WEIGHTED VQR AND ITS PROPERTIES

A.S. Cherny

Moscow State University,

Faculty of Mechanics and Mathematics,
Department of Probability Theory,
119992 Moscow, Russia.

E-mail: cherny@mech.math.msu.su
Webpage: http://mech.math.msu.su/"cherny

Abstract. The paper deals with the study of the coherent risk measure, which
we call Weighted V@QR. 1t is a risk measure of the form

pu(X) = /[0 | TVERA (X)),

where p is a probability measure on [0,1] and TV@R stands for Tail VQR.

After investigating some basic properties of this risk measure, we apply the
obtained results to the financial problems of pricing, optimization, and capital al-
location. It turns out that, under some regularity conditions on u, Weighted V@R
possesses some nice properties that are not shared by Tail VQR. To put it briefly,
Weighted V@R is “smoother” than Tail V@QR. This allows one to say that weighted
V@R is one of the most (or maybe the most) important classes of coherent risk
measures.
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1 Introduction

The theory of coherent risk measures is a very new, important, and rapidly evolving
branch of the modern financial mathematics. This concept was introduced by Artzner,
Delbaen, Eber, and Heath [2], [3]. Since then, many papers on the topic have followed;
surveys of the modern state of the theory are given in [14], [16; Ch. 4], [24], and [27].

A very important class of coherent risk measures is given by Tail V@R (the terms
Average V@R, Conditional V@R, and expected shortfall are also used). Tail VQR of
order A € [0,1] is a map py : L — R (we have a fixed probability space (Q,F,P))
defined by

pa(X) = — inf EqX,
where D, is the set of probability measures Q that are absolutely continuous with respect
to P with 3—8 < A7!'. The importance of Tail V@R is seen from a result of Kusuoka [20],
who proved that p, is the smallest law invariant coherent risk measure that dominates
V@R, (we recall the precise formulation in Section 2). This suggests an opinion that
Tail V@R is one of the best coherent risk measures.

However, Tail V@R has the following obvious drawback. It depends only on the tail
of the distribution of X to the left of its A-quantile, while the form of the distribution
to the right of this quantile does not affect Tail V@QR. A natural way to eliminate this
drawback is to consider weighted average of Tail VQRs with different A. This is a risk
measure of the form

pu(X) = /[ NACIIEN (1)

where p is a probability measure on [0, 1]. We call this risk measure Weighted V@R and
its study is the goal of this paper.

This risk measure has already been investigated in the literature. Kusuoka [20] proved
that any law invariant comonotonic coherent risk measure is of this form. In the same
paper, Kusuoka proved that any law invariant risk measure has the form sup ,cqy p,, Wwhere
M is a set of probability measures on [0, 1] (we recall the precise formulations in Section 2).
Furthermore, according to the representation theorem for coherent risk measures that was
proved for general probability spaces by Delbaen [13], p, can be represented as

pu(X) = —érelg EQX, X e L™ (1.2)
with some set D of probability measures that are absolutely continuous with respect to P.
Clearly, such a set D is not unique, but there exists the largest set D,,, for which represen-
tation (1.2) is true. (It has the form D, = {Q < P : EqX > —p,(X) for any X € L>}.)
Carlier and Dana [7] provided a representation of D,, (we recall it in Section 4).

When risk measures are applied to financial problems, it is almost necessary to extend
them to the space L° of all random variables. In Section 2 of the present paper, we
extend Weighted V@R to LY simply by formula (1.2) with L> replaced by L°. Here we
understand the expectation EqX as EqXt — EqQX ™~ with the convention co — 0o = —o0
(so that EqX is well defined for any Q and X). This way to extend risk measures from
L>® to L° was proposed in [10]. Throughout the whole paper, we deal with Weighted
V@R on L°.

Section 3 contains two representations of Weighted V@QR. One of them extends rep-
resentation (1.1) from L* to L°, while the other one establishes the connection between
Weighted VQR and distorted measures that have been used in insurance for 15 years



(see [15]). Let us remark that the corresponding L -representation is well known (see [16;
Th. 4.64] or [24; Th. 1.51]).

In Section 4, we provide two representations of D,,, both of which have different forms
compared to the representation in [7]. These representations are needed for the applica-
tions to pricing, optimization, and capital allocation considered in the next sections.

The main result of Section 5 is that

Pu(X + Y) < PM(X) + PM(Y)

provided that supp u = [0, 1] and X, Y are not comonotone (in particular, the latter con-
dition is satisfied if the distribution of (X,Y") has a joint density). We call this the strict
diversification property. This property is very important from the viewpoint of finan-
cial mathematics because it leads to the uniqueness of a solution of various optimization
problems based on coherent risk measures.

In [10], we introduced the notion of an extreme measure. The class of extreme measures
for a coherent risk measure p and a random variable X is defined as

Ap(X) ={Q e D: EeX = —p(X)},

where D is the largest set, for which p(X) = —infqep EQX'. This notion turned out to
be very convenient and important. In particular, solutions of several optimality pricing
problems, solutions of equilibrium pricing problem, and solution of the capital allocation
problem are expressed through extreme measures. Moreover, the risk contribution in-
troduced in [10] is expressed through extreme measures. In general, the set X,(X) can
contain more than one point. However, as shown in Section 6, for p = p,, with p({0}) =0,
there exists a unique element of X, that is the smallest in the convex order. We call it
the minimal extreme measure. This notion is of importance for financial mathematics as
it allows one to select a (unique) distinguished solution of the problems like capital allo-
cation or optimality pricing, which possesses some nice properties. We call it the central
solution.

One of the most important global problems of the modern financial mathematics is
to narrow the No Arbitrage price intervals of contingent claims as they are known to
be unacceptably wide in most incomplete models (see, for example, the discussion in [1;
Sect. 5]). Several ways to do that have been proposed in the literature. One of them
consists in considering actively traded derivatives as basic assets. In particular, a popular
model is based on treating as basic assets European call options on a fixed asset with
a fixed maturity and different strike prices. The corresponding model was first studied
by Breeden and Litzenberger [6] and Banz and Miller [4]. A literature review of this
model is given in [17]. Let us also mention the paper [9; Sect. 6], in which this model was
analyzed from the general viewpoint of fundamental theorems of asset pricing.

Recently another (very promising) way to narrow fair price intervals has been pro-
posed. It is known as the No Good Deals pricing. This technique was first considered
by Cochrane and Sai-Requejo [12] and Bernardo and Ledoit [5]. An important feature
of this theory is that there exists no canonical definition of a good deal (in particular,
[12] and [5] employ different definitions). Carr, Geman, and Madan [8] and Jaschke and
Kiichler [18] proposed variants of No Good Deals pricing based on coherent risk measures.
These techniques were further developed in [10] and [26].

In Section 7, we combine the two ways of narrowing fair price intervals described
above. Namely, we apply the No Good Deals pricing technique from [10] to the model
with European options as basic assets. The risk measure employed is Weighted VQR.
This leads to the “double reduction” of fair price intervals.



Section 8 is devoted to another financial application of Weighted VQR. In [10; Sect. 3],
we considered a problem of optimizing Risk-Adjusted Return on Capital (RAROC) based
on coherent risk measures. This is the problem of maximizing the ratio

EpX
RAROC(X) = —=
o p(X)

where p is a coherent risk measure. In this paper, we present a solution of this problem
in a complete model for the case, where p is Weighted VQR. It shows that in most
natural situations the optimal strategy consists in buying a binary option with the payoff
1(3—8 < c*), where Q is the unique risk-neutral measure and ¢, is the optimal threshold
explicitly calculated in Section 8 (see Figure 4).

2 Basic Definitions

Let (2, F,P) be a probability space. It will be convenient for us to deal not with coherent
risk measures, but with their opposites called coherent utility functions (this enables one
to get rid of numerous minus signs).

Definition 2.1. A coherent utility function on L*° is a map u : L — R with the
properties:

(a) (Superadditivity) u(X +Y) > u(X) + u(Y);

(b) (Monotonicity) If X <Y, then u(X) < u(Y);

(c) (Positive homogeneity) u(AX) = Au(X) for A € R ;

(d) (Translation invariance) u(X +m) = u(X)+ m for m € R;

(e) (Fatou property) If | X,| <1, X, 2 X, then u(X) > limsup, u(X,).

The corresponding coherent risk measure is p(X) = —u(X).

The theorem below was established in [3] for the case of a finite Q (in this case
the axiom (e) is not needed) and in [13] for the general case. We denote by P the set of
probability measures on F that are absolutely continuous with respect to P. Throughout
the paper, we identify measures from P (these are typically denoted by Q) with their
densities with respect to P (these are typically denoted by 7).

Theorem 2.2. A function u satisfies conditions (a)—(e) if and only if there erists a
nonempty set D C P such that

u(X) = Cl)lg) EQX, X e L™ (2.1)

Now, we use representation (2.1) to extend coherent utility functions to L°.

Definition 2.3. A coherent utility function on L° is a map u : L® — [—o0, 00| defined
as

u(X) = 52% EqX, X el (2.2)

where D C P and EqX is understood as EqQXt — EqX~ with the convention
00 — 00 = —00.

Clearly, a set D, for which representations (2.1) and (2.2) are true, is not unique.
However, there exists the largest such set given by {Q € P : EqX > u(X) for any X}.
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Definition 2.4. We will call the largest set, for which (2.1) (resp., (2.2)) is true, the
determining set of u.

Remarks. (i) Clearly, the determining set is convex. For coherent utility functions
on L*, it is also L'-closed. However, for coherent utility functions on L°, it is not
necessarily L'-closed. As an example, take a positive unbounded random variable X
such that P(Xy = 0) > 0 and consider Dy = {Q € P : EqXy = 1}. Clearly, the
determining set D of the coherent utility function u(X) = infqep, EQX belongs to the
set {Q € P : EqXy > 1}. On the other hand, the L'-closure of Dy contains a measure
Qo concentrated on {X, = 0}.

(ii) Let D be an L'-closed convex subset of P. Define a coherent utility function u
by (2.1) or (2.2). Then D is the determining set of u. Indeed, assume that the determining
set Dy is greater than D, i.e. there exists Qg € Dy \ D. Then, by the Hahn-Banach
theorem, we can find X, € L* such that Eq, Xy < infqep EQX, which is a contradiction.

Now, we recall some basic facts related to Tail VQR. The next definition applies both
to L™ and to L°.

Definition 2.5. Tail V@R is the risk measure corresponding to the coherent utility
function
U,\(X) = inf EQX,

Q€EeD)y
where A € [0,1] and
dQ
D, = < A Y
A {Q epP P = }

Clearly, ug(X) = essinf, X (w). The following well-known proposition provides two
representations of Tail V@R with A > 0. Throughout the paper, we denote by ¢,(X)
the right A-quantile of X, i.e. ¢)(X) = inf{z : P(X < z) > A} (we use the convention
inf ) = +00).

Proposition 2.6. (i) Let A € (0,1], X € L°. Then, for any Z* € Dy such that

At X X

L[ o (X <ax)), .
0 on {X > q\(X)},

we have uy(X) = EpXZ*. Conversely, if uy(X) > —oo, then any Z* € Dy such that

ux(X) = Ep X Z*, should satisfy (2.3).
(ii) Let X € (0,1], X € L°. Then

U (X) = A1 / 2Q(dz) + cgr (X), (2.4)
(—00,qx (X))

where Q = Lawp X and ¢ =1 — A7'Q((—oc, A (X))).
Proof. (i) We will assume that Ep X~ < oo and A € (0,1) (the other cases are
analyzed trivially). Without loss of generality, ¢»(X) = 0. Then, for any Z € D,,

XZ-XZ*=X(Z-XHI(X<0)+XZI(X >0)>0.
Furthermore, the a.s. inequality here is possible only if Z satisfies (2.3).
(ii) This is an immediate consequence of (i). O

The importance of Tail V@R is seen from a result of Kusuoka [20], which is stated
below (its proof can also be found in [16; Th. 4.61] or [24; Th. 1.48]). Recall that a coherent
utility function wu is called law invariant if u(X) depends only on the distribution of X.
Note that, due to (2.4), uy is law invariant, and hence, u, on L* is also law invariant.
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Theorem 2.7. Assume that (Q,F,P) is atomless. Let X\ € [0,1] and u be a law
invariant coherent utility function on L such that u < qx. Then u < uy.

We now introduce the basic object of the paper.

Definition 2.8. (i) Weighted V@R on L™ is the risk measure corresponding to the
coherent utility function

0, (X) = /[ JOOua@, X €1,

where (1 is a probability measure on [0, 1].
(ii) Weighted V@R on L° is the risk measure corresponding to the coherent utility
function

— 0
uu(X) = Qlélgu EX, X el”,

where D), is the determining set of u, on L.
Thus, we have used the following scheme to define u, on L°:
uyon L* — w,onL* — D, — uuonLO.

Let us now recall two results of Kusuoka [20] (the proofs can also be found in [16;
Cor. 4.58, Th. 4.87] or [24; Cor. 1.45, Th. 1.58]), which show the importance of Weighted
V@R in view of the law invariance property. Recall that random variables X and Y are
comonotone if (X (wg) — X(w1))(Y (w2) — Y(wy1)) > 0 for P x P-a.e. wq,wsy; a coherent
utility function u is comonotonic if u(X +Y) = u(X) + u(Y) whenever X and Y are
comonotone.

Theorem 2.9. (i) On an atomless probability space, a coherent utility function u
on L* is law invariant and comonotonic if and only if it has the form u = u, with some
probability measure pi.

(ii) On an atomless probability space, a coherent utility function u on L™ is law
invariant if and only if it has the form u = inf,,con u,, with some collection M of probability
measures on [0, 1].

3 Representation of Weighted VQR
For X € L” and ) € (0,1], we set

A on {X < (X))},
Z(X)=(c on {X =q\(X)}, (3.1)
0 on {X > q\(X)},

where ¢ € [0, A\7!] is such that EpZ5 = 1.

Lemma 3.1. Let A € (0,1], X € L° and f be an increasing function. Then
un(f(X)) = Ep f(X)Z3(X).

Proof. Without loss of generality, ¢\(X) = 0 and f(0) = 0. Then, for any Z € D,,
we can write

F(X)Z = f(X)Z3(X) = J(X)(Z = A )I(X < 0) + [(X)ZI(X > 0) > 0.



Theorem 3.2. (i) Suppose that p({0}) = 0. Then, for X € L°, we have

uu(X) =EpXZ*(X), where Z*(X) = f((],l] Z3(X)u(dA).
(ii) We have
Uy (X) = / us(X)p(d\), X € IO, (3.2)
[0,1]

where f[o 1 FN)p(dX) is understood as f[o 1 frN)p(dr) — f[o 1 f=(N)p(dX) with the con-

vention 0o — 00 = —00.

Proof. (i) Any Z € D, can be represented as f(o 1 Zy(dX) with Z, € Dy (see
Theorem 4.4 below). Due to Lemma 3.1,

Ep(mV X An)Z :/ [Ep(m VvV X An)Zy|u(dN)
(0,1]

>/ [Er(m v X A ) Z,(X)]u(d)) = Ep(m V X An)Z*(X), m,neN.
(0.1]

Obviously,
EpXZ*(X) = lim lim Ep(mV X An)Z*(X) (3.3)

n—oC m——0oo

and the same is true for Z*(X) replaced by Z. Thus, EpXZ > EpXZ*(X), so that
u,(X) =EpXZ*(X).
(ii) Suppose first that p({0}) = 0. Due to Lemma 3.1,

Ep(va/\n)Z*(X):/ us(mV X An)u(d)), m,n €N,

(0,1]
Obviously,
/ uy(X)p(dA) = lim  lim ux(m vV X An)u(dX).
(0,1]

Combining this with (3.3), we get

uy(X) = EpX Z*(X) = / s (X) ().

(0,1]

Now, let u({0}) =a > 0. Then p = ady+ (1 — a)i and it follows from Theorem 4.4
that D, = aD;,+ (1 —a)Dj. If X is not bounded below, then, clearly, both sides of (3.2)
are equal to —oo. If X is bounded below, then u,(X) = auo(X) + (1 — a)uz(X) and
equality (3.2) for p follows from (3.2) for s, which was proved above. O

In order to provide another representation of Weighted V@R, let us consider the
function

V,(x) =

u({0}) + / /H A ANy, = € (0,1], o
0,

z = 0.

Clearly, ¥, is concave, increasing, ¥,(0) = 0, and ¥,(1) = 1. Conversely, any such
function can be represented in the form (3.4) with some probability measure p (for details,
see [16; Lem. 4.63] or [24; Lem. 1.50]).

Theorem 3.3. For X € LY,

0 () == [ wF@)dat [0 ,(F @)

—Oo0

where F is the distribution function of X, and we use the convention oo — 00 = —00.
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Proof. It is seen from (3.2) that

uu(X) = nli_)rgoml_i)rzloou#(m VX An).
For bounded X, the statement of the theorem is known (see [16; Th. 4.64] or [24;
Th. 1.51]), so that

0

u#(mVX/\n):—/

—00

¥, (Fon()ds + [ (0= WPy (0))

where F,, is the distribution function of m vV X A n. In order to complete the proof, it
is sufficient to note that

‘/wmmwwx+ﬂwu—WAﬂm»m

o0

~ lim lim <_ /0 \P#(an(x))dij/Uoo(l—\I'#(an(x)))dx)

n—00 Mm—r—00 00

Remark. Some important regularity properties of p can be expressed in terms of ¥ ,,.
For example, ¥,(0+) = 0 if and only if x({0}) = 0 (this condition will be important in
Sections 6 and 7; note also that this condition is equivalent to the lower semi-continuity
of u, on L*>); ¥, is strictly concave if and only if supp ¢z = [0, 1] (this condition will be
important in Sections 5 and 8).

4 Representation of the Determining Set

We begin with two auxiliary lemmas. The notation p < v means that v dominates p in
the monotone order, i.e. pu((—o0,x]) > v((—o0,z|) for any z.

Lemma 4.1. If p < v, then D, 2 D,.

Proof. There exist random variables £, 1 on some filtered probability space ((NZ, F, ﬁ)
such that Law& = u, Lawn = v, and £ < n as. (see [25; § 1.A]). We can write
u,(X) = Esp(§), un(X) = Esp(n), where p(A\) = ux(X). As ¢ is increasing, u, < u,.
Clearly, this implies that D, 2 D,,. O

Lemma 4.2. If p, tend to p weakly and i, < v, then Dy, =), Dy, -

Proof. Suppose that there exists Qy € (), D, \D,- As D, is L'-closed, we can apply
the Hahn-Banach theorem, which yields X, € L* such that Eq,Xo < infqep, EqXo.
Thus, sup,, u,, (Xo) < Eq,Xo < u,(Xo). On the other hand, u,, (Xo) — u,(X,) since
ux(Xp) is continuous in A. The obtained contradiction yields the inclusion D, D [, Dy, -

The reverse inclusion follows from the previous lemma. O
Lemma 4.3. Let u = 25:1 an0y,, where A\y > --- > Ay > 0. Then
D, =" a.D,,.

Proof. Denote ) a,D,, by D. Forany Q=) a,Q, € D and any X € L™, we
have

N N
EQX =) a.Eq, X > ) anun, (X) = u,(X),
n=1 n=1
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so that D C D,.

Let us prove the reverse inclusion. Clearly, D is convex. Let us prove that D is
L'-closed. Take a sequence & = Zn lanZ’c € D that converges in L' to a random
variable . Applying Komlos’ principle of subsequences (see [19] or [24; Lem. 2.10]) to the
random vectors Z% = (ZF, ..., Z%), we get Z* € conv(Z*, Z¥+1, .. ) that converge P-a.s.
to a random vector Z°. Clearly, ). angﬁ € D and Z’f L, Z‘j" forany n=1,...,N—1
(note that Z* < A-1). Hence,

N-1
E anZ”C —> anZO",
k—oo

n=1

and therefore, Z¥ LN 7. Asaresult, £ = a,Z> € D.

Now, assume that there exists Qy € D, \ D. The Hahn-Banach theorem yields the
existence of Xy € L*> such that Eq,Xy < infqep EqXo. Thus, u,(Xy) < infqep EqXo.
On the other hand, it is easy to check that w,(X) = infqep EqX for any X € L*®°. The
obtained contradiction shows that D, C D. O

Theorem 4.4. We have
D, = {/ Zxp(dX) : Z(\, w) is jointly measurable and Zy € D) for any A € [0, 1]}
[0,1]
(4.1)

Proof. Denote the right-hand side of (4.1) by D. Set

=S s ([t )i men

Due to Lemma 4.3, D € D, , and by Lemma 4.2, D C D,,.
Let us prove the reverse inclusion. Clearly, D is convex. Arguing in the same way as
in the previous proof, we conclude that D is L'-closed. Take

[} i (G PR

Due to Lemma 4.3, D,,, C D, and therefore, u,, > u, where u(X) = infqep EQX. As
Uy, (X) = u,(X) for any X € L, we get u, > u. Using the same argument as in the
proof of Lemma 4.3, we conclude that D, C D. O

Now, we pass on to another representation of D,. The key step for establishing it is
the following lemma.

Lemma 4.5. Let \y > -+ > Ay > 0, ay,...,ay € (0,00). Then a random
variable 7 can be represented as ij:l anZy, with Z, € D, if and only of 7 > 0,
EpZ =N a,, and

n + N
Ep(Z—Zak)\k1> < Z ap, n=1,...,N. (4.2)
k=1

k=n—+1



Proof. The “only if” part follows from the inequality

n N
(Z—Zak)\k1>+§ Z aka, nzl,...,N.

k=1 k=n+1

Let us prove the “if” part. We proceed by the induction in N. The base of induction
is obvious, so we assume that the statement is true for N — 1 and will prove it for V.

First, suppose that Ay = 0. Choose h € R, such that, for Y = Z A h, we have
EpY =37 'a,. Then

n N N-1
Ep(Y—Zak)\k1>+§ Z Gy — AN = Z an, n=1,...,N —1.

k=1 k=n+1 k=n+1

By taking Zy = ay'(Z —Y) and applying the induction assumption to Y, we get the
desired statement.
Now, suppose that Ay > 0. Let us first prove the inequality

EpZ N CLN)\;VI Z ay-. (43)

Assume the contrary. Then EpaN)\]_Vll(Z > aN)\]_Vl) < an, and hence,
P(Z > ay\y') < Ay. Tt follows from (4.2) that Z < 3°N_ a,\, ', so that

N-1 N-1 N-1
Ep(Z — an Ay )T SP(Z > andy) D N an <Ay Y AN lan <> an.
n=1 n=1 n=1
But then
N
EpZ = Ep(Z A anAy') + Ep(Z — anAy) <) an,
n=1

which is a contradiction.
Consider the function

F(B) =Ep((Z—anA )" VRYAZ, he [0, N Ma,Art].

It follows from (4.3) that

N—-1
F(0) =Ep(Z —axAy" )" =EpZ —EpZ AaxAy' <D an.
n=1
It follows from (4.2) that
N-1 N-1 N-1 + N-1
f(Z anA;1> =EpZA Y a,),' =EpZ —Ep (Z -> anA;1> > ay.
n=1 n=1 n=1 n=1

Thus, there exists hy € [0,50 'a,\,'] such that f(hg) = SN 'a,. Set
Y = ((Z —an)\y)T V ho) A Z. Cleatly, Zy := ay' (Z — Y) belongs to D,,. Take
n € {l,...,N —1} and let us prove that

n + N—-1
Ep (Y - Z ak)\k1> S Z ag. (44)
k

k=1 =n+1
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First, consider the case, where ZZ:1 ak)\,jl > hg. Then, on the set
A={Y > > ax\,'} we have Z —Y = ayAy'. If P(A) = 0, then (4.4) is triv-
ially satisfied, so we assume that P(4) > 0. As ¥ < 32" "a, A1, we have

n + N—-1
Ep<Y—Zak)\k1> < ) wP(A).
k=1 k=n+1

Combining this with the equality Ep(Z — Y)I4 = ay Ay P(A), we get

Ep (Y — D ke ak/\121)+ < l]cV;n1+1 (g
Ep(Z —Y)I4 - ay

Taking into account the inequality
n + n + N
Ep [(Z — V), + (Y — Zak)\k1> } < Ep (Z — Zak)\k1> <D,
k=1 k=1 k=n+1

we get (4.4).
Now, suppose that Y ,_, ak)\,;l < hg. Consider the set

A= {Y > Zak)\kl} = {Z > Zak)\kl}.
k=1 k=1
As Z =Y on A, we get Ep(Z —Y)I4 = ay. Consequently,
n + n + N-1
Ep (y - Zm;l) —E (z - Zm;l) can< Y
k=1 k=1 k=n+1

Thus, (4.4) is proved and an application of the induction hypothesis to Y completes the
proof. O

Lemma 4.6. A random variable Z belongs to D, if and only if Z > 0, EpZ =1,
and

Er (z _ /(m A‘lu(d)\)>+ < u(0.2]), z€0.1]. (4.5)

Proof. Let us prove the “only if” part. Take Z € D, and z € (0, 1]. Choose discrete
measures fi,, such that pu, < u, pa([0,2]) = p([0,2]), and p, converge weakly to p. By
Lemma 4.1, Z € D,,,. By Lemma 4.5,

(- A—lun<dA>)+ < 1n([0.).

Passing on to the limit as n — oo, we prove (4.5) for = € (0,1]. Passing on to the limit
as x } 0, we extend (4.5) to =z = 0.

Now, let us prove the “if” part. Set u, = Y ,_; apdyn, where Ap = ”n;k,
al = u([AT,1]), af = p([A\g,AR_1)), k=2,...,n. Then

(7 - Za?()\;’)1>+ <e(7- /[ Alu(dA)>+ < u(0.0) = (0,3 = 3 a

=1 271]
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(the second inequality here follows from (4.5) by passing on to the limit z,, T A}). Due
to Lemma 4.5, Z € D, for any n. By Lemma 4.2, Z € D,,. O

For a probability measure g on [0, 1], we introduce the notation
Fu(z) = p([0,2]), 2 €][0,1],
Guw)= [ Ay, we o,
(z,1]
G,'(z) =inf{y € [0,1]: Gu(y) <z}, z€eR,,

®,(2) = Fu(G,'(2)), z€R,.

Clearly, @g is decreasing, so that there exists its right-continuous modification, which we
denote by @, (@g need not be right-continuous as seen from the example p = %,uL + %51,
where p;, is the Lebesgue measure). Set

r=inf{x € [0,1] : p([0,z]) = 1}. (4.6)

Note that ®, = 1 on [0, 'u({r}), @, 'u{r}) = 1 — u({r}),
limy 00 ®,(7) = p({0}), and ®, = p({0}) on U(o,1] A tp(d)), 00).

f(g’l] A~ u(dA)

rtu({r})

T 0 u({r)) fonh ndy) 7

Figure 1. The form of G, and @,

Theorem 4.7. We have
D,={Z€l’:Z>0,EZ =1, and Ep(Z — 2)" < ®,(x) for any x € [0,1]}.

Proof. Clearly, we can replace in this statement ®, by q)g and vice versa, so we will
prove it for ®). Let Z € D,. Then, due to Lemma 4.6,

Ep(Z — 2)* <Ep(Z — GG, (@) < u([0, G, (1)) = B°(a), =z € R,.
The reverse inclusion follows from the line
Ep(Z — Gu(n))* < @)(Gulx) = Fu 0 Gy 0 Gyla) = Fy(e) = pu([0,2]), = € [0,1]

and Lemma 4.6. O

We conclude this section by the third representation of D,,. It was obtained by Carlier
and Dana [7] (the proof can also be found in [16; Th. 4.73] or [24; Th. 1.53]).
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Theorem 4.8. We have
D,={QeP:Q(A) <V,(P(A)) for any A € F}

1
- {Z €L°:Z>0, EpZ =1, and / 45(Z)ds < W, (z) for any € [0, 1]},
1-x
where qs is the s-quantile and ¥, is given by (3.4).

To conclude this section, we compare the representations of Theorems 4.7 and 4.8 by
an example. Let ) = [0, 1] endowed with the Lebesgue measure. Let Z be a decreasing
function of w. Then Ep(Z — x)* is the shaded area in the left graph of Figure 2, while

fllfy ¢s(X)ds is the shaded area in the right graph of Figure 2.

Figure 2

5 Strict Diversification and Optimization
Let us introduce the notation
L,={XeL":uy,(X)>—o0and u,(-X) > —oc}.

Theorem 5.1. Suppose that supp pp = [0,1]. For X,Y € LL, we have

0 (X4 V) > 0, (X) + u(Y) (5.1)

if and only if X and'Y are not comonotone.

Proof. The “only if” part for bounded X and Y is a consequence of Theorem 2.9 (i).
The statement for unbounded X and Y is obtained by passing on to the limit with the
help of the representation

Ll = {X cL’: lim sup Eq|X|/(|X]>n) = 0}’
QeD,

which was proved in [10; Subsect. 1.2].

Let us prove the “if” part. Suppose that (5.1) is not true. Combining repre-
sentation (3.2) with the property ux(X +Y) > u)(X) 4+ ur(Y), we conclude that
ur(X+Y) = upn(X)+ur(Y) for p-a.e. A €[0,1]. As supp u = [0, 1] and the functions wuy
are continuous in A, we get uy(X +Y) = uy(X) + uy(Y) for any A € [0,1]. In view of
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Proposition 2.6 (i), for any A € (0, 1], there exists Z; € D, such that Ep X7} = u,(X),
EpY Z5 = uy(Y). It is seen from Proposition 2.6 (i) that this is possible only if

P((X,Y) € (00, qx(X)) X (qx(Y),00)) =0, A€ (0,1],
P((X,Y) € (qr(X),0) x (=00, qA(Y))) =0, X € (0,1].

From this it is easy to deduce that P((X,Y) € f((0,1])) = 1, where
F(A) = (gx(X),qr(Y)). Thus, X and Y are comonotone. O

Remark. Without the condition supp = [0, 1], the theorem does not hold. In par-
ticular, it does not hold for Tail V@QR. Let us remark that this problem as well as the
problem to prove (5.1) for independent X and Y were proposed at the Fourth Kolmogorov
Students’ Competition on Probability Theory (see [11]).

Property (5.1) can be called the strict diversification property. It holds, in particu-
lar, if X and Y are independent or if X and Y have a joint density (with respect to
the Lebesgue measure). The strict diversification property leads to the uniqueness of
a solution of several optimization problems based on coherent risk measures that were
considered in [10]. Let us briefly describe two of them.

Let Sy € R? be a vector of initial prices of several assets and S; be a d-dimensional
random vector of their terminal (discounted) prices. Let H C R? be a convex set of possi-
ble trading strategies, so that the (discounted) income of a strategy h € H is (h,S; —Sp).
Consider the problem

RAROC((h, St — Sg>) he—H> max, (52)
where
+00 if EpX >0 and u(X) >0,
RAROC(X) = EpX (5.3)
otherwise
—u(X)

with the convention % =0, 2 = 0. Here u is a coherent utility function. The solution
of this problem was presented in [10; Subsect. 3.2]. Here we give a sufficient condition for
the uniqueness.

Corollary 5.2. Let u = u, with supp pn = [0, 1]. Suppose that each component of S
belongs to Ly, Sy has a density, and sup,.y RAROC((h, S1 —S;)) < oo. Then a solution
of (5.2) (if it exists) is unique up to multiplication by a positive constant.

Proof. Suppose that there exist two solutions h! and h? that are not collinear.
Denote S; — Sy by X. After multiplying hl by a positive constant, we can assume
that Ep(hi, X) = Ep(h?,X). As h, and h? solve (5.2), u,((hi, X)) = u,((h2, X)).
Consider h, = “F"  Then Ep(h,, X) = Ep(hi, X), while it follows from (5.1) that
uy((hey X)) > w,((hi, X)). Thus, RAROC({(hi, X)) > RAROC((h%, X)), which is a
contradiction. O

Remark. Without the assumption supp u = [0, 1], the statement above is not true
(see [10; Ex. 3.2]).

Consider now a single-agent optimization problem. Thus, in addition to the objects
introduced above, we have a random variable W, which means the current endowment of
some agent. Consider the problem

U(W + <h, Sl — S(]>) he—H> max. (54)
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Let us remark that one can also consider the problem RAROC((h, S; — Sp)) — max, but
it can be reduced to (5.4) by the technique of Lagrange multipliers. The solution of (5.4)
was presented in [10; Subsect. 3.5].

Corollary 5.3. Let u = u, with supp pn = [0, 1]. Suppose that each component of S

belongs to L), Sy has a density, W € L, and sup,cg u,(W + (h, S1 — So)) < co. Then

a solution of (5.4) (if it exists) is unique.

This statement is an immediate consequence of Theorem 5.1.

6 Minimal Extreme Measure and Capital Allocation

The following definition was introduced in [10].

Definition 6.1. Let u be a coherent utility function on LY with the determining
set D. Let X € L°. We call a measure Q € D an extreme measure for X if EqX = u(X).
The set of extreme measures for u = u, will be denoted by X},(X).

It was proved in [10; Subsect. 1.2] that if 4({0}) =0 and X € L, then X, (X) # 0.

Proposition 6.2. Suppose that p({0}) = 0 and X € L,. Then an element
7 = f(0,1] Z\p(dX) € D, (here we use the representation of Dy provided by Theorem 4.4)
belongs to X,, if and only if

Z, - A on {X < g (X)},
0 on {X > q\(X)}

for p-a.e. \.
Proof. For Z = f(0,1] Zxp(dA) € D, we have

EpXZ = lim lim Ep(mV X An)Z

m——00 N—00

= I li E VXAn)Z d\
ol fim, | [Ep(m v X AR Zylu(d)) (6.1)

The inclusion X € L}L implies that the function A\ — Ep X 7, is pu-integrable. An appli-
cation of Proposition 2.6 (i) completes the proof. O

It is seen from the above proposition that if X has a continuous distribution, then
X, (X) consists of a unique element Z = ¢(X), where

g(x) = / A tu(d)), z€R (6.2)
[F(2),1]

and F' denotes the distribution function of X.

If X has atoms, then, clearly, X, need not be a singleton. However, it turns out that
there exists a minimal element of X,(X) with respect to the convex stochastic order. (For
other applications of this order in financial mathematics, see [21], [22], [23]).
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Theorem 6.3. Suppose that ;1({0}) =0 and X € L,,. Let

7'(X) = /( | ZOm@),

where Z3(X) is defined by (3.1). Then, for any Z € X,(X) and any convezr function
f:Ry = Ry, we have Epf(Z*(X)) < Epf(Z). Moreover, Z*(X) is the unique element
of X,(X) with this property.

Proof. Take an arbitrary Z = f(O,l} Zyp(dX) € X,(X). It follows from Proposition 6.2
that Z;(X) = Ep(Z, | X) for p-a.e. A\. By Fubini’s theorem, Z*(X) = Ep(Z | X). An
application of Jensen’s inequality yields the first statement.

Now, suppose that there exists another minimal (in the convex order) element Z’ of
X,(X). Then Z := ZXZ palongs to X, (X) and, for a strictly convex function f with

p 2 P
a linear growth, we get Epf(Z) < Epf(Z*(X)) = Epf(Z'), which is a contradiction. O

Definition 6.4. We will call the measure Q;(X) = Z*(X)P the minimal extreme
measure for X .

The minimal extreme measure admits a representation similar to (6.2). Let F' denote
the distribution function of X. Then, for any A € (0,1], Z;(X) = gA(X), where

o (z) = ;(_x;_l?g:; I(Fz=) < A< F(z))+ X" (A > F(z)), zeR
Hence, Z*(X) = g(X), where

N 1—A"'F(z—)
9(@) /(F(m),F(a:)) F(z) — F(z—)

The following statement will be used in financial applications below.

p(d\) +/ A u(d)), zeR
[F(2).1]

Theorem 6.5. Suppose that i({0}) =0 and X,Y € L. Let (&) be a sequence of

random variables such that &, € LL, each &, is independent of (X,Y), and &, Poo.
Then

Eq;(x+6,)Y —— Eq;(n)Y

Proof. Denote ¢y = qx(X), ¢¥ = (X + &,). Then, for A € (0,1],

At on {X < g0}, AL oon {X + &, < qb},
ZNX)=Kean on {X=q}, X +&)=4 on {X+E =47,
0 on {X>q} 0 on {X+& >dqV}.

Fix A € (0,1]. By Fubini’s theorem, Ep(Z}(X +&,) | X,Y) = f2(X), where
f(z) = 2TE (¢} — x) + AAF,(¢h —x), z€R

and F,(x) = P(&, < z), AF,(x) = P(§ = z). Obviously, ¢} — ¢, and therefore,
= Xt on (—o0,qy), f¥ — 0 on (gy,oc). Employing the normalization condi-
tion EpfP(X) = 1, we conclude that f?(qx) — cx. Thus, fR(X) 2% Zi(X). As
0< <A we get

ErY Z3(X +&) = EpY f1(X) — EsVZ3(X), A€ (0,1].
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Note that uy(Y) < EpYZJ(X + &) < —ux(—Y). Furthermore, it follows from the
inclusion Y € L, and representation (3.2) that the functions A = u(Y) and X = ux(=Y)
are pi-integrable. Applying now (6.1), we complete the proof. O

Remark. Without the assumption that &, is independent of (X,Y), the theorem
does not hold. As an example, consider X = 0, &, = Y/n. Then Q;(X) = P, while
Q;.(6n) = Qu(Y).

Let us now present a financial application of the notion of the minimal extreme mea-
sure. It is related to the capital allocation problem. Delbaen [14; Sect. 9] proposed the

following formulation of this problem. Let X',..., X¢ be random variables meaning the
(discounted) incomes produced by several components of a firm. Let p be a coherent risk
measure. A capital allocation between X',..., X% is a vector 2, ..., z% such that
p(Z Xf) SN (6.3)
i=1 i=1

d d
VAL E Ry, p(DORXT) > D hia, (6.4)

i=1 i=1

From the financial point of view, 2 means the contribution of the i-th component to the
total risk of the firm, or, equivalently, the capital that should be allocated to this com-
ponent. In order to illustrate the meaning of (6.4), consider the example h' = I(i € J),
where J is a subset of {1,...,d}. Then (6.4) means that the capital allocated to a part
of the firm does not exceed the risk carried by that part.

It was proved in [10; Subsect. 1.4] under the assumption u(X*) > —oc, u(—X*) > —oo
that the set of capital allocations has the form

{—EQ(Xl,...,Xd):QGX(zd:Xi>}, (6.5)

where X denotes the set of extreme measures corresponding to .
Suppose now that u = u, with p({0}) = 0. It is seen from Proposition 6.1 that if
>, X has a continuous distribution, then a capital allocation is unique. But in general,

this is not the case. For example, if X? = — X', then the set of capital allocations is the

interval [a,b] in R?, where a = (—u,(X'),u, (X)), b= (u,(=X"), —u,(—X1)).
However, if v = wu, with p({0}) = 0, then there exists a particular element

of (6.5), namely z, = —EQE(EXi)(Xl,...,Xd) (for the example considered above,

o = (—Ep X! EpX1')). We call zy the central solution of the capital allocation prob-

lem. Its role is as follows. Let us disturb X?, i.e. we pass from X° to )?fl = X'+ &,
where each & is independent of (X',...,X"), & € L, and &, Poo. 1f > €L has a
continuous distribution, then X(ZZ Xi) is a singleton, so that the capital allocation x,,

between )?,1, ..., X¢ is unique. By Theorem 6.5, z,, — .

7 Pricing in an Option-Based Model

Let Sy be the initial price of some asset and S; be a positive random variable meaning its
terminal (discounted) price. Let K C R, be the set of strike prices of traded European
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call options on this asset with maturity 1 and let ¢(K), K € K be the price at time 0
of an option that pays (S; — K)* at time 1. The set

N
A= {Z hol(S) — KT — (K] : NeN, K, €K, h, € R}
n=1

means the set of incomes that can be obtained in the model under consideration (we
assume that 0 € K, which corresponds to the possibility of trading the underlying asset).

According to [10], we say that the model satisfies the No Good Deals (NGD) condition
if there exists no X € A with u(X) > 0, where u is a fixed coherent utility function.

Now, let F' € L° be the payoff of some contingent claim. According to [10], we say
that a real number z is an NGD price of F if there exist no X € A, h € R with
u(X + h(F — z)) > 0. The set of NGD prices will be denoted by Ingp(F).

It was proved in [10; Subsect. 2.1] (under some additional conditions that are auto-
matically satisfied for u = u, provided that p({0}) = 0) that the NGD condition is
satisfied if and only if DNR # (), where D is the determining set of u and R is the set
of risk-neutral measures, which in this model has the form

R={QeP:Eq(S — K)" = ¢(K) for any K € K}

(the notation P was introduced in Section 2). Furthermore, for F' € L° such that
u(F) > —oo and u(—F) > —o0,

INGD(F) = {EQF :QeDn R} (71)

Below we give more concrete versions of these results for u = u,. Let us introduce
the notation

S = {@Z) 11 is a convex function Ry — Ry, ¢ (0) > —1, mlggl@@/)(:ﬂ) =0, Y|x = ¢|x,

d n
" ~ Py, and /R (dﬁg (y) — x)+P0(dy) < ®,(x) for any x € R+}

Here ¢!_ denotes the right-hand derivative, " is the second derivative taken in the sense
of distributions (i.e. ¥"((a,b]) = ¢/ (b)—¢' (a)) with the convention " ({0}) = ¢, (0)+1,
Py = Lawp S;, and @, is the function introduced in Section 4.

Theorem 7.1. Let u=u, with 1({0}) =0.
(i) The NGD is satisfied if and only if §, # 0.
(ii) For F = f(S) € L., we have

Ivn(P) = { [ teras e A

Proof. (i) Let us prove the “only if” part. By the result mentioned above, there
exists Q € D, NR. The function ¢ (z) := Eq(S) — x)™ is convex, lim, o ¢(2) =0, and
Y|k = ¢lk. Denote Z = 92 and set g(z) = Ep(Z | S; = z). Then

b(x) = En(S1 — 1) g(5)) = / (v — 1) gw)Poldy), z€R

R+

18



This representation shows that ¢/, (0) > —1 and " = gPy. By Theorem 4.7,
[ (00) = 2)Po(dy) = En(9(S) - 0)* < Ep(Z - 0)* < @,(0), R
Ry
so that ¥ € §,.

Let us prove the “if” part. Take ¢ € §, and set g = %;’, Q =g(S;)P. Then Q € P.
The inequality

Eq(9(S1) — 2)* = / (9y) — 2)*Po(dy) < D,(x), zER,.

Ry

combined with Theorem 4.7, shows that Q € D,,. Furthermore,

Eo(Si=K)' = [ (=K gPalas) = | (0= K)"o"(dy) = 6(K) = p(K), K €K,
so that Q € R.

(ii) Take z € Ingp(F). By (7.1), z = Eqf(S1) with some Q € D, N R. The proof
of (i) shows that

z=Epf(S1)g(51) = A f(x)g(x)Po(dx) = A f @)y (d),

where g(z) = Ep(9R | S1 =) and ¢ = Eq(S1 — )" € Fy-
Conversely, take z = fR+ f(x)Y"(dx) with ¢ € §,. Then z = Eqf(S:), where

Q = g(S1)P, g = ‘f;ﬁg. The proof of (i) shows that Q € D, N R, and by (7.1),

ZEINGD(F). O

8 Optimization in a Complete Model

Let (92, F,P) be a probability space. We consider a complete model, in which an agent
can obtain by trading any income from the class

A={X € L(Q): EqX =0},

where Q is a fixed probability measure, which is absolutely continuous with respect to P.
We will consider the problem

RAROC(X) — max, (8.1)
XeA

where RAROC is given by (5.3) and u = w, with some fixed p. We will assume that
p # 91, since otherwise u,(X) = EpX, and the above problem is meaningless.
Let ®, be the function defined in Section 4 and set

p(z) =Ep(Z" —2)", 2 €Ry,

where Z° = 93 We will assume that there exists no X € A with u,(X) > 0 (indeed, for
such X we would have RAROC(X) = o). In view of the results of [10; Subsect. 2.2],
this is equivalent to the inclusion Q € D,. This, in turn, is equivalent to the inequality
o < @, (see Theorem 4.7). For o > 1, we set

x—1

@a(x):ago( +1), reR,,
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i.e. the graph of ¢, is the a-stretching of the graph of ¢ with respect to the point (1,0)
(see Figure 3). Set a, = sup{a : o < @}, B = p({1}), v = [y ;A7 p(dA), and
Z = a,(Z° — &=1), so that ¢,,(z) = Ep(Z — x)*. Note that the left-hand and the
right-hand derivatives of ¢,, are given by

P(Z>x), x>0, (8.2)
P(Z >x

), x>0.

I} 1 ol T

Figure 3. The graphs of ®,, ¢, and ¢,. Here we
consider the situation, where r defined by (4.6) equals 1.

Theorem 8.1. Suppose that t # 61, Q# P, and ¢ < @,,.

(i) We have supy.4 RAROC(X) = (o, — 1) 1.

(ii) If o, > 1 and (¢a.)' (B) > —1, then P(Z = ) > 0 and any random variable of
the form X = blp +clge, where B C {Z = B} and b > 0 > ¢ are such that EqX =0, is
optimal for (8.1).

(iii) If . > 1, v < o0, and either ¢, (7) = P,(y) > 0 or ,(y) = 0 and
(0a.)_(7) <0, then P(Z > v) > 0 and any random variable of the form X = blg+clpe,
where B C {Z >~} and b < 0 < ¢ are such that EqX = 0, is optimal for (8.1).

(iv) If a. > 1 and there exists xo € (f,7) such that ¢.,(xo) = P,(z0), then
P(Z > x¢) > 0 and any random variable of the form X = blg-+clp., where B = {Z > x4}
and b < 0 < ¢ are such that EqX = 0, is optimal for (8.1). If moreover supp p = [0, 1]
and xq 1is the unique point of (B,v), at which ¢, = ®,,, then an optimal element of A
18 unique up to multiplication by a positive constant.

(v) If a. > 1, but neither of conditions (ii)—(iv) is satisfied, then the mazimum in (8.1)
is not attained.

Remarks. (i) It is easy to check that if p has no gap near 1, i.e. u((1—¢,1)) >0
for any ¢ > 0, then (®,)" (8) = —1. Similarly, if ; has no gap near 0, i.e. p((0,¢)) >0
for any € > 0, then (®,)" () = 0. Thus, the situation of (ii) (resp., (iii)) can be realized
only if 4 has a gap near 1 (resp., near 0). Another verification of these statements follows
from the arguments in the proof of (v) below.

(ii) In many natural complete models (for instance, in the Black—Scholes model),
we have essinf, Z°(w) = 0. Then ¢(¢) > 1 — ¢ for any ¢ > 0, and hence, a, = 0.
By Theorem 8.1 (i), supy.4 RAROC(X) = oco. A sequence of elements X, € A with
RAROC(X,,) — oo is provided by X, =I(Z <n™') = Q(Z <n7).
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Proof of Theorem 8.1. (i) Take R € (0,00). It follows from the result in [10;
Subsect. 2.2] that supy.4 RAROC(X) < R if and only if

ﬂ (ZU—;> EDu.

R 1+ R
In view of Theorem 4.7, this is equivalent to the conditions Z° > HLR and
1+ R 1 *
Note that
1+R 1 " 1+R R -
Ep| — (22— |- = Ep| Z2°- -1)-1] =
(S (2 ) o) = e (2 e 01) =l 2 e R

where a(R) = . Thus, (8.4) is satisfied if and only if ur) < D,.

Set h = essinf, Z%w). Note that ¢(h) =1 —h and ¢(h+¢) > 1— h — ¢ for any
e>0. As ¢,(0) =1, we conclude that the condition ¢,ry < ®, automatically implies
that (1 — h)a(R) < 1, which, in turn, is equivalent to Z° > ﬁ. As a result,

sup RAROC(X) < R <= ) <@, < a(R)<a, < R> (a,—1)7"
XeA

(ii) The inequality

Ep(Z —2)" = ga.(z) < Du(z), zE€R;, (8.5)

combined with Theorem 4.7, shows that 7 € D,,. Consequently, Z > 3, and it follows
from @3) that P(Z_: f) > 0. Due to Theorem 4.4, we can write g = f[(],l] Zap(dN)
with Z) € D). As Z; = 1, we deduce that, for p-a.e. A € [0,1), Zy = 0 P-ae. on
{Z = B}. Due to the structure of X, for p-a.e. A € [0,1], we have EpXZ) = uy(X).
Thus, EpXZ = u,(X). Applying now the equality

o, — 1 1

«— 1
a EPX+Q—UM(X),

1 —
EpX + —EpXZ =

Qly Oy Oy

0=Ep X2 =

we deduce that RAROC(X) = (o, — 1)7", so that X is optimal.

(iii) Consider first the case @a,(7y) = ®,(7) > 0. Due to (8.5), Z € D, so that we
can write Z = [, ), Zypu(d\) = £ +n, where & = [, Zypu(d)) and n = p({0})Zo. As
Zy <AL, we get € < 7y, so that

Pa.(7) = Ep(Z — )" < Epn = u({0}) = ®,(7).

The fact that this inequality should be an equality means that P(§ =) > 0 and n =0
P-a.e. outside {& = «}. This implies that, for p-a.e. A € (0,1], Zy = A~! P-a.e. on
{Z >~} and Zy = 0 P-a.e. outside {Z > v}. The proof is now completed in the same
way as in (ii).

Now, consider the case ®,(y) =0 and (¢.,) (7) < 0. As ®,(y) = p({0}), we get
pu({0}) = 0. Thus, Z = o Zyu(dN). As Zy < X1 we get Z < . It follows from (8.2)
that P(Z = 4) > 0. This implies that, for p-a.e. A € (0,1], Zy = A~! P-a.e. on
{Z = ~}. The proof is now completed in the same way as in (ii).
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(iv) Set

No = inf{x € 0,1]: /

(1]
1= [,
()‘0’1}

r= / A u(d)).
[)‘0’1}

As @, is constant on [l,7) and ¢,, is strictly decreasing on [[,r), we have either xy =1
or xg = r. Consider the first case (the other one is analyzed similarly). Due to (8.5),
Z € Dy, so that we can write Z = [i, ;A 'u(d). As [,y Zxpu(d)) < 1= zo, we have

A u(d)) < xg},

Er(Z —a0)* < Ep | Zan(dh) = (0, a)) = (D) = @, (o0).

[0’)‘0}

The fact that this inequality should be an equality shows that, for p-a.e. A € (Ag, 1],
Zy = A7t P-ae. on {Z > z¢} and, for p-a.e. A € [0,)], Zy = 0 P-a.e. outside
{Z > ¢}. The proof is now completed in the same way as in (ii).

Let us now prove the uniqueness. Let X be optimal for (8.1). Then X is not
degenerate since otherwise it should be equal to 0. Thus, we can find ¢ € R such
that Ay = P(X < ¢) belongs to (0,1). The analysis of the proof of (ii) shows that
u,(X) = EpXZ. Consequently, for p-a.e. A € [0,1], uy(X) = EpXZ), where Z, are
taken from the representation Z = f[(],l] Z\p(d)). This means that, for p-a.e. A € (N, 1],
Zy =M1 P-ae. on {X <c} and, for g-a.e. X € [0, )], Zy =0 P-a.e. outside {X < ¢}.
Consequently, for zy = f(z\o,l} A tu(dN), we have

Ep(Z — o) " = ([0, Ao]) = . (20)-

Moreover, as A\g € (0,1) and supppu = [0,1], we have xy € (5,7). Since such z is
unique, we conclude that X takes on only two values. Thus, any optimal X has the form
blg + clg. with some B € F and some constants b < c. It is clear from the reasoning
given above that P(B) is determined uniquely. Using the same arguments as in the
proof of Corollary 5.2, we deduce that different optimal elements should be comonotone.
Consequently, B is determined uniquely, so that an optimal strategy is unique up to
multiplication by a positive constant.

(v) Assume the contrary, i.e. the existence of an optimal element X. As X is not
degenerate, we can find ¢ € R such that A\g = P(X < ¢) belongs to (0,1). Arguing in the
same way as above, we prove that ¢, (x¢) = ®,(x¢), where zy = f(/\o’l] A u(dN). We
will now consider three cases.

Case 1. Assume that zo = . This means that u((Ag,1)) = 0. The arguments given
above show that, for p-a.e. A € [0, )], Z = 0 P-a.e. outside {X < c}. Consequently,
Z = f3 P-a.e. on {X > ¢}, so that

(¢a.)(B) = =P(Z > B) > —1.

Thus, in this case conditions of (ii) are satisfied.
Case 2. Assume that xy = . This means that p((0, X)) = 0. If x({0}) > 0, then
o, (V) = D,(y) = 1({0}) > 0, so that conditions of (iii) are satisfied.
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Now, assume that ;({0}) = 0. Then ®,(y) = 0. The arguments given above show
that, for p-a.e. X € [Ag, 1], Zy = A7" P-ae. on {X < c}. As p([0, X)) = 0, we get
Z = [py A7 (dA) =y P-ae. on {X < c}, so that

(¢a.)"(7) ==P(Z =7) <0.

Thus, in this case conditions of (iii) are satisfied.
Case 3. Assume that zy € (,7). Then conditions of (iv) are satisfied. O

Corollary 8.2. Suppose that supp = [0,1], Q#P, ¢ < ®,, and o, > 1.

There exists an optimal element of A if and only if there exists xo € (3,7) such that
Pa.(T0) = y(w0).

An optimal element is unique up to multiplication by a positive constant if and only if
such xqy s unique.

Proof. The proof of point (v) shows that, under the condition supp p = [0, 1], the
situations of (ii), (iii) are not realized. Now, the statement follows from Theorem 8.1. O

The financial interpretation of the obtained results is as follows. In most natural
situations, the optimal strategy consists in buying the binary option with the payoff

I(Z <) =1(Z° < o (zg— 1)+ 1) = I(% < c*>.

The geometric recipe for finding c, is given in Figure 4.
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