, we establish in Section 1 several results on coherent risk measures that are needed
for applications in financial mathematics. These results are of independent interest.

Recall that Artzner, Delbaen, Eber, and Heath [1], [2] defined a coherent risk measure
on a finite space 0 as a map p: L° — R (L° denotes the space of all functions on )
satisfying four axioms: subadditivity, monotonicity, positive homogeneity, and translation
invariance. They proved that any such map has the form

p(X) = — inf EqX, (1)
QeD

where D is a convex set of probability measures on €. Delbaen [15] defined a coherent
risk measure on an arbitrary probability space (Q,F,P) as a map p : L*® — R (L*®
denotes the space of all bounded random variables) satisfying the above four axioms. He
proved that if additionally a continuity axiom (called the Fatou property) is imposed, then
representation (1) holds with a set D C P, where P denotes the set of all probability
measures that are absolutely continuous with respect to P.

In this paper, we take representation (1) as the definition of a coherent risk measure
on the space LY of all random variables on (€2, F,P). Thus, we start from a set D C P
and define the corresponding coherent utility function as

u(X) := inf EgX, (2)
QeD

where the expectation EqX is understood as EQX* — EqX ™ (here Xt = max{X,0},
X~ = max{—X,0}) with the convention: +00 — oc = —oc (in what follows, we will
always understand the expectation in this way). Thus, u : L — [~00, +00]. The corre-
sponding coherent risk measure p(X) is defined simply as —u(X). (The term “coherent
utility function” was introduced by Delbaen [16]; the use of coherent utility functions
instead of coherent risk measures enables one to get rid of numerous minus signs.) Note
that different sets D might lead to the same u, but, for a fixed coherent utility func-
tion u, there exists the largest set D, for which representation (2) is true (it is given
by {Q € P : EQX > u(X) for any X}). We call it the determining set of u. As an
example, Tail V@R is the risk measure with the determining set {Q eP: ‘é—g < )\*1},
where A € [0, 1] is a fixed parameter. Throughout the paper, we consider coherent utility
functions on L° (taking representation (2) as the definition).

In Subsection 1.3, we introduce the notion of an extreme measure. For an element
X € LY and a coherent utility function u with the determining set D, the set of extreme
measures is defined as

Xp(X) = {QeD:EgX = u(X)}.



Proposition 1.9 states that, under some natural conditions imposed on X and D, the set
Xp(X) is nonempty. The notion of an extreme measure turns out to be very important
as seen from the results described below.

Subsection 1.4 deals with the problem of the capital allocation based on coherent risk
measures. This problem was formalized in [16; Sect. 9] and can informally be described as
follows. There is a firm consisting of d units. The future income of the ¢-th unit is given
by a random variable X?. How is the utility u(Z?:l Xi) (here u is a coherent utility
function) of the whole portfolio allocated between these units? We present (under mild
conditions) a geometric solution (see Figure 1) as well as a probabilistic solution of this
problem. The latter one states that the set of utility allocations between X*',..., X4, i.e.
the set of solutions of this problem, has the form

{EQ(Xl,...,Xd) Qe Xp(ziljx)}

where D is the determining set of u. (A capital allocation is defined as a utility allocation
with the minus sign.)

The obtained result is applied in Subsection 1.5 to define the notion of a utility con-
tribution. The utility contribution u®(X;Y") of X to Y is defined as

u’(X;Y) = inf{a' : (z', %) is a utility allocation between X,Y — X}.

(The risk contribution is defined as the utility contribution with the minus sign.) It follows
from the result described above that (under mild assumptions)

u'(X;Y)= inf EgX, (3)

QeXp(Y)
so that u®(-;Y") is a coherent utility function with the determining set Xp(Y). The
meaning of the utility contribution is clarified by Theorem 1.15, which states (under mild

assumptions) that

u(X3Y) = lg\{gle*l(u(Y +eX)—u(Y)).

2. Pricing through coherent risk measures. We consider in Section 2 two forms
of this technique.

Subsection 2.1 deals with the utility-based NGD pricing. This is done within the
framework of a general model introduced in [10]. Thus, we are given a probability space
(Q,F,P) and a convex set A C L° termed the set of attainable incomes. From the
financial point of view, this is the set of discounted incomes that can be obtained in the
model under consideration. The fact that A need not be a linear space accounts for
transaction costs, liquidity effects, and convex portfolio constraints. Furthermore, we are
given a coherent utility function u with the determining set D. The wutility-based NGD
condition is defined as follows: there should exist no X € A such that u(X) > 0. Next
we define a risk-neutral measure as a measure Q € P such that Eq X < 0 for any X € A.
In view of the convention introduced above, this means that EQ X~ > EqX ™, where both
sides are allowed to take on the value +oc (this particular definition of a risk-neutral
measure was introduced in [10]). Theorem 2.4 might be called the fundamental theorem
of asset pricing. It states (under mild assumptions that are automatically satisfied in
natural models) that the NGD is satisfied if and only if D NR # (), where R denotes
the set of risk-neutral measures. As opposed to the NA fundamental theorems of asset
pricing (see [10], [17], [18]), here we need not take a closure of A in defining the NGD.
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Then we define a utility-based NGD price of a contingent claim F' as a real number x
such that the extended model (2, F,P,D, A+ {h(F — z) : h € R}) satisfies the NGD
condition. Corollary 2.6 states (under mild assumptions) that the set of NGD prices has
the form {EqQF' : Q e DNR}.

Let us remark that the problem of finding utility-based NGD prices can equivalently
be formulated as the problem of NGD superreplication, which consists in finding the value

VY (F)=inf{z e R: u(X — F 4+ ) > 0 for some X € A}. (4)

Indeed, it is easy to see that Ingp(F) is the interval with the endpoints
Vi(F):= =V*(=F) and V*(F).

In Subsection 2.2, we introduce the RAROC-based NGD pricing. The framework is as
follows. We are given a probability space (€2, F,P), a convex set A of attainable incomes,
and two L'-closed convex sets PD C RD C P. We call PD the profit-determining
set. This is the set of historic measures used by different market participants. A typical
example is PD = {P}. The fact that PD need not be a singleton accounts for the
ambiguity of the historic probability measure. We call RD the risk-determining set.
This is the set of scenarios determining a coherent risk measure. Thus, the profit of a
possible income X is infq pp EQ X, while its risk is —infocrp EQX. The RAROC of an

income X is defined as )
infqepp EX

RAROC(X) = CinfoeepEqX
We define the RAROC-based NGD condition as the absence of X € A such that
RAROC(X) > R. Here R is a fixed strictly positive number (in practice R can be
chosen based on macroeconomic considerations and theories like CAPM). Theorem 2.10
might be called the fundamental theorem of asset pricing. It states (under mild assump-
tions) that the NGD is satisfied if and only if (= PD + Z-RD) NR # 0.

1+R 1+R

Then we define a RAROC-based NGD price of a contingent claim F' as a real number z
such that the extended model (2, F,P,PD,RD, A+ {h(F — z) : h € R}) satisfies the
RAROC-based NGD condition. Corollary 2.12 states (under mild assumptions) that the

set of NGD prices has the form

1 R
{EQF.QE (1+RPD+ 1+RRD) mR}.

The general model (2, F,P, A) includes, as particular cases, most models of pricing
theory, including dynamic ones, models with an infinite number of assets, etc. In order
to embed a particular model in the general framework, one should specify the set A and
find out the structure of risk-neutral measures (typically, the set R in a particular model
admits a simpler description than the general definition given above).

Subsection 2.3 deals with a static model with a finite number of assets. It is shown
that, for this model,

DQR:DQ{eriEQsl :S(]},

where S, is the vector of the assets’ discounted prices at time n. We also provide for
this model a simple geometric interpretation of the general results described above (see
Figure 2).

In Subsection 2.4, we consider a continuous-time model with an arbitrary (possibly,
infinite) number of assets. Thus, we are given a collection (S})icjo. ¢ € I of adapted
cadlag processes on a filtered probability space (2, F,(F;),P). Here S! means the dis-
counted price of the i-th asset at time ¢. It is shown that, for this model,

DNR=DN{Q € P:foranyi, S"isan (F;, Q)-martingale}.
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Subsection 2.5 is related to the version of this model with transaction costs. Thus, we
are given two collections S%, S% i € I of adapted cadlag processes on (€2, F, (F;),P).
Here S% (resp., SY) means the discounted ask (resp., bid) price of the i-th asset at
time ¢. It is shown that, for this model,

DNR=DN{Q € P :for any i, there exists an (F;, Q)-martingale M"
such that S” < M* < S},

Next we consider the following problem. Suppose that we are given a model with pro-
portional transaction costs, i.e. S% = S¢ S¥ = (1 — \))S? where each S’ is posi-
tive and A" € (0,1). Denote the interval of NGD prices in this model by I,(F). Let
(An) = (\i;i € I,n € N) be a sequence such that \{ —— 0 for any 4. Is it true that

n—oo

D (F) —— Io(F)? (5)
For the NA price intervals, the answer to this question is negative. It was proved in [11],
[14], [30], and [36] that, for the Black-Scholes model and F = (Sp — K)™*,

L(F) — ((So — K)™, So)
AL0

(to be more precise, [14], [30], and [36] study only the convergence of the right endpoints
of I,(F)). Although the approaches to the NA pricing in the four papers mentioned
above are not the same, this result holds true for all of them. This shows that the
NA pricing in continuous-time models with transaction costs typically yields trivial price
intervals. In the present paper (Theorem 2.17), we show that, for the NGD price intervals,
convergence (5) holds true under natural assumptions. The reason for this discrepancy
between the NGD and the NA is as follows. The NGD price intervals are based on the set
D N R of pricing kernels, while the NA price intervals are based on the set R of pricing
kernels. The latter set is too large, and that is the reason why (5) does not hold for the
NA price intervals.

3. Optimization. We consider in Section 3 the agent-independent optimization
problem as well as the single-agent optimization problem. The former one consists in
maximizing the RAROC over the set A of attainable incomes.

In Subsection 3.2, this problem is considered for a static model with a finite number
of assets. We provide a simple geometric solution (see Figure 3).

In Subsection 3.3, the obtained results are applied to the problem of the optimal struc-
ture of the firm, which is as follows. There is a firm consisting of d units. Each unit can
produce a profit h*X?, where X’ is a fixed random variable and A’ is a constant chosen by
the firm’s management (so that increasing the business of the i-th unit means increasing
h'). The problem is to find a structure hl,... h?, for which RAROC (Z;j:l hiXi) attains
its maximum. Theorem 3.5 states (under some assumptions) that a structure (h', ..., h)
is optimal if and only if

d d
RAROC® (Xl; > hiXi> — ... = RAROC® (Xd; > hiXi> ,

i=1 i=1
where the RAROC contribution of X to Y is defined as

RAROC'(X; V) = 205



where u is the coherent utility function with the determining set RD.

The problem of single-agent optimization consists in finding an optimal element of
the set W + A, where the random variable W means the agent’s current endowment.
As opposed to agent-independent optimization, it is reasonable here to consider both
RAROC maximization and utility maximization. In essence, RAROC maximization can
be reduced to utility maximization by the technique of Lagrange multipliers (as described
in Subsection 2.2). For this reason, we consider only utility-based maximization. We study
this problem in two forms, which we call global optimization and local optimization.

Global optimization is considered in Subsection 3.4 within the framework of a general
model (Q,F,P, A). The term “global” means that the set A of attainable incomes is a
cone (so that it contains elements that are large as compared to ). Theorem 3.7 states
(under mild assumptions) that

sup u(W + X) = inf EqQW,

XeA QeDNR

where D is the determining set of w.
Let us remark that the optimization problem

uw(W + X) — max
XeA

coincides with the problem of NGD superreplication (see (5)). Namely, if we put
F = —W, then supyc,u(W + X) = —V*(F), where V* is given by (4); furthermore,
argmax yc 4 uw(W + X) coincides with the class of superreplicating strategies for F', i.e.
with the class of X € A such that u(X — F + V*(F)) > 0.

Subsection 3.5 deals with the problem of global optimization for a static model with a
finite number of assets. We provide a simple geometric description of an optimal strategy
(see Figure 5).

In Subsection 3.6, we study the problem of local optimization within the framework of
a general model (Q, F, P, A). From the financial point of view, the term “local” has the
following sense: we are considering a big agent and a set A of trading opportunities, each
of which is small as compared to the current endowment W of the agent. Mathematically,
we impose the condition that A is bounded in a certain sense and study the problem of
finding the value

u, = lime™" | sup u(W +eX) — u(W)
&0 XeA

and an element X, € A, for which

lggle_l[u(W +eX,) — u(W)] = u,. (6)

Theorem 3.10 shows that this problem is equivalent to the problem

u(X; W) oy max. (7)

Namely, the theorem states (under mild assumptions) that u, = supyc, u(X; W) and
X, € A solves (6) if and only if X, € argmax ., u“(X;W). In view of representation (3),
this result admits the following interpretation: in evaluating a trading opportunity, a big
agent should use the coherent utility function with the determining set Xp(W).

In view of representation (3), problem (7) is the problem of maximizing a coherent
utility function over a set of attainable incomes (clearly, it makes sense only if A is



bounded in a certain sense). In Subsection 3.7, we give a geometric solution of the latter
problem in a static model with a finite number of assets (see Figure 7).

In Subsection 3.8, we apply the results on single-agent optimization to the study of
liquidity effects in pricing. Within the framework of a general model (2, F,P, D, A), we
define the upper utility-based NGD price function by

Pr(v) = sup{z : the model (Q, F,P,D, A — v(F — x)) satisfies the NGD}, v > 0,

where the NGD is understood in the sense of Subsection 2.1 (the results described be-
low admit a straightforward extension to the RAROC-based NGD by the technique of
Lagrange multipliers). The lower utility-based NGD price function is defined in a similar
way. This approach to liquidity effects in pricing has been inspired by [8]. Theorem 3.13
states that Py is increasing and continuous; furthermore,

lim Pr(v) = sup EqQF, lim Pr(v) = sup EqF

vl0 QeDNR v—00 QeD
provided that A is bounded in a certain sense. Similar investigations of the liquidity
effects can be performed for other pricing techniques considered in the paper.

4. Optimality pricing. We consider in Section 4 three forms of this technique.

Subsection 4.1 deals with the agent-independent optimality pricing within the frame-
work of the general model of Subsection 2.2. Thus, we are given a probability space
(Q, F,P), a profit-determining set PD, a risk-determining set RD, and a convex set
A C L° of attainable incomes. An agent-independent No Better Choice (NBC) price of a
contingent claim F' is a real number z such that passing from A to A+{h(F—z): h € R}
does not increase sup y. 4 RAROC(X). Theorem 4.2 states (under mild assumptions) that
the set of NBC prices has the form

1 R,
EQF : D D
{Q Q€<1+R*P +1+R*R)0R},

where R, = supyc., RAROC(X). Furthermore, if there exists X, € A such that
RAROC(X,) = R., then the set of NBC prices has a more definite representation

R,
1+ R,

{EQF Qe (1 Xpp(X,) + XRD(X*)) mz}.

1
+ R,
In typical situations, the set of pricing kernels that stands in this formula is a singleton,
and then an NBC price is unique.

In Subsection 4.2, we present a simple geometric description of the NBC price intervals
in a static model with a finite number of assets (see Figure 10).

Subsection 4.3 deals with the single-agent optimality pricing in a general model. Simi-
larly to the single-agent optimization problem, it admits both the utility-based version and
the RAROC-based version. The latter one can be reduced to the former one by the tech-
nique of Lagrange multipliers, so we consider only the utility-based single-agent optimality
pricing. Thus, we are given a probability space (€2, F,P), a coherent utility function u
with the determining set D, a convex set A of attainable incomes, and a random vari-
able W meaning an agent’s current endowment. A single-agent NBC price of a contingent
claim F' is defined as a real number x such that maxyea per u(W+X+h(F—2)) = u(W).
Theorem 4.8 states (under mild assumptions) that the set of NBC prices has the form

{EQF Qe XD(W) N R} (8)

7



We also provide a geometric representation of this set (see Figure 11).

In many natural situations the calculation of a single-agent NBC price can be sim-
plified by the following observation. Suppose that W is optimal in the sense that
u(W) = maxxea u(W+X) and the set of single-agent NBC prices of a contingent claim F
based on D and W (with A = 0) consists of one point (this situation is typical). Then
the set of NBC prices of F' based on D, A, and W consists of the same point. So, in
this situation A can be eliminated.

Typically, the single-agent NBC pricing technique yields a one-point set of fair prices,
but it is peculiar for a particular agent. In order to get an estimate of the overall fair
price, one should take several representative agents (for instance, the major banks) and
define a fair price as a price, for which there exists no trading opportunity that is attrac-
tive to all the agents. This idea was proposed in [8]. In Subsection 4.4, we study this
technique assuming that each of the representative agents tries to maximize a coherent
utility function. Thus, we are given a probability space (Q, F,P), a collection uq, ..., uy
of coherent utility functions with the determining sets D, ..., Dy, a convex set A C L°,
and a collection of Wy,..., Wy of random variables. Here u,, A, and W, mean the
utility function, the set of attainable incomes, and the current endowment of the n-th
agent, respectively. A multi-agent NBC price of a contingent claim F' is defined as a real
number z such that there exists no element X € A+ {h(F — ) : h € R} with the prop-
erty: u,(W,, + X) > u,(W,) for any n. Theorem 4.12 states (under mild assumptions)
that the set of NBC prices has the form

{EqF : Q € conv,_,(Xp,(W,) NR)} = conv)_ {EqF : Q € Xp, (W,) N R},

where “conv” denotes the convex hull. In view of (8), this is the convex hull of the
single-agent NBC price intervals corresponding to the agents 1,..., N.

5. Equilibrium. Section 5 deals with the study of equilibrium based on coherent
risk measures. One can consider the utility-based equilibrium and the RAROC-based
equilibrium. The latter one can in essence be reduced to the former one by the technique
of Lagrange multipliers, so that we study only the utility-based equilibrium.

In Subsection 5.1, we consider a complete model. Thus, we are given a probability
space (2, F,P), a collection uy,...,uy of coherent utility functions with the determin-
ing sets Di,...,Dy, a collection A;,..., Ay of convex subsets of L, and a collection
Wi,...,Wy of random variables. Here u,,, A,, and W, mean the utility function, the
set of attainable incomes, and the current endowment of the n-th agent, respectively. We
define the Pareto-type equilibrium and the Arrow-Debreu-type equilibrium. One of equiv-
alent formulations of the Pareto-type equilibrium is as follows: a system is in equilibrium

if and only if
N

sup Z Un(Wo + Xpn +Y,) = Z U (Wh)- 9)

X1€A1,...XNEAN, n=1 n=1

Yo €L0:Y, ¥, =0
(The left-hand side of this equality means the maximal overall utility the agents can
obtain by using their trading opportunities as well as by exchanging arbitrary contracts).
If (9) is not satisfied, then there exist X; € Ay,..., Xy € Ay and Y;,..., Yy € L? with
YooY, = 0 such that Y w,(W, + X, +Y,) > > u,(W,). Then, by adding to Y,
constants ¢, with > ¢, = 0, we can get }71, . .,XN/N € L° with ) Y, = 0 such that
u, (W + X, + 17,1) > u,(W,) for any n. Thus, the system is not in equilibrium if and
only if the agents can exchange some contracts in such a way that the (coherent) utility
of each agent is increased.



Theorem 5.3 states that both notions of Pareto-type equilibrium and Arrow-Debreu
type equilibrium are equivalent to the following condition: (\_, (Xp, (W,) NR(A,)) # 0.
Moreover, the set £ of (appropriately defined) equilibrium price measures coincides with
ﬂrj:rzl (XDn (Wn) N R(An)) :

Then we define a complete equilibrium price of a contingent claim F' as a real number x
such that the extended model (2, F,P,D,, A, + {h(F — x) : h € R}, W,,) is in complete
equilibrium. Corollary 5.5 states (under mild assumptions) that the set of equilibrium
prices has the form {EqF : Q € £}.

Next we consider the following problem. Suppose that the system is not in equilibrium
(so that (9) is not satisfied). How far is it from the equilibrium, i.e. what is the difference
between the left-hand side and the right-hand side of (9)7 Theorem 5.6 states that

N

N
sup S (W + X+ V) = inf  Eq (Z Wn) .
X1€A1,... XNEAN, n=1 QeN,, (PrNR(An)) n—1
Yn€L0:Y, V=0

This statement is closely connected with the operation of convex convolution (or the
inf-convolution) of coherent utility functions that was studied in [4], [16; Sect. 5.2].

Subsection 5.2 deals with an incomplete model. It is the same as the complete one, but
instead of exchanging arbitrary contracts, the agents are only allowed to exchange a finite
number of contracts whose prices at time 1 are given by random variables St,...,S¢. We
define the Pareto-type equilibrium and the Arrow-Debreu-type equilibrium. Theorem 5.10
states that both these notions are equivalent to the following condition: ﬂfj:l C, #£ 0,
where C,, = {EqS1 : Q € Xp, (W,,) NR(A,)} (here R(A,) denotes the set of risk-neutral
measures corresponding to A, ). Moreover, the set of (appropriately defined) equilibrium
price vectors coincides with N, C,,.

For a contingent claim F', we can define an incomplete equilibrium price as an equi-
librium price vector corresponding to S; = F'. It follows from Theorem 5.10 that the set
of equilibrium price vectors has the form

({EQF : Q € Xp, (W,) NR(A,)}.

n=1

In view of (8), this is the intersection of the single-agent NBC price intervals corresponding
to the agents 1,..., N.

Both complete and incomplete equilibrium pricing techniques have the following prop-
erty: if z is an equilibrium price of a contingent claim F', then at this price there is no
demand and no supply for F'. But this is an unrealistic situation, so that in practice the
equilibrium price intervals will typically be empty. In Subsection 5.3, we introduce the
notion of a demand-supply equilibrium price. It is a price, at which the total demand for a
contingent claim matches the total supply. Theorem 5.14 states (under mild assumptions)
that the set of demand-supply equilibrium prices has the form argmin, 25:1 fn(z), where

fo(z) = inf{EqQW,, : Q € D, NR(A,), EQF = z}.

Altogether, there are eight pricing techniques based on coherent risk measures consid-
ered in the paper. These techniques are summarized in Table 1. This list can be extended
by adding the RAROC-based optimality pricing and the RAROC-based equilibrium pric-
ing.



Pricing

. Inputs Form of the price interval
technique
Utility-based D, A {EQF : Qe DNR}
No Good Deals
RAROC-based PD, RD 1 R
’ ’ EqF : Qe (+PD+ 5 RD)NR
No Good Deals AR { ol Q (”R 1+R ) }
Agent-independent | PD, RD, A | {EqF : Q € (1 PD + £ RD) N R},
No Better Choi
O DOTen Ao where R, = supy.4 RAROC(X)
{EQF L Q€ (1 Xpp(X.) + 1o Xrp (X)) N R}
where X, = argmax ., RAROC(X)
Single-agent D, AW {EQF : Q € XAp(W)NR}
No Better Choice
{EQF : Q € Xp(WW)} provided that this is a single-
ton and u(W) = maxxe s u(W + X)
Multi-agent Di,...,Dy, | {EqF : Q € convl_,(Xp, (W,)NR)}
No Better Choice | A,
Wi,...,Wnx
Complete Di,...,Dy, | {EQF : Q € £}, where
equilibrium Ay, L AN, g = ﬂN_ (Xp. (W) N R(A,))
Wi,..., Wy e
Incomplete Di,...,Dn, | NI {EQF : Q € Xp, (W) NR(A,)}
equilibrium A, .. An,
Wl, . . WN
Demand-supply Di,...,Dy, | argmin, 2712;1 fn(z), where
equilibrium A AN | g () = inf{EqW, - Q € D, N R(A,), EQF = 1}
Wh * WN

Table 1. The form of price intervals provided by various techniques
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1 Coherent Risk Measures

1.1 Basic Definitions
Let (€2, F,P) be a probability space.

Definition 1.1. A coherent utility function on L*° is a map u : L — R with the
properties:

(a) (Superadditivity) u(X +Y) > u(X) + u(Y);

(b) (Monotonicity) If X <Y, then u(X) < u(Y);

(c) (Positive homogeneity) u(AX) = Au(X) for A € R ;

(d) (Translation invariance) u(X +m) = u(X) +m for m € R;

(e) (Fatou property) If | X,| <1, X, 2 X, then u(X) > limsup, u(X,).
The corresponding coherent risk measure is p(X) = —u(X).

The theorem below was established in [2] for the case of a finite © (in this case,
the axiom (e) is not needed) and in [15] for the general case. We denote by P the set of
probability measures on F that are absolutely continuous with respect to P. Throughout
the paper, we identify measures from P (these are typically denoted by Q) with their
densities with respect to P (these are typically denoted by 7).

Theorem 1.2. A function u satisfies conditions (a)—(e) if and only if there exists a
nonempty set D C P such that

u(X) = inf EqX, X e L™, (1.1)
QeD

Now, we use representation (1.1) to extend coherent utility functions to L.

Definition 1.3. A coherent utility function on L° isamap u : L® — [—o00, 00] defined
as
u(X) = inf EqX, X e LY, (1.2)
QeD
where D C P and EqX is understood as EqXt — EqX~ with the convention

0 —00 = —OC.

Clearly, a set D, for which representations (1.1) and (1.2) are true, is not unique.
However, there exists the largest such set given by {Q € P : EqX > u(X) for any X}.

Definition 1.4. We will call the largest set, for which (1.1) (resp., (1.2)) is true, the
determining set of u.

Remarks. (i) Clearly, the determining set is convex. For coherent utility functions
on L, it is also L'-closed. However, for coherent utility functions on L°, it is not
necessarily L'-closed. As an example, take a positive unbounded random variable X
such that P(Xy = 0) > 0 and consider Dy = {Q € P : EqXy, = 1}. Clearly, the
determining set D of the coherent utility function u(X) = infocp, EqX belongs to the
set {Q € P : EqXy > 1}. On the other hand, the L'-closure of Dy contains a measure
Qo concentrated on {X, = 0}.

(ii) Let D be an L'-closed convex subset of P. Define a coherent utility function u
by (1.1) or (1.2). Then D is the determining set of u. Indeed, assume that the determining
set Dy is greater than D, i.e. there exists Qy € Dy \ D. Then, by the Hahn-Banach
theorem, we can find X, € L* such that Eq, Xy < info.p EQX, which is a contradiction.

In what follows, we will always consider coherent utility functions on L°.
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Example 1.5. (i) Tail V@R (the terms Average V@R, Conditional V@R, and ex-
pected shortfall are also used) is the risk measure corresponding to the coherent utility
function

’LL)\(X) = inf EQX,

QeDx
where A € [0,1] and
D) = Qe7>-@<,\—1 (1.3)
A CdP = ' '

In particular, if A = 0, then the corresponding coherent utility function has the form
u(X) = essinf,, X (w). For more information on Tail V@R, see [15; Sect. 6], [16; Sect. 7],
[22; Sect. 4.4], [33; Sect. 1.3].

(ii) Weighted V@R on L is the risk measure corresponding to the coherent utility
function

Uy (X) = /[0 Oy, X e L~

where £ is a probability measure on [0, 1].
Weighted V@R on L° is the risk measure corresponding to the coherent utility function

u,(X) = Qiélg EqX, X el (1.4)

where D, is the determining set of u, on L.

Let us remark that, under some regularity conditions on p, Weighted V@R, possesses
some nice properties that are not shared by Tail V@QR. We consider Weighted V@R as
one of the most (or maybe the most) important classes of coherent risk measures. For a
detailed study of this risk measure, see [12], which is in fact a continuation of the present
paper. O

1.2 Spaces L. and L!

For a subset D of P, we introduce the weak and strong L'-spaces

1,()={xer: sup [Eq Y| < <},

LY(D) = {X eI’ Jim sup Eql X|1(|X| > ) = 0}.

Clearly, L}(D) C L. (D). It D = {Q} is a singleton, then L. (D) = L{(D) = L'(Q),
which motivates the notation.

In general, L} (D) might be strictly smaller than L} (D). Indeed, let X, be a positive
unbounded random variable with P(X =0) > 0 and let D ={Q € P: EqX =1}. Then
Xo € LL(D), but Xy ¢ LY(D). (One can also construct a similar counterexample with
an L'-closed set D; see Example 1.10). However, as shown by theorem below, in most
natural situations weak and strong L'-spaces coincide.

Theorem 1.6. (i) If D, is the determining set of Tail VQR (see Example 1.5 (1))
with A € (0,1], then L. (D)= LL(D).

(ii) If D, is the determining set of Weighted V@R (see Erample 1.5 (i) with p
concentrated on (0,1], then L. (D)= L}(D).

(iii) If all the densities from D are bounded by a single constant and P € D, then
L,(D) = Ly(D).

12



(iv) If D is a convexr combination 25:1 a,D,,, where Di,...,Dy are such that
L4(D,) = L\(D,), then LL,(D) = L}(D).

(v) If D = conv(Dy,...,Dy), where Dy,...,Dy are such that L. (D,) = L}(D,),
then L. (D)= LY(D).

Lemma 1.7. If p is a convex combination Y - a,dy,, where A, € (0,1], then the
determining set D, of Weighted V@R corresponding to u has the form Y - a,D,,,
where Dy is given by (1.3).

n=1

Proof. Denote ) a,D,, by D. For any Q=) a,Q, € D and any X € L*>, we

have
o0

o

EQX = ZanEQn Z U)\n == ’LLM(X),
n=1 n=1

so that D C D,,.

Let us prove the reverse inclusion. Clearly, D is convex. Let us prove that D is L'-
closed. Take a sequence ¥ =" a,Z* € D that converges in L' to a random variable .
Applying the Komlos’ principle of subsequences (see [28] or [33; Lem 2.10]) to the infinite-
dimensional random vectors Z* = (ZF Zk .. .), we get Z% € conv(Z*, Z*1, ) that
converge P-a.s. componentwise to a random vector 7. Clearly, >, anZk € D and
Zk L, 7% for any n (note that |Z5| < A7), Hence, £ =Y, a,Z° € D,

Now, assume that there exists Qo € D, \ D. The Hahn-Banach theorem yields the
existence of Xy € L such that Eq,Xo < infgep EqXo. Thus, u,(Xo) < infgoep EqXo.
On the other hand, it is easy to check that w,(X) = infocp EQX for any X € L. The
obtained contradiction shows that D, C D. O

Proof of Theorem 1.6. The only nontrivial statement is (ii). In order to prove it,
consider the measures 1 = Y 77 apdo-r, L = > pey ardo—r+1, where ap = p((27%,27F+1).
As uy <wu, < wug, we have Dy O D, O Dj. By Lemma 1.7,

Dﬁ:{Zaka:Zk€D2_k}, Dﬁ:{Zaka:ZkGDQ—kH}.
k=1 k=1

Take X € L.(D,). Consider Z; = 2" 'I(X < q) + cxI(X = qi), where g is the
27k+1_quantile of X and ¢ is chosen in such a way that EpZ; = 1. Then

EkaX = min EpZX

ZE'DQ,kJrl

The density Zy =Y -, axZ), belongs to D, and

EpZyX = min EpZX.

ZG'D‘;

In view of the inclusion X € L} (D,) C L, (Dz), the latter quantity is finite. Thus,

Zak min  EpZX > —o0,

Z€ED,y_p+1
which implies that
oo
Zak min  EpZ(—X") > —oc.
=1 Pk
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The same estimate is true for X+, and therefore,

Zak sup EpZ|X|<220,k sup EpZ|X| < o0. (1.5)

Z€Dy Z€Dy—+1
It is clear that X € L', and thus, for each k,

sup EpZ|X|I(|X|>n) < 2¥Ep| X|I(|X]| > n) — 0.

Z€D27k n—oo
This, combined with (1.5), yields

sup EpZ| X |I(|X|>n) < sup EpZ|X|I(|X]| > n)
7eD, .

= Zak sup EpZ|X|I(|X| > n) — 0.

ZE'DO & n— 00

1.3 Extreme Measures

Definition 1.8. Let u be a coherent utility function with the determining set D. Let
X € LY. We will call a measure Q € D an extreme measure for X if EqX = u(X).
The set of extreme measures will be denoted by Xp(X).

Let us recall some general facts related to the weak topology on L'. The weak topology
on L' is the induced by the duality between L' and L*® and is usually denoted as
o(L',L*°). The Dunford-Pettis criterion states that a set D C P is weakly compact if
and only if it is weakly closed and uniformly integrable. Furthermore, an application of
the Hahn-Banach theorem shows that a convex set D C P is weakly closed if and only if
it is L'-closed.

Proposition 1.9. If D is weakly compact and X € LL(D), then Xp(X) # 0.

Proof. It is clear that u(X) > —oo. Find a sequence 7, € D such that
EpZ,X — wu(X). This sequence has a weak limit point Z,, € D. Clearly, the map
D > Z — EpZX is weakly continuous. Hence, EpZX = u(X), which means that
Zso € Xp (X) . O

Remark. In many typical situations Xp(X) is a singleton. For instance, this is the
case if D is the determining set of Tail V@R or Weighted VQR. (see Example 1.5) and X
has a continuous distribution (for details, see [12; Sect. 6]).

The condition that D should be weakly compact is very weak and is satisfied for the
determining sets of most natural coherent risk measures. For example, the determining
set D, of Tail V@R is weakly compact provided that A € (0,1]. The determining set of
Weighted V@R is weakly compact provided that p is concentrated on (0, 1]; this follows
from the explicit representation of this set provided in [7] (the proof can also be found
in [22; Th. 4.73] or [33; Th. 1.53]).

The following example shows that the condition X € L!(D) in Theorem 1.6 cannot
be replaced by the condition X € L. (D).
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Example 1.10. Let Q2 = [0,1] endowed with the Lebesgue measure. Consider
Ly = \/51[0,1/74 +1-nY2 neN. Then Y, :=2,—1 L—1> 0 and therefore, the set

D= {1+§:anYn:an >0, zoozan < 1}
n=1 n=1

is convex, L!'-closed, and uniformly integrable. Thus, D is weakly compact. Now, con-
sider X (w) =w /2. Then EpZ,X = —4 4+ 2n~ /2. Thus, infq.p EQX = —4, while there
exists no Q € D such that EqX = —4. O

1.4 Capital Allocation

Let (£, F,P) be a probability space, u be a coherent utility function with the determining
set D, and let X', ..., X? € Ll (D) be the discounted incomes produced by different
components of a firm. We will use the notation X = (X!,..., X9).

Problem (capital allocation): Find z',...,2¢ € R such that

u(zd:Xi) :zd:xi, (1.6)

d d
VhY,... bl e R,, U(Zhixi) <3 i (1.7)
i=1 i=1
We will call a solution of this problem a utility allocation between X1,... X%. (A capital

allocation is defined as a utility allocation with the minus sign.)

From the financial point of view, —a is the contribution of the i-th component to the
total risk of the firm, or, equivalently, the capital that should be allocated to this com-
ponent. In order to illustrate the meaning of (1.7), consider the example h' = I(i € J),
where J is a subset of {1,...,d}. Then (1.7) means that the capital allocated to a part
of the firm does not exceed the risk carried by that part.

Let us introduce the notation C' = cl{EqX : Q € D}, where “cl” denotes the closure.
Note that C' is convex and compact.

Theorem 1.11. The set S of utility allocations between X*',..., X? has the form

d d
S=3zeC: ' = mi s 1.8

Furthermore, for any utility allocation x, we have
VAL, . h? e R, u(Z h’X’) <3 niat. (1.9)
i=1

=1

If moreover X',..., X% € LY (D) and D is weakly compact, then

S = {EQX:QEXD(Zd:Xi)}. (1.10)
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Proof. (The proof is illustrated by Figure 1.) For h € R?, we set

L(h) = {x eRe: (ha) = min(h,y)},

yeC

M(h) = {a: € R’ : (h,2) = min(h, y)}.

Note that

u(i hiXi> = min(h, y).

cC
i=1 Y

Hence, the set of points z € R? that satisfy (1.6) is L(e), where e = (1,...,1). The
set of points z that satisfy (1.7) is ﬂheRi M(h) = C + RL. The set of points = that

satisfy (1.9) is (,cge M(h) = C. This proves (1.8) and (1.9). Equality (1.10) follows
immediately from (1.8) and the definition of Xp. O

C+RY

Figure 1. Solution of the capital allocation problem

If C is strictly convex (i.e. its interior is nonempty and its border contains no interval),
then a utility allocation is unique. However, in general it is not unique as shown by the
example below.

Example 1.12. Let d = 2 and X? = —X'. Then C is the interval with the endpoints
(w(X1), —u(X")) and (—u(—=X"),u(—X")). In this example, S = C. O

Let us now find the solution of the capital allocation problem in the Gaussian case.

Example 1.13. Let X have Gaussian distribution with mean a and covariance ma-
trix B. Let u be a law invariant coherent utility function, i.e. u(X) depends only on
the distribution of X'; we also assume that w is finite on Gaussian random variables.

Then there exists v > 0 such that, for a Gaussian random variable ¢ with mean m
and variance o2, we have u(§) = m — yo. Let L denote the image of R? under the map
2+ Bx. Then the inverse B~!: L — L is correctly defined. It is easy to see that

C=a+{B""z:|z| <v}=a+{yeL:{y,Bly) <~}

Let e = (1,...,1) and assume first that Be # 0. In this case the utility allocation z
between X',..., X? is determined uniquely. In order to find it, note that, for any y € L

such that
d

- E:0<ZC0 —a+ey, B zg—a+ey)) =0,
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we have (e,y) = 0. This implies that B~'(zy — a) = apr; e with some constant a (pr;,
denotes the orthogonal projection on L). Thus, zy = a + aBe. As z; should belong
to the relative border of C' (i.e. the border in the relative topology of a + L), we have
(rg — a, B~ (zy — a)) = 7%, i.e. a = —v(e,Be)~Y2. As a result, the utility allocation
between X',..., X% is a — (e, Be) /% Be.

Assume now that Be = 0. This means that e is orthogonal to L, and then the set of
utility allocations between X',..., X% is C.

Let us remark that in this example the solution of the capital allocation problem
depends on wu rather weakly, i.e. it depends only on ~. a

1.5 Risk Contribution

Let (2, F,P) be a probability space, u be a coherent utility function with the determining
set D, X € L! (D) be the discounted income produced by a component of some firm,
and Y € L} (D) be the discounted income produced by the whole firm.

Definition 1.14. The utility contribution of X to Y is
u'(X;Y) = inf{z' : (z',2?) is a utility allocation between X,Y — X}.
The risk contribution of X to Y is defined as p(X;Y) = —u(X;Y).
If X,Y € L}(D) and D is weakly compact, then, by Theorem 1.11,

u(X;Y) = inf EqQX. (1.11)
QeXp(Y)

Using this formula, one can extend u¢(X;Y) to all X € L°.

Remark. If D is weakly compact and X',..., X% € L!(D) are such that Xp (3, X?)
is a singleton, then (in view of Theorem 1.11) the utility allocation between X!, ... X4
is unique and has the form

d d
(uc(Xl; ZXi), .. .,uc(Xd; ZX‘))
i=1 i=1
Theorem 1.15. If X, Y € LY(D) and D is weakly compact, then

u(X;Y) = lgglefl(u(Y +eX) —u(Y)).

Proof. Fix § > 0. The map D > Q — EqX is weakly continuous, and hence, for
any Q € Xp(Y), there exists a neighborhood V(Q) of Q in D endowed with the weak
topology such that

inf EqX > inf EqX —¢=uX;Y)—0.
QeV(Q) Qexp(Y)

The set Xp(Y) is weakly compact being a closed subset of D, so that there exists a
neighborhood V' of Xp(Y) in D endowed with the weak topology such that

inf Eq X > inf EQX —0=u"(X;Y) —0.
QeVv QeXxp(Y)
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As D\ 'V is weakly closed and does not intersect Xp(Y'), we have

inf EQY =u(Y)+a
QeD\V

with a strictly positive constant a. It follows from the inequalities

inf Eq(Y +eX)>u(Y)+a+e¢inf EqX,
QeD\V QeD

inf Eq(Y +2X) > inf EQY + ¢ inf EqX > u(Y) 4+ e(u’(X;Y) — 6)
1%

QeV QeVv Qe

that, for a sufficiently small ¢ > 0,

éni Eq(Y +eX) > u(Y) +e(u(X;Y) —9).

As 6 > 0 has been chosen arbitrarily, we get

limui]nfs_l(u(Y +eX)—u(Y)) > u(X;Y).

Combining this with the inequality

limsupe™ (u(Y +eX) —u(Y)) < lim5_1< inf Eq(Y +¢eX)— u(Y)) =u(X;Y),

€10 el0 QeXp(Y)

we get the desired statement.

O

Example 1.16. (i) Let Y be a constant. In this case Xp(Y) = D, so that

u(X;Y) = u(X).
(ii) Let X = oY with a € Ry. Then u“(X;Y) = au(Y).

(iii) Let X, Y have a jointly Gaussian distribution with mean (EX, EY") and covariance
matrix B = (b;;). Let w be a law invariant coherent utility function that is finite on
Gaussian random variables. Then there exists v > 0 such that, for a Gaussian random

variable & with mean m and variance o2

bi1 + boy
‘“(X;Y)=EX —
u ) 7 (b1 + bay + b1a + 522)1/2
cov(X,Y)
cov(X,Y)

= EX + (u(Y) — EY)

DY
In particular, if EX = EY = 0, then

u'(X;Y)  cov(X,Y) V@QRC(X;Y)
u(Y) DY  Va@R(®Y) ’

, we have u(§) = m — yo. Assume that X and
Y are not degenerate and corr(X,Y") # £1. It follows from Example 1.13 that

where V@QRC denotes the V@R contribution of X to Y (for the definition, see [32;

Sect. 7]).
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2 Good Deals Pricing

2.1 Utility-Based Good Deals Pricing

Let (2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, and A be a convex subset of L’. From the financial point
of view, A is the set of discounted incomes that can be obtained in the model under
consideration (examples are given in Subsections 2.3-2.5). It will be called the set of
attainable incomes. We will assume that A is D-consistent (see Definition 2.2 below). It
is shown in Subsections 2.3-2.5 that this assumption is automatically satisfied for natural
models.

Definition 2.1. A risk-neutral measure is a measure Q € P such that EqX < 0 for
any X € A (we use the convention EX = EXt —EX ™, oo — 0o = —o0).

The set of risk-neutral measures will be denoted by R or by R(A) if there is a risk
of ambiguity.

Definition 2.2. We will say that A s D-consistent if there exists a set
A" C AN LY(D) such that DNR =D NR(A").

Definition 2.3. A model satisfies the utility-based NGD condition if and only if there
exists no X € A such that u(X) > 0.

Theorem 2.4. A model satisfies the NGD condition if and only if DNR # (.

Proof. The “if” part is obvious. Let us prove the “only if” part.

Fix Xi,..., Xy € A'. It follows from the weak continuity of the maps D 5 Q — EqX,,
that the set C' = {Eq(X1,...,Xuy) : Q € D} is compact. Clearly, C' is convex. Suppose
that C' N (—oo, 0™ = (. Then there exist h € R and & > 0 such that (h,z) > ¢ for
any © € C and (h,z) < 0 for any = € (—o0,0]". Hence, h € RY. Without loss of
generality, > hp, = 1. Then X =53 h,X,, € A and EqX > ¢ for any Q € D, so
that u(X) > 0.

The obtained contradiction shows that, for any Xi,..., X, € A’, the set

B(Xi,...,Xu)={Q €D :EqX,, <Oforany m=1,...,M}

is nonempty. As X,, € LY(D), the map D > Q — EqX,, is weakly continuous, and
therefore, B(X7, ..., X)) is weakly closed. Furthermore, any finite intersection of sets of
this form is nonempty. Consequently, there exists a measure Q that belongs to each B.
Then EqX < 0 for any X € A’ which means that Q € DNR(A’). As A is D-consistent,
QeDNR. O

Remarks. (i) As opposed to the fundamental theorems of asset pricing dealing with
the NA condition and its strengthenings (see [10], [17], [18]), here we need not take any
closure of A when defining the NGD. Essentially, this is the compactness of D that yields
the fundamental theorem of asset pricing.

(i1) If D = P, then the NGD condition means that there exists no X € A with
essinf,, X (w) > 0. This is very close to the NA condition. However, in this case D is not
uniformly integrable and Theorem 2.4 might be violated. Indeed, let A = {hX : h € R},
where X has uniform distribution on [0,1]. Then the NGD is satisfied, while R = §).

Now, let F' € LY be the discounted payoff of a contingent claim.
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Definition 2.5. A wutility-based NGD price of F' is a real number x such that the
extended model (2, F,P, D, A+ {h(F — z) : h € R}) satisfies the NGD condition.
The set of NGD prices will be denoted by Ingp(F).

Corollary 2.6. For F € L}(D),
INGD(F) = {EQF Qe DQR}

Proof. Denote {h(F —z): h € R} by A(x). Clearly, A+ A(z) is D-consistent (in
order to prove this, it is sufficient to consider A'+ A(x)). It follows from Theorem 2.4 that
x € Ingp(F) if and only if DNR(A+ A(x)) # (). Tt is easy to check that Q € R(A+ A(x))
if and only if Q € R and EqF = x. This completes the proof. O

Remark. As opposed to the NA price intervals, the NGD price intervals are closed
(this follows from the weak continuity of the map D NR — EqF).

To conclude the subsection, we will discuss the origin of D. First of all, D might be the
determining set of a coherent utility function like Tail V@R, or Weighted V@QR. The set D
might also correspond to a weighted average or the minimum of several coherent utility
functions. It is also possible that D originates from the classical utility maximization as
described by the example below.

Example 2.7. Let Pq,...,Py be a family of probability measures, uq,...,uy be a
family of classical utility functions (i.e. smooth concave increasing functions R — R), and
Wi,...,Wy be a family of random variables. From the financial point of view, P,,, u,,
and W,, are the subjective probability, the utility function, and the current endowment of
the n-th market participant, respectively. Consider a measure Q,, = ¢,ul, (W, )P, , where
¢, is the normalizing constant. Then, for any trading opportunity X € L°, we have

d

e U (Wy +eX) = Ep,ul, (W,)X = Eq,c,' X (2.1)
e=0

(we assume that all the expectations exist and integration is interchangeable with dif-
ferentiation). Thus, an opportunity ¢X with a small ¢ > 0 is attractive to the n-th
participant if and only if Eq, F' > 0, so that Q, might be called the valuation measure
of the n-th participant. Take D = conv(Qy,...,Qn). Then a good deal is a random
variable X € A such that Eq, X > 0 for any n. In view of (2.1), this means that X
with some € > 0 is attractive to any market participant (this is similar to the notion of a
strictly acceptable opportunity introduced in [8]). Thus, in this example the NGD means
the absence of a trading opportunity that is attractive to every agent. a

2.2 RAROC-Based Good Deals Pricing

Let (92, F,P) be a probability space, RD C P be a weakly compact set, PD be an
L'-closed convex subset of RD, and A be a convex subset of L°. We will call PD
the profit-determining set (from the financial point of view, this is the set of scenarios
determining the profit of a position) and RD the risk-determining set (this is the set
of scenarios determining the risk of a position). A canonical example is: PD = {P},
while RD is the determining set of a coherent utility function. We will assume that A is

RD-consistent. Finally, we fix a strictly positive number R meaning the upper limit on
a possible RAROC.
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Definition 2.8. The Risk-Adjusted Return on Capital (RAROC) for X € LY is de-

fined as
+00 if EpX > 0 and u(X) >0,

RAROC(X) ={ Enx
—u(X)

with the convention % =0, 2=0.

otherwise

Definition 2.9. A model satisfies the RAROC-based NGD condition if and only if
there exists no X € A such that RAROC(X) > R.

Theorem 2.10. A model satisfies the NGD condition if and only if

1 R
(Lyros wo) oo o2

Proof. For any X € LY,

RAROC(X) > R <= inf EqX 4+ R inf EqX >0 <= inf EqX >0,
QePD QERD QeD

where D = (IJ%R PD + HLRRD). Clearly, D is weakly compact (note that D C RD,
while L!}(D) = L}(RD)) and A is D-consistent. Now, the statement follows from Theo-

rem 2.4. O

Definition 2.11. A RAROC-based NGD price of a contingent claim F' is a real num-
ber z such that the extended model (Q, F,P,PD,RD, A+ {h(F —z) : h € R}) satisfies
the NGD condition.

The set of NGD prices will be denoted by Ingp(F).

Corollary 2.12. For F € L}(D),

1 R

This statement follows from Theorem 2.10.

2.3 Static Model with a Finite Number of Assets

We consider the model of the previous subsection with A = {(h,S; — S;) : h € R%},
where Sy € R? and Si,...,S¢ € LY(RD). From the financial point of view, S! is the
discounted price of the 7-th asset at time n.

Clearly, in this model A is RD-consistent and RD N'R = RD N M, where

M ={Q € P : Eq|S:| < 0 and EqS; = Sp}.

Remark. We have M C R, but the reverse inclusion might be violated. Indeed, let
d =1 and let S; be such that EpS;” = EpS; = co. Then P € R, while P ¢ M.

Let us now provide a geometric interpretation of Theorems 2.4 and 2.10. For this, we
only assume that PD C RD C P are convex sets and S; € L. (RD).
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Let us introduce the notation (see Figure 2)

B = cl{EqS; : Q € PD},
C = cl{EqQS; : Q € RD},
1 R

= B
1+R +1+Ra

D = conv supp Lawp Sy,

Cr

where “supp” denotes the support, and let D° denote the relative interior of D (i.e. the
interior in the relative topology of the smallest affine subspace containing D). It is easy

to see from the equalities

inf EQ<h, Sl — S(]) = inf <h, Tr — S()),

QePD T€EB
inf EQ <h, Sl — S(]) = inf <h, T — S())
QeRD zeC

that the RAROC-based NGD is satisfied if and only if Sy € Cg, while the utility-based
NGD corresponding to u is satisfied if and only if Sy € C'. Furthermore, it is well known
(see [35; Ch. V, § 2¢]) that the NA is satisfied if and only if Sy € D°.

Now, let F' € Ll (RD) be the discounted payoff of a contingent claim. Let B, C,
QR, l~), and D° denote the versions of the sets B, C, Cg, D, and D° defined for
S1=(S},..., S5, F) instead of S;. Let Ingp @) (F) denote the RAROC-based NGD price
interval, Ingp(F') denote the utility-based NGD price interval (corresponding to u), and
Ina(F) denote the NA price interval. Then

Inao@ (F) = {z : (So, ) € qR},
INGD(F) = {1‘ . (S(],l‘) € (3},
Ina(F) = {z : (So,2) € D°}.

I\\( e

() ¥NT
(J)aONT
) (¥) anN

/.

Figure 2. The geometric representation of
price intervals provided by various techniques
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Example 2.13. Let S; have Gaussian distribution with mean a and covariance ma-
trix B. Let PD = {P} and RD be the determining set of a law invariant coherent utility
function u that is finite on Gaussian random variables. Let F' be such that the vector
(St,...,S¢, F) is Gaussian. Denote ¢ = cov(S;, F'), f = EF (we use the vector form of
notation).

There exists b € R? such that Bb = ¢. We can write F' = (b, S; —a) + G +EF. Then
EG =0 and cov(G, S;) =0, so that G is independent of S;. Note that

d:=DG =DF —D(b,S; —a) =DF — (b, Bb) = DF — (b, c).
Clearly, if d =0, then

INGD(R)(F) = [NGD(F) = INA(F) = {<b, SO — Cl>}

Let us now assume that d > 0.

Obviously, Ina(F) = R.

In order to find Iygp(F'), note that Ingp(F) = (b, So — a) + Inap(G). Let L denote
the image of R under the map z + Bz. Then the inverse B! : L — L is correctly
defined. As wu is law invariant, there exists v > 0 such that, for a Gaussian random
variable £ with mean m and variance 02, we have u(§) = m — yo. From this, it is easy
to see that the set C := {Eq(S;, @) : Q € RD} has the form

C={(r,y):x€ L, ycR: (x,B"'2) +d "> < ~*}.
Consequently,
Inap(F) = [(b,So —a) + f —a, (b, So — a) + f + o],

where o = (dy? — d(Sy — a, B~*(Sy — a)))*/?. (In particular, the NGD is satisfied if and
only if (Sg — a, B"(So — a)) <~%.)
Similar arguments show that

Inap@w) (F) = [(b, S0 — a) + f — a(R), (b, Sy — a) + f + a(R)], (2.3)
where o(R) = (‘ifg; —d(Sg—a, B7'(Sy — a)>)1/2. (In particular, the NGD(R) condition
is satisfied if and only if (Sy — a, B~!(Sy — a)) < ﬁ?;z )

Let us remark that Ingp(F) and Inapw)(F) depend on u rather weakly, i.e. they
depend only on . a

2.4 Dynamic Model with an Infinite Number of Assets

Let (2, F, (F)icpo,r, P) be a filtered probability space. We assume that F is trivial.
Let u be a coherent utility function with the weakly compact determining set D. Let
(S%), i € I be a family of (F;)-adapted cadlag processes (the set I is arbitrary). From
the financial point of view, S? is the discounted price process of the i-th asset. We assume
that S! € L!(D) for any ¢t € [0,T], i € I (this assumption means that the risk of any
simple trade is finite). Define the set of attainable incomes by

N
A= {ZZH;(SZH — S, )J:NEN, ug <---<uy, are (F,)-stopping times, o
n=1 iel 2.4

H! is F,, _,-measurable, and H’ = 0 for all i, except for a finite set}.
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Lemma 2.14. We have DN'R =DNR(A") =D NM, where

A ={H(S: - S):u<wvel0,T],i€cl, His F,-measurable and bounded},
M={QeP:foranyic I, S"isan (F,, Q)-martingale}.

Proof. The inclusions DNR C DN R(A) € DN M are clear. So, it is
sufficient to prove the inclusion DN M C DNR. Let Q € DN M. Take
xX=N Sier HA(S: —S. )€ A. The process

k
My=> > "Hi (S, —S. ), k=0...N

n=1 i€l

is an (F,,,Q)-local martingale. Suppose that EQX~ < oo (otherwise, EqX = —o0).
Then M is a martingale (see [35; Ch. II, § 1c]), and hence, EqX = EqMy = 0. Thus, in
any case, EqX < 0, which proves that Q € R. O

Example 2.15. Let us consider the Black-Scholes model in the framework of the
RAROC-based pricing. Thus, S; = Spet*T?Bt where B is a Brownian motion; we are
given a weakly compact risk-determining set RD, and we take PD = {P}. Surprisingly
enough, in this model supy.4 RAROC(X) = co. Indeed, the set M consists of a unique
measure Qp and X is not bounded away from zero, so that condition (2.2) is violated
for any R > 0.

Let us construct explicitly a sequence X, € A with RAROC(X,) — oo. Con-
sider D,, = {% < n‘l} and set X, = a,I(D,) — I(2\ D,), where a, is chosen
in such a way that Eq,X, = 0. Then EpX,, — oo, while infq.rp EQX > —1, so that
RAROC(X,) — oc. Actually, X,, ¢ A, but, for each n, there exists a sequence (Y,;") € A

such that -2 <Y <a,+1 and Y" SELEN X, (we leave this to the reader as an exer-

m— 00

cise). Then RAROC(Y,") —— RAROC(X,,), so that RAROC(Ynm(n)) — oo for some

subsequence m(n).

This example shows that complete models are typically inconsistent with the RAROC-
based NGD pricing. But this technique is primarily aimed at incomplete models because
in complete ones the NA price intervals are already exact. O

2.5 Dynamic Model with Transaction Costs

Let (Q,F, (Fi)tcpo,m, P) be a filtered probability space. We assume that Fq is trivial and
(Fy) is right-continuous. Let u be a coherent utility function with the weakly compact
determining set D. Let S% S% i € I be two families of (F;)-adapted cadlag pro-
cesses. From the financial point of view, S% (resp., S”) is the discounted ask (resp.,
bid) price process of the i-th asset (so that S® > S® componentwise). We assume that
Sei S¥ e LY(D) for any t € [0,T], i € I. Define the set of attainable incomes by

N
A= {ZZ[—HZI(H; >0)S% — HII(H < 0)S¥ ]
n=0 il
N €N, ug < -+ < uy are (F;)-stopping times, H! is F, -measurable,
N
H'! =0 for all i, except for a finite set, and ZH; = 0 for any z}

n=0
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Here H} means the amount of the i-th asset that is bought at time u, (so that Y_,_, H;}
is the total amount of the i-th asset held at the time w,). Note that if there are no
transaction costs, i.e. S% = S% = S for each i, then the set of attainable incomes
coincides with the set given by (2.4).

Lemma 2.16. We have DN'R =DNR(A) =DNM, where

A ={G(SY — 8% + H(—S" 4 S") :i € I, u < v are simple (F;)-stopping
times, G, H are positive, bounded, F,-measurable},

M = {Q € P : for any i, there exists an (F;, Q)-martingale M’
such that S* < M < S},

(A stopping time is simple if it takes on a finite number of values.)

Proof. The inclusion DNR C DN R(A') is obvious.
Let us prove the inclusion DNR(A’) CDNM. Take Qe DNR(A"). Fix i € I. For
any simple stopping times u < v, we have S, S% % G% ¢ [1(D) and

Eq(Sy' | Fu) > Sy, Ea(Sy | Fu) < S3 (2.5)
Consider the Snell envelopes

Xy = esssup EQ(ng | ft)a te [OaT]a
TET:

Y, = essinf Eq(S¥ | F), te€][0,T],
TE [t

where 7T; denotes the set of simple (F;)-stopping times such that 7 > ¢. (Recall that
esssup, &, is a random variable £ such that, for any a, £ > &, a.s. and for any
other random variable ¢ with this property, we have £ < ¢ a.s.) Then X is an (F;)-
supermartingale, while Y is an (F;, Q)-submartingale (see [19; Th. 2.12.1]).

Let us prove that, for any ¢ € [0,7], X; <Y; Q-a.s. Assume that there exists ¢ such
that P(X; > Y;) > 0. Then there exist 7,0 € 7; such that

Q(Eq(SY | F1) > Eq(S¥ | 7)) > 0.

This implies that Q(¢ > n) > 0, where £ = Eq(S¥ | F,r,) and n = Eq(S¥ | Frne)-
Assume first that Q({{ > n} N {7 <o}) > 0. On the set {7 < o} we have

§= ng‘ = Sﬁé\a’ n= EQ(Sgi | Frno) = EQ(S%/U | Frno)s

and we obtain a contradiction with (2.5). In a similar way we get a contradiction if we
assume that Q({& > n} N {r > o}) > 0. As a result, X; <Y, Q-a.s. Now, it follows
from [26; Lem. 3] that there exists an (F;, Q)-martingale M such that X < M <Y. As
a result, Q € M.

Let us prove the inclusion DN M C DNR. Take Q € DN M, so that, for any 1,
there exists an (F;, Q)-martingale M* such that S < M? < S%. For any

N
X=> N [-H(H,>0)S¢ — HiI(H, <0)Sk] € A,

n=0 i€l
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we have

X<ZZ —HII(H:>0)Mi — HII(H! <0)M ZZ(ZHk) MM,

n=0 il n=1 i€l k=0

Repeating the arguments used in the proof of Lemma 2.14, we get EqX < 0. As a result,
QeR. O

Consider now a model with proportional transaction costs, ie. S% = S’
Sho= (1 — \)S*, where each S’ is positive, A\’ € (0,1). Denote the interval of NGD
prices in this model by I\(F). Let (A,) = (An;i € I,n € N) be a sequence such that
A —— 0 for any .

n—oo

Theorem 2.17. For F € LY(D), I,,(F) —— Iy(F) in the sense that the right
n—oo
(resp., left) endpoints of I, (F) converge to the right (resp., left) endpoint of Iy(F).

Proof. Let r denote the right endpoint of Iy(F'). Suppose that the right endpoints of
I,,(F) do not converge to r. Then there exists 7’ > r such that, for each n (possibly, after
passing on to a subsequence), there exists Q, € D N R,, with the property: EqF > 7’
(R is the set of risk-neutral measures in the model corresponding to \). The sequence
(Qn) has a weak limit point Q. € D. Fix i € I, u < v € [0,T], and a positive
bounded F,-measurable function H. For any n, we have Eq, H((1 — A\%)S! — St) <0
As S! € L,(D), we have supqcp EqS! < oo, and hence, limsup, Eq, H(S! — S.) < 0. As
the map D > Q — EqH(S! — S!) is weakly continuous, we get Eq_H(S! — S!) < 0. In
a similar way, we prove that Eq_H(—S! + S%) < 0. Thus, S’ is an (F;, Qu)-martingale,
so that Qo € DN Ry. As the map D 3 Q — EqF is weakly continuous, we should have
Eq. F > r'. But this is a contradiction. O

3 Optimization

3.1 Agent-Independent Optimization
We consider the model of Subsection 2.2.

Problem (agent-independent optimization): Find

R, = sup RAROC(X)
XeA

and

X, = argmax RAROC(X).

XeA

The only statement we can make at this level of generality is that

1 R
R*:inf{R>0: (H—RPDJrH—RRD) ﬂR;«é@}

(this follows from Theorem 2.10). Of course, in general X, might not exist.
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3.2 Static Model with a Finite Number of Assets
Let (Q,F,P) be a probability space, PD C RD C P be convex sets, S; € R?, and
St ..., St € LL(RD). Let A= {(h,S; — Sy): h € H}, where H C R? is a convex set
such that its cone hull is closed.

Let us introduce the notation (see Figure 3)

H*={r cR*:Vh e H, (h,z) > 0},
B = cl{EqS;: : Q € PD},

C = cl{EqS, : Q € RD},

D=C+ H*,

(3.1)

and let D° denote the relative interior of D. The sets B and C' are convex compacts,
while D is convex and closed. Note that, for h € H,

inf EQ<h, Sl - So> = inf <h, T — S(]), (32)
QePD z€B

inf EQ<h, Sl — So> = inf <h, T — S(]> = inf <h, T — S(]> (33)
QeRD el €D

We will assume that Sy € D°\ B. This assumption is justified economically. Indeed,
if Sp € B, then, in view of (3.2), RAROC(X) = 0 for any X € A; if Sy ¢ D°, then, in
view of (3.3), there exists X € A with RAROC(X) = oo (provided that B belongs to
the relative interior of C).

For A > 0, we denote B(\) = Syp—A\(B—5p) and set A\, =sup{A > 0: B(A\)ND # 0},

N ={h€H :JaeR :VxeB(\),YyeD, (h,x) < a < (h,y) and Vye D, (h,y) > a}.

Note that N is nonempty provided that A\, < oo. In the case, where A\, = oo, we set
N =H.

Theorem 3.1. We have R, = \,' and argmax,.y RAROC((h, S — Sp)) = N.

Proof. We will prove the statement for the case A\, < oco. The proof for the case
A« = oo is similar. Take T' € B(\,) N D and set U = So — A\, }(T — Sp).
If h € N, then
inf$€B<h, Tr — S(]> <h, U - S()>

J— pumn - = _1
RAROC((h, Sy — So)) —inf,cplh, o — So)  —(h,T — Sp) A

If h € H\ N, then there are three possibilities:

1) h is orthogonal to the smallest affine subspace containing D;

2) SumeBLM)<h7x> >’<h773;
3) infm€D<h: fl?) < <h: T> .

In the first case, RAROC((h, S; — Sp)) = 0. In the second case,

inf <h, xr — S()> < <h, U— S()), inf <h, xr — S()> < <h,T — S()>,

zeB xzeD

so that RAROC((h, S; — Sp)) < A;'. The third case is analyzed in a similar way. O
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Figure 3. Solution of the optimization
problem. Here h, is an optimal h.

As a corollary, in the case, where H = R and PD = {P}, the solution to the
optimization problem is found as follows. Let T be the intersection of the ray (EpSi,Sy)
with the border of C'. Then
. |Ep51 — S()|

sup RAROC({h, S1 — Sp)) =
s ({h: 51 = So0) = =g 7

and argmax;, g« RAROC((h, Sy — Sp)) is
Np(T) :={h e R :Vz € C°, (h,a —T) > 0}.

In the case, where C' has a nonempty interior, Np(T') is the set of inner normals to C' at
the point T'.

The following example shows that in natural situations the set of optimal strategies
h. might not be unique (of course, the uniqueness of h, should be understood up to
multiplication by a positive constant).

Example 3.2. Let S| have lognormal distribution and S? = (S} — K)* (so that the
second asset is a call option on the first one). Let PD = {P}, RD be the determining
set of Tail V@R of order A\, and H = R?. Assume that F = o(S]). It is easy to see that
Xrp(S]) consists of a unique element Q = A\"'I(S} < ¢))P, where g, is the A-quantile
of S. The border of C has an angle m/4 at the point F = Eq(S},5?) (see Figure 4).
Let S = 225, Then T = E and Np(T) = {h € R2 : h' > 0, h? > —h'}. O

S

N So
T H

Figure 4. Nonuniqueness of an optimal strategy

Let us now find the solution of the optimization problem in the Gaussian case.
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Example 3.3. Let S; have Gaussian distribution with mean @ and covariance ma-
trix B. Let PD = {P} and RD be the determining set of a law invariant coherent utility
function u that is finite on Gaussian random variables. We consider the setting with
no constraints, i.e. H = R?. Assume that Sy belongs to the relative interior of C' and
S(] 7& a.

There exists v > 0 such that, for a Gaussian random variable ¢ with mean m and
variance o2, we have u(§) = m — yo. Let L denote the image of RY under the map
xr +— Bx. It is easy to see that

C=a+{B""z:|z| <v}=a+{yeL:{y,Bly) <~}

We have T' = a — a(Sy — a) with some a > 0. It is easy to see that h € Np(T) if and
only if (h,a — Sp) > 0 and, for any y € L such that

d

% E:0<T o a_‘_gyaBil(T o Cl+€y)> = 07

we have (pr;h,y) = 0. This means that pr;h = /B~ '(a—T) = ¢B~'(a — Sy) with some
constant ¢ > (0. Thus,

Np(T) = {h € R*: Bh = c(a — Sp), ¢ > 0}.

Note that this set does not depend on /! O

3.3 Optimal Structure of a Firm

Let (©, F,P) be a probability space, PD = {P}, RD C P be an L'-closed convex set,
and let X', ..., X% e L (RD) be the discounted incomes produced by different compo-
nents of some firm. Let H', ..., H? be sets, each of which equals either R, or R. We
will consider the problem of maximizing the RAROC over the set A= {(h,X):h e H},
where H = H' x --- x H?. From the financial point of view, this means that each
component of the firm is allowed to grow or shrink (the condition H® = R means that
the portfolio of the i-component can be reverted; the condition H* = R, means that it
cannot be reverted) and the problem is to find the firm’s structure that maximizes the
overall RAROC. We will assume that EpX? # 0 for any i, that 0 < R, < oo, where
R, = supy.4 RAROC(X), and that the set C given by (3.1) is strictly convex, i.e. its
interior is nonempty and its border contains no interval.

Definition 3.4. Let PD be a profit-determining set and RD be a risk-determining
set. We define the RAROC contribution of X to Y as

RAROC'(X; V) = 205,

where u is the coherent utility function with the determining set RD.

The RAROC contribution is well defined provided that u¢(X;Y) is well defined and
u(X;Y) #0.

Remarks. (i) RAROC contribution may take on negative values.
(i1) We have RAROC®(X; X) = RAROC(X).
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Theorem 3.5. Let h € H be such that h* # 0 for any i. Then RAROC({(h, X)) = R,
if and only if

RAROC® (hlxl; zd: hiXZ') — ... = RAROC® (thd; zd: hiXi) . (3.4)
=1 =1

Moreover, in this case all the elements of this equality are equal to R, .

Proof. Let us prove the “only if” part. Introduce the notation X = (X!, ..., X9),
e=(1,...,1). We will denote by zy the componentwise product of vectors z and y (i.e.
(zy)" = x'y*). The condition R, > 0, combined with Theorem 3.1, shows that the ray
{=AEpX : A > 0} intersects the border of D at a point T' (D is given by (3.1)). We have

Ve € D, (e,hT) = (h,T) < (h,x) = (e, hx). (3.5)

We can write hT' = hxy + hzy with z; € C, 5 € H* (H* is given by (3.1)). Clearly,
hzy € RY. This, combined with (3.5), shows that hxy = 0. Thus,

hT € hC = {hz :z € C} = {EqghX : Q € RD}.

It follows from (3.5) and Theorem 1.11 that AT is a utility allocation between
X', ...,hiX? corresponding to the coherent utility function u with the determin-
ing set RD. The strict convexity of hC' ensures that the utility allocation between
R*X1, ..., h?X? is unique (corresponding to the coherent utility function with the deter-
mining set RD). It follows from Theorem 3.1 that T = —R_;'EpX. Employing now
Theorem 1.11, we get

d iy i i

RAROCC(h"Xi;ZhiXi) - ,E'?h)fi __MEXT
i=1 —ue(hiXG YT hXT) T

Let us prove the “if” part. Let yo € R? be a utility allocation between A' X', ... h?X4?
(it is unique due to the strict convexity of C' and the condition h' # 0 for any 7). It
follows from Theorem 1.11 that yy € hC', so that we can write yo = hT with some T € C'.
For any z; € C, x5 € H*, we have

<h7$1 + I2> = <€, hml + hx2> 2 <6a hI1> 2 <€, ?JO> = <h” T>

(in the first inequality we used the inclusion hxzy € RZ). This means that T belongs
to the border of D and (h,x —T) > 0 for any x € D. As h # 0 and D has a
nonempty interior, h is an inner normal to D at the point 7. It follows from (3.4) that
yo = aEphX with some a € R, i.e. h'T" = ah'Ep X', i =1,...,d. As h # 0 for each 1,
we get T'= aEpX . The condition R, < oo ensures that 0 € D°, so that a # 0. We have
Ep(h, X) = (h,EpX) and u((h, X)) = (h,T) = a(h,EpX), and therefore, & < 0. Now,
it follows from Theorem 3.1 that RAROC((h, X)) = R.. O

Remark. Theorem 3.5 is not true for an arbitrary convex constraint H. As an example,
one can take H = {h € R? : h! = -.- = h?¢ > 0} and X', ..., X¢ such that the utility
allocation between X', ..., X? is unique and is not collinear to EpX. Then, for any
h € H, we have RAROC((h, X)) = R,, but (3.4) is violated in view of Theorem 3.5.

Consider now the case, where the set of discounted incomes that can be obtained
by the i-th component of the firm is a convex cone A° C L° Thus, the set of in-
comes available to the whole firm is A = Zle A;. Assume that 0 < R, < oo and let
Y =% Vi € argmaxy., RAROC(X) (here V' € A?). Assume that Y' € L. (RD),
EpY? £ 0 for any i and a utility allocation between Y!,... Y is unique.
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Corollary 3.6. We have
RAROC*(Y,Y) =--- = RAROC‘(Y4;Y) = R,. (3.6)

Proof. Note that A D> A = {(hY) : h € RL}, so that
RAROC(Y) = supyc 4 RAROC(X). Now, the statement follows from Theorem 3.5. O

Remark. The reverse statement is not true. Indeed, take X’ € A’ such that
X' € L,(RD), EpX' # 0 for any i, and let h € argmax,cge RAROC((h, X)). By
Theorem 3.5, equality (3.6) is satisfied for Y* = hi X%, but Y0, Y is not necessarily an
optimal element of A because A’ can contain other elements than X°.

3.4 Single-Agent Global Optimization

Let (€, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, A C L be a D-consistent convex cone, and W € L}(D).
From the financial point of view, W is the current endowment of some agent, while A is
the set of discounted incomes the agent can obtain by trading. We will assume that there
exists no X € A with u(X) > 0.

Problem (single-agent global optimization): Find

u, = sup u(W + X)
XeA

and

X, = argmaxu(W + X).
XeA

Theorem 3.7. We have
u, = inf EqQW.

QeDNR

Proof. By Theorem 2.4, for any z € R,

supu(W+X) >z <= supu(—2+W+X)>0 <= DNR(—z+ W+ A) =0.
XeA XeA

Fix Q€ R(—z+W + A). As A is a cone, we have EqX < 0 for any X € A. As A
contains zero, Eq(—z+W) < 0. Thus, Q € R and Eq(—z+WW) < 0. Conversely, if these
two conditions are satisfied, then Q € R(—z + W + A). We get

supW+X)>z < DNRN{Q:EqWW <z} =1,
XeA

and the result follows. O

3.5 Static Model with a Finite Number of Assets

Let (€2, F,P) be a probability space, u be a coherent utility function with the determining
set D,and W € LL (D). Let A= {(h,X):h € H}, where X = (X',..., X% € LL (D)
and H C R is a closed convex cone. We will assume that there exists no X € A with
u(X) > 0.
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Let us introduce the notation (see Figure 5)

O = cl{Eq(X. W) : Q € D},
H={zeR" :(z',... 2% e H, 2™ =1},

H* ={z e R"" :Vhe H, (h,z) <0},
e=1(0,...,0,1),

A =inf{A € R: (Ae + H*) N C # 0},

N={heR" :p™' =1 and 3a e R:Vz € \ye+ H*, Vy € C, (h,z) < a < (h,y)},
N={heR%: (h,1) e N}

Note that C'N {ae : @ € R} # 0. Indeed, otherwise there exists h = (h,1) € R
such that inf,.~(h,z) > 0, which means that w(W + (h,X)) > 0. Furthermore,
H* D {ae:a <0} and H*N{ae:a >0} =0. Hence, A, € (—00,0).

Theorem 3.8. We have u, = A\, and argmax, .y uw(W + (h, X)) = N.

Proof. Fix A < A,. As (' is a convex compact and H* is convex and closed, there
exist h € R™! and a,b € R such that, for any z € e + H* and any y € C, we have
(h )y <a<b< (h y). As C is compact, h can be chosen in such a way that hdJrl #0.

Since H* D {ae:a <0}, we have h¥+! > 0. Without loss of generality, h¢*! = 1. Then,
for any x € H*, we have (h x) < a— A As H* is a cone, for any z € H*, we have
(h,z) <0and a—\ > 0. As h®*' =1, we have h € H. Let h be a d-dimensional vector

that consists of the first d components of h. Using the closedness of H, one can check
that h € H. Furthermore,

w(W + (h, X)) = inf Eq(W + (h, X)) = inf (h,z) > A.
QeD zeC
As A < A, has been chosen arbitrarily, we conclude that sup,., u(W + (h, X)) > A..
Let zg € (\e+ H*)NC. Fix h € H and set h = (h,1). Then

w(W + (h, X)) = inf (h, z) < (h, ).

zeC
We can write o = \.e + 29 with 2y € H*. Then (71, Zo) = A\ + (ﬁ, 20) < Ai. Thus,
suppeg (W + (h, X)) < A.. As a result, u, = A,.
Let h € N. Using the same arguments as above, we show that h € H. For

h = (h,1), there exists a € R such that, for any = € e + H* and any y € C, we
have (h,z) < a < (h,y). The same arguments as above show that a > A,. Consequently,

u(W + (h, X)) = inf (h,z) > a > A,.
zeC
Let h € H be such that u(W + (h, X)) = A.. This means that, forJNz = (h,1),
we have 1nfmec(h x) > A.. Furthermore, for any z = Ae +2 € Ae + H*, we have
(h,z) = (h,\.e) + (h,z) < \,. Thus, h € N, which means that h € N. O

Example 3.9. (i) Let H = RY. Then H = {e}, H* = {ae : a < 0}, and

A = inf{z®! : 2 € Cy}, where Cy = C'N ({0} x R). The condition that there ex-
ists no X € A with u(X) > 0 is equivalent to: Cy # 0. If C° N ({0} x R) # 0, where
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Rd

Figure 5. Solution of the optimization
problem. By H} we denote A.e + H*.

Here N = {h,} and N = {h,}.

C° denotes the relative interior of C', then N # ) (see Figure 5). If C°N ({0} x R) =0,
then both cases N # () and N = () are possible (see Figure 6).

(i) Let¢ H = RL. Then H = R! x {1}, H* = (—o0,0/*", and
A\ = inf{z%*! : 2 € C_}, where C_ = C N ((—oc,0]? x R). O

e’

Rd

Figure 6. Existence (right) and nonexistence
(left) of an optimal strategy for the case H = R?

3.6 Single-Agent Local Optimization

Let (2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, A C L° be a D-consistent convex set containing zero,
and W € L!(D). The financial interpretation is the same as above. As opposed to
Subsection 3.4, we assume that supye, qep |E@X| < oo and A C L(D).

Problem (single-agent local optimization): Find

U, = lime ™! | sup w(W + X)) — u(W)
40 XeA
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and an element X, € A, for which
li\{(r)le_l[u(W +eX,) —u(W)] = u,. (3.7)
The theorem below shows that the problem posed above is equivalent to the problem
of maximizing u¢(X; W) over A, where u¢(-;W) is defined on L° by (1.11).

Theorem 3.10. We have u, = supyc,u(X;W). Furthermore, X, solves (3.7) if
and only if X, € argmaxy, u‘(X;W).

Proof. Theorem 1.15, combined with the inequality

limsupe™" (sup w(W +eX) — u(W))

€10 XeA

< limsupe™! (Sup ( inf Eq(W +¢eX)— u(X)>>

£10 XeA \Qexp(W)
= sup u(X; W),
XeA

shows that w, = supye, u(X;W).
The second statement follows immediately from Theorem 1.15. O

3.7 Static Model with a Finite Number of Assets

Let (€, F,P) be a probability space and u be a coherent utility function with the de-

termining set D. Let A = {(h,X) : h € H}, where X = (X',..., X% € LL(D) and

H C R? is a convex compact. We will consider the problem of maximizing u(X) over A.
Let us introduce the notation (see Figure 7)

C =cl{EqX : Q € D},
H*={zeR':Vhe H, (h,z) <1},
A =inf{A\>0: \H*NC # 0},

N {h:Vx e \,H*, Yy € C, (h,z) < X\, < (h,y)} if A\, >0,
R if A, = 0.
Note that A\, <oc, N#0,and N C H.
Theorem 3.11. We have supyx. 4 u(X) = A\ and argmax,cy u((h, X)) = N.

Proof. Let A\, > 0. For h € N, we have

u((h, X)) = inf (h, z) = A,.

zelC

For h € H\ N, we have sup ¢, p-(h,z) < A, and consequently,

u((h,z)) = inf (h, z) < A,.

zeC

The case A\, = 0 is analyzed trivially. O
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Figure 7. Solution of the optimization
problem. Here h, is the optimal h.

3.8 Liquidity Effects in NGD Pricing

Let (2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, and A C LY be a convex set containing zero. We assume
that there exists no X € A with u(X) > 0.

Definition 3.12. We define the upper and lower utility-based NGD price functions of
a contingent claim F' as

Ppr(v) = sup{z : the model (Q, F,P,D, A — v(F — x)) satisfies the NGD}, v > 0,
Pr(v) = inf{z : the model (2, F,P, D, A+ v(F — x)) satisfies the NGD}, v > 0.

From the financial point of view, v means the value of a trade.

In view of the equality Py (v) = —P_g(v), it is sufficient to study only the properties
of FF .

Theorem 3.13. Assume that F € L}(D).
(i) The function Pp is increasing and continuous.
(ii) We have
lim Pr(v) = sup EqF.
vl0 QeDNR
(iii) We have
lim Pr(v) < sup EqF.

V— 00 QeD

If supxe 4 qep |[EQX| < 00, then

lim Pr(v) = sup EqF.

V—00 QeD
Proof. (i) It follows from the equality

sup u(—v(F —z) + X) = va + sup u(—vF + X)
XeA XeA

that Pp(v) = —v 1f(v), where f(v) = supycsu(—vF + X). Note that f is finite due
to the NGD and the condition F' € L}(D). Fix v1,v3 > 0, ¢ > 0, a € [0,1] and find
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X1, Xy € A such that u(—v;F + X;) > f(v;) —e, i =1,2. Then
flavy + (1 — @)vy) > u(—(avy + (1 — @)ve) F + aX; + (1 — a) X5)
> au(—v F + X)) + (1 — a)u(—vo F + Xs)
> af(v) + (1 —a)f(v) —e.
Consequently, f is concave. As A contains zero and the NGD is satisfied, we have

f(0) = 0. This leads to the desired statement.
(ii) By Theorem 3.7,

sup u(—vF + X)= inf Eq(—vF)=—v sup EqF,
X€cone A QeEDNR QeDNR

where “cone” denotes the cone hull. Take ¢ > 0 and find Xy, € A, g > 0 such that

u(—F + apXy) > — sup EqF —e.
QeDPNR

As the function Ry 3 2 — u(—2F + xaX,) is concave and vanishes at zero, we have

u(—vF + voyXo) > v(— sup EqF' — 5), v <1.
QeEDPNR

As £ > 0 has been chosen arbitrarily, we get

limsup Pp(v) = limsup(—v~' f(v)) < sup EqF.
vl0 vl0 QeDNR

Combining this with the inequality

sup u(—vF + X) < sup inf Eq(—vF + X)= inf Eq(—vF)=—v sup EqF,
XeA XeAQeDPNR QEDNR QEDPNR

we get the desired statement.
(iii) The first statement follows from the inequality

sup u(—vF + X) > u(—vF) = —v sup EqF.
XeA QeD

The second statement is an  obvious consequence of the equality
Pr(v) = —supycqu(—F + v 'X). O

Remarks. (i) If A is a cone, then, clearly, Pp = const.
(ii) If supyea qep |[EQX| < oo, then

Pp(o00) = Pp(oo) = sup F — inf F,
QeD QeD

which is the length of the NGD price interval in the absence of a market. The difference

Pp(0) — Pr(0) = sup F — inf F
QeDNR QePNR

is the length of the NGD price interval in the presence of a market. Thus, the ratio

Pr(0) — Pp(0)
Pp(00) = Pp(o0)

measures the “closeness” of a new instrument F' to those already existing in the market.
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Example 3.14. Consider a static model with a finite number of assets, i.e.
A = {{h,X) : h € H}, where X = (X',....X% € LL(D) and H C R? is
a convex bounded set. Assume that H contains a neighborhood of zero. Denote
C ={Eq(X,F):Q € D}. Then

Prp(0) =sup{z®' ' =.-.=2¢=0, z € C},
Pr(c0) = sup{z®™ 1z € C}.

Note that these values do not depend on H'! O

]Rd

Figure 8. The form of Pr(0),
Pr(oc), Pp(0), and Pp(oo)

4 Optimality Pricing

4.1 Agent-Independent Optimality Pricing

Consider the model of Subsection 2.2. Assume that 0 < R, < oo, where
R, = supyc 4 RAROC(X). It follows from Theorem 2.10 that

LPIHLRD) mz;é(/)}

R*:inf{R>0:<1+R —

and D, NR # 0, where D, = ——PD + £ RD.

1+ R 1+ R«

Figure 9. The structure of D, NR
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Definition 4.1. An agent-independent NBC price of a contingent claim F' is a real
number x such that

sup RAROC(X) = sup RAROC(X),

X€EA+A(x) XeA

where A(z) = {h(F —x): h € R}.
The set of NBC prices will be denoted by Inpc(F).

Theorem 4.2. For F € L.(RD),
[NBC(F) = {EQF : Q € D* N R}

Proof. If © € Inpc(F), then, by Theorem 2.10, there exists Q € D, N R(A + A(z)).
This means that Q € D, NR and EqF = x.

Conversely, if © = EqF' with some Q € D.NR, then, for any X +h(F—z) € A+ A(x),
we have EqX < 0, so that Q € R(A + A(z)). Due to Theorem 2.10,
SUPyeataz) RAROC(X) < R, O

The following lemma yields a more definite representation of D, N R.

Lemma 4.3. If X, € argmaxy., RAROC(X), then

1 R,
Xpp (X,
S RGN e

umn:( ‘%M&OHR. (4.1)

Proof. Take 1 R
— * D.NR.
Q 1—|—R*Q1+1—|—R*Q26

We have
inf EQX* + R, inf EQX* < EQlAXv>k + R*EQQX* <0
QePD QERD
(the second inequality follows from the inclusion Q € R). Combining this with the
equality
infqepp Eq X,

RAROC(X,) = — = R,,
( ) - lanGRD EQX*
we get
inf EQX* + R* inf EQX* S EQIX* + R*EQZX*.
QePD QeERD
This means that Q; € Xpp(X,) and Qq € Xrp(X,). O

As a corollary, if Xpp(X,) and Xrp(X,) are singletons (this is true, for instance,
ift PD = {P}, RD is the determining set of Weighted V@R, and X, has a continuous
distribution), then R can be removed from (4.1), i.e.

I R,
Xpp (X,
T, PNty

But in general this equality might be violated as shown by the example below.
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Example 4.4. Let PD = {P}, RD be the determining set of Tail
VAQR with A < 1/2, and X', X? be independent random variables with
P(X'=-1)=P(X'=2)=1/2, P(X?2=41)=1/2. Let A= {h'X"'+h?’X?:h' € R}.
For any (h',h?) with h! > 0, we have

inf Eq(h'X'+ h2X?) < EpZ(h'X' + h2X?) = BIEpZX! = inf EqX'

QERD QERD
where Z = 2I(X = —1). Combining this with the equality Ep(h' X'+ h?X?) = h'Ep X!,
we get that X' € argmax,., RAROC(X). On the other hand, there exists
Q € Xgp(X'), for which EqX? # 0. Thus, the set  Xpp + 11 Xrp contains

1+R.
measures that do not belong to R. a

4.2 Static Model with a Finite Number of Assets

Consider the model of Subsection 3.2. Assume that 0 < R, < oo. Let F € L. (D) be a
contingent claim.
Let us introduce the notation (see Figure 10)

H*={z ¢ R!:Vh e H, (h,z) > 0},
H* = H* x {0},
B = cl{Eq(S1, F) : Q € PD},

C = l{Eq(S,, F) : Q € RD},

D=C+H*,
~ 1 =~ R ~
Dp = B D.
RETT R T 1xR
Theorem 4.5. We have
R, =inf{R>0:Dpn ({Se} x R) # 0}, (4.2)
Inge(F) = {z : (Sy,z) € Dg.}. (4.3)

Proof. Denote

B = cl{EqS: : Q € PD},
C = cl{EqS; : Q € RD},
D=C+ H",

1 R

B + D.

Dpr =
1+ R 1+ R

Note that B = prpa E, C = prga 5, H* = prya ﬁ*, and consequently, D = prga 13,
Dp = prra Di. Combining this with the results of Subsection 3.2, we get

R,=inf{R>0:Dp> S} =inf{R>0: DN ({S} x R) #0}.
Furthermore, for any = € R,

sup RAROC(X) = inf{R > 0: D 3 (S;,z)}.
A+A(x)

This, combined with (4.2), proves (4.3). O

To conclude this subsection, we find the form of Iypc(F') in the Gaussian case.
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Inpc(F)—~

Figure 10. The form of Inpc.
Here Inpc(F') consists of one point.

Example 4.6. Consider the setting of Example 2.13. Clearly, R, is the solution of
the equation (Sg—a, B~1(Sy—a)) = %. This, combined with (2.3), shows that Ixpc(F)
consists of a unique point (b, Sy —a) + f. Let us remark that this value coincides with the
fair price of F' obtained as a result of the mean-variance hedging. Note that this value

does not depend on u! O

4.3 Single-Agent Optimality Pricing

Let (2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, A C L° be a D-consistent convex set containing zero, and
W € LY(D). The financial interpretation is the same as in Subsection 3.4.

Definition 4.7. A single-agent NBC price of a contingent claim F' is a real number x
such that
max u(W + X + h(F —z)) = u(W).

XEA, heR
The set of NBC prices will be denoted by Inpc(F).

Theorem 4.8. For F € L}(D),
INBC(F) = {EQF Qe XD(W) N R} (44)

Remark. The set of NBC prices is nonempty only if W is optimal in the sense that
maxxea u(W + X) = u(W). However, if W is not optimal, then, as seen from the proof
of Theorem 4.8, Xp(W)NR =0, so that (4.4) still holds true.

Proof of Theorem 4.8. As A contains zero and the function Ry 3 a +— u(W+aX)
is concave for a fixed X, the condition x € Iypc(F) is equivalent to:

max u(W+ X + h(F —z)) = u(W).

X€cone A, heR

By Theorem 3.7, this is equivalent to:

inf EQW = inf EQVV,
QEDNR(A+A(z)) QeD
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where A(x) = {h(F — x) : h € R}. Clearly, the latter condition is equivalent to:
Xp(W)NR(A+ A(x)) # (0. Tt is easy to verify that this is equivalent to: z = EqQF
for some Q € Xp(W)NR. O

Let us now provide a geometric representation of Ixpc(F') (see Figure 11). Assume
that u(W) = maxyxeca u(WW + X) (the reasoning used above shows that this is equivalent
to: Xp(W)NR # (). Consider the set C' = {Eq(F,W): Q € DNR} and the function
f(x) =inf{y : (z,y) € C} (we set inf ) = +00).

Corollary 4.9. For F € LL(D),

Inpe(F) = argrgin f(@).
TE

Proof. It is sufficient to note that

min f(zr) = min EQW = u(WW)

zeR QEDNR

and
f(z) =inf{EQW : Qe DNR(A+ A(x))},

where A(x) = {hM(F —=z) : h € R}. Thus, z € argmin, f(z) if and only if
Xp(W)NR(A+ A(x)) # 0, which, in view of Theorem 4.8, is equivalent to the inclusion
x € [NBC(F) . |

A z
Inpow,aw)(F)
=Inpc,w)(F)

Incow,a)(F)

Ingp()(F)

Figure 11. Comparison of various price in-
tervals. Here C = {EQ(F,W): Qe DNR}
and D = {Eq(F,W) : Q € D}. In this ex-
ample, Inpcp,a,w)(F) = Inpoop,w)(F)-

Assume that W is optimal in the sense that
w(W) = I)r(lgz‘iu(W + X) (4.5)
and suppose moreover that the set Inpcmpw)(F) of NBC prices based on D and

W (with A = 0) consists of one point z, (this condition is satisfied if the set
D = {Eq(F,W) : Q € D} is strictly convex; see Figure 11). It is seen from the proof

41



of Theorem 4.8 that condition (4.5) is equivalent to: Xp(W)N R # (. Then it fol-
lows from Theorem 4.8 that Ingcp.aw)(F) # 0 (we assume that F € LI(D)). Clearly,
Inge,awy(F) C Inpoo,w)(F). As a result, Inpep,a,w)(F) = {zo}. So, in this situa-
tion A can be eliminated. This situation occurs naturally as shown, in particular, by the
example below.

Example 4.10. Let u be a law invariant coherent utility function that is finite on
Gaussian random variables. Assume that u(WW) = maxyeca uw(W + X) and that (W, F)
has a Gaussian distribution.

There exists v > 0 such that, for a Gaussian random variable ¢ with mean m and
variance o2, we have u(£) = m — yo. Clearly, Ingc(F) C J, where J is the NBC price
based on D and W with A = 0. Using Corollary 4.9, we deduce that J consists of a

single point EF — fyc(‘l’j"‘(;)’m). As Inpc(F) is nonempty, it consists of the same point. O

4.4 Multi-Agent Optimality Pricing

Let (2, F,P) be a probability space, uq,...,uy be coherent utility functions with the
weakly compact determining sets D;,..., Dy, A C L be a convex set containing zero,
and W, € LY(Dy),...,Wx € LY(Dy). From the financial point of view, u,, A, and W,
are the coherent utility function, the set of attainable incomes, and the current endowment
of the n-th agent, respectively. We will assume that there exists a set A’ C [ L1(D,)NA
such that, for any n, D, NR =D, NR(A"). We also assume that each W, is optimal in
the sense that wu,(W,) = maxxea u,(W,, + X).

Definition 4.11. A real number x is a multi-agent NBC price of a contingent claim F'
if there exists no element X € A + {h(F — ) : h € R} such that w,(W,, + X) > u(W,,)
for any n.

The set of NBC prices will be denoted by Ingc(F).

Theorem 4.12. For F €, LY(D,),
INBC(F) = COIlVivzl INBC(Dn,A,Wn)(F) = {EQF . Q € COHVivzl (Xpn (Wn) N R)},
where INBC(DMA,W”)(F) is the interval of single-agent NBC prices based on D, , A, W,.

Proof. Let z € Inpc(F). Fix Xi,..., Xy € A, Tt follows from the weak conti-
nuity of the maps D, > Q — Eq(Xy,..., Xy, F) that, for each n = 1,..., N, the set
Cn ={Eq(X1,.... Xm, F—1x): Q€ AX,}, where X, = Xp, (W,), is compact. Clearly, C,
is convex. Suppose that

(convi_, Cy) N ((—oc, 01M x {0}) = 0.

Then there exists h € RM*! such that hq,...,hy > 0 and inf, . (h,z) > 0 for each n.
This means that infoc, EQY > 0 for each n, where Y = ' X+ - -+h" X, +h" T (F—zx).
Employing Theorem 1.15, we conclude that there exists ¢ > (0 such that
u(W, +€Y) > u(W,) for any n.

The obtained contradiction shows that, for any X,..., X € A, the set

N N
B(Xy,...,Xy) = {al,...,aN,Ql,...,QNeSxHXn;ZanEQnF:x
n=1 n=1

andvVn=1,....N,Vm=1,.... M, EQnXmgo},
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where S = {al,...,aN >0: 25:1 Q, = 1}, is nonempty. As the map &), 3 Q — EqX
is weakly continuous for each X € L!(D,), the set B(Xy,..., X)) is closed with respect
to the product of weak topologies. Furthermore, any finite intersection of sets of this form
is nonempty. Tikhonov’s theorem, ensures that S x [] A, is compact. Consequently,
there exists a collection aq, ..., ayN,Qq, ..., Qy that belongs to each B of this form. Then
Eq,X <0 for any n and any X € A’, which means that Q,, € X,,NR. Thus, the measure
Q=)>_, a,Q, belongs to conv, (X, NR) and EqF = z.

Now, let © = EqF with Q = ) ,Q,, Q, € &, NR. Suppose that there exist
X € A, h € R such that, for Y = X + h(F — z), we have u,(W, +Y) > u,(W,) for
each n. Due to the concavity of the function « — u, (W, + aY’), we get

U (W +Y) — up, (W) < limsupe™" (up, (W, +eY) — up, (W)

€l0

< lim sup61< inf Eq(W,, +¢Y) — un(Wn)> = inf EqY-
€l0 QeX, QeX,
Consequently, Eq Y > 0 for each n, and therefore, EQY > 0. But, on the other
hand, Q € R, and therefore, EQY < Eqh(F — z) = 0. The contradiction shows that
T € INBC(F)- O

5 Equilibrium

5.1 Equilibrium in a Complete Model

Let (Q,F,P) be a probability space, ui,...,uy be coherent utility functions with
the weakly compact determining sets Di,...,Dy, let A;,...,Ay C L° be con-
vex sets containing zero such that A, is D,-consistent for each n, and let
Wy € LY(Dy),...,Wx € LY(Dy). From the financial point of view, u,, A,, and W,
are the coherent utility function, the “personal” set of attainable incomes, and the cur-
rent endowment of the n-th agent, respectively.

Definition 5.1. A model is in complete Pareto-type equilibrium if there exists no
collection X4,..., Xy, Y:,..., Yy such that
(a) X, € A, for each n;

(€) uy(Wy+X,+Y,) > u,(W,) for each n and w, (W, +X,+Y,) > u,(W,,) for some n.

Remark. It follows from the translation invariance property (u,(Z+m) = u,(Z)+m)
that condition (c) above can be replaced by each of the following conditions:

() un(W, + X, +Y,) > u,(W,) for each n;
(c”) Zvjj:l un(Wy + X +Y5) > 25:1 un(Wh).

Definition 5.2. A model is in complete Arrow-Debreu-type equilibrium if there exists
an equilibrium price measure, i.e. Q € P such that, for each n,

max upn(Wn + X +Y) = u,(W).
X€An,
YeL(Q):EqY=0

The set of equilibrium price measures will be denoted by £.

43



Theorem 5.3. The following conditions are equivalent:

1) a model is in complete Pareto-t pe equzlzbrzum,
Y
i) a model is in complete Arrow-Debreu-type equzlzbrzum,
yp

(i) ), (XD, (Wn) NR(An)) # 0.
Moreover, if these conditions are satisfied, then £ =, (Xp,(Wn) NR(Ay)).

Proof. Let us prove the implication (i)=-(iii). Fix M € N and collections
Xom € A, n=1,....N, m=1,....M; Z, € L*, m = 1,...,M. Consider the
space

RVM o RVXM — {(z,y) 12z = (xnm)nzl,...,N,m:l,...,M;y = (ynm)nzl,...,N,m:l,...,M}
and the sets
C={(z,y) e RVM xRVM .3Q, € X,...,Qn € Xy :
Tpm = EQanm: Ynm = EQan: n = 1:-":N7 m = 1:"'7M}7
K = {(xay) € RNXM X RNXM  Tpm S 07 Yim = = YNm,
n=1,....,N,m=1,..., M},

where X,, = Xp, (W,). Suppose that CN K ={. As C is a convex compact and K is a
closed convex cone, there exist £ > 0 and (g, h) € RV*M x RN*M guch that

V(z,y) € C, (9, h), (x,y))
V(z,y) € K, ((9,h), (z,9))

Condition (5.2) means that gy, > 0 for any n, m and 25:1 hpm = 0 for any m. Consider
X =M mXom, Yo =M hymZm . Tt follows from (5.1) that

> e (5.1)
g

N
VQi € Xy,...,Qn € Xy, Y Eq, (X, +Y,)>¢

n=1
Set b, = infqey, Eq(X, + ¥;,) and comsider Y, = Y, — b, + &+ b,. Then
Yo Ya=>,Y,=0and

N
1
inf Eq(X,+Y,) ==Y b,
Jnf Eal N <

Employing now Theorem 1.15, we deduce that there exists a sufficiently small a: > 0 such
that aX, € A, and u, (W, + aX, + aY,) > u,(W,) for each n.

The obtained contradiction shows that, for any M € N, X,,,, € A}, Z,, € L>, the
set

N
B(Xynms Zm) = {Ql, ...,.Qn € HX" : Eq, Xoum < 0 and

n=1

Elem:"':EQNZma nzl,...,N, mzl,,M}

is nonempty. As the map X, > Q — EqX is weakly continuous for each X € L!(D,), the
set B(Xpm, Zm) is closed with respect to the product of weak topologies. Furthermore,
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any finite intersection of sets of this form is nonempty. Tikhonov’s theorem, ensures that
I1, X. is compact. Consequently, there exists a collection Qq,...,Qn € [], Xn that
belongs to each B of this form. Then Eq, X < 0 for any X € A/, which means that
Q, € X, NR(A,). Furthermore, Eq, Z = --- = Eq, Z for any Z € L*°, which means that
Q== Qu.

Let us prove the implication (iii)=-(i). Take Qo € (1, (X» N R(A,)). Suppose that
there exist Xi,..., Xn,Y1,...,Yy that satisfy conditions (a)-(c) of Definition 5.1. We
have

Eqo(Wn + X, +Y5) > uy(W, + X, +Y,) > —0c0, n=1,...,N.
As W, € LYQp) and Eq,X, < 0, we conclude that Eq,Y,” < oo, so that

n

EquYn € (—o00,00] for each n. As > Eq,Yn = Eq,>_.,Yn = 0, we conclude that
Y, € L1(Qo) for each n. As a result,

Uy Wy +X0+Ys) < Equ(Wy+X,+Ys) < EqWa+Eq,Yn = un(Wy)+EQY,, n=1,...,N.

But > Eq,Y, =0, so we get a contradiction.

In order to complete the proof, it is sufficient to verify the equality
E = N,(X N R(A,)). As each A, contains zero and each function
Ry 2 a— u,(W, + aX + aY) is concave, a measure Qu belongs to £ if and only if

max upy W+ X +Y)=u,(W,), n=1,...,N.
X €cone Ay,
Y€L;(Qo):Eq,Y=0

Due to Theorem 3.7, this is equivalent to:

inf EQW, = inf EqQW,, n=1,... N,
QeD,NR(Ap+L) QeD,

where L = {Y € L'(Qo) : Eq,Y = 0}. Clearly, the latter condition is equivalent to:
Xy NR(A,+ L) #0, n=1,...,N. Obviously, this means that Qy € X, N R(A4,) for
each n. O

Now, let F' € LY be the discounted payoff of a contingent claim.
Definition 5.4. A real number x is a complete equilibrium price of F' if the extended

model (Q, F,P. Dy, Ap+{h(F—2z) :he R}, W,y;n=1,..., N) is in complete equilibrium.
The set of equilibrium prices will be denoted by I (F).

Corollary 5.5. For F € ", LX(D,),
In(F) = {EqF : Q € £).

Proof. Denote {h(F —z) : h € R} by A(z). Clearly, for any n, A, + A(x)
is D, -consistent. It follows from Theorem 5.3 that = € Ig(F) if and only if
N, (Xp, (Wy) N R(A, + A(z))) # 0. It is easy to check that Q € R(A, + A(x)) if
and only if Q € R(A4,) and EqF = x. This completes the proof. O

One can say that a model is in complete equilibrium mazximizing the overall utility if

N N
sup Z Un(Wo + Xpn +Y,) = Z U (Wh)-
X1€A1,...XNEAN, n=1 n=1
Y, €LO:Y] Yy =0
Clearly, this notion of equilibrium is equivalent to the Pareto-type equilibrium.
Let us now assume that the system is not in equilibrium and find the maximal overall
utility the agents can get by using their trading opportunities (i.e. Aj,..., Ay) as well
as by exchanging arbitrary contracts.
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Theorem 5.6. If each A, is a cone, then

N N
sup (W + X + Y,) = inf EQ( Wn).
X1€A1,...,XNEAN, nz; Qeﬂn(DnQR(An)) ;

Yn€L%:Y, V=0

(If upy(Wy, + X, + Y5) = —o0 for some n, we set Y u, (W, + X, +Y,) = —o0; we also
use the convention inf() = occ.)

Lemma 5.7. Let uq,...,uy be coherent utility functions with the weakly compact
determining sets Dy, ..., Dy. Then, for any X € L,

N
sup  un(X,) = inf EqX. (5.3)
Xn€L>®:30, Xn=X Q€N,, Dn

(We use the convention inf () = cc.)

Remark. The left-hand side of (5.3) is called the conver convolution or the inf-
convolution of wuy,...,un (see [4], [16; Sect 5.2]). Thus, Lemma 5.7 states that it is
a coherent utility function with the determining set (), D,, if (), D, # 0 and it is identi-
cally equal to +oo if (), D,, = 0.

Proof of Lemma 5.7. In the case, where (), D, # 0, this statement follows by
induction from a result proved in [16; Sect 5.2].

Assume now that (), D, = 0. Find m such that ", D, # 0, while N/ D, = 0.
By the Hahn-Banach theorem, there exists Z € L such that

sup EqZ <0< inf EqZ.
QEDm+1 Qemrnn:1 Dn

According to the part of the lemma that has already been proved, there ex-
ist Zy,...,2, € L* such that > Z, = Z and > wu,(Z,) > 0. Then
u(Zy) + -+ + up(Zm) + umy1(—Z) > 0. Consequently, the left-hand side of (5.3) is
identically equal to oc. a

Proof of Theorem 5.6. Employing the same arguments as those used in the proof
of the implication (iii)=>(i) of Theorem 5.3, we conclude that

N
sup Z Uy Wy + Xn +Y,) < inf Eq (Z Wn) ) (5.4)
Xi1€Aq,..., XNEAN, n=1 Qeﬂn(DnﬁR(An)) n=1
Yo€L0:3, ¥,=0
Let us prove the reverse inequality. Clearly, it is sufficient to prove it for bounded W,,.
It follows from Theorem 3.7 that
N N
sup Z Un(Wo + Xp+Y,) = sup Z inf Eq(W, +Yy,)
X1€A1,...XNEAN, n=1 Yn€Lo0:30, V=0 = QEDnNR(Ay)
Y, €L%%:Y, V=0

(note that here we take Y, € L>). Combining this equality with Lemma 5.7, we get

N N
sup Uy Wy + Xn +Ys) = inf EQ< Wn) (5.5)
X1€Aq,..., XNGAN, ; Qeﬂn(D"nR(A")) nz::l
Y €L®:Y, Yo =0
Inequality (5.4) and equality (5.5) combined together yield the desired statement. O
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5.2 Equilibrium in an Incomplete Model

Let w,, D,, A,, and W, be the same as in the previous subsection. Let
St 8¢ € N, LYD,) be the discounted prices at time 1 of several financial assets.
(There is no relation between S; and A,; A, means the set of incomes that can be
obtained by the n-th agent without trading the assets 1,...,d.)

Definition 5.8. A model is in incomplete Pareto-type equilibrium if there exists no
collection Xy,..., Xy, Y], ..., Yy such that

(a) X, € A, for each n;

(b) Y, €span(1,5},...,5%) and 3N, ¥, = 0;

(€) uy(Wy+X,+Y,) > u,(W,) for each n and w,(W,+X,+Y,) > u,(W,,) for some n.

Definition 5.9. A model is in incomplete Arrow-Debreu-type equilibrium if there ex-
ists an equilibrium price vector, i.e. Sy € R? such that, for each n,

max  un(Wy + X + (h, Sy — So)) = un(Wh). (5.6)

X€Ap, heRd

The set of equilibrium price vectors will be denoted by FE.
Let us introduce the notation
Cn = {EQSl Qe Xpn(Wn) N R(An)}

Theorem 5.10. The following conditions are equivalent:
(1) a model is in incomplete Pareto-type equilibrium;
(ii) a model is in incomplete Arrow-Debreu-type equilibrium;
(iii) M), Cn # 0.
Moreover, if these conditions are satisfied, then E =, Ch.

Proof. The implication (i)=-(iii) is proved in the same way as in Theorem 5.3.
The only difference is that instead of taking Z,, from L°°, one should take Z,, from
span(St,...,S9).

Let us prove the implication (iii)=(i). Let Sy € [),Cn, ie.  there exist
Q, € X, N R(A,) such that Sy = Eq,S1, n = 1,...,N. Suppose that there exist
Xi,..., XN, Y1,..., Yy that satisfy conditions (a)—(c) of Definition 5.8. We can write
Y, = an + {hn, S; — So) with some a, € R, h, € R?. It follows from the inequality

Un(Wy + Xn + Yy) < Eq, Wy + Xp + ayn + (hy, S1 — So))
< Eq, Wy + an = u, (W) + ay,
that a, > 0 for each n. But, on the other hand, > a, = Eq, > ,Y, = 0. Conse-
quently, each a, is zero. Employing (5.7), we deduce that there exists no n, for which
U Wy + X + Yn) > u, (W)
In order to complete the proof, it is sufficient to verify the equality £ = (), C),. This
is done by the same arguments as those used in the proof of Theorem 4.8. a

(5.7)

Definition 5.11. An incomplete equilibrium price of a contingent claim F' is an equi-
librium price vector corresponding to S; = F'.
The set of equilibrium prices will be denoted by Ig(F).

Corollary 5.12. For F € LY(D),

Ig(F) = ({EqF : Q € Xp,(W,) NR(A,)}-

n=1

Remark. In view of Theorem 4.8, Ip(F) =, INBc(Dn, An,wn) (F).
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5.3 Demand-Supply Equilibrium Pricing

Let (2, F,P) be a probability space, ui,...,uy be coherent utility functions with the
weakly compact determining sets Dy, ..., Dy, let A;,..., Ay C LY be convex cones such
that A, is D, -consistent for each n, and let Wy € LI(Dy),..., Wy € LY (Dy).

Let F € (), L1(D,) be a contingent claim. Note that if = is an incomplete equilibrium
price of F', then, in view of (5.6), the optimal amount of F' in the portfolio of each agent
is zero. The same property is true if = is a complete equilibrium price because (due
to Corollaries 5.5 and 5.12) the set of complete equilibrium prices belongs to the set of
incomplete equilibrium prices. Thus, in practice the equilibrium price intervals introduced
in Subsections 5.1 and 5.2 would typically be empty. Let us now give a more realistic
definition.

Definition 5.13. A demand-supply equilibrium price of a contingent claim F' is a real
number z, for which there exist hi,..., Ay, € R such that ) h,, =0 and, for any n,

sup  u,(W, + X + h(F —x)) = sup u,(W,, + X + hu(F — ). (5.8)
X€Ay, heR X€An

The set of equilibrium prices will be denoted by Ig(F).

Remarks. (i) A number h,, satisfying (5.8) means the optimal amount of the con-
tract F' in the portfolio of the n-th agent.

(ii) The introduction of a new contract F' would shift the prices of the existing
contracts, i.e. would change A, . However, we assume that this effect is small and use in
Definition 5.13 the same A, as those in the original model.

(iii) Suppose that in addition to A, there exist X, € Aq,..., Xy, € Ay such that,
for any n,

max  U,(W, + X + h(F — 2)) = uy, (W, + Xps + by (F — ).
X€An, heR

Then the model (Q, F,P,D,, Ap, Wy, + Xps + hpo(F —2);n =1,..., N) is in equilibrium
in the sense of Definitions 5.8, 5.9 (with S; = F').

(iv) Let F' € (), Li(D,) and let I,(F), I(F), and I3(F) denote the complete,
the incomplete, and the demand-supply equilibrium price intervals, respectively. Then
I, (F) C I,(F) C I3(F). Indeed, the first inclusion follows from Corollaries 5.5 and 5.12.
Furthermore, if x € I5(F'), then, in view of (5.6), condition (5.8) is satisfied with h,. = 0.

Let us introduce the notation (see Figure 12, compare with Figure 11)

I, ={EqF : Q€ D, NR(A,)},
Cpn ={Eq(F\W,,) : Q€ D, NR(A,)},
folz) =inf{y : (z,y) € C,}, =z €1,

and let I denote the interior of I, .

Theorem 5.14. Assume that (I, # 0. Then, for F €, L}{(D,),

Ig(F) = argmiann(x).

2€(,In n=1
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Figure 12. The form of the demand-supply equilib-

rium price interval. In this example, Inpcp,,a,,w,)(F)N
INBC(D2,A0,w2) (F) = 0, so that both complete and incom-
plete equilibrium price intervals are empty.

Proof. Fix n € {1,...,N} and z € (", I,,. By Theorem 3.7, for any fixed h, we have

sup u,(W,, + X + h(F —z)) =  inf  Eq(W, + h(F — x)).

XeA QEDRNR(An)
Thus, a number h,,, satisfies (5.8) if and only if

hps € argmax  inf  Eq(W, + h(F — z)).
heR QGDnﬁR(An)

It is easy to see from Theorem 3.8 that the latter condition is satisfied if and only if
the vector (A4, 1) is an inner normal to C, at the point (z, f,(z)). This, in turn, is
equivalent to the inclusion h,, € g,(x), where

[(fa)" (@), (fn)}(2)] if x € 17,
gn(z) = < (=00, (fa)'(2)] if x is the left endpoint of I,,,
[(fn)_(z),00) if x is the right endpoint of I,.

Here (f,)_ (resp., (fn)".) denotes the left-hand (resp., the right-hand) derivative of f,.

It follows from the condition (1, I; # 0 that z € argmingen ;, >, fa(2) if and only if
>, 9n(x) 2 0. This completes the proof. O
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Index of Notation

A+ B

clA

cone A

conv(Aq, ..., Ay)
DX

£

EqQX

essinf, X (w)
I(A)

L

Iz

I
14(D)
14(D)
Lawq X
NA
NGD
NBC

N
aQ

dP

R,

R, R(A)
RAROC(X)
RAROC‘(X;Y)
span(Xy, ..., Xn)
supp Q

u(X;Y)

2t

Xp(X)
<" >

{z+vy:2€ A, ye€ B}, the sum of sets A and B
the closure of a set A

{Ax: A >0, x € A}, the cone hull of a set A

the convex hull of sets Ay, ..., Ay

the variance of a random variable X

the set of equilibrium price measures, 43

the expectation of a random variable X under a measure Q under-
stood as EQ X — EqX ™ with the convention: oo — oo = —o0

the essential infimum of a random variable X
the indicator of a set A

the space of all random variables

the space of integrable random variables

the space of bounded random variables

{X € L : lim,_, Supqep Eq| X |1 (]X] > n) = 0}
{X € L° : supqep |EqX| < 00}

the distribution of a random variable X under a measure Q
No Arbitrage

No Good Deals, 19, 21

No Better Choice, 38, 40, 42

the set of probability measures that are absolutely continuous with
respect to the original measure P

the orthogonal projection of a vector h on a space L
the density of a measure Q with respect to a measure P
[0, 00), the positive half-line

the set of risk-neutral measures, 19

the Risk-Adjusted Return on Capital for X, 21

the RAROC contribution of X to Y, 29

the linear space spanned by random variables Xy,..., Xy
the support of a measure Q

the utility contribution of X to Y, 17

max{z,0}

max{—z,0}

the set of extreme measures, 14

the scalar product in R¢
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