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Here,W is a standard one-dimensional Brownian motion, and b, � are deterministi funtionssuh that (1) has a unique weak solution that is non-explosive and assumes values in theinterval ℄0;1[. The objetive of the disretionary stopping problem is to maximise theperformane riterion E x he� R �0 r(Xs) dsf(X� )iover all stopping times � , where r > 0 is a given deterministi funtion. The payo� funtion ftakes �nite values and is inreasing and pieewise onstant, so its graph looks like a stairasewith a �nite number of steps.The simplest version of this problem, whih arises when b � 0 and � � 1, i.e., whenX is a standard Brownian motion, and when f an take only two values, was solved bySalminen [S85℄ using Martin boundary theory. The more general version of Salminen'smodel that arises when X is a Brownian motion with drift was reently solved by Dayanikand Karatzas [DK03, Setion 6.7℄ using a new methodology for addressing general one-dimensional disretionary stopping problems by means of a new haraterisation of exessivefuntions that they have developed.The investigations undertaken here have been motivated by two lasses of appliations.The �rst of these is onerned with the priing of digital options of Amerian type. In thisontext, the stohasti di�erential equation (1) models the underlying asset prie dynamis,and r an be interpreted as the interest rate (i.e., the short rate). The seond appliationarises in senario-based managerial deision making. In this ontext, the di�usion X is usedto model the evolution of an unertain eonomi environment, while the funtion f modelsthe various disrete payo�s that an be obtained when ation is triggered.We have also been motivated by some general stohasti ontrol theoreti issues; inpartiular, it is of interest to observe that the problem we study provides an example inwhih the so-alled \priniple of smooth �t", whih suggests that the value funtion of anoptimal stopping problem should be C1, does not hold. Indeed, it turns out that the valuefuntion is not C1 at all points that belong to the boundary of the stopping region as wellas to the set of points at whih f is disontinuous. This phenomenon has been observed bySalminen [S85℄, and by Dayanik and Karatzas [DK03℄. One of the purposes of this paper isto o�er a new way of addressing this issue by means of tehniques based on the use of loaltimes.Inidentally, we should mention that we have opted to onsider the ase in whih f takes�nite rather than in�nite values only to simplify the presentation of our results. Simpliity ofexposition has also been behind our assumption that f is inreasing. Indeed, our onstrutionof the solution to the problem follows a \stepwise" approah that, at least in priniple, anbe adapted to aount for arbitrary pieewise onstant payo� funtions.
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2 The disretionary stopping problemWe onsider a stohasti system, the state proess X of whih satis�es (1). We imposeonditions (ND)0 and (LI)0 in Karatzas and Shreve [KS88, Setion 5.5.C℄; these onditionsare suÆient for (1) to have a weak solution that is unique in the sense of probability law.In partiular, we impose the following assumption.Assumption 1 The deterministi funtions b; � : ℄0;1[! R satisfy the following ondi-tions: �2(x) > 0; for all x > 0; (2)and for all x > 0; there exists " > 0 suh that Z x+"x�" 1 + jb(s)j�2(s) ds <1: (3)We also assume that the probability that the di�usion X hits either of the boundaries 0 or1 of its state spae in �nite time is zero.Assumption 2 The di�usion X is non-explosive.Feller's test for explosions provides a neessary and suÆient ondition for X to be non-explosive (see Karatzas and Shreve [KS88, Theorem 5.5.29℄).We adopt a weak formulation of the optimal stopping problem that we study:De�nition 1 Given an initial ondition x > 0, a stopping strategy is any olletion Sx =(
;F ;Ft;Px;W;X; �), where (
;F ;Ft;Px;W;X) is a weak solution to (1) and � is an (Ft)-stopping time. We denote by Sx the family of all stopping strategies assoiated with a giveninitial ondition x > 0.With eah stopping strategy Sx 2 Sx, we assoiate the performane riterionJ(Sx) = E x �e���f(X� )� ; (4)where �t = Z t0 r(Xs) ds: (5)The payo� funtion f appearing here is assumed in the present investigation to have theform of a �nite stairase, given byf(x) = K01℄0;p1[(x) + N�1Xj=1 Kj1[pj ;pj+1[(x) +KN1[pN ;1[;3



where 0 < p1 < � � � < pN and K0 < K1 < � � � < KN are given onstants. The objetiveof the disretionary stopping problem is to maximise J over Sx. Aordingly, we de�ne thevalue funtion v(x) = supSx2Sx J(Sx): (6)We shall also need the following additional assumptions.Assumption 3 �2 is loally bounded.Assumption 4 There exists a onstant r0 > 0 suh that r(x) > r0, for all x > 0.At this point, we should note that Assumption 4 and the fat that f is bounded implythat (4) is well-de�ned when the event f� = 1g has positive probability. Indeed, in thisase, we assume that e���f(X� )�����=1 := limt!1 e��tf(Xt) = 0:3 The Hamilton-Jaobi-Bellman (HJB) equationOn the basis of standard theory of optimal stopping, we expet that the value funtion vshould satisfy the HJB equationmax�Lv(x); f(x)� v(x)	 = 0; for x > 0; (7)where the seond order ellipti di�erential operator L is de�ned byLv(x) = 12�2(x)v00(x) + b(x)v0(x)� r(x)v(x):It turns out that the value funtion v of our disretionary stopping problem, whih is de�nedby (6), has disontinuities in its �rst derivative. Therefore, it does not suÆe in the presentsituation merely to onsider lassial solutions to the HJB equation (7). For this reason, weonsider andidates for v that are di�erenes of onvex funtions; for a survey of the resultsneeded here, see Revuz and Yor [RY94, Appendix 3℄. In partiular, we onsider solutions to(7) in the following sense.De�nition 2 A funtion w : ℄0;1[! R satis�es the HJB equation (7) if it an be expressedas the di�erene of two onvex funtions and (7) is true, Lebesgue-a.e., with L̂ in plae ofL, where the operator L̂ is de�ned byL̂w(x) = 12�2(x)w00a(x) + b(x)w0�(x)� r(x)w(x): (8)4



Here, w0� is the left hand derivative of w. Also,w00(dx) = w00a(x) dx+ w00s (dx) (9)is the Lebesgue deomposition of the seond distributional derivative w00(dx) of w into themeasure w00a(x) dx that is absolutely ontinuous with respet to the Lebesgue measure andthe measure w00s (dx) whih is mutually singular with the Lebesgue measure.Following Zervos [Z03, Theorem 1℄, we an now establish onditions that are suÆientfor optimality in our problem.Theorem 1 In the disretionary stopping problem formulated in Setion 2, suppose thatAssumptions 1{4 hold, and let w : ℄0;1[! R be a solution to the HJB equation (7) in thesense of De�nition 2 suh thatw is bounded, w0� is loally bounded; (10)�w00s (dx) is a positive measure (11)and suppw00s (dx) � C := fx > 0 j w(x) = f(x)g : (12)Then, v = w and, given any initial ondition x > 0, a stopping strategyS�x = (
�;F�;F�t ;P�x;W �; X�; � �); (13)where (
�;F�;F�t ;P�x;W �; X�) is a weak solution to (1) and� � = inf ft � 0 j X�t 2 Cg (14)is optimal.Proof. Fix any initial ondition x > 0 and any weak solution (
;F ;Ft;Px;W;X) to (1).Using Itô-Tanaka formula (see Revuz and Yor [RY94, Theorem VI.1.5℄), we obtainw(Xt) = w(x) + Z t0 b(Xs)w0�(Xs) ds+ Z t0 �(Xs)w0�(Xs) dWs + 12 Z 10 Lat w00(da); (15)where La is the loal time of the proess X at level a. With referene to the Lebesguedeomposition (9) and the oupation times formula (see Revuz and Yor [RY94, CorollaryVI.1.6℄), Z 10 Latw00a(a) da = Z t0 �2(Xs)w00a(Xs) ds;5



so (15) impliesw(Xt) = w(x) + Z t0 �12�2(Xs)w00a(Xs) + b(Xs)w0�(Xs)� ds+ Z t0 �(Xs)w0�(Xs) dWs + Awt ;where Awt = 12 Z 10 Lat w00s (da): (16)For future referene, observe that (11) implies�Aw is a ontinuous, inreasing proess; (17)beause suh a statement is true for loal times. Now, using the integration by parts formulafor semimartingales, we obtaine��tw(Xt) = w(x) + Z t0 e��sL̂w(Xs) ds+Mt + Z t0 e��s dAws ; (18)where M is the stohasti integral de�ned byMt = Z t0 e��s�(Xs)w0�(Xs) dWs: (19)To proeed further, �x any admissible stopping strategy Sx 2 Sx, let (�m) be the sequeneof (Ft)-stopping times de�ned by�m = inf ft � 0 j Xt =2 [ 1m ;m℄g ; for m = 1; 2; : : : ;and note that limm!1 �m = 1, Px-a.s., beause X is non-explosive. With regard to theloal boundedness of �2 and w0� (see Assumption 3 and (10), respetively), and the uniformpositivity of the disounting fator r (see Assumption 4), we an see that, given any m � 1,the stopped proessM �m , whereM is the stohasti integral de�ned as in (19), has quadrativariation that satis�esEx [hM �mi1℄ = E x �Z 10 1fs��mg �e��s�(Xs)w0�(Xs)�2 ds�� 12r0 supx2[ 1m ;m℄ ��(x)w0�(x)�2<1;whih implies that M �m is a uniformly square integrable martingale. Therefore, M �m� iswell-de�ned and Doob's optional sampling theorem implies that E x [M �m� ℄ = 0. In light ofthis observation and (18) above, we an see thatEx �e���^�mf(X�^�m)� = w(x) + E x �e���^�m [f(X�^�m)� w(X�^�m)℄�+ E x �Z �^�m0 e��sL̂w(Xs) ds�+ Ex �Z �^�m0 e��s dAws � : (20)6



In view of (17) and the fat that w satis�es (7) in the sense of De�nition 2, it follows thatEx �e���^�mf(X�^�m)� � w(x):However, by passing to the limitm!1 in this inequality using the dominated onvergenetheorem, we an see that J(Sx) � w(x), whih proves that v(x) � w(x).Now, let S�x be the stopping strategy given by (13){(14). Sine the measure dL�t a issupported on the set ft � 0 j X�t = ag, the de�nition of � � impliesL�t a = 0; for all t 2 [0; � �℄ and a 2 C;whih, in view of (12) and (16), implies Awt � = 0, for all t � � �. However, ombining thisobservation and the de�nition of S�x with (20) and the fat that the set fx > 0 j w(x) = f(x)gis losed, whih follows from the upper semiontinuity of f , we an see thatE �x he�����^��mf(X���^��m)i = E �x he�����m �f(X���m)� w(X���m)�1f��m<��gi+ w(x):With regard to the boundedness of f and w, and the uniform positivity of the disount-ing fator r (see Assumption 4), we an pass to the limit m ! 1 using the dominatedonvergene theorem, to onlude that J(S�x) = w(x), whih, ombined with the inequalityv(x) � w(x) that we have established above, proves that v(x) = w(x) and that S�x is anoptimal strategy. �We shall also need the following result for the onstrution of an appropriate solution tothe HJB equation (7) in the next setion.Lemma 2 Suppose that Assumptions 1{4 hold, �x two onstants y; z 2 [0;1℄ suh thaty < z, and suppose that the funtions g; h : [y; z℄! R are di�erenes of two onvex funtionsand satisfy L̂g(x) = L̂h(x) = 0; for all x 2 ℄y; z[; (21)where L̂ is de�ned by (8), g(y) � h(y) and g(z) � h(z); (22)g0� and h0� are both loally bounded; (23)g00s (dx) � 0 and h00s (dx) is a positive measure: (24)Then h(x) � g(x), for all x 2 [y; z℄.Proof. Fix any initial ondition x 2 ℄y; z[ and any weak solution (
;F ;Ft;Px;W;X) to (1),and de�ne T = inf ft � 0 j Xt =2 ℄y; z[g :7



Also, to simplify the proof, assume that �2, g0� and h0� are all bounded rather than just loallybounded: indeed, when y = 0 or z = 1, a straightforward adaptation of the \loalising"arguments deployed in the proof of Theorem 1 an be used to address the more general ase.This assumption implies that the stohasti integralt 7! Z t^T0 e��s�(Xs) �g0�(Xs)� h0�(Xs)� dWsis a uniformly integrable martingale. However, this observation, (21){(22) and Itô's formula(18) imply 0 � g(x)� h(x) + E x �Z T0 e��s dAg�hs � ; (25)where Ag�ht = 12 Z zy Lat [g00s � h00s ℄ (da)= �12 Z zy Lat h00s (da); for t � T:Sine h00s (dx) is a positive measure, the proess �Ag�h is inreasing, soEx �Z T0 e��s dAg�hs � � 0;whih, ombined with (25) above, implies that h(x) � g(x), and the proof is omplete. �4 The solution to the disretionary stopping problemWe will solve the optimal stopping problem that we onsider by onstruting a solution tothe HJB equation (7) that satis�es the requirements of Theorem 1. To this end, we �rstobserve that every solution to the homogeneous ordinary di�erential equation (ODE)12�2(x)w00(x) + b(x)w0(x)� r(x)w(x) = 0; (26)whih is assoiated with (7) is given byw(x) = A'(x) +B (x); (27)for some onstants A;B 2 R. The funtions  , ' are de�ned by (x) = (E x �e��Ty � ; for x < y;�E y �e��Tx ���1 ; for x � y; (28)'(x) = (�E y �e��Tx ���1 ; for x < y;E x �e��Ty � ; for x � y; (29)8



respetively, for a given hoie of y > 0. Here � is de�ned by (5), while Tx (resp., Ty) is the�rst hitting time of fxg (resp., fyg). For future referene, we note that' and  are both stritly positive and C1, their seond derivative exists in thelassial sense, ' is stritly dereasing and  is stritly inreasing. (30)Also, the Wronskian W of ' and  , whih identi�es with the �rst derivative of the salefuntion of the di�usion X, is given byW(x) := '(x) 0(x)� '0(x) (x)=W(y) exp��2 Z xy b(s)�2(s) ds� ; for x > 0; (31)for any given hoie of y > 0. These results are known sine several deades and an befound in various forms in several referenes, inluding Feller [F52℄, Breiman [B68℄, Itô andMKean [IM74℄, Karlin and Taylor [KT81℄, and Rogers and Williams [RW00℄. Here, wefollow the exposition in Johnson and Zervos [JZ05, Appendix℄, where analyti expressionsfor the funtions ' and  are also derived when X is a geometri Brownian motion, amean-reverting square-root proess suh as the one used in the Cox-Ingersoll-Ross interestrate model, an exponential Ornstein-Uhlenbek proess suh as the one used in the Blak-Karasinski interest rate model, or a geometri Ornstein-Uhlenbek proess.Bak to our optimal stopping problem, we onjeture that the value funtion satis�es theHJB equation (7) in the lassial sense outside the set of the points at whih the disontinu-ities of f our, namely, inside the set ℄0;1[ nfp1; : : : ; pNg. This onjeture and the intuitiveidea that some of the points p1; : : : ; pN (e.g., pN ) should belong to the stopping region C ofthe disretionary stopping problem that we solve motivate a \stepwise" approah, the �rstobjetive of whih is to solve the following two problems.Problem 1 Given onstants 0 < y < z andK < L, �nd a ontinuous funtion ~w : [y; z℄! Rthat is a lassial solution to (7) with f(x) = K, for x 2 ℄y; z[, and satis�es the boundaryonditions ~w(y) = K and ~w(z) = L:Problem 2 Given onstants z > 0 and K < L, �nd a ontinuous, bounded funtion ~w :[0; z℄ ! R that is a lassial solution to (7) with f(x) = K, for x 2 ℄0; z[, and satis�es theboundary onditions ~w(0) � K and ~w(z) = L:9



zyKLFigure 1: Graph of the �rst possible solution ~w to the HJB equation (7) that satis�es theboundary onditions ~w(y) = K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄y; z[, for 0 < y < z (Problem 1).The solution to Problem 1, is assoiated with two qualitatively di�erent possibilities.The �rst one arises when ~w satis�es the ODE (26) for all x 2 ℄y; z[, in whih ase, ~w is givenby ~w(x) = 8><>:K; for x = y;A'(x) +B (x); for x 2 ℄y; z[;L; for x = z; (32)where A and B are onstants (see Figure 1). The ontinuity of ~w at the boundary of [y; z℄yields a linear system of two equations for the unknowns A and B, the solution of whih isgiven by A = � L (z) � K (y)��'(z) (z) � '(y) (y)��1 ; (33)B = � L'(z) � K'(y)�� (z)'(z) �  (y)'(y)��1 : (34)Lemma 3 The funtion ~w de�ned by (32), where A and B are given by (33) and (34),respetively, provides a solution to Problem 1 if and only if 0(y)'0(y) � L (y)�K (z)L'(y)�K'(z) : (35)We ollet in the Appendix the proofs of those results that are not fully developed in thetext.
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yKL zqFigure 2: Graph of the seond possible solution ~w to the HJB equation (7) that satis�esthe boundary onditions ~w(y) = K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄y; z[, for 0 < y < z (Problem 1).The seond possibility arises when there is a point q 2 ℄y; z[ suh that ~w(x) = K forx 2 [y; q℄, and ~w satis�es the ODE (26) for x 2 ℄q; z[, whih is assoiated with~w(x) = 8><>:K; for x 2 [y; q℄;A'(x) +B (x); for x 2 ℄q; z[;L; for x = z; (36)where A and B are onstants (see Figure 2). To determine A, B and the free boundarypoint q, we appeal to the requirement that ~w should satisfy (7) in the lassial sense in ℄y; z[,whih implies that ~w should be C1 at q, and to the boundary ondition ~w(z) = L. It isstraightforward to see that the resulting system of equations is equivalent to the expressionsA = � L (z) � K (q)��'(z) (z) � '(q) (q)��1 ; (37)B = � L'(z) � K'(q)�� (z)'(z) �  (q)'(q)��1 ; (38)and the algebrai equation F (q) = 0; (39)where the funtion F is de�ned byF (x) = � [L (x)�K (z)℄ + [L'(x)�K'(z)℄  0(x)'0(x) ; for x 2 [y; z[: (40)Lemma 4 Given any y > 0, equation (39) has a solution q 2 ℄y; z[ if and only if 0(y)'0(y) > L (y)�K (z)L'(y)�K'(z) : (41)If this ondition is satis�ed, then the solution q to (39) is unique and the funtion ~w de�nedby (36), where A and B are given by (37) and (38), respetively, solves Problem 1.11



KL
z

Figure 3: Graph of the �rst possible solution ~w to the HJB equation (7) that satis�es theboundary onditions ~w(0) � K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄0; z[, for z > 0 (Problem 2). Here, we illustrate thease when K < L < 0.
KL zqFigure 4: Graph of the seond possible solution ~w to the HJB equation (7) that satis�esthe boundary onditions ~w(0) � K and ~w(z) = L > K when f � K and the independentvariable x takes values in the interval ℄0; z[, for z > 0 (Problem 2).Now, let us onsider Problem 2, whih is again assoiated with two qualitatively di�erentsolutions. Sine limx#0 '(x) = 1, whih follows from the de�nition (29) of ' and theassumption that X is non-explosive,~w(x) = L (z) (x); for x 2 [0; z℄; (42)is the appropriate hoie for ~w that orresponds to Lemma 3 beause it is the only boundedsolution to the ODE (26) that satis�es the boundary ondition ~w(z) = L. With regard tothe fat that  is stritly inreasing and positive, it is straightforward to see that this hoieindeed provides the solution to Problem 2 if L (0) � K (z), where  (0) := limx#0  (x) (seealso Figure 3). When the problem's data are suh that L (0) < K (z), whih an be trueonly if K > 0, we are faed with the possibility for the solution to Problem 2 to be as inLemma 4 (see also Figure 4).Lemma 5 Equation (39) has a unique solution q 2 ℄0; z[ if and only if L (0) < K (z).Moreover, the following two statements are true:12



(a) If L (0) � K (z), then (42) provides a solution to Problem 2.(b) If L (0) < K (z), then the funtion ~w de�ned by (36){(38), where q is the uniquesolution to (39), with y = 0, solves Problem 2.We an now onstrut a solution to the HJB equation (7) in the sense of De�nition 2 thatidenti�es with the value funtion of our disretionary stopping problem using the followingalgorithm.Step 1 Set l = 0 and de�ne the N -dimensional vetorsi(l) = (1; 2; : : : ; N � 1; N) and �(l) = (p1; p2; : : : ; pN�1; pN) :Step 2 De�ne the funtion w(l) : ℄0;1[! R byw(l)(x) = w(l)0 (x)1i0;�(l)1 h(x) + dim i(l)�1Xj=1 w(l)j (x)1h�(l)j ;�(l)j+1h(x) +KN1[pN ;1[;where w(l)0 is the solution to Problem 2 with z = �(l)1 , K = K0 and L = Ki(l)1 , givenby Lemma 5, while, for j = 1; : : : ; dim i(l) � 1, w(l)j is the solution to Problem 1 withy = �(l)j , z = �(l)j+1, K = Ki(l)j and L = Ki(l)j+1 , given by Lemmas 3 and 4.Step 3 Let m be index of the �rst element of the vetor i(l) suh thatlimx"�(l)m ddxw(l)(x) < limx#�(l)m ddxw(l)(x) , �w(l)�00s ���(l)m 	� > 0:If no suh index exists, then set w = w(l) and STOP. Otherwise, let i(l+1) and �(l+1) bethe vetors obtained by deleting the m-th entry of the vetors i(l) and �(l), respetively,set l = l + 1, and go bak to Step 2.Plainly, this algorithm terminates after at most N�1 steps and eah of the funtions w(l)that the algorithm produes is a di�erene of onvex funtions. Also, any funtions w(l) andw(l+1) produed by two onseutive iterations of the algorithm satisfy w(l) � w(l+1), thanksto Lemma 2 (see also Figure 4). Also, we an easily hek that the resulting funtion wsatis�es the assumptions of Theorem 1, and, therefore, it identi�es with our problem's valuefuntion. We onlude with the main result of the paper.Theorem 6 The value funtion of the disretionary stopping problem formulated in Se-tion 2 identi�es with the funtion w resulting from the algorithm above, and an optimalstopping strategy is given by (13){(14) in Theorem 1.13



w(l+1)
�(l)j � �(l+1)j �(l)j+2 � �(l+1)j+1�(l)j+1Ki(l)j � Ki(l+1)jKi(l)j+1

Ki(l)j+2 � Ki(l+1)j+1
w(l)

Figure 5: Illustration of two suessive iterations of the algorithm that provides the solutionto the HJB equation (7).AppendixProof of Lemma 3 By onstrution, we will show that ~w satis�es the HJB equation (7)for x 2 ℄y; z[ if we prove that ~w(x) � K; for all x 2 ℄y; z[: (43)To this end, we �rst note that the fats that y < z and K < L, (30) and the de�nition of Bin (34) imply that B > 0. In view of this observation and (30), we an see that~w0(x) � A'0(x) +B 0(x) � 0; for all x 2 ℄y; z[; (44)if and only if � 0(x)'0(x) � AB; for all x 2 ℄y; z[: (45)Now, using the fat that ',  satisfy the ODE (26) and the expression (31) for their Wron-skian, we an see that ddx �� 0(x)'0(x)� = � 00(x)'0(x)�  0(x)'00(x)['0(x)℄2= 2r(x)W(x)[�(x)'0(x)℄2> 0; for all x 2 ℄y; z[: (46)14



This inequality shows that (44){(45) are both true if and only if� 0(y)'0(y) � AB : (47)Moreover, if (47) is not true, then ~w0(x) < 0 for all x suÆiently lose to y, whih, ombinedwith the fat that ~w(y) = K, implies that (43) fails to be true. We onlude that (43) is trueif and only if (47) holds, whih, in view of the de�nitions of A, B in (33), (34), respetively,is equivalent to (35), and the proof is omplete. �Proof of Lemma 4 In view of (30) and the fat that K < L, we an see thatF (z) = � (z) [L�K℄ + '(z) [L�K℄  0(z)'0(z) < 0:Also, with referene to (46), we alulateF 0(x) = [L'(x)�K'(z)℄ ddx � 0(x)'0(x)� < 0; for x 2 ℄y; z[:It follows that the equation F (q) = 0 has a unique solution q 2 ℄y; z[ if and only if F (y) > 0,whih is equivalent to (41).With regard to its onstrution, we an see that the funtion ~w satis�es the HJB equation(7) for x 2 ℄y; z[ if and only if~w(x) � K; for all x 2 [q; z[: (48)Now, following the same reasoning as in the proof of Lemma 3 above, we obtain~w0(x) � 0; for all x 2 ℄q; z[ , � 0(q)'0(q) � AB :However, ombining this observation with the fat that ~w is C1 at q, whih implies that~w(q) = K and ~w0(q) � A'0(q) +B 0(q) = 0;we an see that (48) is true , and the proof is omplete. �Proof of Lemma 5 With referene to the proof of Lemma 4, we an see that equation (39)has a unique solution q 2 ℄0; z[ if and only iflimx#0 F (x) � limx#0 �K (z) + LW(x)'0(x) �K'(z) 0(x)'0(x)� > 0; (49)15



where W is the Wronskian of ' and  de�ned by (31). To establish onditions under whihthis inequality is true, we alulateddx �W(x)'0(x)� = �2r(x)W(x)'(x)[�(x)'0(x)℄2 < 0;whih, ombined with the inequalityW(x)='0(x) < 0, whih is true for all x > 0, implies thatlimx#0W(x)='0(x) exists in ℄ �1; 0℄. However, this observation, the fat that limx#0  (x)exists in [0;1[ beause  is stritly positive and inreasing, and the expression'(x) 0(x)'0(x) = W(x)'0(x) +  (x); for x > 0; (50)whih follows immediately from the de�nition (31) of W, imply thatlimx#0 '(x) 0(x)'0(x) 2 ℄�1; 0℄:Now, we use a ontradition argument to show that this limit is atually equal to 0. To thisend, we suppose that limx#0 '(x) 0(x)'0(x) = �2"; for some " > 0: (51)This assumption implies that there exists x1 > 0 suh that�'0(s)'(s) � 1" 0(s); for all s 2 ℄0; x1℄:In view of this inequality, we an see thatln'(x) = ln'(y) + Z yx ��'0(s)'(s) � ds� ln'(y) + 1" [ (y)�  (x)℄ ; for all 0 < x < y � x1;whih implies'(x) � '(y) exp�1" [ (y)�  (x)℄� ; for all 0 < x < y � x1: (52)For �xed y, the right hand side of this inequality remains bounded as x # 0 beause  ispositive and inreasing, whih implies that (52) annot be true beause limx#0 '(x) =1. Itfollows that (51) is false, and, therefore,limx#0 '(x) 0(x)'0(x) = 0 ) limx#0  0(x)'0(x) = 0:However, these limits and (50) imply that (49) is equivalent to the inequality K (z) �L (0) > 0, whih establishes the laim regarding the solvability of (39).Now, part (a) of the lemma is obvious, while part (b) follows by a straightforward adap-tation of the arguments used to establish the orresponding laim in Lemma 4. �16
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