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onsider the problem of optimally stopping a general one-dimensional Itô di�u-sion X. In parti
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Here,W is a standard one-dimensional Brownian motion, and b, � are deterministi
 fun
tionssu
h that (1) has a unique weak solution that is non-explosive and assumes values in theinterval ℄0;1[. The obje
tive of the dis
retionary stopping problem is to maximise theperforman
e 
riterion E x he� R �0 r(Xs) dsf(X� )iover all stopping times � , where r > 0 is a given deterministi
 fun
tion. The payo� fun
tion ftakes �nite values and is in
reasing and pie
ewise 
onstant, so its graph looks like a stair
asewith a �nite number of steps.The simplest version of this problem, whi
h arises when b � 0 and � � 1, i.e., whenX is a standard Brownian motion, and when f 
an take only two values, was solved bySalminen [S85℄ using Martin boundary theory. The more general version of Salminen'smodel that arises when X is a Brownian motion with drift was re
ently solved by Dayanikand Karatzas [DK03, Se
tion 6.7℄ using a new methodology for addressing general one-dimensional dis
retionary stopping problems by means of a new 
hara
terisation of ex
essivefun
tions that they have developed.The investigations undertaken here have been motivated by two 
lasses of appli
ations.The �rst of these is 
on
erned with the pri
ing of digital options of Ameri
an type. In this
ontext, the sto
hasti
 di�erential equation (1) models the underlying asset pri
e dynami
s,and r 
an be interpreted as the interest rate (i.e., the short rate). The se
ond appli
ationarises in s
enario-based managerial de
ision making. In this 
ontext, the di�usion X is usedto model the evolution of an un
ertain e
onomi
 environment, while the fun
tion f modelsthe various dis
rete payo�s that 
an be obtained when a
tion is triggered.We have also been motivated by some general sto
hasti
 
ontrol theoreti
 issues; inparti
ular, it is of interest to observe that the problem we study provides an example inwhi
h the so-
alled \prin
iple of smooth �t", whi
h suggests that the value fun
tion of anoptimal stopping problem should be C1, does not hold. Indeed, it turns out that the valuefun
tion is not C1 at all points that belong to the boundary of the stopping region as wellas to the set of points at whi
h f is dis
ontinuous. This phenomenon has been observed bySalminen [S85℄, and by Dayanik and Karatzas [DK03℄. One of the purposes of this paper isto o�er a new way of addressing this issue by means of te
hniques based on the use of lo
altimes.In
identally, we should mention that we have opted to 
onsider the 
ase in whi
h f takes�nite rather than in�nite values only to simplify the presentation of our results. Simpli
ity ofexposition has also been behind our assumption that f is in
reasing. Indeed, our 
onstru
tionof the solution to the problem follows a \stepwise" approa
h that, at least in prin
iple, 
anbe adapted to a

ount for arbitrary pie
ewise 
onstant payo� fun
tions.
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2 The dis
retionary stopping problemWe 
onsider a sto
hasti
 system, the state pro
ess X of whi
h satis�es (1). We impose
onditions (ND)0 and (LI)0 in Karatzas and Shreve [KS88, Se
tion 5.5.C℄; these 
onditionsare suÆ
ient for (1) to have a weak solution that is unique in the sense of probability law.In parti
ular, we impose the following assumption.Assumption 1 The deterministi
 fun
tions b; � : ℄0;1[! R satisfy the following 
ondi-tions: �2(x) > 0; for all x > 0; (2)and for all x > 0; there exists " > 0 su
h that Z x+"x�" 1 + jb(s)j�2(s) ds <1: (3)We also assume that the probability that the di�usion X hits either of the boundaries 0 or1 of its state spa
e in �nite time is zero.Assumption 2 The di�usion X is non-explosive.Feller's test for explosions provides a ne
essary and suÆ
ient 
ondition for X to be non-explosive (see Karatzas and Shreve [KS88, Theorem 5.5.29℄).We adopt a weak formulation of the optimal stopping problem that we study:De�nition 1 Given an initial 
ondition x > 0, a stopping strategy is any 
olle
tion Sx =(
;F ;Ft;Px;W;X; �), where (
;F ;Ft;Px;W;X) is a weak solution to (1) and � is an (Ft)-stopping time. We denote by Sx the family of all stopping strategies asso
iated with a giveninitial 
ondition x > 0.With ea
h stopping strategy Sx 2 Sx, we asso
iate the performan
e 
riterionJ(Sx) = E x �e���f(X� )� ; (4)where �t = Z t0 r(Xs) ds: (5)The payo� fun
tion f appearing here is assumed in the present investigation to have theform of a �nite stair
ase, given byf(x) = K01℄0;p1[(x) + N�1Xj=1 Kj1[pj ;pj+1[(x) +KN1[pN ;1[;3



where 0 < p1 < � � � < pN and K0 < K1 < � � � < KN are given 
onstants. The obje
tiveof the dis
retionary stopping problem is to maximise J over Sx. A

ordingly, we de�ne thevalue fun
tion v(x) = supSx2Sx J(Sx): (6)We shall also need the following additional assumptions.Assumption 3 �2 is lo
ally bounded.Assumption 4 There exists a 
onstant r0 > 0 su
h that r(x) > r0, for all x > 0.At this point, we should note that Assumption 4 and the fa
t that f is bounded implythat (4) is well-de�ned when the event f� = 1g has positive probability. Indeed, in this
ase, we assume that e���f(X� )�����=1 := limt!1 e��tf(Xt) = 0:3 The Hamilton-Ja
obi-Bellman (HJB) equationOn the basis of standard theory of optimal stopping, we expe
t that the value fun
tion vshould satisfy the HJB equationmax�Lv(x); f(x)� v(x)	 = 0; for x > 0; (7)where the se
ond order ellipti
 di�erential operator L is de�ned byLv(x) = 12�2(x)v00(x) + b(x)v0(x)� r(x)v(x):It turns out that the value fun
tion v of our dis
retionary stopping problem, whi
h is de�nedby (6), has dis
ontinuities in its �rst derivative. Therefore, it does not suÆ
e in the presentsituation merely to 
onsider 
lassi
al solutions to the HJB equation (7). For this reason, we
onsider 
andidates for v that are di�eren
es of 
onvex fun
tions; for a survey of the resultsneeded here, see Revuz and Yor [RY94, Appendix 3℄. In parti
ular, we 
onsider solutions to(7) in the following sense.De�nition 2 A fun
tion w : ℄0;1[! R satis�es the HJB equation (7) if it 
an be expressedas the di�eren
e of two 
onvex fun
tions and (7) is true, Lebesgue-a.e., with L̂ in pla
e ofL, where the operator L̂ is de�ned byL̂w(x) = 12�2(x)w00a
(x) + b(x)w0�(x)� r(x)w(x): (8)4



Here, w0� is the left hand derivative of w. Also,w00(dx) = w00a
(x) dx+ w00s (dx) (9)is the Lebesgue de
omposition of the se
ond distributional derivative w00(dx) of w into themeasure w00a
(x) dx that is absolutely 
ontinuous with respe
t to the Lebesgue measure andthe measure w00s (dx) whi
h is mutually singular with the Lebesgue measure.Following Zervos [Z03, Theorem 1℄, we 
an now establish 
onditions that are suÆ
ientfor optimality in our problem.Theorem 1 In the dis
retionary stopping problem formulated in Se
tion 2, suppose thatAssumptions 1{4 hold, and let w : ℄0;1[! R be a solution to the HJB equation (7) in thesense of De�nition 2 su
h thatw is bounded, w0� is lo
ally bounded; (10)�w00s (dx) is a positive measure (11)and suppw00s (dx) � C
 := fx > 0 j w(x) = f(x)g : (12)Then, v = w and, given any initial 
ondition x > 0, a stopping strategyS�x = (
�;F�;F�t ;P�x;W �; X�; � �); (13)where (
�;F�;F�t ;P�x;W �; X�) is a weak solution to (1) and� � = inf ft � 0 j X�t 2 C
g (14)is optimal.Proof. Fix any initial 
ondition x > 0 and any weak solution (
;F ;Ft;Px;W;X) to (1).Using Itô-Tanaka formula (see Revuz and Yor [RY94, Theorem VI.1.5℄), we obtainw(Xt) = w(x) + Z t0 b(Xs)w0�(Xs) ds+ Z t0 �(Xs)w0�(Xs) dWs + 12 Z 10 Lat w00(da); (15)where La is the lo
al time of the pro
ess X at level a. With referen
e to the Lebesguede
omposition (9) and the o

upation times formula (see Revuz and Yor [RY94, CorollaryVI.1.6℄), Z 10 Latw00a
(a) da = Z t0 �2(Xs)w00a
(Xs) ds;5



so (15) impliesw(Xt) = w(x) + Z t0 �12�2(Xs)w00a
(Xs) + b(Xs)w0�(Xs)� ds+ Z t0 �(Xs)w0�(Xs) dWs + Awt ;where Awt = 12 Z 10 Lat w00s (da): (16)For future referen
e, observe that (11) implies�Aw is a 
ontinuous, in
reasing pro
ess; (17)be
ause su
h a statement is true for lo
al times. Now, using the integration by parts formulafor semimartingales, we obtaine��tw(Xt) = w(x) + Z t0 e��sL̂w(Xs) ds+Mt + Z t0 e��s dAws ; (18)where M is the sto
hasti
 integral de�ned byMt = Z t0 e��s�(Xs)w0�(Xs) dWs: (19)To pro
eed further, �x any admissible stopping strategy Sx 2 Sx, let (�m) be the sequen
eof (Ft)-stopping times de�ned by�m = inf ft � 0 j Xt =2 [ 1m ;m℄g ; for m = 1; 2; : : : ;and note that limm!1 �m = 1, Px-a.s., be
ause X is non-explosive. With regard to thelo
al boundedness of �2 and w0� (see Assumption 3 and (10), respe
tively), and the uniformpositivity of the dis
ounting fa
tor r (see Assumption 4), we 
an see that, given any m � 1,the stopped pro
essM �m , whereM is the sto
hasti
 integral de�ned as in (19), has quadrati
variation that satis�esEx [hM �mi1℄ = E x �Z 10 1fs��mg �e��s�(Xs)w0�(Xs)�2 ds�� 12r0 supx2[ 1m ;m℄ ��(x)w0�(x)�2<1;whi
h implies that M �m is a uniformly square integrable martingale. Therefore, M �m� iswell-de�ned and Doob's optional sampling theorem implies that E x [M �m� ℄ = 0. In light ofthis observation and (18) above, we 
an see thatEx �e���^�mf(X�^�m)� = w(x) + E x �e���^�m [f(X�^�m)� w(X�^�m)℄�+ E x �Z �^�m0 e��sL̂w(Xs) ds�+ Ex �Z �^�m0 e��s dAws � : (20)6



In view of (17) and the fa
t that w satis�es (7) in the sense of De�nition 2, it follows thatEx �e���^�mf(X�^�m)� � w(x):However, by passing to the limitm!1 in this inequality using the dominated 
onvergen
etheorem, we 
an see that J(Sx) � w(x), whi
h proves that v(x) � w(x).Now, let S�x be the stopping strategy given by (13){(14). Sin
e the measure dL�t a issupported on the set ft � 0 j X�t = ag, the de�nition of � � impliesL�t a = 0; for all t 2 [0; � �℄ and a 2 C
;whi
h, in view of (12) and (16), implies Awt � = 0, for all t � � �. However, 
ombining thisobservation and the de�nition of S�x with (20) and the fa
t that the set fx > 0 j w(x) = f(x)gis 
losed, whi
h follows from the upper semi
ontinuity of f , we 
an see thatE �x he�����^��mf(X���^��m)i = E �x he�����m �f(X���m)� w(X���m)�1f��m<��gi+ w(x):With regard to the boundedness of f and w, and the uniform positivity of the dis
ount-ing fa
tor r (see Assumption 4), we 
an pass to the limit m ! 1 using the dominated
onvergen
e theorem, to 
on
lude that J(S�x) = w(x), whi
h, 
ombined with the inequalityv(x) � w(x) that we have established above, proves that v(x) = w(x) and that S�x is anoptimal strategy. �We shall also need the following result for the 
onstru
tion of an appropriate solution tothe HJB equation (7) in the next se
tion.Lemma 2 Suppose that Assumptions 1{4 hold, �x two 
onstants y; z 2 [0;1℄ su
h thaty < z, and suppose that the fun
tions g; h : [y; z℄! R are di�eren
es of two 
onvex fun
tionsand satisfy L̂g(x) = L̂h(x) = 0; for all x 2 ℄y; z[; (21)where L̂ is de�ned by (8), g(y) � h(y) and g(z) � h(z); (22)g0� and h0� are both lo
ally bounded; (23)g00s (dx) � 0 and h00s (dx) is a positive measure: (24)Then h(x) � g(x), for all x 2 [y; z℄.Proof. Fix any initial 
ondition x 2 ℄y; z[ and any weak solution (
;F ;Ft;Px;W;X) to (1),and de�ne T = inf ft � 0 j Xt =2 ℄y; z[g :7



Also, to simplify the proof, assume that �2, g0� and h0� are all bounded rather than just lo
allybounded: indeed, when y = 0 or z = 1, a straightforward adaptation of the \lo
alising"arguments deployed in the proof of Theorem 1 
an be used to address the more general 
ase.This assumption implies that the sto
hasti
 integralt 7! Z t^T0 e��s�(Xs) �g0�(Xs)� h0�(Xs)� dWsis a uniformly integrable martingale. However, this observation, (21){(22) and Itô's formula(18) imply 0 � g(x)� h(x) + E x �Z T0 e��s dAg�hs � ; (25)where Ag�ht = 12 Z zy Lat [g00s � h00s ℄ (da)= �12 Z zy Lat h00s (da); for t � T:Sin
e h00s (dx) is a positive measure, the pro
ess �Ag�h is in
reasing, soEx �Z T0 e��s dAg�hs � � 0;whi
h, 
ombined with (25) above, implies that h(x) � g(x), and the proof is 
omplete. �4 The solution to the dis
retionary stopping problemWe will solve the optimal stopping problem that we 
onsider by 
onstru
ting a solution tothe HJB equation (7) that satis�es the requirements of Theorem 1. To this end, we �rstobserve that every solution to the homogeneous ordinary di�erential equation (ODE)12�2(x)w00(x) + b(x)w0(x)� r(x)w(x) = 0; (26)whi
h is asso
iated with (7) is given byw(x) = A'(x) +B (x); (27)for some 
onstants A;B 2 R. The fun
tions  , ' are de�ned by (x) = (E x �e��Ty � ; for x < y;�E y �e��Tx ���1 ; for x � y; (28)'(x) = (�E y �e��Tx ���1 ; for x < y;E x �e��Ty � ; for x � y; (29)8



respe
tively, for a given 
hoi
e of y > 0. Here � is de�ned by (5), while Tx (resp., Ty) is the�rst hitting time of fxg (resp., fyg). For future referen
e, we note that' and  are both stri
tly positive and C1, their se
ond derivative exists in the
lassi
al sense, ' is stri
tly de
reasing and  is stri
tly in
reasing. (30)Also, the Wronskian W of ' and  , whi
h identi�es with the �rst derivative of the s
alefun
tion of the di�usion X, is given byW(x) := '(x) 0(x)� '0(x) (x)=W(y) exp��2 Z xy b(s)�2(s) ds� ; for x > 0; (31)for any given 
hoi
e of y > 0. These results are known sin
e several de
ades and 
an befound in various forms in several referen
es, in
luding Feller [F52℄, Breiman [B68℄, Itô andM
Kean [IM74℄, Karlin and Taylor [KT81℄, and Rogers and Williams [RW00℄. Here, wefollow the exposition in Johnson and Zervos [JZ05, Appendix℄, where analyti
 expressionsfor the fun
tions ' and  are also derived when X is a geometri
 Brownian motion, amean-reverting square-root pro
ess su
h as the one used in the Cox-Ingersoll-Ross interestrate model, an exponential Ornstein-Uhlenbe
k pro
ess su
h as the one used in the Bla
k-Karasinski interest rate model, or a geometri
 Ornstein-Uhlenbe
k pro
ess.Ba
k to our optimal stopping problem, we 
onje
ture that the value fun
tion satis�es theHJB equation (7) in the 
lassi
al sense outside the set of the points at whi
h the dis
ontinu-ities of f o

ur, namely, inside the set ℄0;1[ nfp1; : : : ; pNg. This 
onje
ture and the intuitiveidea that some of the points p1; : : : ; pN (e.g., pN ) should belong to the stopping region C
 ofthe dis
retionary stopping problem that we solve motivate a \stepwise" approa
h, the �rstobje
tive of whi
h is to solve the following two problems.Problem 1 Given 
onstants 0 < y < z andK < L, �nd a 
ontinuous fun
tion ~w : [y; z℄! Rthat is a 
lassi
al solution to (7) with f(x) = K, for x 2 ℄y; z[, and satis�es the boundary
onditions ~w(y) = K and ~w(z) = L:Problem 2 Given 
onstants z > 0 and K < L, �nd a 
ontinuous, bounded fun
tion ~w :[0; z℄ ! R that is a 
lassi
al solution to (7) with f(x) = K, for x 2 ℄0; z[, and satis�es theboundary 
onditions ~w(0) � K and ~w(z) = L:9



zyKLFigure 1: Graph of the �rst possible solution ~w to the HJB equation (7) that satis�es theboundary 
onditions ~w(y) = K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄y; z[, for 0 < y < z (Problem 1).The solution to Problem 1, is asso
iated with two qualitatively di�erent possibilities.The �rst one arises when ~w satis�es the ODE (26) for all x 2 ℄y; z[, in whi
h 
ase, ~w is givenby ~w(x) = 8><>:K; for x = y;A'(x) +B (x); for x 2 ℄y; z[;L; for x = z; (32)where A and B are 
onstants (see Figure 1). The 
ontinuity of ~w at the boundary of [y; z℄yields a linear system of two equations for the unknowns A and B, the solution of whi
h isgiven by A = � L (z) � K (y)��'(z) (z) � '(y) (y)��1 ; (33)B = � L'(z) � K'(y)�� (z)'(z) �  (y)'(y)��1 : (34)Lemma 3 The fun
tion ~w de�ned by (32), where A and B are given by (33) and (34),respe
tively, provides a solution to Problem 1 if and only if 0(y)'0(y) � L (y)�K (z)L'(y)�K'(z) : (35)We 
olle
t in the Appendix the proofs of those results that are not fully developed in thetext.
10



yKL zqFigure 2: Graph of the se
ond possible solution ~w to the HJB equation (7) that satis�esthe boundary 
onditions ~w(y) = K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄y; z[, for 0 < y < z (Problem 1).The se
ond possibility arises when there is a point q 2 ℄y; z[ su
h that ~w(x) = K forx 2 [y; q℄, and ~w satis�es the ODE (26) for x 2 ℄q; z[, whi
h is asso
iated with~w(x) = 8><>:K; for x 2 [y; q℄;A'(x) +B (x); for x 2 ℄q; z[;L; for x = z; (36)where A and B are 
onstants (see Figure 2). To determine A, B and the free boundarypoint q, we appeal to the requirement that ~w should satisfy (7) in the 
lassi
al sense in ℄y; z[,whi
h implies that ~w should be C1 at q, and to the boundary 
ondition ~w(z) = L. It isstraightforward to see that the resulting system of equations is equivalent to the expressionsA = � L (z) � K (q)��'(z) (z) � '(q) (q)��1 ; (37)B = � L'(z) � K'(q)�� (z)'(z) �  (q)'(q)��1 ; (38)and the algebrai
 equation F (q) = 0; (39)where the fun
tion F is de�ned byF (x) = � [L (x)�K (z)℄ + [L'(x)�K'(z)℄  0(x)'0(x) ; for x 2 [y; z[: (40)Lemma 4 Given any y > 0, equation (39) has a solution q 2 ℄y; z[ if and only if 0(y)'0(y) > L (y)�K (z)L'(y)�K'(z) : (41)If this 
ondition is satis�ed, then the solution q to (39) is unique and the fun
tion ~w de�nedby (36), where A and B are given by (37) and (38), respe
tively, solves Problem 1.11



KL
z

Figure 3: Graph of the �rst possible solution ~w to the HJB equation (7) that satis�es theboundary 
onditions ~w(0) � K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄0; z[, for z > 0 (Problem 2). Here, we illustrate the
ase when K < L < 0.
KL zqFigure 4: Graph of the se
ond possible solution ~w to the HJB equation (7) that satis�esthe boundary 
onditions ~w(0) � K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄0; z[, for z > 0 (Problem 2).Now, let us 
onsider Problem 2, whi
h is again asso
iated with two qualitatively di�erentsolutions. Sin
e limx#0 '(x) = 1, whi
h follows from the de�nition (29) of ' and theassumption that X is non-explosive,~w(x) = L (z) (x); for x 2 [0; z℄; (42)is the appropriate 
hoi
e for ~w that 
orresponds to Lemma 3 be
ause it is the only boundedsolution to the ODE (26) that satis�es the boundary 
ondition ~w(z) = L. With regard tothe fa
t that  is stri
tly in
reasing and positive, it is straightforward to see that this 
hoi
eindeed provides the solution to Problem 2 if L (0) � K (z), where  (0) := limx#0  (x) (seealso Figure 3). When the problem's data are su
h that L (0) < K (z), whi
h 
an be trueonly if K > 0, we are fa
ed with the possibility for the solution to Problem 2 to be as inLemma 4 (see also Figure 4).Lemma 5 Equation (39) has a unique solution q 2 ℄0; z[ if and only if L (0) < K (z).Moreover, the following two statements are true:12



(a) If L (0) � K (z), then (42) provides a solution to Problem 2.(b) If L (0) < K (z), then the fun
tion ~w de�ned by (36){(38), where q is the uniquesolution to (39), with y = 0, solves Problem 2.We 
an now 
onstru
t a solution to the HJB equation (7) in the sense of De�nition 2 thatidenti�es with the value fun
tion of our dis
retionary stopping problem using the followingalgorithm.Step 1 Set l = 0 and de�ne the N -dimensional ve
torsi(l) = (1; 2; : : : ; N � 1; N) and �(l) = (p1; p2; : : : ; pN�1; pN) :Step 2 De�ne the fun
tion w(l) : ℄0;1[! R byw(l)(x) = w(l)0 (x)1i0;�(l)1 h(x) + dim i(l)�1Xj=1 w(l)j (x)1h�(l)j ;�(l)j+1h(x) +KN1[pN ;1[;where w(l)0 is the solution to Problem 2 with z = �(l)1 , K = K0 and L = Ki(l)1 , givenby Lemma 5, while, for j = 1; : : : ; dim i(l) � 1, w(l)j is the solution to Problem 1 withy = �(l)j , z = �(l)j+1, K = Ki(l)j and L = Ki(l)j+1 , given by Lemmas 3 and 4.Step 3 Let m be index of the �rst element of the ve
tor i(l) su
h thatlimx"�(l)m ddxw(l)(x) < limx#�(l)m ddxw(l)(x) , �w(l)�00s ���(l)m 	� > 0:If no su
h index exists, then set w = w(l) and STOP. Otherwise, let i(l+1) and �(l+1) bethe ve
tors obtained by deleting the m-th entry of the ve
tors i(l) and �(l), respe
tively,set l = l + 1, and go ba
k to Step 2.Plainly, this algorithm terminates after at most N�1 steps and ea
h of the fun
tions w(l)that the algorithm produ
es is a di�eren
e of 
onvex fun
tions. Also, any fun
tions w(l) andw(l+1) produ
ed by two 
onse
utive iterations of the algorithm satisfy w(l) � w(l+1), thanksto Lemma 2 (see also Figure 4). Also, we 
an easily 
he
k that the resulting fun
tion wsatis�es the assumptions of Theorem 1, and, therefore, it identi�es with our problem's valuefun
tion. We 
on
lude with the main result of the paper.Theorem 6 The value fun
tion of the dis
retionary stopping problem formulated in Se
-tion 2 identi�es with the fun
tion w resulting from the algorithm above, and an optimalstopping strategy is given by (13){(14) in Theorem 1.13



w(l+1)
�(l)j � �(l+1)j �(l)j+2 � �(l+1)j+1�(l)j+1Ki(l)j � Ki(l+1)jKi(l)j+1

Ki(l)j+2 � Ki(l+1)j+1
w(l)

Figure 5: Illustration of two su

essive iterations of the algorithm that provides the solutionto the HJB equation (7).AppendixProof of Lemma 3 By 
onstru
tion, we will show that ~w satis�es the HJB equation (7)for x 2 ℄y; z[ if we prove that ~w(x) � K; for all x 2 ℄y; z[: (43)To this end, we �rst note that the fa
ts that y < z and K < L, (30) and the de�nition of Bin (34) imply that B > 0. In view of this observation and (30), we 
an see that~w0(x) � A'0(x) +B 0(x) � 0; for all x 2 ℄y; z[; (44)if and only if � 0(x)'0(x) � AB; for all x 2 ℄y; z[: (45)Now, using the fa
t that ',  satisfy the ODE (26) and the expression (31) for their Wron-skian, we 
an see that ddx �� 0(x)'0(x)� = � 00(x)'0(x)�  0(x)'00(x)['0(x)℄2= 2r(x)W(x)[�(x)'0(x)℄2> 0; for all x 2 ℄y; z[: (46)14



This inequality shows that (44){(45) are both true if and only if� 0(y)'0(y) � AB : (47)Moreover, if (47) is not true, then ~w0(x) < 0 for all x suÆ
iently 
lose to y, whi
h, 
ombinedwith the fa
t that ~w(y) = K, implies that (43) fails to be true. We 
on
lude that (43) is trueif and only if (47) holds, whi
h, in view of the de�nitions of A, B in (33), (34), respe
tively,is equivalent to (35), and the proof is 
omplete. �Proof of Lemma 4 In view of (30) and the fa
t that K < L, we 
an see thatF (z) = � (z) [L�K℄ + '(z) [L�K℄  0(z)'0(z) < 0:Also, with referen
e to (46), we 
al
ulateF 0(x) = [L'(x)�K'(z)℄ ddx � 0(x)'0(x)� < 0; for x 2 ℄y; z[:It follows that the equation F (q) = 0 has a unique solution q 2 ℄y; z[ if and only if F (y) > 0,whi
h is equivalent to (41).With regard to its 
onstru
tion, we 
an see that the fun
tion ~w satis�es the HJB equation(7) for x 2 ℄y; z[ if and only if~w(x) � K; for all x 2 [q; z[: (48)Now, following the same reasoning as in the proof of Lemma 3 above, we obtain~w0(x) � 0; for all x 2 ℄q; z[ , � 0(q)'0(q) � AB :However, 
ombining this observation with the fa
t that ~w is C1 at q, whi
h implies that~w(q) = K and ~w0(q) � A'0(q) +B 0(q) = 0;we 
an see that (48) is true , and the proof is 
omplete. �Proof of Lemma 5 With referen
e to the proof of Lemma 4, we 
an see that equation (39)has a unique solution q 2 ℄0; z[ if and only iflimx#0 F (x) � limx#0 �K (z) + LW(x)'0(x) �K'(z) 0(x)'0(x)� > 0; (49)15



where W is the Wronskian of ' and  de�ned by (31). To establish 
onditions under whi
hthis inequality is true, we 
al
ulateddx �W(x)'0(x)� = �2r(x)W(x)'(x)[�(x)'0(x)℄2 < 0;whi
h, 
ombined with the inequalityW(x)='0(x) < 0, whi
h is true for all x > 0, implies thatlimx#0W(x)='0(x) exists in ℄ �1; 0℄. However, this observation, the fa
t that limx#0  (x)exists in [0;1[ be
ause  is stri
tly positive and in
reasing, and the expression'(x) 0(x)'0(x) = W(x)'0(x) +  (x); for x > 0; (50)whi
h follows immediately from the de�nition (31) of W, imply thatlimx#0 '(x) 0(x)'0(x) 2 ℄�1; 0℄:Now, we use a 
ontradi
tion argument to show that this limit is a
tually equal to 0. To thisend, we suppose that limx#0 '(x) 0(x)'0(x) = �2"; for some " > 0: (51)This assumption implies that there exists x1 > 0 su
h that�'0(s)'(s) � 1" 0(s); for all s 2 ℄0; x1℄:In view of this inequality, we 
an see thatln'(x) = ln'(y) + Z yx ��'0(s)'(s) � ds� ln'(y) + 1" [ (y)�  (x)℄ ; for all 0 < x < y � x1;whi
h implies'(x) � '(y) exp�1" [ (y)�  (x)℄� ; for all 0 < x < y � x1: (52)For �xed y, the right hand side of this inequality remains bounded as x # 0 be
ause  ispositive and in
reasing, whi
h implies that (52) 
annot be true be
ause limx#0 '(x) =1. Itfollows that (51) is false, and, therefore,limx#0 '(x) 0(x)'0(x) = 0 ) limx#0  0(x)'0(x) = 0:However, these limits and (50) imply that (49) is equivalent to the inequality K (z) �L (0) > 0, whi
h establishes the 
laim regarding the solvability of (39).Now, part (a) of the lemma is obvious, while part (b) follows by a straightforward adap-tation of the arguments used to establish the 
orresponding 
laim in Lemma 4. �16
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