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1 Introduction

The Department of Probability Theory, Faculty of Mechanics and Mathematics, Moscow
State University organized the Kolmogorov Students’ Competitions on Probability The-
ory. Up to the present time, four such competitions have been held: in 2001, 2003, 2004,
and 2005. The information about these competitions (including the problems and the
names of the winners) can be found in the journal “Theory of Probability and Its Ap-
plications” [2]-[5] as well as on the Website of the Department of Probability Theory:
http://mech.math.msu.su/probab.

Since 2003, the competitions have been held at the end of April as April 25 is the
birthday of Andrey Nikolaevich Kolmogorov. In particular, the second competition was
dedicated to the centennial of A.N. Kolmogorov.

The idea of conducting these competitions belongs to A.N. Shiryaev who was the
chairman of the Organizing Committees of all four competitions. The members and
Ph.D. students of the Department of Probability Theory: A.S. Cherny, S.V. Dilman,
I.LN. Medvedev, A.S. Mishchenko, A.V. Selivanov, A.P. Shashkin, and M.A. Urusov have
made valuable contributions to arranging the competitions.

The number of students who took part in the First, Second, Third, and Fourth com-
petitions is 23, 42, 93, and 110, respectively. Since the second one, the competitions have
been arranged separately for the II-year students and for the students of the III-V years.
The fourth competition was attended by students from Moscow, Kiev, Saint Petersburg,
Samara, Tomsk, and Vologda.



The solutions of the problems are usually announced at the Big Seminar of the Depart-
ment of Probability Theory. All the participants get prizes and the winners get special
awards.

Most of the problems are of the “competition type”, i.e. they admit a simple short
solution, but it is hard to find it. However, at the fourth competition we have included
problems that test the knowledge of some basic probabilistic concepts (see Problem 4.3).
Some of the problems are in fact statements of the general theory that are well known to
the specialists (for example, Problems 1.6, 1.8, 2.9, and 4.5). Some other problems are
closely connected with topics of the modern research (for example, Problems 1.7, 2.10,
2.11, and 4.6).

In this paper, we give the solutions to all the problems. If available, several solutions
are given. Moreover, we describe the origin of some problems as well as their connections
with topics of the modern research in probability theory.

Of course, the reader is invited to solve as many problems as possible before passing
on to the solutions.

We conclude the introduction by a brief survey of the literature related to problems
in probability. Nice collections of problems are given in [21], [36], [46], [82]. Let us
also mention the books [75] and [84] containing counterexamples in probability, statistics,
and random processes. A very interesting collection of “probabilistic paradoxes” is given
in [84].

We would also like to draw the reader’s attention to the report [1], which contains a
fascinating description of promising directions of future research in probability. Let us
also mention the book [38], providing a description of promising research directions in
mathematics in the 21st century.

Acknowledgement. 1 am thankful to I. Pavlyukevich for consultations about
stochastic resonance and for having provided simulated paths illustrating this phenomenon
(see Figure 7).

2 Problems

2.1 First Kolmogorov Students’ Competition

Problem 1.1. ()! Let X = (X', X?) be a 2-dimensional random vector with a
continuous distribution, i.e. P(X = z) =0 for any x € R?. Is it true that its distribution
function F(z!,2?%) = P(X! < 2!, X? < 2?) is continuous?

Problem 1.2. (%) Let X1, Xs,... be a sequence of independent random variables

that converges in probability as n — oo to a random variable X. Prove that X is
degenerate, i.e. there exists z € R such that X = z.

Problem 1.3. (%) Give an example of 4 dependent random events A;, Ay, Az, Ay

such that any 3 of them are independent.

Problem 1.4. a) (%) Let X and Y be square-integrable random variables such
that E(X |Y) =Y and E(Y | X) = X. Prove that X 2 Y.

I The number in brackets is the solvability coefficient, i.e. the fraction whose numerator is the number
of the students who solved the problem and whose denominator is the number of the students to whom
the problem was proposed.



b) (5) Let X and Y be integrable random variables such that E(X | V) =Y and
E(Y | X) = X. Prove that X 2V,

Problem 1.5. (%) Let (P,)2°, be a sequence of probability measures on the real
line such that

n—oo

VA e Q, / P, (dz) — 1.
R

Is it true that P, — &y, where dy is the delta-mass concentrated at zero?

Problem 1.6. (%) Let P and Q be positive finite measures on the real line with no
mass at zero (i.e. P({0}) =0 and Q({0}) = 0) such that

VA eR, /R(e”\x —1)P(dz) = /}R{(e”“lC — 1)Q(dx).

Is it true that P = Q7

Problem 1.7. (%) Let X be a bounded random variable on a probability space
(Q,F,P). Let F,, C G, C H, be three sequences of sub-o-fields of F. It is known that
there exists a random variable Y such that
E(X|F) ——Y, EX|H,) ——Y.
n—oo

n—o0

Prove that E(X | G,) By,

Problem 1.8. (2%) A random variable X is called infinitely divisible if for any
n € N, there exist independent identically distributed random variables X7, ..., X" such
that X{' +---+ X has the same distribution as X. Prove that a random variable with

the distribution density p(x) = |z|I(|z| < 1) is not infinitely divisible.

2.2 Second Kolmogorov Students’ Competition

Problem 2.1. (%) On a table there are a black hat and a white hat containing the
lottery tickets. The white hat is “better” in the sense that when one pulls a ticket out of
this hat, the probability to get a lucky ticket is higher than when one pulls a ticket out of
the black hat. On another table there are also a black hat and a white hat with lottery
tickets, and the white hat is “better” in the sense described above. Let us imagine that
the tickets from two white hats are put in one big white hat; the tickets from two black
hats are put in one big black hat. Is is true that the big white hat is “better” than the

big black hat in the sense described above?

Problem 2.2. (%) Let A, B,C1,...,C, be events on a probability space (2, F,P).
Suppose that |J._, C; = Q and P(C;) >0, P(A|C;) > P(B|C;) forany i =1,...,n. Is
it true that P(A) > P(B)?

Problem 2.3. (%) Eight boys and seven girls bought tickets to the cinema in a 15-
seat row. Assuming that all the 15! possible seatings are equally probable, compute the
expected number of the pairs of female and male neighbors (for example, in the seating
“b,b,b,b,b,b.b,g.b,g.e.¢.e g e there are three such pairs).

Problem 2.4. a) (%) 2 Let K be the unit circumference, P be a probability measure
on K such that Pop_ ! =P for any a € R. Here ¢, denotes the rotation of K by the

2Different denominators of the solvability coefficients for different problems reflect the fact that some
problems were proposed to all the participants, while some others were proposed only to the students of
the II year or to the students of the III-V years.



angle a and P o g_! denotes the image of P under the map ¢,. Prove that P coincides
with the normalized Lebesgue measure.

b) (%) Prove the same assuming that there exists o € R such that a/7 ¢ Q and
Poyp ' =P.

Problem 2.5. a) (£) Let X be a random variable such that P(X # 0) > 0. Suppose
that, for some real numbers a and b, the random variables a X and bX have the same
distribution. Is it true that a = b7

b) ( ) Is it true that a = b under the additional assumption that a,b > 07

Problem 2.6. (5) Let (Q, F,P) be a probability space, G C F be a o-field that
includes all the P-null sets from F. Let X be a random variable such that, for any
random variable Y that is independent of G, X and Y are independent. Is it true that
X is G-measurable?

Problem 2.7. (42) What is the maximal possible value of the variance of a random
variable X taking on values in the interval [0, 1]?

Problem 2.8. a) () A sequence (X,,) of random variables converges in probability
to X. Is it true that S /n—)X where S, = X; +---+ X,,?

b) (s5) Is it true that S, /n Py X under the additional assumption that |X,| <1 for
any n?

Problem 2.9. (%) Let X,, be a random vector with a uniform distribution on a
unit sphere in R". (The uniform distribution is characterized by the property that it
is invariant under the orthogonal mappings.) Let Y, denote the first coordinate of X,,.
Prove that the sequence \/nY;, converges in distribution to a Gaussian random variable
with mean 0 and variance 1.

Problem 2.10. (12—3) Let Xi,Xs,... be independent Bernoulli random variables
with P(X,, = —1) = 1/3, P(X,, = +1) = 2/3. Does there exist a probability measure Q
equivalent to P such that EqX, = 0 for any n € N7 (Recall that Q is equivalent to P if

Q(4) =0 < P(4)=0))

Problem 2.11. (42) On a river there are 6 islands connected by a system of bridges
(see Figure 1.a). During the summer flood a part of the bridges has been destroyed. Each
bridge is destroyed with probability 1/2, independently of the other bridges. What is
the probability that after the described flood it is possible to cross the river using the
remaining bridges? (In the case shown in Figure 1.b it is possible to cross the river; in
the case shown in Figure 1.c it is not possible to cross the river.)

bridges
|
7 7
? ? /:.:. /:. o
islands
"™ banks —
Figure 1.a Figure 1.b Figure 1.c



2.3 Third Kolmogorov Students’ Competition

Problem 3.1. (%) Let A and B be events such that 0 < P(A) < 1 and
P(B | A) = P(B | A°) (A denotes the complement to A). Is it true that A and B
are independent?

Problem 3.2. a) (%) Let X, Y, Z be random variables on some probability space.
Suppose that Y stochastically dominates X, i.e. P(X <z) > P(Y <z) for any = € R.
Is it true that Y + Z stochastically dominates X + Z7?

b) (%) Is the above statement true under the additional assumption that X, Y are
independent and Y, Z are also independent?

Problem 3.3. (%) One hundred passengers bought tickets in a 100-seat carriage.
One seat was reserved for each passenger. The first 99 passengers took the seats at
random, so that all 100! variants of their seating have the same probability. However,
the last passenger decided to take his/her reserved seat and asked the passenger who
had taken his/her seat (if it was occupied) to change the seat. The passenger who was
disturbed asked the passenger who had taken his/her seat (if it was occupied) to change
the seat, and so on. Compute the expected number of the passengers who were disturbed

(the hundredth passenger is not included in this number).

Problem 3.4. (%) We have two dice with their sides marked by numbers 1,...,6.
Is it possible to attach the probabilities of occurrence to the sides of each die (these
probabilities might be different for these two dice) in such a way that the sum of the
occurred numbers after a simultaneous throw of both dice has the uniform distribution
on the set {2,...,12}7

Problem 3.5. (%) Let X and Y be independent random variables such that
E|X + Y| < co. Is it true that E|X| < oc?

Problem 3.6. (4%) Let Xy, X5,... be independent identically distributed random
variables. Set S, = X; +---+ X,,. Suppose that lim sup% < o0 a.s. Is it true that

S n—oQ
; Sn ?
llzris;jp n <00 a8,

Problem 3.7. (2) Let A be a Borel set on a circumference such that p(A) = 2/3,
where p is the uniform distribution (i.e. the normalized Lebesgue measure) on the cir-
cumference. The points of A are marked red, while the points of its complement are
marked blue. Prove that it is possible to inscribe a square in the circumference in such a
way that at least its 3 vertices are red.

Problem 3.8. (%) Let Xq,X5,... and Y7,Y5,... be two sequences of random
variables on some probability space. Suppose that X,, and Y,, are independent for every
n € N and X, +Y, P, 0. Prove that there exist real numbers a1, 0, ... such that

X, —ay L 0.

Problem 3.9. (43—0) Let X1, X5,... be asequence of random variables on a probability
space (€, F,P). Suppose that X,, 2% 0 and |X,| < 1 for any n € N. Let G;,Gs,... be
sub-o-fields of F. Is it true that E(X, | G,) =2 07

Problem 3.10. (%) Let 1 be a probability measure on the Borel o-field B of the
unit circumference. Let X and Y be independent random points on the circumference
with the distribution p (i.e. P(X € AY € B) = p(A)u(B) for all A, B € B). Denote
by « the angle between X and Y (so that a € [0,7]). Prove that P(a < 27/3) > 1/2.
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2.4 Fourth Kolmogorov Students’ Competition

Problem 4.1. (g—g) The riflemen A and B are shooting at a target in turn. (A shoots
first.) The rifleman A hits the target with probability P4, while the rifleman B hits the
target with probability Pp (the results of different shots are independent). The winner
is the one who hits the target first. Find the probability that A wins.

Problem 4.2. (110) Let X1, Xo,... be independent identically distributed random

variables. Set Y, = %, S, =Y +---4Y,. Prove that there exists a constant ¢

such that *S;l—” 25 e

Problem 4.3. (15’—45) Let X be a random variable that it uniformly distributed on
[0,7]. Find E(X |sin X).

Problem 4.4. (110) Let X,Y,Z be independent uniformly distributed points on a
circumference (i.e. P(X€A,YeB, ZeC) = p(A)u(B)u(C), where p is the normalized
Lebesgue measure). Find the probability that the triangle XY Z is acute.

Problem 4.5. a) (%) Let X,Y, ¢ be independent random variables with

P({ = £1) = 1/2. Prove that | X + &Y and |Y + £X| have the same distribution.

b) (135) Let X,Y,Z &n  be independent random  variables  with
P(§ = +1) = P(n = £1) = 1/2. Prove that | X +£|Y +nZ|| and || X + £Y| 4+ nZ| have
the same distribution.

Problem 4.6. a) (110) Let X be a bounded random variable on some probability
space and A be a number from (0,1]. Denote uy(X) = inf E(ZX), where inf is taken
over the set D) of random variables Z such that 0 < Z < A~! and EZ = 1. Prove that
there exists a random variable Z, € D, such that E(Z.X) = u,(X).

b) (%) Let X,Y be independent nondegenerate bounded random variables and A
be a number from (0,1) (recall that X is degenerate if there exists a constant ¢ such

that X *2 ¢). Is it true that uy(X +Y) > uy(X) +uy(Y)?

c) (110) Let X,Y be independent nondegenerate random variables taking on a finite
number of values and let u be a probability measure on [0, 1] such that p((a,b)) > 0 for
any 0 <a <b<1. Prove that

ux(X + YY) u(dX ux (X)) p(d ux(Y)u(dX). 1
/M (X + ) >>/M () )+/M (V) () (1)

d) (110) Let X,Y beindependent nondegenerate bounded random variables and let p
be a probability measure on [0, 1] such that u((a,b)) > 0 for any 0 < a < b < 1. Prove
that (1) is true.

Problem 4.7. (54) Let B be a Brownian motion and tl,tz, ... be a sequence of

positive numbers with ¢, — oo. Is it true that hrrn_)solip m =17

Problem 4.8. (f'T‘:’)) Let X,Y,Z be independent identically distributed ran-
dom vectors in R" taking on a finite number of values. Let L denote the (ran-
dom) linear subspace of R" generated by X and Y and let d(L) denote its dimen-
sion. We assume that P(d(L) = 2) > 0 and P(d(L) = 1) > 0. Is it true that

P(ZeL|dI)=2)>P(ZeL|dL)=1)?



3 Solutions

3.1 First Kolmogorov Students’ Competition

Problem 1.1. The answer is negative. Consider a random vector X such that X' =0
and X? is uniformly distributed on [0, 1].

Problem 1.2. First solution. After passing on to a subsequence, we can assume that
X, 2% X. Now, the result follows from the Kolmogorov 0-1 law.

Second solution. This solution is more complicated, but it employs a trick that is
sometimes useful. (For example, this trick is employed in the proof of the Yamada-
Watanabe theorem related to stochastic differential equations; see [72; Ch. IX, Th. 1.7].)

law

We have (X,,X,+1) — (X,X). On the other hand, as X, and X,.; are in-

law

dependent, (X,, X,+1) — (X, X’), where X’ is an independent copy of X. Hence,
(X, X) law (X, X'). It is easy to see that this is possible only if X is degenerate.

Problem 1.3. Consider
Q= {(371,252,253,5174) cx; € {0, 1}, + - xy = 0(2)}

(recall that the notation a = b(c) means that ¢ divides b — a). Let P be the uniform
measure (i.e. it attributes mass 1/8 to each elementary outcome). Then the sets

A ={(z1, 20, 23,24) € V2, =0}, i=1,...,4

satisfy the desired conditions.

Problem 1.4. a) We have
E(X - V)? = E(E(X? — 2XY + Y2 | X)) = E(X? — 2X% + E(Y? | X)) = EY? — EX2

Similarly, E(X — Y)? = EX? — EY2. As a result, E(X —Y)? = 0.

b) There exist various solutions of this problem. We give only two of them.

First solution. (Proposed by O. Dragoshansky.) Let us first assume additionally that
X and Y are bounded below. For any n € N, we can write

EXAn|Y)<EX |Y)An=Y An
(z Ay denotes min{z,y}). Consequently,
E(XAn|Y An) <Y An.

Similarly,
EYAn|XAn) <X An.

By taking expectations of two inequalities above, we get that these inequalities are actually
equalities. Tt follows from a) that X An 22 Y An. Letting n — oo, we get X £V,

In a similar way the statement is proved for X and Y bounded above. Employing
now the truncation procedure mentioned above to integrable X and Y, we get the desired
statement.

Second solution. (Proposed by G. Peskir.) Consider f(z) = arctanz. Then

Ef(X)(X —Y) =E(E(f(X)X - f(X)Y | X)) =Ef(X)X - Ef(X)X =0.
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Similarly, Ef(Y)(X —Y) = 0. Consequently, E(f(X) — f(Y))(X —Y) =0, which yields
the desired statement.

Remark. The problem admits also the following modification. Assume that X and
Y are positive random variables such that E(X | Y) and E(Y | X) are finite a.s. and
E(X|Y)=Y,E(Y|X)=X. Then X 2 Y. This is seen from the first solution.

Problem 1.5. The answer is negative. Consider P, = 05,1

Problem 1.6. The answer is positive. Without loss of generality, we can assume that
P(R) > Q(R). Then, for the measure Q = Q + (P(R) — Q(R))do, we have

VA eR, /(ei/\x —1)P(dz) = /(ei)“C - 1)6(dm)
As P(R) = Q(R), we get
VA eR, / P (dx) = / e Q(dx).

Hence, P = (3, which yields the desired statement.

Comments. This problem is closely connected with the Lévy-Khintchine representation
of the infinitely divisible distributions (see, for example, [76; § 8]). It states that the
characteristic function of any infinitely divisible random variable X (see Problem 1.8 for
the definition) has the form

EoirX :exp{i)\b—g)?%—/(ei’\m—1—i)\xl(|x| < 1))y(dx)}, AER,
R

where b € R, ¢ € R;, and v is a positive measure on R such that [, 1 A z*v(dz) < co.
Moreover, such a triplet (b, ¢,v) is unique. It is called the triplet of characteristics of X .
The infinitely divisible distributions are in one-to-one correspondence with Lévy pro-
cesses. Recall that (X;);>o is a Lévy process if
(i) Xo=0;
(ii) X has stationary increments (i.e. the distribution of X; — X, depends only on
t—s);
(iii) X has independent increments (i.e. for any 0 < ¢y < --- <, the random variables
Xy, — Xy, -, Xy, — X, _, are independent);
(iv) X has cadlag (i.e. right-continuous with left-hand limits) paths.

Clearly, if X is a Lévy process, then each X, is infinitely divisible. Conversely, for any
infinitely divisible distribution Q, there exists a Lévy process X such that Law X; = Q
(see [76; § 7]). Thus, there is one-to-one correspondence between the distributions of Lévy
processes and the infinitely divisible distributions. The Lévy-Khintchine representation
for Lévy processes has the form

EoirXe :exp{t{v\b— g)\2+/(em —1—idxl(|z] < 1))y(dm)] }, teR, N eR
R

Here (X;);>0 is a Lévy process, b € R, ¢ € Ry, and v is a positive measure on R such
that [, 1 A 2?v(dz) < oo. The collection (b,¢,v) is unique and is called the triplet of
characteristics of the process X. Here b is called the drift coefficient, ¢ is called the
diffusion coefficient, and v is called the Lévy measure of X .

8



Standard examples of Lévy processes are Brownian motion and Poisson process. An-
other important example is a compound Poisson process. A compound Poisson pro-
cess with the Lévy measure v, where v is a positive finite measure on R, is defined as
X; = 25;1 &n, where N is a Poisson process with intensity v(R) and &, &, ... are inde-
pendent random variables (they are also independent of N) with Law £, = & (thus, X
jumps at the same times as N, and the n-th jump is &, ; see Figure 2). The characteristic
function of X has the form

£ _ Zew ) EoiME+-+60) Ze*" )n (/R ;E]Z; u(d:c))n

_ exp{t /R (D7 — 1)1/(da:)}

(see [76; § 4] for more information on compound Poisson processes). The left-hand side
of this equality determines the finite-dimensional distributions of X (note that X has
stationary independent increments). Hence, the equality

VA eR, /R(e”\x —1)v(dz) = /R(ei)“” —1)v(dx)

leads to ¥ = v. This provides another solution to Problem 1.6.

€3

Figure 2. A path of a compound Poisson process

Any Lévy process can be represented as a sum of three independent processes
X'+ X% + X3 where X! = bt is a drift process, X} = oB; is a scaled Brownian
motion, and X? is a “pure jump” process, which can be obtained as a limit of compound
Poisson processes. This is known as the Lévy-Ito decomposition (see [76; § 19]).

Figure 3 shows simulated paths of some Lévy processes. The first (upper) graph repre-
sents Brownian motion. The second one represents the Cauchy process, i.e. the Lévy pro-
cess, for which X; — X is a Cauchy random variable with the density p;, ;(z) = M%S)Q
It is known that the characteristics of this process have the form b = 0, ¢ = 0, and
v(dz) = # dx. It is a pure jump process, i.e. it moves only by jumps. The third graph
represents the one-sided Cauchy process, i.e. the Lévy process with the characteristics
b=0,c=0, and v(dx) = (DO) dz. Its qualitative behavior is very interesting: it moves
upwards by jumps, and it moves downwards in a continuous manner (i.e. all its jumps are
positive). Finally, the fourth graph represents the Gamma process, i.e. the Lévy process,
for which X; — X; has Gamma distribution with the density p;, (x) = % I(x > 0).

9



Figure 3. Simulated paths of Lévy processes
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This process has increasing paths. Lévy processes with increasing paths are termed sub-
ordinators.

The theory of Lévy processes is a significant part of theory of random processes
(see [14], [76], [83]). In the last decade, Lévy processes have been attracting much at-
tention due to their applications in financial mathematics (see [29], [81; Ch. III]). Let us
describe some financial models, in which Lévy processes are used.

In the famous Black—-Scholes—Merton model, the price evolution of a financial asset is
modelled as

S, = SpetttoBr 1>,

where B is a Brownian motion, Sy is the initial price of the asset, y € R, and o € R, .
In 1973, F. Black, M. Scholes [16], and R. Merton [66] employed this model to obtain a
formula for the fair price of a European call option. This formula is known as the Black-
Scholes formula or the Black-Scholes—Merton formula (see, for example [54; Ch. 11], [81;
Ch. VIII, § 1]). In 1990, M. Scholes and R. Merton were awarded the Nobel prize for their
work.

The Black—Scholes—Merton model is widely used in practice. However, there is a
number of discrepancies between this model and the real data. Two most important ones
are as follows:

e In the Black-Scholes-Merton model, the logarithmic price process
InS; = InSy + put + oB; has Gaussian increments, while the empirical loga-
rithmic price increments have much heavier tails than the Gaussian distribution.

e In the Black—Scholes—Merton model, the increments of In.S over nonoverlapping
time intervals are independent, while the real prices have the effect of clustering,
which consists in the following: if the increment of prices over some interval is large
in the absolute value, then one should expect that the price increments over the
neighbor intervals are also large in the absolute value. In other words, there are
some periods of low activity and some periods of high activity.

There are many financial models that cope with the problems described above. A
popular class of models is the class of exponential Lévy models, in which

S, = Spet, t>0,

where L is a Lévy process (note that the Black—Scholes—Merton model is of this form).
These models are free of the first drawback described above, but still the increments over
nonoverlapping intervals are independent. Recently P. Carr, H. Geman, D. Madan, and
M. Yor [20] proposed the time-changed exponential Lévy model, in which

S, = Spel, t>0.

Here L is a Lévy process and 7 is an increasing process that is independent of L (if 7 has
smooth paths, then 7/ means the “inner” or the “operational” time). These models are
free of both drawbacks described above. Although they are not so simple as the Black—
Scholes-Merton model, they are rather elegant and analytically tractable (see [44], [64],
[79]).

Problem 1.7. First solution. This solution applies to the case, where X is square
integrable. Denote &, = E(X | F,), n» = E(X | G,), ¢ = E(X | H,,). It follows from
the Jensen inequality &2 < E(X? | F,) that the family (£2),en is uniformly integrable.

Hence, &, L—2> Y. Similarly, ¢, L—2> Y. As n, is the projection of (, on LQ(Q,Qn, P), the
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vectors ¢, —n, and n, — &, are orthogonal in L?. As ¢, — &, L—9> 0, we get n, —&, L—2> 0,
which leads to the desired statement.

Second solution. (Proposed by P. Yarykin.) This solution applies to the case, where X
is integrable. Let &,, n,, and ¢, be the same as above. As (&,)nen is uniformly integrable,

£, 5 V. Similarly, ¢, 25 Y. It follows from the equality 7, — &, = E(Co — &1 | Gn) that
Eln, — & < E|G, — &,|. Hence, n, — &, L—1> 0, which leads to the desired statement.

Comments. The statement of Problem 1.7 may be called the stochastic lemma about
two policemen. (Recall that the lemma about two policemen states that if (a,), (b,), and
(¢p) are three sequences of real numbers such that a, < b, < ¢, for any n and a, — a,
¢n — «a, then also b, — «.) The origin of this problem is as follows.

D. Hoover [53] introduced the notion of weak convergence of o-fields. According to
this definition, a sequence (G,) of sub-o-fields of F (we have a fixed probability space
(Q, F,P)) converges weakly to a sub-o-field G of F if E(X | G,) LN E(X | G) for any
bounded random variable X. One can also introduce the notion of strong convergence of
o-fields by analogy with convergence of sets. Namely, a sequence (G,) converges strongly
to G if liminf, G, = limsup, G, = G, where the lower and upper limits of o-fields are
defined as follows:

ligglfgn = (7 ﬁ Gm, limsup G, = ﬂ \/ Gm

n=1m=n n—00 n=1m=n

(V,,, Gm denotes the smallest o-field that contains all G,,,). The question arises: what is
the relationship between the two notions of convergence?

One can show that the weak convergence does not imply the strong convergence (a
problem for the reader!). The reverse is true. In order to prove this, assume that (G,)
converges strongly to G and consider F,, = (\-_ Gm, Hn = \/,._, Gn. Fix a bounded
random variable X . It follows from the martingale convergence theorem for forward and
backward martingales (see [72; Ch. II, Cor. 2.4]) that E(X | F,) 2% E(X | G) and
E(X | H,) 22 E(X | G). In order to complete the proof, one should apply the result of
Problem 1.7.

Problem 1.8. Let us prove a more general statement: any bounded nondegenerate
random variable X is not infinitely divisible. Assume the contrary. Without loss of
generality, |X| < 1. Then |X}| < 1/n for any n € N, k < n. Consequently, DX} < n~?2,
and therefore, DX < n~! (D denotes the variance). But this is possible only if X is
degenerate.

Remark. Another way to solve Problem 1.8, which employs the particular form of the
density of X, is as follows. One can see by a direct calculation that the characteristic
function of X has zeros. On the other hand, the characteristic function of an infinitely
divisible distribution has no zeros, which follows from the Lévy-Khintchine representation.

3.2 Second Kolmogorov Students’ Competition

Problem 2.1. The answer is negative. Consider the example: the first black hat contains
100 tickets, 99 being lucky, the first white hat contains only 1 ticket, 1 being lucky, the
second black hat contains 1 ticket, O being lucky, and the second white hat contains 100
tickets, 1 being lucky.
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Comments. The effect described above has an interpretation as a “paradox” in math-

ematical statistics (see [86; Ch. II]).

Problem 2.2. The answer is negative. Consider the example: 2 = {w;, ws, w3}, P is
the uniform measure, A = {wy}, B = {wi, w3}, C1 = {wi,wa}, Co = {wa, ws}.

Problem 2.3. Let X,,, n =1,...,14 be the indicator of the event that in the n-th
pair one member is male and the other one is female. Then
2-8-7-13!
EX,=P(X,=1)= 287130 i, n=1,...,14.
15! 15

Hence, the required expectation is E(X; + - - -+ X14) = %

Remark. The “indicator method” used in the solution of this problem is often applied
in the variety of similar problems. The most popular one is the problem about the absent-
minded secretary. 1t is as follows. A secretary has N letters to send to different addressees
and N envelopes with their addresses. He/she inserts the letters in the envelopes at
random, so that N! allocations are equally probable. Find the expected number of the
addressees who will receive his/her own letter.

Let us also remark that another problem related to the absent-minded secretary is
to find limy_, Py, where Py is the probability that at least one addressee will receive

his/her own letter. (The answer is limy ,,o Py =1 —e7!.)

Problem 2.4. a) Let us identify the circumference with the interval (0,2x] and let
F' denote the distribution function of P. For any n € N, we have

F(%ﬂ) —F(0) = = F(2r) — F(@)

Consequently, F'(2rq) = q for any ¢ € QN [0,1]. Hence, F(z) = 5=, = € [0, 27].

b) For any 5 € R, there exists a sequence n(k) of natural numbers such that
goZ(k) — ¢p pointwise. Furthermore, it is clear that P attributes no mass to any one-point
set. Combining these two properties, we deduce that P o gogl coincides with P on any

interval. Employing the above arguments, we get the desired statement.

Problem 2.5. a) The answer is negative. Consider a symmetric random variable X
(i.e. X' —X)and a=1, b= —1.

b) The answer is positive. Indeed, assume that a # b. Without loss of generality,
b# 0. Let F be the distribution function of X. Then F(z) = F((2)"z) for any z € R,
n € N. This leads to: F(0+) =1, F(0—) =0, i.e. X 2 0, which is a contradiction.

Problem 2.6. The answer is negative. Consider the example: Q = {w;,ws, w3}, P

is the uniform measure, G = {0, {w}, {ws, w3}, 2}, X(w) = I(w = w;). (Note that any
random variable YV that is independent of G should be degenerate.)

Problem 2.7. Let us first solve the problem with [0, 1] replaced by [—1,1]. For any
random variable X taking on values in [—1,1], we have DX < EX? < 1. On the other
hand, if P(X = £1) = 1/2, then DX = 1. Thus, the answer in the original problem
is 1/4.

Problem 2.8. a) The answer is negative. Consider the example: = [0,1], P is the
Lebesgue measure, and the sequence X, Xy, ... is given by V!, Y2, Y2 V3, ... where

n n k—1 k B n
n_21<<2—n’2_n:|>’ TLGN,k—]_,,Q
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Then SQn,l =2" —1.
1
b) The answer is positive. It is sufficient to note that X, Ly X,

Remark. In a), one can construct a counterexample with independent Xi, X, ...
(see [84; § 14.18]).

Problem 2.9. Let &,&,... be independent Gaussian random variables with mean 0
and variance 1. Then X, ' ngn, where Z,, = (&1,...,&,). Consequently,
vnY, & &

g+ g)/m

It follows from the law of large numbers that the right-hand sides of this equality converge
to & a.s. as n — oC.

Comments. This statement is known as Poincaré’s lemma. It was proposed to us by
M. Yor. (See [21; § 4.2] for a discussion related to this lemma.)

Problem 2.10. The answer is negative. Indeed, suppose that such a measure Q
P-a.s.

exists. By the law of large numbers, S,,/n —— 1/3, where S, = X; + ---+ X,,. Hence,
Sn/n Qas, 1/3. As |S,/n| <1, we get EqS,/n — 1/3, which is a contradiction.

Comments. This problem has its origin in financial mathematics. One of the basic
problems of finance is the pricing problem, which consists in finding the fair prices of
derivative financial contracts. There exist several approaches to solving this problem (their
financial description can be found, for example, in a nice introduction to finance [15]; their
mathematical description can be found, for example, in a nice introduction to financial
mathematics [41]). One of the basic theories is the arbitrage pricing theory. Let us
illustrate its main results on two models.

First, we consider a one-period model with a finite number of assets. The model con-
sists of a probability space (€2, F,P), a vector Sy € R?, and a random vector S; : Q — R?.
From the financial point of view, S! is the price of the i-th asset at the present moment,
while Si is the price of the i-th asset at a fixed future time 1. (As the current prices
are known, Sy is a nonrandom vector; as the future prices are unknown, S; is a random
vector.) Consider the set of random variables

A:{ihi(si—sg):hie]&}. (2)

=1

From the financial point of view, A is the set of incomes that can be obtained by trading
at dates 0 and 1 in the model under consideration. Indeed, if A* units of the i-th asset
are bought at time 0 and sold back at time 1, then the income of this operation is
hi(Si — Si) (the negative value of h' corresponds to the so-called short selling of the
asset, i.e. borrowing it at time 0, selling it immediately, then buying it at time 1 and
returning it).

The model satisfies the No Arbitrage (NA) condition if there exists no X € A with
the properties: X > 0 a.s. and P(X > 0) > 0 (the existence of such X would mean
a possibility to gain something with no risk). The fundamental theorem of asset pricing
(its proof can be found in the textbooks [41; Th. 1.6], [81; Ch. V, § 2], or [82; Ch. VII,
§ 11]) states that

NA < M £,
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where

M= {Q ~P: EQ|Sl| < o0 and EQSl = S(]}

is the set of equivalent martingale measures (these are the probability measures equivalent
to P, under which the sequence (Sy, S1) is a martingale).

Now, let F' be a random variable meaning the payoff of some derivative contract,
so that F(w) is the sum the holder of the contract gets at time 1 in the elementary
outcome w. A NA price of F' is a real number z such that there exist no X € A, h e R
with the properties: X + h(F —x) > 0 as. and P(X + h(F —x) > 0) > 0. Applying
the fundamental theorem of asset pricing to the extended d + 1-dimensional model with
So=(S¢,...,84, ), Sy =(S,...,S¢ F), we conclude that the set Ina(F) of NA prices
has the form

INA(F):{EQFIQGM, EQ|F| <OO}. (3)

The analog of this theorem is also true in the dynamic setting. Consider a model
that consists of a filtered probability space (2, F, (Fpn)n=o,..~,P) and an (F,)-adapted
the i-th asset at time n. The set of incomes that can be obtained by dynamic trading is
naturally defined as

N
A= {Z H!(S:—S. |): H!is fn_l—measurable}.
n=1

The NA condition and the NA price interval are defined in this model in the same way
as above. The fundamental theorem of asset pricing states that

NA < M £,

where

M={Q~P:Sisan (F,, Q)-martingale}. (4)

This theorem was first proved by J. Harrison and S. Pliska [48] in the case of a finite Q
and by R. Dalang, A. Morton, W. Willinger [31] in the case of a general Q. (For these
reasons, it is often called the Harrison-Pliska theorem or the Dalang-Morton- Willinger
theorem.) Simpler proofs given later can be found in the textbooks [41; Th. 5.17], [81;
Ch. V, § 2]. Furthermore,

INA(F):{EQFQGM, EQ|F|<OO} (5)

(see [41; Th. 5.30], [81; Ch. VI, § 1c¢]).

However, in the model with an infinite number of assets the analog of the theorem
stated above is no longer true. Indeed, consider a model with a countable number of
assets whose prices are given by S§ =1, S! =1+ X;, where X, Xy,... are the random
variables described in Problem 2.10. It is natural to define the set of attainable incomes
in this model as

N
A= {Zhi(s{—sg) :NeN, i GR}.
i=1

It is easy to check that this model satisfies the NA condition. However (as the solution

of the problem shows), there exists no measure Q ~ P such that EqSi = S} for any i.
This example shows that in complicated models (for instance, those with an infinite

number of assets) the standard NA condition is too weak to guarantee the existence of an
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equivalent martingale measure. The same effect arises for continuous-time models with a
finite number of assets (see [34; Ex. 7.7]). It has been recognized in financial mathematics
that the standard NA condition should be strengthened in order to obtain fundamental
theorems of asset pricing for complicated models. This means that in the definition of
arbitrage we take some closure of A instead of A. As there is no canonical way to take the
closure of A, there exist various strengthenings of the NA condition: No Free Lunch, No
Free Lunch with Vanishing Risk, No Generalized Arbitrage, etc. (see, for example, [25],
[34], [47], [62]). Each of the papers mentioned above contains, in particular, a fundamental
theorem of asset pricing, i.e. an equivalence between the corresponding strengthening of
the NA property and the existence of an equivalent martingale measure (also the term
equivalent risk-neutral measure is often used). Let us remark that in complex models
there is no canonical definition of a risk-neutral measure, so that different authors employ
different definitions.

Problem 2.11. (The problem was proposed by F. Hubalek.) Suppose that there are
two persons: a walker who tries to cross the river and a boatman who tries to go down
the river. Assume that the boatman cannot go beneath a bridge, so he/she can pass only
through the destroyed bridges. The possible ways of the boatman lie along the dashed
lines in Figure 4. It is clear that

p := P(the walker can cross the river) = P(the boatman can go down the river) =: .

It is easy to see that the boatman can go down the river if and only if the walker cannot
cross the river. Thus, p+¢=1. As a result, p=1/2.

Figure 4

Comments. Problem 2.11 is closely connected with percolation theory. Let us briefly
describe its basic object. Consider the square lattice Z¢. Suppose that each edge of the
lattice is open with probability p (p € (0,1)) and is closed with probability 1—p (different
edges are given independent designations). The central question is as follows: does there
exist with a strictly positive probability an infinite cluster of open edges that contains
the origin? In other words, if water is supplied at the origin and flows along open edges
only, can it reach infinitely many vertices with a strictly positive probability? It is known
that there exists a critical probability p. € (0,1) such that the answer is yes if p < p,
and is no if p > p.. Examples of further questions are: What is the value of p.? Is there
percolation at the critical value (i.e. if p = p., does there exist with a strictly positive
probability an infinite cluster of open edges that contains the origin)? Although these
problems are easy to formulate, they are very hard to solve. For example, it is known
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that, for sufficiently high dimensions (d > d; ), there is no percolation at the critical value.
But for low dimensions (already for d = 3), this problem remains unsolved.

However, for d = 2, the problems described above are completely resolved. (This was
done by H. Kesten in his famous paper [61].) Namely, it is known that p. = 1/2 and there
is no percolation at the critical value. The most elegant way to prove the latter statement
is based on considering the dual lattice to Z?. This is exactly the idea underlying the
solution of Problem 2.11.

Let us mention that in the percolation theory there is a large variety of other interesting
problems as well as other objects of study (for instance, one can consider other lattices,
dynamic percolation, etc.). There are many open questions in this theory. The principal
reference on percolation is [45]. The percolation theory is closely connected with other
interesting topics of the modern probability, like superprocesses, random fractals, etc.
Some interactions are described in [37].

3.3 Third Kolmogorov Students’ Competition

Problem 3.1. The answer is positive. The proof is straightforward.

Problem 3.2. a) The answer is negative. Consider independent random variables
X, Y with P(X = £1) =P(Y = +1) = 1/2 and take Z = —X.

b) The answer is positive. Indeed, an application of Fubini’s theorem yields the line
PX+Z<z) = / Qx((—o00,z — 2))Qz(dz2)
R
> [ Qr((-o0. - 2)Qz(dz) =P + Z < 2),
R

where Qx, Qy, and Q are the distributions of X, Y, and Z, respectively.

Comments. The stochastic order considered in Problem 3.2 is often called the monotone
stochastic order and is sometimes denoted as =<on. Note that X <., Y if and only
if Ef(X) < Ef(Y) for any increasing function f : R — R (provided the expectations
exist). It is well known that X <o, Y if and only if there exist random variables X , Y
(defined, possibly, on another probability space (ﬁ,]?, ﬁ)) such that X & X, Y ' Y,
and X <Y as. The proof can be found in [80; § 1.A], but it is a nice problem for the
reader to prove this independently.

There also exist many other important stochastic orders. For example, ¥ dominates
X in the concave order (notation: X <con Y')if Ef(X) < Ef(Y) for any concave function
f R = R (provided the expectations exist). It is known that, for integrable X and Y,
X <con Y if and only if there exist random variables X , Y (defined, possibly, on another
probability space (€2, F,P)) such that X & X, ¥ 2V, and E(X | Y) = Y (see [41;
§ 2.6]). Let us remark that the concave stochastic order is sometimes used in financial
mathematics to express the view that one portfolio is less risky than another.

Presumably, the stochastic order that is most important for financial mathematics
is the monotone concave order. A random variable Y dominates a random variable X
(notation: X =<, Y) if Ef(X) < Ef(Y) for any increasing concave function f: R — R
(provided the expectations exist). The financial meaning is as follows: the expected utility
of Y exceeds the expected utility of X for any choice of the utility function. It is known
that, for integrable X and Y, X <., Y if and only if there exist random variables X, Y
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(defined, possibly, on another probability space (@,]?, ﬁ)) such that X & X, y &y Y,
and E(X | Y) <Y (see [41; § 2.6]). This stochastic order is also related to coherent risk
measures. Namely, let u, denote the function introduced in Problem 4.6 (it corresponds
to a very important coherent risk measure called Tail V@QR; see Comments following the
solution of Problem 4.6). Then, for integrable X and Y,

X Zme ¥ = YA €[0,1], up(X) < up(Y)
(see [41; Rem. 4.44]). Note also that

X <mon ¥ = X%cha
X Secon Y = X 5p Y.

Along with three stochastic orders described above, there exist many other stochastic
orders. One of the principal references on the subject is [80].

Let us now give a financial application of the results described above. One of the
basic problems of the modern financial mathematics is to find nicer fair price intervals
of derivative contracts than those provided by arbitrage pricing theory (the NA price
intervals are known to be unacceptably large in many models; see, in particular, the
discussion in [1; Sect. 5]). This requires new ideas. One of the techniques used is as
follows. At the present time, the market of derivative securities is so large that one can
consider actively traded derivatives as basic assets. Below we describe one of the models
of this form.

Let (Q,F,(Fn)n=0....n,P) be a filtered probability space and (S,)n=o,..n be an
R, -valued (F,)-adapted process describing the price of evolution of some asset. As-
sume that, for each n € {1,..., N} and K € R, , there exists a Furopean call option on
this asset with maturity n and strike price K, i.e. a contract whose holder obtains the
amount (S, — K)* at time n (2" denotes max{z,0}). Let ¢,(K) be the price at time 0
of such a contract. For this model, it is reasonable to consider a strengthening of the NA
condition (see the discussion following Problem 2.10). Here we follow the approach of [25],
where the No Generalized Arbitrage (NGA) condition was proposed. The fundamental
theorem of asset pricing in the form proposed in [25] states that

NGA < M # 10,
where
M={Q~ P:Sisan (F,, Q)-martingale such that Lawq S,, = ¢ for any n}  (6)

is the set of equivalent martingale measures with given marginal distributions. Here
Lawq .S, denotes the distribution of S, under Q and ¢! is the second derivative
of ¢, taken in the sense of distributions, i.e. it is a measure on R, defined by
O’ ((a, b)) = ¢! (b)—¢! (a) (under the NGA condition, ¢! is a probability measure; see [25]
for details). Furthermore, the set of (appropriately defined) NGA prices of a derivative
contract F' has the form

INGA(F) = {EQF Qe M, EQ|F| < OO}

As the set M given by (6) is smaller than the set M given by (4), this interval is smaller
as compared to the corresponding NA price interval provided by (5).

These considerations justify the following problem. Let puq,...,uny be a sequence of
probability measures on R with [, |#|u,(dz) < oo. Under which conditions does there
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exist a martingale M,, ..., My on some filtered probability space such that Law M,, = pu,
for each n? Applying the above described results related to the concave stochastic order,
one can deduce that the necessary and sufficient condition for the existence of such a
martingale is pn <con *** <con Mo- The same result is also true in the continuous-time
setting (see [60]). Some explicit constructions of martingale measures with given marginal
distributions can be found in [65].

Problem 3.3. (The problem was proposed by I. Kurkova.)
First solution. Let E, be the expected number of the disturbed passengers if the
carriage contains n seats. Then Ey =0 and

-1
E, = P(the n-th passenger is not on his seat)(1 + E,, ;) = z

- (1+ E, 1).

This yields F, = %17 so that the answer is %.

Second solution. The seating described in the problem defines a permutation on
{1,...,100} (i — j if the j-th passenger occupies the seat of the i-th one). Let &
be the length of the cycle of the permutation that contains the 100-th passenger. Clearly,

(k=199 —k)! 1
=—, k=1,...,100.
100! 100’ A

P& =1k)=Cg '
Thus, the required expected number F is
k—1 99
E = —_— = .
kz; 100 2

Problem 3.4. The answer is negative. Indeed, suppose that such probabilities
(pi;) exist (p;; denotes the probability of occurrence of the j-th face for the i-th dice).
Let ¥ denote the sum of occurred numbers. Then P(X = 2) = p;py = 1/11,
P(X = 12) = pigp2s = 1/11. Hence,

2
P(X =7) > pigpa1 + p11P26 > 2v/P16P21P11D26 = ISR

Problem 3.5. The answer is positive. Let Qx and Qy denote the distributions of
X and Y, respectively. Then, by Fubini’s theorem,

EIX + Y| = / / 2+ y|Qux (dz)Qy (dy) = / ELX + 4]Qv (dy).

As E| X + Y] < oo, we get E|X + y| < oo for Qy-a.e. y. This yields E|X| < cc.

Problem 3.6. (The problem was proposed by S. Dilman.) By the Kolmogorov 0-1
law, there exists a > 0 such that limsup, % “2 4. By the Borel-Cantelli lemma,

Z P(X, > (a+1)n) < oo.
n=1
Clearly,
< =
Ea—|—1_1+;P(a—|—1>n) 1+;P(X1>(a+1)n)<oo.
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By the strong law of large numbers, for S, = Xt + -+ + X

+ we have lim, = = EX;".
— n
As S, > S,,, we get the desired statement.

Problem 3.7. Let & be a random point that has a uniform distribution on the
circumference and consider random points X; =&, Xo =§+7, Xs =&+7, Xy =&+ 37”
Let Y; = I(X; belongs to the red region). Then

4
EYi+--4+Yy) = Z P(X; belongs to the red region) = g

i=1

As Y} +---+Y] takes on integer values, there exists w, for which Y (w)+---+Y;(w) = 3.
This is the desired statement.

Comments. The method of solution of Problem 3.7 is based on introducing a proba-
bilistic object (we introduced a random variable ). In this problem, the probability is in
fact given (one can consider ¢ to be the identical map from the circumference to itself and
take P = p). But there are also some problems whose solution requires an introduction
of a new probability, which is not present in the original formulation.

Let us give an example of such a problem. (This is one of the most exciting problems
on basic probability). Suppose that two players A and B play the following game. The
player A chooses a probability distribution p on the real line with no atoms and draws
two independent random numbers X and Y, both of which have distribution p. Then A
shows X to the player B. The player B by looking at this number should decide whether
he/she takes it or rejects it. If B takes X, then A gets the number Y; if B rejects X,
then B gets Y, and A gets X. Thus, each of the players gets a number. Then they
compare the numbers, and the one who has a bigger number is declared the winner (as p
has no atoms, X and Y are different a.s.). The question is: does B have a strategy such
that whatever p is chosen by A, the probability that B wins is strictly greater than 1/27

Surprisingly enough, the answer is positive. The solution requires as a first stage a
thorough analysis of what should be called the class of possible strategies. If a strategy
is understood as a function F' : R — {0,1} (so that B calculates F'(X) and takes X
if and only if F(X) = 1), then a strategy with the desired properties does not exist.
Indeed, if 1 is concentrated on the set {F = 1}, then B would always take X, so that
the probability of his/her winning is exactly 1/2. But B can also employ randomized
strategies. A randomized strategy is a function F': R — [0,1]; B should calculate F'(X)
and then take X with probability F'(X) and reject X with probability 1 — F(X). If F
is strictly increasing on the whole real line, then the corresponding strategy provides a
positive answer to the problem posed above. The proof that B wins with a probability
strictly greater than 1/2 can be based on the comparison of some integrals. But there also
exists a simple proof based on the following observation. Suppose that B draws a random
variable Z whose distribution function is F' and then applies the following strategy: if
X > Z, he/she takes X ; otherwise, he/she rejects X . Clearly, B would take X exactly
with probability F'(X), so that this is a realization of the strategy described above. Using
this representation of the strategy, one can easily show that B wins with probability strictly
greater than 1/2 (a problem for the reader!).

The method of introducing a new probability is used rather often. Let us mention one
of its most surprising applications. A general opinion is that random noise is an unpleasant
feature of any device and it should be filtered out. However, in some physical systems
random noise has been found to play a positive role: the presence of noise can amplify
the signal. The corresponding effect is known as stochastic resonance. This phenomenon
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has well been known to physicists for 25 years (see the surveys [7], [43]) and has recently
attracted the attention of probabilists (see, [13], [18], [42], [50], [51], [52], [55], [56], [70]).
This effect and related subjects are described in the monograph [6]. Let us briefly describe
this interesting effect.

Consider a particle moving in a double-well potential U (see Figure 5) in the presence
of friction, i.e. a particle whose motion is governed by the differential equation

LX) = —2X(0) - U'(X()

at T e

Here 7 is the friction coefficient and U is the potential (an example is provided by
U(z) = 2* —2?). We assume that ~ is large, so that % X (¢) can be eliminated, and (after
replacing U by U/~v) the equation gets the form

d )
SX() = ~U'(X ().
U(z)
o/

Figure 5

Now, suppose that the particle’s motion is disturbed by a periodic signal, i.e. the
equation gets the form

CX(0) = ~U(X () + (). 120

where f is a periodic function (for example, f(t) = asin(wt+¢)). This can be interpreted
as a periodic perturbation of the potential, i.e. we can write £X(t) = —2U(z,t), where
U(x,t) =U(z) + xf(t) (see Figure 6).

AWK

W
L

Figure 6. The periodic change
of the potential U(-,t)
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Let us consider the following problem: how to filter the signal by observing the parti-
cle’s motion? It is clear that if f is small as compared to U, then the particle would stay
in one of two local minima, so that one cannot filter the signal by observing the particle.
But let us now imagine that there is random noise disturbing the particle, i.e. its motion
is governed by the stochastic differential equation

dX, = [-U'(z) + f()]dt + 0dB,, >0,

where B is a Brownian motion and ¢ > 0 is the noise level (for basic facts on stochastic
differential equations, one may consult [28; Ch. 1], [69], [72; Ch. XI]). Then the system
has one of 3 types of behavior. If ¢ is very small, then the particle jumps very rarely
between the wells. This is known as the trivial behavior (see the upper graph in Figure 7).
If o is large enough, then the particle jumps very often between the wells. This is known
as the chaotic behavior (see the bottom graph in Figure 7). But there also exists some
intermediate o, for which the jumps of the particle between the wells become coherent
with the signal. This is known as the stochastic resonance (see the middle graph in
Figure 7). Thus, if we have chosen an optimal value of the noise level, then the particle’s
motion follows the signal, so we can filter the signal by observing the particle.

Figure 7. Simulated paths of X; illustrating stochastic resonance. The
upper, middle, and lower graphs show the trivial behavior, the stochastic
resonance, and the chaotic behavior, respectively. The upper and lower
sinusoids in each graph show the positions of two local minima of the po-
tential U(-,t) (cf. Figure 6). The middle sinusoid on each graph shows the
position of the local maximum of the potential U(-, ).

Let us now describe a problem, which is purely nonprobabilistic in formulation, but
which can be solved only with the help of randomization. This is a two-person zero-sum
game.

There are two players. The first one has an amount S; of strategies and the second
one has an amount Sy of strategies (the sets S; and Sy might be finite or infinite). The
game is determined by the payoff function A :S; x Sy — R. The number A(7,j) means
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the amount the first player should pay to the second player if the first one chooses the
strategy ¢ and the second one chooses the strategy j. The problem is to find the optimal
strategies of each player.

A basic notion of the corresponding theory is the notion of a saddle point. A pair
(ig,jo) € S1 x Sy is called a saddle point if A(ig,j) < A(ig,jo) for any j € Sy and
A(i, jo) > Al(ig, jo) for any i € S;. It is easy to understand that if such a point exists,
then it is optimal for the first player to employ the strategy io and it is optimal for the
second one to employ the strategy jo. Let us also remark that a saddle point corresponds
to the minimaz and the mazimin strategies, i.e.

ig = argmin sup A(i, j),
€51 jES:

Jo = argmax inf A(i, 7).
jes, €51

However, a saddle point need not exist (it is sufficient to consider the example
S1 = Sy = {1,2}, A(1,1) = A(2,2) =1, A(1,2) = A(2,1) = 0). But note that one
can extend the class of strategies by considering randomized ones. A randomized strategy
of the first player is a probability measure P; on S; (i.e. the first player chooses his
strategy at random according to the measure P;). Similarly, a randomized strategy of
the second player is a probability measure P, on Sy. The payoff function is extended to
these strategies in a straightforward way:

A(P1,Py) — / / Az, y)P1(dz)Pa(dy).

The basic theorem proved by J. von Neumann [67] in 1928 states that if both S; and
S, are finite, then there exists a saddle point in the class of randomized strategies. This
means that the game can be solved in the class of randomized strategies.

The paper [67] was the starting point of game theory. An essential part of the theory
was created by J. von Neumann. Nowadays, game theory is one of the main instruments
of analysis in various applied disciplines. It is very important for economics (see the
monograph [68]). A way to apply game theory to option pricing has recently been pro-
posed (see [89]). There also exists a game-theoretic approach to statistics, which enables
one to embed most statistical problems in the framework of a two-person zero-sum game
described above (see [17; Ch. 6]). Let us briefly describe how this is done.

Consider a  statistical space (2, F,(Py)pco) and a random element
X : (9 F) — (E,A). Suppose that we are trying to estimate ¢(f) by observ-
ing X, where ¢ : © — O. A statistical game is a game of two players: the statistician
and the nature. The statistician’s amount of strategies is some collection § of functions
f : E — ©O. The nature’s amount of strategies is ©. The payoff function (in statistical
games it is called the risk function) is defined as

A(f,0) = BEpyw(f(X),¢(0)), [feT, 0€6,

where w : © x © — R is the loss function (for example, if o= R, then a very popular
choice is w(z,y) = (z —y)?). Now, the problem of finding an optimal statistical estimate
of ¢(0) is the problem of finding an optimal statistician’s strategy in the game described
above. There are three typical ways to solve a statistical game.

First, one can assume that instead of having the amount © of possible strategies, the
nature has only one, but randomized, strategy. Namely, it is assumed that there exists a
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probability measure p on © such that the nature chooses # at random according to this
distribution. This is known as the Bayesian approach. Then the risk function becomes a
function of one argument:

B(f) = / A(F, 0)1(d6) = / Epyw(f(X), 0(0)u(d6), f € 5.

So, in order to find an optimal strategy one should minimize B(f) over §.

Second, if § is small enough, then it might happen that there exists a uniformly
optimal strategy, i.e. there exists fo € § such that A(fy,0) < A(f,0) for any f € §,
6 € ©. Such a situation occurs indeed in some natural cases (recall the Cramer-Rao
inequality).

If we have neither the first, nor the second situation, we should employ the technique
of game theory, i.e. one should look for

fo = argminsup A(f,0)
fex  0eo
(possibly, § should be extended to include randomized strategies). Sufficient conditions

for the existence of a saddle point in statistical games as well as more information on the
subject can be found in [17; Ch. 6].

Problem 3.8. Let b, be a median of Y,, (i.e. b, is a number such that P(Y,, > b,) > %
and P(Y, <b,) > %) Set a, = —b, . It follows from the inequalities
1
P(X,+Y,>08)>P(X,>a,+0)P(Y,>0b,) > EP(X" > a, +96),
1
P(X,+Y,<-8)>PX, <a,—90)PY, <b,) > §P(Xn < a,—9)
that X, — a, — 0.
Problem 3.9. The answer is negative. Consider the example: Q = [0,1],
P is the Lebesgue measure, and the sequences Xi, X,5,... and G;,Gy,... are given
by YL Y2 Y2 YPE, ... and Hi, M, M3, Hi,..., where V*(w) = I(w € [0,+) and

n={0, A7, Q\ A7, Q} with

1 k-1 k
ap= (0] u (B2 nemr-tin
n n 'n

Then E(Y)' | H}) = 51ap n€N, k=2,...,n.
Problem 3.10. Let & be the set of all closed arcs of the angle 27/3. By the
compactness argument, there exists Iy € argmaxp.g p(I'). Denote p(I'g) by p and set
q =1 —p. Then, by Fubini’s theorem,
2m 2m 9 ~
P(a < ?) >P(X €Dy, Y €Tg) + P(X eTs a< ?) =+ | (1 - pu(C)u(ds)
r

c
0

DN | —

2p2+/ gu(dz) = p* +¢* >
G
where I'§ is the complement to I'y and fm is the arc that consists of points y such that

the angle between z and y exceeds 27/3 (clearly, u(T';) < p).

Comments. This is presumably the hardest problem of the four competitions. It was
proposed by M. Jacobsen. The solution given above was proposed independently by
Yu. Bakhtin and by F. Delbaen.
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3.4 Fourth Kolmogorov Students’ Competition

Problem 4.1. Clearly,

Py

PA . :P 1_P 1_P P el = .
(A wins) 4+ ( a)( 5)Pa + P, + Py — P,Pg

Problem 4.2. It is sufficient to note that Y7,Y3,Y5,... are independent and also
Y5, Yy, Vs, ... are independent.

Problem 4.3. There are many possible solutions. We give only the most straightfor-
ward one.

Any set A € o(sin X) has the form A = {sin X € B}, where B is a Borel subset
of [0,1]. Clearly, {sin X € B} = {X € C}, where C is a Borel subset of [0,7] that is
symmetric around 7 /2. Thus,

™

1 1
EPIAX:—/xdx:—/fdx:EPIA .
g o2 2

™ ™

As a result, E(X | sin X) = 7/2.

Comments. This problem has a different style compared to other problems. It tests not
the ability to solve tricky problems, but rather the acquaintance with basic probability
objects. The unexpectedly low solvability coefficient reflects the fact that students are
not used to deal with conditional expectations.

Problem 4.4. (The problem was proposed by A. Mishchenko.)
First solution. By Fubini’s theorem,

P(XYZ is acute) = /C /C /C (2,9, 2) € A)u(da)p(dy)p(d=)
~ [ PUv.2) € Aulaa),

where C' denotes the circumference, A is the set of points (x,y, z) € C? corresponding to
acute triangles, and A, is the set of points (y,z) € C? such that zyz is acute. In order
to find P((Y,Z) € A,), we identify the circumference with [0,1) in such a way that z
corresponds to 0 and draw A, (see Figure 8). Clearly, P((Y,Z) € A,) = 1/4, so that the
answer is 1/4.

Figure 8
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Second solution. By Fubini’s theorem,

P(XYZ is acute) = /C/C/CI((x,y,z) € A)p(dz)pu(dy)u(dz)

_ / / P(Z € Ayy)p(da)p(dy).

where A, is the set of points z € C' such that the triangle xyz is acute. It is seen from
Figure 9 that P(Z € A,,) equals the angle between z and y divided by 27. Simple
integration yields the answer.

Figure 9

Third solution. Let X Y and Z denote the points symmetric to X', Y, and Z,
respectively. If XY Z is acute then each of triangles XY 7, XY Z, XYZ is obtuse—
angled (see Figure 10). Thus, we have established a map from points T € A to triples
of points in T\ 2, where ¥ denotes the set of all triangles whose vertices belong to the
circumference and 2l is the subset of acute triangles. It should be checked that different
acute triangles yield different obtuse-angled triangles, any obtuse-angled triangle belongs
to some triple of this form, and the map thus constructed preserves the measure p3. As
a result, p*(A) =1/4.

Figure 10

Problem 4.5. a) We have
X+ Y] = [¢]|X +&Y] = [EX +Y],

so that these random variables coincide a.s.

b) There exist various solutions. We give only the most standard one.
For any Borel subset A of the real line, we have, by Fubini’s theorem,

PAX +€[Y + 02l € 4) = [ Plla+€ly + 2]l € Qs (do)Qy (d)Q(d2),
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where Qx, Qy, and Qz denote the distributions of X, Y, and Z, respectively. Now, it
is easy to see that the four-element set {|x + |y + z||} coincides with the four-element set
{||lz £ y| £+ 2|}, so that P(|x + &|y + nz|| € A) = P(||x + &y| + nz| € A), and the proof is
easily completed.

Comments. The origin of the problem is as follows. V.M. Zolotarev considered in [90;
§ 1.4] the following operation: with a pair of independent random variables X, Y we asso-
ciate a random variable | X 4+£Y|, where £ is independent of (X,Y) and P(§ = +1) =1/2
(in fact, this is an operation on distributions). The statement that this operation is
commutative and associative is exactly Problem 4.5. This problem was proposed by
A.V. Lebedev.

Problem 4.6. a) Constructive solution. Let ¢\(X) denote the A-quantile of X, i.e.
o\(X) = inf{z : P(X < z) > z}. Consider Z, of the form

Z, = AT(X < \(X)) + E1(X = gx(X)), (7)

where £ is a random variable taking on values in [0, \™!] such that EZ, = 1. Let us prove
that E(Z,X) = u,(X). Without loss of generality, ¢\(X) = 0. Then, for any Z € D,,

EZX —-EZX = (Z — )\*I)XI(X <0)+ZXI(X >0)>0.
Remark. (i) It is seen from the explicit form of Z, that

ur(X) = A1 / Q(dx) + ega(X), (8)
(—00,gx (X))

where Q = Law X and ¢ =1 — A"'Q((—o0, A (X))).
(i1) The analysis of the proof given above shows that any element Z, € D, such that
EZ.X = u)(X) should be of the form (7).

Nonconstructive solution. By the Dunford-Pettis criterion, D, is relatively compact in
the weak topology (L', L>) (for basic facts related to topological vector spaces, see [74]).
It is easy to see that D, is L'-closed. As D, is convex, any point of L'\ D, can be
separated from D, by a linear continuous functional. As any such functional is given by
an element of L, Dy is o(L', L*)-closed, and hence, it is o(L', L*)-compact. As the
function Dy 3 Z — EZX is o(L', L>)-continuous, it attains its minimum.

b) The answer is negative. Consider A = 1/4 and let X, Y be independent random
variables with P(X = £+1) = P(Y = +1) = 1/2. Then it is easy to see (one may use (8))
that uy(X) = uy(Y) = -1 and uy(X +Y) = —2.

c) Clearly, we can assume from the outset that X, Y are positive and
Py =P(X =0) >0, P = P(Y =0) > 0. Without loss of generality, Py < Py.
Take A\g € (PxPy,Px). As Ay < Px and )\g < Py, it is easy to see from (8) that
Up (X) = uy(Y) = 0. As X +Y is positive and P(X +Y = 0) = PxPy < A,
Upng (X +Y) >0 =uy (X) +uy(Y). It is obvious that uy(X +Y) > uy(X) + up(Y) for
any A and the functions uy(X), ux(Y), and u)(X +Y') are continuous in A. This leads
to the desired result.

d) As X and Y are nondegenerate, there exist two different essential values x; < x5
of X and two different essential values y; < yo of Y (recall that = is called an essential
value of X if P(X € (x — e,z +¢)) > 0 for any £ > 0). Furthermore, we can choose
T1,To,Y1, Y2 in such a way that zo — 1 # yo — y; unless both X and Y take on only
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two values, but the latter case has already been resolved. Without loss of generality,
To— Ty < Yo — 1. Choose ¢ such that zo+y; < ¢ < x1 47y, and take \g = P(X +Y < ¢).
It is seen from (8) that uy, (X +Y) = EZo(X +Y), where Z; = A" [(X +Y < ¢).
Furthermore, the analysis of the constructive proof of a) shows that any random variable
Z,. € Dy, for which EZ, X = u),(X), should a.s. coincide with a random variable of the
form A (X < o) +EI (X +qp,)- As Zg = X1 on {X+Y € A}, where A is a sufficiently
small neighborhood of (z5,%1), and Zy =0 on {X +Y € B}, where B is a sufficiently
small neighborhood of (z1,,), we get that EZyX > u,,(X). As EZ)Y > uy (Y), we get
Upne (X +Y) > up (X) + uy, (Y). Now, the proof is completed in the same way as above.

Comments. (i) Problem 4.6.d admits the following generalization: Let X, Y be
bounded random variables and p be a probability measure on [0, 1] such that p((a,b)) > 0
forany 0 <a < b<1. Then

ux(X +Y)u(dA ux (X)) p(dA ux(Y) p(dA 9
JL i ey > [ anoua + [ nmay) ©)

[0,1]

if and only if X and Y are not comonotone. Recall that X and Y are comonotone if
(any of) the following equivalent conditions are satisfied:

(1) (X(w1) = X(w2)(Y(w1) =Y (wg2)) >0 for P x P ae. wy,ws;
(i) there exist X 2 X and V 2V such that (X (w;) — X (w2))(Y (w1) — YV (w3)) > 0
for any wq, ws;
(iii) there exists a function f: R — R? such that each of its coordinates is an increasing
function and P((X,Y) € f(R)) = 1.

The “only if” part of the statement above is clear from the constructive proof of a).
Let us prove the “if” part. Suppose that (9) is not true. As u)(X +Y) > u)(X) +u,(Y)
for any A, we get

/M (X + ) () /H ()l >+/ (V) ()

[0,1]

As the integrands here are continuous in A, we get uy(X +Y) = uy(X) + u\(Y) for any
A € (0,1]. This is possible only if for any A € (0,1] there exists Z, € D, such that
EZ.X =u\(X), EZ.Y = u,(Y). Using Remark (ii) above, we deduce that

P((X,Y) € (—o0,ar(X)) x (a(Y),00)) =0, A€ (0,1],
P((X,Y) € (g2(X),00) x (=00, q2(Y))) =0, A€ (0,1].
From this, it is easy to deduce that P((X,Y) € f((0,1])) = 1, where

F(A) = (gx(X),q\(Y)). Thus, X and Y are comonotone.

As a corollary, we obtain the statements of Problems 4.6.c, 4.6.d. Another corollary
(it will be used below) is as follows: if the vector (X,Y’) has a joint density (with respect
to the Lebesgue measure), then (9) is true.

(ii) Problem 4.6 has its origin in the theory of coherent risk measures, which is a
very new, popular, and important topic of the modern financial mathematics. The notion
of a coherent risk measure was introduced by P. Artzner, F. Delbaen, J.-M. Eber, and
D. Heath in [8] and [9]. These are in fact two versions of the same paper: [§] is a financial
version, while [9] is a mathematical version. The motivation of these papers is as follows.
Currently, the most common way to measure the risk of a financial position is based on
Value at Risk (abbreviated as V@R). Recall that VAR (X) = —¢\(X), where A € (0, 1]
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is a parameter (in practice, A is fixed as a small number like 0.05 or 0.01). Despite its
popularity, V@R has very serious drawbacks. These drawbacks are actively discussed
in the financial literature and some of them are described in [8] and [9] (see also the
discussion in [1; Sect. 5]). The goal of the authors of these papers was to introduce a way
to measure risk that is similar to V@R, but free of these drawbacks; to put if briefly, a way
to measure risk that is smarter than V@R. Let us describe the basic object introduced in
these papers.
Let Q be a finite set. A coherent utility function is a map u : L — R (here L°
denotes the space of all functions 2 — R) satisfying the following properties:
(i) (Superadditivity) u(X +Y) > u(X) + u(Y);
(ii) (Monotonicity) if X <Y, then u(X) < u(Y);
(iii) (Positive homogeneity) u(AX) = Au(X) for A € R, ;
(iv) (Translation invariance) w(X +m) = u(X) +m for m € R.
A coherent risk measure is a coherent utility function taken with the minus sign. (It is
more convenient to deal with coherent utility functions because it enables one to get rid
of numerous minus signs.)
The basic result of [8] and [9] is the representation theorem. It states that any coherent
utility function can be represented as

u(X) = élelg EqX, (10)

where D is a convex closed set of probability measures on € (clearly, the right-hand side
of (10) is a coherent utility function for any choice of D). Furthermore, such a set D is
unique.

F. Delbaen [32] extended the study of coherent risk measures to general probability
spaces. This is done as follows. Let (2, F,P) be a probability space. A coherent utility
function is a map u : L® — R (L* is the space of bounded random variables on
(Q, F,P)) that satisfies conditions (i)-(iv) above. It is easy to show that any such map
admits representation (10) with some set D of positive finitely additive measures on F
with total mass 1 that are absolutely continuous with respect to P. However, dealing with
finitely additive measures is of course unpleasant. F. Delbaen introduced a continuity
axiom, which he called the Fatou property. It is as follows

(v) if X, P X and | X, | <1, then limsup, u(X,) < u(X).
(It is possible to show that this is equivalent to the following property: if a sequence (X))
decreases to X and |X,| < 1, then u(X,) — u(X).) It was proved in [32] that any
function w : L — R satisfying conditions (i)—(v) can be represented in the form (10),
where D is an L'-closed convex set of probability measures on F that are absolutely
continuous with respect to P (we identify measures that are absolutely continuous with
respect to P with their densities). Furthermore, such a set D is unique.

An important example of a coherent risk measure is Tail V@R (some authors also use
the terms Average V@R, Conditional V@R, and expected shortfall). Tail VQR of order
A € [0,1] is the coherent risk measure p, = —u,, where u, is defined in Problem 4.6.
(Clearly, ug(X) = essinf, X (w), where essinf, X(w) = sup{z € R: X > zr as.}.) It is
seen from representation (8) that in the case, where Law X has no atoms, uy(X) is the
conditional expectation of X given the set {X < ¢\(X)}. Another important example is
Weighted V@R. Weighted V@R corresponding to a probability measure p on [0, 1] is the
coherent risk measure p, = —u,, where

up(X) = /[ (o).
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After the first papers on coherent risk measures, this theory has rapidly been evolving.
Let us mention just a few papers that followed. H. Follmer and A. Schied [39], [40], [41;
Ch. 4] introduced the notion of a convez risk measure. 1t is defined similarly to a coherent
risk measure with condition (iii) being dropped and condition (i) replaced by

i) u(aX +(1—-a)Y)>aau(X)+ (1 —a)u(Y) forany X,Y € L™, a € [0,1].

S. Kusuoka [63] obtained a description of law invariant coherent utility functions (a
coherent utility function u is law invariant if u(X) depends only on the distribution
of X'). Namely, he proved that if (€2, F,P) has no atoms, then any law invariant coherent
utility function can be represented as

u(X) = inf u,(X), (11)
where 9 is a set of probability measures on [0,1] and u, is Weighted V@QR. (It is easy
to see from representation (8) that w, is law invariant; hence, u, is law invariant, so
that the right-hand side of (11) is a law invariant coherent utility function for any choice
of M.)

Nice expositions on coherent risk measures are given in [33], [41; Ch. 4], [77], [85].

All the papers mentioned above are related to static risk measures. One of the most
promising topics of the modern research is the theory of dynamic risk measures; see [10],
[11], [22], [23], [24], [30], [35], [58], [73], [87]. The study of dynamic risk measures is closely
connected with the theory of backward stochastic differential equations; see [71].

While the first papers on coherent risk measures were aimed at the study of risk
measures themselves, recent literature is characterized by an increasing interest to appli-
cations of coherent risk measures to the problems of finance. An important direction is
the so-called No Good Deals (NGD) pricing (see [19], [26], [57]). This technique is aimed
at obtaining finer price intervals of derivative contracts than those provided by arbitrage
considerations (see the Comments following Problem 3.2, where another technique was
discussed). We illustrate the idea of the NGD pricing by a one-period model with a finite
number of assets, which has been considered in the Comments following Problem 2.10.

Let (2, F,P) be a probability space, Sy € R be the vector of initial prices of several
assets, and S; be a random vector of their terminal prices. Let A be the set of attainable
incomes given by (2). First of all, we define a coherent utility function u on the space of
all random variables (this is necessary because the elements of A need not be bounded).
This is done as follows. Let D be an L'-closed convex set of probability measures that
are absolutely continuous with respect to P. For any X € A (note that X does not
necessarily belong to L>), we define u(X) by (10), where the expectation EqX is under-
stood as EQ X —EqQX ™~ with the convention oo —oo = —oco. Here X = max{X,0} and
X~ = max{—X,0}. We will assume that, for any i, supqep |EQSi| < oo (in particular,
this implies that S; is integrable with respect to any Q € D).

The model satisfies the NGD condition if there exists no X € A with u(X) > 0. The
financial interpretation is as follows. A random variable X with u(X) > 0 represents
a trading opportunity with a negative risk. Such an opportunity is attractive to all the
market participants, so that if it occurred, everyone would try to exploit it, which would
lead to its disappearing. The fundamental theorem of asset pricing (see [26; Subsect. 2.2])
states (under minor additional assumptions) that

NGD < DNM #40,

where

M = {Q < P: EQ|51| < oo and EQSl = So}

30



is the set of martingale measures that are absolutely continuous with respect to P (recall
that Q< P if P(A) =0 = Q(A) =0).

Now, let F' be a random variable meaning the payoff of some derivative contract. We
assume that supgep |[EqF'| < 0o. An NGD price of F is a real number x such that there
exist no X € A, h € R with u(X + h(F — z)) > 0. Applying the fundamental theorem
of asset pricing to the extended d + 1-dimensional model with Sy = (S, ..., S8, ),
Sy = (SL,...,59 F), we conclude that the set Iygp(F) of NGD prices has the form

INGD(F) = {EQF Qe DﬂM, EQ|F| < OO},

which is smaller than the corresponding NA price interval provided by (3).

Along with pricing, a basic problem of the modern financial mathematics is the prob-
lem of finding the optimal structure of a portfolio. Various settings of this problem based
on coherent risk measures were considered in [26] and [78]. Another basic problem is
related to equilibrium; equilibrium based on coherent risk measures was studied in [12],
[26], [49], and [59].

Let us describe one of the optimization problems considered in [26]. (As will be seen
below, this motivates Problems 4.6.c and 4.6.d.) Consider a one-period model with a
finite number of assets described above. For X € A, we define its Risk-Adjusted Return
on Capital (RAROC) as

+00 if EpX > 0 and u(X) >0,

RAROC(X) = ¢ EpX
otherwise
—u(X)
with the convention % = 0, = = 0. Let us now consider the following optimization
problem:
RAROC(<h, Sl — So>) — Inax, (12)

hERd

where (-,-) denotes the scalar product in R?.

We give a simple geometric solution of this problem. The key step is to introduce the
set C' = cl{EqQS; : Q € D}, where “cl” denotes the closure. It is easy to see that C is
a convex compact in R¢. Set F = EpS;. It is natural to assume that P € D, so that
E € C. Clearly, for any h € R?, we have

Ep(h, S1 — So) = (h, E — Sy), (13)
u((h, S1 — So)) = anég(h, x — Sp). (14)

We will assume that Sy € C°\ {E}, where C° denotes the relative interior of C'. (Recall
that the relative interior of C' is its interior in the relative topology of the smallest affine
subspace containing C'.) The solution of (12) is given by the following procedure (see
Figure 11). Let T" denote the intersection of the ray (F,S;) with the border of C'. Then

E —
sup RAROC((h, S, — o)) = == 5l
heRd |So — 7|

and

argmax RAROC((h, S; — Sp)) = {h € R : Yz € C°, (h,x — T) > 0}.

heRd
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Figure 11. Solution of the optimization problem. In the left
graph, the solution h, of (12) is unique up to multiplication
by a positive constant. In the right graph, the border of C has
a break at the point 7" and the optimal solution is not unique.

(If C' has a nonempty interior, this is the set of inner normals to C at the point T'.)
These statements can be derived from (13) and (14) with the help of elementary geometric
considerations (the proof is given in [26; Subsect. 3.2]).

The connection between property (9) (it might be called the strict diversification
property) and the optimization problem discussed above is as follows. Let u = w,,, where
p is a measure on [0, 1] such that p((a,b)) > 0 for any 0 < a < b <1 (u, is Weighted
V@R). Suppose that the distribution of S; has a density (with respect to the Lebesgue
measure). Then a solution of problem (12) is unique up to multiplication by a positive
constant. Indeed, suppose that there exist two solutions hl and h? that are not collinear.
After multiplying h! by a positive constant, we can assume that

Ep(hl,S1 — Sp) = Ep{h?, S1 — Sp).
As h! and h? solve (12),
(P St = So)) = uu((hZ, St — So)).
Consider h, = # Then
Ep(h., S1 — So) = Ep(h, 51 — So),
while it follows from (9) that
U ((hey St = So)) > uu((hL, S1 = So))-
Thus, ‘
RAROC((h., S1 — Sp)) > RAROC((h', Sy — Sy)),

which is a contradiction.

We conclude this comment by an ideological remark. S. Kusuoka [63] proved that
Tail V@R of order A is the smallest law invariant coherent risk measure that dominates
V@R of order A (note that V@R, is not a coherent risk measure because it does not
satisfy the superadditivity axiom (i)). This property shows that Tail V@R is one of the
most important classes of coherent risk measures. However, we believe that Weighted
V@R is a better class. One obvious advantage of Weighted VQR, over Tail V@R is that
the former risk measure employs the whole distribution of a random variable (provided
that u((a,b)) > 0 for any 0 < a < b < 1), while the latter one depends only on the
tail of distribution to the left of its A-quantile (see representation (8)). Another reason
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is that Weighted V@R possesses the strict diversification property (9) (provided that
w((a,b)) > 0 for any 0 < a < b < 1), which leads to the uniqueness of a solution of
various optimization problems; on the other hand, as shown by Problem 4.6.b, Tail VQR
does not have this property. To put it briefly, Weighted V@R is “smoother” than Tail
V@R (see [27] for a more detailed discussion and for further results on Weighted VQR).

. . By P
Problem 4.7. The answer is negative. Indeed, T 0, and therefore,
\/2771317+nm 2%, 0 for some subsequence m,,. Now, it is sufficient to take t, = m,,.

Problem 4.8. The answer is negative. Fix n € N and consider the example:
P(X =e)=1/2, P(X =€) = - = P(X = e,41) = 1/2n, where ey,...,e,,1 is a
basis in R"*!. Then
PZ=e, X=Y=e)+3100P(Z=ep, X =Y =¢)

PX=Y=e)+3}LP(X =Y =¢)

P(ZeL|dIL)=1)=

11 n
_ 21 + @y 1
i“L (22)2 n—oo 2
Similarly,
1

Thus, for a sufficiently large n, we get a desired counterexample.

Comments. When I had proposed this problem to L.C.G. Rogers, he sent me the
following E-mail 20 minutes later: “The answer is negative. The example is

P, = 0.0084692,
Py, = 0.9489620,
P; =0.0170750,
P, = 0.0058926,
P; =0.0196012.”

This mysterious solution is as follows.

Assume that P(X =e;) = P;,...,P(X =e,) = P,, where e;,...,e, is a basis in R".
Then it is easy to compute both sides of the inequality and to write a computer program
that picks at random many vectors P, ..., P, with P, >0, P,+---+ P, = 1 and verifies
whether the inequality in question is true. For n = 5, the program immediately yields a
counterexample!
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