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Abstract

We consider the discretionary stopping problem that aims at maximising the per-

formance criterion Ex

[

e−
R τ

0 r(Xs)dsg(Xτ )1{τ<∞}

]

over all stopping times τ , where X

is a general one-dimensional positive Itô diffusion, r is a strictly positive function and
g is a given payoff function. This optimal stopping problem has several applications in
mathematical finance and economics. These include the pricing of perpetual American
options as well as the optimal timing to invest in a project or capitalising an asset,
which are fundamental issues in the theory of real options. We develop a set of suf-
ficient conditions on the problem’s data under which this optimal stopping problem
admits a solution that conforms with standard financial and economic intuition. Our
analysis leads to results of an explicit analytic nature and is illustrated by a number
of special cases that are of interest in applications, and aspects of which have been
considered in the literature. In the course of our analysis we also establish a range
of results that can provide useful tools for developing the solution to other stochastic
control problems.
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1 Introduction

A fundamental problem in the theory of real options is concerned with determining the
optimal time to invest in a given project. The results on this problem, which was introduced
by McDonald and Siegel [MS86], as well as the majority of real options models in the current
literature, assume that the underlying asset’s value dynamics are modelled by a geometric
Brownian motion, the associated payoff function is affine and the discounting rate is constant.
The objective of this paper is to significantly relax all of these assumptions and to provide a
much more realistic modelling framework within which results of an explicit nature can be
obtained.

Apart from offering modellers additional flexibility, developing the existing theory so that
it can account for asset price dynamics driven by general Itô diffusions becomes essential
once one recognises that assets that exist in equilibrium market conditions tend to fluctuate
about some long-term mean level, rather than, on average, grow or fall exponentially, as
modelled by a geometric Brownian motion. This observation, which is supported by empir-
ical evidence (e.g., see Metcalf and Hassett [MH95] and Sarkar [Sar03]), suggests that real
asset dynamics should be modelled by mean-reverting diffusions rather than by a geometric
Brownian motion. The mean reversion property of real asset price dynamics is suggestive
also of the commonly accepted hypothesis that the short interest rate is mean-reverting,
which has been factored into the majority of fixed income models.

Introducing state dependent discounting enables a more realistic modelling framework for
investment decisions in the presence of default risk. In practice, investment decision-making
involves the choice of a discounting rate that accounts for the time-value of money and the
associated investment’s depreciation rate as well as for the likelihood of the investment’s
default. In view of this observation, discounting should reflect the dependence of default
likelihood of an investment project on the economic environment affecting the project, which
is stochastically related to the underlying asset’s value or demand.

Considering general payoff functions, rather than affine ones, plainly provides significant
additional modelling flexibility, which allows, for example, the incorporation of tax effects
on payoffs. Also, it enables utility based decision making, which, apart from the work of
Henderson and Hobson [HH02], and despite its fundamental importance, has hardly found
its way into real options theory. Indeed, the introduction of utility functions into real option
models is a major economic contribution of the paper.

With regard to the discussion above and with a view to a number of applications such
as the ones discussed below, we consider a stochastic system, the state process X of which
satisfies the one-dimensional Itô diffusion

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x > 0,

where W is a standard, one-dimensional Brownian motion, and b, σ are given deterministic
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functions such that Xt > 0, for all t > 0, with probability 1. The objective is to solve the
discretionary stopping problem that aims to maximise

Ex

[

e−Λτg(Xτ )1{τ<∞}

]

, where Λt =

∫ t

0

r(Xs)ds,

over all stopping times τ , where r is strictly positive and g is a given payoff function.
The theory of discretionary stopping has numerous applications and has attracted the

interest of numerous researchers. Important, older accounts of this theory include Shiryaev
[Shi78], El-Karoui [EK79] and Krylov [Kry80] , while more recent contributions include
Salminen [Sal85], Davis and Karatzas [DK94], Øksendal and Reikvam [ØR98], Guo and
Shepp [GS01] and Dayanik and Karatzas [DK03]. The special structure of the problem
considered here allows us to elaborate on the existing theory in an explicit, analytic nature.

The discretionary stopping problem that we solve has a range of applications in finance
and economics. The most fundamental one aims to maximise

Ex

[

e−rτg(Xτ −K)1{τ<∞}

]

where g is a utility function, and addresses the question of when is it optimal to sell an asset,
the price of which is modelled by the state process X, and selling incurs a cost K, which
may be the purchase cost at time 0, while r is a discounting rate. In this context, if an agent
has been endowed with an asset, such as an equity or a quantity of gold, then K = 0 and
the question is when to optimally dispose of, i.e., capitalise, the asset.

A second application arises in the field of real options (e.g., see Dixit and Pindyck [DP94]
and Trigeorgis [Tri96]). As discussed above, a fundamental issue in real options is concerned
with determining the optimal time to invest in a project, within a random economic envi-
ronment, such as the development of an offshore oil production facility. In this context, Xt

models the expected, given the information available at time t, discounted cash-flow that
the project will yield if developed at time t, while K > 0 models the cost of developing the
project. Alternatively we can relate the mathematical problem that we solve with answering
the question when is it optimal to abandon an economic activity, such as the management
of an offshore oil production facility. In this case, the state process X can be used to model
the value of capitalising the underlying asset, while K is used to model costs associated with
capitalisation.

A further application arises in the context of pricing perpetual American call options, a
problem initially studied by Merton [Mer73]. One of the attractive features of perpetual op-
tions is that one can obtain explicit analytic expressions for their values. However, perpetual
options are important in the theory of finance because their prices provide upper bounds
for the corresponding finite maturity ones. In addition, our analysis provides the prices of
perpetual American “power” options, which have been studied in discrete time by Novikov
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and Shiryaev [NS04], for a range of underlying asset price dynamics. We should also note
that, although our analysis considers payoff functions generalising the ones associated with
a call option, it can easily be modified to account for the symmetric cases arising when, for
example, g is the payoff function of a put option.

We solve the optimal stopping problem under consideration under general assumptions
on the underlying state process X, the payoff function g and the discounting rate r. To
illustrate how our results can be used to develop specific models we analyse a number of
special cases. These cases involve a number of choices for the underlying sate process X
that have been considered in the literature. In particular we consider the cases that arise
when X is a geometric Brownian motion, a square-root mean-reverting process as in the
Cox-Ingersoll-Ross interest rate model, an exponential Ornstein-Uhlenbeck process as in the
Black-Karasinski interest rate model, and a geometric Ornstein-Uhlenbeck process, which
has been proposed by Cortazar and Schwartz as a model for a commodity’s price and has
been used in population modelling.

The paper is organised as follows. Section 2 is concerned with a rigorous formulation
of the optimal stopping problem that we solve. In this section we also develop a set of
assumptions that are sufficient for our problem to admit a solution, the structure of which
conforms with the applications in finance and economics discussed above. Although all of
the special cases of interest that we are aware of are associated with SDEs that have unique,
strong solutions, we adopt a weak formulation. Adopting this more general framework, which
involves no additional technicalities, has been motivated by the extra degrees of freedom that
it offers relative to modelling, and has a view to a wider range of applications. In Section 3,
we solve the optimal stopping problem under consideration, while, in Section 4, we address a
number of special cases of interest. Part of the results presented in this section can be found
in Watson [Wat03]. Finally, the Appendix is concerned with a study of an ODE that plays
a fundamental role in our analysis. Most of the results presented there were established by
Feller [Fel52] and can be found in various forms in several references that include Breiman
[Bre68], Mandl [Man68], Itô and McKean [IM74], Karlin and Taylor [KT81], and Rogers and
Williams [RW94]. Our presentation, which is based on modern probabilistic techniques, has
largely been inspired by Rogers and Williams [RW94, Sections V.3, V.5, V.7 ] and includes
ramifications not found in the literature.
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2 Problem formulation, assumptions and preliminary

estimates

We consider a stochastic system, the state process X of which satisfies the one-dimensional
Itô diffusion

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0, (1)

where W is a one-dimensional, standard Brownian motion and b, σ : ]0,∞[→ R are given
deterministic functions satisfying conditions (ND)′ and (LI)′ in Karatzas and Shreve [KS91,
Section 5.5C].

Assumption 2.1 The functions b, σ : ]0,∞[→ R satisfy the following conditions:

σ2(x) > 0, for all x ∈ ]0,∞[,

for all x ∈ ]0,∞[, there exists ε > 0 such that

∫ x+ε

x−ε

1 + |b(s)|
σ2(s)

ds <∞.

This assumption guarantees the existence of a unique, in the sense of probability law,
solution to (1) up to an explosion time. In particular, given x0 > 0, the scale function px0

and the speed measure mx0(dx), given by

px0(x) =

∫ x

x0

exp

(

−2

∫ s

x0

b(u)

σ2(u)
du

)

ds, for x > 0, (2)

mx0(dx) =
2

σ2(x)p′x0
(x)

dx, (3)

are well-defined.
We also assume that the diffusion X is non-explosive. In particular, we impose the

following assumption (see Karatzas and Shreve [KS91, Theorem 5.5.29]).

Assumption 2.2 If we define

ux0(x) =

∫ x

x0

[

px0(x) − px0(y)
]

m(dy), (4)

then limx↓0 ux0(x) = limx→∞ ux0(x) = ∞.

We adopt a weak formulation of the optimal stopping problem that we solve.

Definition 2.1 Given an initial condition x > 0, a stopping strategy is any pair (Sx, τ) such
that Sx = (Ω,F,Ft,Px, X,W ) is a weak solution to (1) and τ is an (Ft)-stopping-time. We
denote by Sx the set of all such stopping strategies.
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The objective is to maximise the performance criterion

J(Sx, τ) = Ex

[

e−Λτg(Xτ )1{τ<∞}

]

,

where Λt =
∫ t

0
r(Xs) ds and g : ] 0,∞[→ R and r : ]0,∞[→ ]0,∞[ are given deterministic

functions, over all stopping strategies (Sx, τ) ∈ Sx. Accordingly we define the value function
v by

v(x) = sup
(Sx,τ)∈Sx

J(Sx, τ), for x > 0.

Now, with a view to deriving a set of additional assumptions that are suitable for this
problem not to have a trivial solution and to provide a realistic model for the applications
discussed in the introduction, we consider the case of a perpetual American call option
written on an underlying asset, the stochastic dynamics of which are modelled by a geometric
Brownian motion.

Lemma 2.1 Suppose that X is a geometric Brownian motion, so that b(x) = bx and σ(x) =
σx, for some constants b and σ, and r(x) ≡ r > 0, for some constant r. Suppose also that
the payoff function is given by g(x) = x − K, where K ≥ 0 is a constant. If b > r (resp.,
b < r), then the process (e−rtXt, t ≥ 0) is a submartingale (resp., supermartingale) and
v(x) = ∞ (resp., if K = 0, then v(x) = x).

Proof. Given any initial condition x > 0,

e−rtXt = xe(b−r)te−
1
2
σ2t+σWt , for t ≥ 0.

Combining this observation with the fact that the process (e−
1
2
σ2t+σWt , t ≥ 0) is a martin-

gale, we can see that all of the claims made are true. 2

In the context of this lemma, we can see that (Sx, 0) is an optimal strategy if K = 0 and
b < r. Given any K ≥ 0, if b − r > 1

2
σ2, then the stopping strategy (S∗

x, τ
∗), where S

∗
x is a

weak solution to (1) and

τ ∗ = inf{t ≥ 0| Wt = −a},
where a > 0 is any constant, provides an optimal strategy. Indeed, since τ ∗ < ∞, Px-a.s.,
and Ex [τ ∗] = ∞, this claim follows from the calculation

Ex[e
−rτ∗

(Xτ∗ −K)] ≥ xe−aσ
Ex

[

e(b−r− 1
2
σ2)τ∗

]

−K

> xe−aσ

[

1 +

(

b− r − 1

2
σ2

)

Ex[τ
∗]

]

−K

= ∞.
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When b > r and b − r < 1
2
σ2, we have not been able to find an optimal stopping strategy.

As a matter of fact, we have been tempted to conjecture that there is no optimal stopping
strategy in this case.

We note that, when b > r, which is associated with v ≡ ∞, and when b = r, which is a
case that we have not associated with a conclusion,

lim
t→∞

Ex

[

e−Λtg(Xt)
]

≡ lim
t→∞

Ex

[

e−rtXt

]

> 0,

for all initial conditions x > 0. This observation gives rise to the requirement that the
problem’s data should satisfy the so-called transversality condition

lim
t→∞

Ex

[

e−Λtg(Xt)
]

≡ lim
t→∞

Ex

[

e−rtXt

]

= 0.

Such a condition has a natural economic interpretation because it reflects the idea that one
should expect that the present value of any asset should be equal to zero at the end of time,
given that nobody can benefit by holding the asset after the end of time. This transversality
condition is incorporated in (5) in Assumption 2.3a below (see also Remark 2.1a).

To proceed further, we note the following obvious generalisation of Lemma 2.1.

Lemma 2.2 Given an initial condition x > 0 and a solution Sx to (1), if the process
(e−Λtg(Xt), t ≥ 0) is a supermartingale (resp., submartingale), then an optimal stopping
strategy is given by (Sx, 0) (resp., the performance of the stopping strategy (Sx, t) converges
to v(x) as t tends to ∞).

Now, assuming that the associated stochastic integral is a martingale, we can use Itô’s
formula to calculate

Ex

[

e−Λtg(Xt)
]

= g(x) + Ex

[
∫ t

0

e−Λs

(

1

2
σ2g′′ + bg′ − rg

)

(Xs) ds

]

.

In light of this calculation, we can see that condition (10) in Assumption 2.3b below is
sufficient to rule out trivial optimal strategies such as the ones appearing in Lemma 2.2, and
it is satisfied in all cases of practical interest that we consider.

Apart from the general Assumptions 2.1 and 2.2, we impose the following assumption.
Some of the conditions appearing here have been motivated by the analysis above, while
others are of a technical nature. We impose these technical ones based on hindsight relative
to our subsequent analysis.

Assumption 2.3 The function g : ]0,∞[→ R is C1, has absolutely continuous first deriva-
tive, and there exist constants x2 > x1 > ε0 > 0 and C > 0 such that the following conditions
are satisfied:
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(a) The Lisbon condition is satisfied, namely, there exists a function l : ]0,∞[→ [1,∞[
such that limx→∞ l(x) = ∞,

lim
t→∞

Ex

[

e−Λtl(Xt)
∣

∣g(Xt)
∣

∣

]

= 0, (5)

and

1

2
σ2(x)(lg)′′(x) + b(x)(lg)′(x) − r(x)(lg)(x) ≤ 0, for x > x2. (6)

Also,

g(x) ≥ −C, for all x > 0, (7)

g(x) > 0, for all x > x2, (8)

g(x) < C and g′(x) > −C, for all x < ε0. (9)

(b) The following inequalities hold:

1

2
σ2(x)g′′(x) + b(x)g′(x) − r(x)g(x)

{

> 0, for x < x1,

< 0, for x > x1.
(10)

(c) There exists a constant j ≥ 1 such that

σ2(x) ≤ C(1 + xj), for all x > 0, (11)

[σ(x)g′(x)]
2 ≤ C(1 + xj), for all x > x1, (12)

and
∫ t

0

E
[

Xj
s

]

ds <∞, for all t ≥ 0. (13)

(d) There exists a constant r0 > 0 such that

r(x) ≥ r0, for all x > 0.

Example 2.1 We give special emphasis to the choices

g(x) = ξxη −K and g(x) = (ξxη −K)+ , (14)

g(x) = ξ ln(x+ η) −K, (15)

g(x) = γ
(

1 − ξe−ηx
)

, (16)

where ξ, η, γ > 0 and K ∈ R are constants. For η ∈ ]0, 1[ and K = 0, the choice of g as
in (14) identifies with a power utility function, while for η ≥ 1, such a choice is associated
with a perpetual American power option, discussed in the introduction. Choices of g as
in (15) and (16) are associated with logarithmic utility and exponential utility functions,
repectively.
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The following remark is concerned with a discussion of Assumption 2.3 and with a number
of sufficient conditions that are simple to check.

Remark 2.1 We can make the following comments corresponding to the conditions (a)–(d)
in Assumption 2.3:

(a1) Since the function l takes on values in [1,∞[, (5) implies that the transversality con-
dition

lim
t→∞

Ex

[

e−Λt
∣

∣g(Xt)
∣

∣

]

= 0 (17)

is satisfied, which conforms with the spirit of the discussion following Lemma 2.1.

(a2) Plainly, all of the choices of g as in (14)–(16) satisfy (7)–(9) in Assumption 2.3.

(a3) We can derive conditions that are sufficient for the Lisbon condition, namely (5)–(6)
in Assumption 2.3a, to hold true as follows. For g as in (14), let us consider the choice

l(x) = 1 ∨ ln(x), for x > 0.

It is a matter of straightforward calculations to verify that (6) is implied by

η(η − 1)

2
σ2(x) + ηxb(x) − x2r(x) < 0, for x > x2, (18)

provided that x2 is chosen sufficiently large, depending on σ, b and r. In this case

lim
t→∞

Ex

[

e−ΛtXη+1
t

]

= 0, (19)

is plainly a sufficient condition for (5) to be true.

For g given by (15), we can see that, if we choose

l(x) = 1 ∨ ln(x+ η), for x > 0,

then, for x2 sufficiently large, (6) is implied by

−σ2(x) + 2xb(x) − x2 ln(x+ η)r(x) < 0, for x > x2, (20)

while, either of

lim
t→∞

Ex

[

e−Λt ln2 (Xt + η)
]

= 0 or lim
t→∞

Ex

[

e−ΛtXt

]

= 0 (21)

imply (5).
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If g is given by (16), then we can see that if we choose

l(x) = 1 ∨ x, for x > 0,

then, for x2 sufficiently large, (6) is implied by

−η
2ξ

2
σ2(x) + ηξb(x) − r(x) < 0, for x > x2, (22)

and (5) is implied by

lim
t→∞

Ex

[

e−ΛtXt

]

= 0. (23)

(b) Verifying the associated condition in Assumption 2.3 is a matter of simple calculation
given specific choices of b and σ.

(c) Plainly, any choice of g as in (14)–(16) satisfies (12) in Assumption 2.3 provided σ2 is
of polynomial growth. Furthermore, if there exists a constant C1 > 0 such that

b2(x) + σ2(x) ≤ C1(1 + x2),

then the estimates in Karatzas and Shreve [KS91, Problem 5.3.15] imply that the
solution to (1) has finite moments of all orders and (13) in Assumption 2.3 is satisfied
for all j ≥ 1.

(d) This condition is a most mild one, and it is needed to guarantee the convergence of
several integrals.

The following lemma will play a fundamental role in proving our main result in the next
section.

Lemma 2.3 Suppose that Assumptions 2.1 and 2.2 hold, that the Lisbon condition (5)–(6)
and (8) in (a) as well as conditions (c) and (d) of Assumption 2.3 are satisfied. If ψ is the
strictly increasing function defined by (66) in the Appendix, then

lim
x→∞

ψ(x)

g(x)
= ∞. (24)

Proof. We prove the result by contradiction. To this end, we assume that (24) is not true,
in which case there exists C2 > 0 such that

ψ(x) ≤ C2

(

1 + g(x)
)

, for all x > x2, (25)
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where x2 is as in (6) of Assumption 2.3a.
Now, given x > x2, let Sx be a weak solution to (1), and define the stopping times

υ = inf
{

t ≥ 0 |Xt ≤ x2

}

and τm = inf
{

t ≥ 0 |Xt ≥ x2 +m
}

, for m ≥ 1.

Using Itô’s formula, we calculate

e−Λt∧τm∧υψ(Xt∧τm∧υ) = ψ(x) +

∫ t∧τm∧υ

0

e−Λs

[

1

2
σ2ψ′′ + bψ′ − rψ

]

(Xs) ds+Mm
t , (26)

where

Mm
t =

∫ t∧τm∧υ

0

e−Λsσ(Xs)ψ
′(Xs) dWs.

With reference to Itô’s isometry, the continuity of ψ′, (11) and (13) in Assumption 2.3c, we
can see that

Ex

[

(Mm
t )2] = Ex

[
∫ t

0

1{s≤τm∧υ}

[

e−Λsσ(Xs)ψ
′(Xs)

]2
ds

]

≤ C sup
x∈[x2,x2+m]

[ψ′(x)]
2

(

t+

∫ t

0

E
[

Xj
s

]

ds

)

< ∞, for all t ≥ 0,

This calculation shows that Mm is a square-integrable martingale, therefore, Ex

[

Mm
t

]

= 0.
Combining this observation with the fact that ψ satisfies the ODE (64), we can see that (26)
implies

0 < ψ(x) = Ex

[

e−Λt∧τm∧υψ(Xt∧τm∧υ)
]

. (27)

With regard to (25), we observe that

Ex

[

e−Λt∧τm∧υψ(Xt∧τm∧υ)
]

≤ ψ(x2)Ex

[

e−Λυ1{υ≤t∧τm}

]

+ C2

(

Ex

[

e−Λτm1{τm≤t∧υ}

]

+ g(x2 +m)Ex

[

e−Λτm1{τm≤t∧υ}

])

+ C2

(

Ex

[

e−Λt1{t≤τm∧υ}

]

+ Ex

[

e−Λtg(Xt)1{t≤τm∧υ}

])

. (28)

In view of Assumption 2.3d we have

lim
m→∞

Ex

[

e−Λτm
]

= lim
t→∞

Ex

[

e−Λt
]

= 0. (29)
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Now arguing the same way as in establishing (27), using (6) in Assumption 2.3a, we obtain

l(x)g(x) ≥ Ex

[

e−Λt∧τm∧υ l(Xt∧τm∧υ)g(Xt∧τm∧υ)
]

≥ l(x2 +m)g(x2 +m)Ex

[

e−Λτm1{τm≤t∧υ}

]

,

the inequality following because l and g are positive in [x2,∞[ (see Assumption 2.3a). This
calculation and the assumption that limx→∞ l(x) = ∞ imply

lim
m→∞

g(x2 +m)Ex

[

e−Λτm1{τm≤t∧υ}

]

= 0. (30)

Furthermore, (5) and (8) in Assumption 2.3a (see also Remark 2.1a) imply

0 ≤ lim
t→∞

lim
m→∞

Ex

[

e−Λtg(Xt)1{t≤τm∧υ}

]

≤ lim
t→∞

Ex

[

e−Λt
∣

∣g(Xt)
∣

∣

]

= 0.

However, combining this with (28)–(30), we can see that (27) implies

ψ(x) = lim
t→∞

lim
m→∞

Ex

[

e−Λt∧τm∧υψ(Xt∧τm∧υ)
]

≤ ψ(x2)Ex

[

e−Λυ
]

= ψ(x2)
φ(x)

φ(x2)

where φ is the function defined by (67) in the Appendix. However, recalling that x2 < x, this
inequality contradicts the fact that ψ and φ are strictly increasing and strictly decreasing,
respectively. 2

We shall also need the following technical result.

Lemma 2.4 Suppose that Assumptions 2.1 and 2.2 hold. Let px0 be the scale function
defined by (2) and let ψ be the strictly increasing function defined by (66) in the Appendix.
Then, given any x0 > 0,

lim
x↓0

ψ′(x)

p′x0
(x)

= lim
x↓0

ψ(x)

p′x0
(x)

= 0. (31)

Proof. Let φ be the strictly decreasing function defined by (67) in the Appendix. Since
ψ and φ are independent solutions of the homogeneous ODE (64) in the Appendix, their
Wronskian W, satisfies

W(x) := φ(x)ψ′(x) − φ′(x)ψ(x) = W(x0)p
′
x0

(x) > 0, for all x > 0.

Since φ, ψ > 0 and φ′ ≤ 0 ≤ ψ′, this expression implies

0 <
φ(x)ψ′(x)

W(x0)p′x0
(x)

< 1 and 0 < − φ′(x)ψ(x)

W(x0)p′x0
(x)

< 1, for all x > 0. (32)

Also, the fact that limx↓0 φ(x) = ∞ implies that limx↓0 φ
′(x) = ∞. However, these limits

imply that (32) can be true only if the equalities in (31) hold, and the proof is complete. 2
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3 The solution to the optimal stopping problem

With regard to standard theory of optimal stopping, we expect that the value function v
identifies with a solution w to the Hamilton-Jacobi-Bellman (HJB) equation

max

{

1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x), g(x) − w(x)

}

= 0, x > 0. (33)

In view of the structure of the optimal stopping problem under consideration, we postulate
that there is a critical point x∗ such that it is optimal to wait for as long as the state process
X assumes values less than x∗ and stop as soon as X hits the set [x∗,∞[. With reference
to standard heuristic arguments that explain the structure of (33), we therefore look for a
solution w to (33) that satisfies

1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) = 0, for x < x∗, (34)

g(x) − w(x) = 0, for x ≥ x∗. (35)

Such a solution is given by

w(x) =

{

Aψ(x) +Bφ(x), if x < x∗,
g(x), if x ≥ x∗,

(36)

where ψ (resp., φ) is the strictly increasing (resp., decreasing) function given by (66) (resp.,
(67)) in the Appendix. Since the payoff function g is bounded for small x and is positive
for large x, we expect that the value function should be positive and remains bounded as x
tends to zero. This observation suggests that we must have B = 0. To specify the parameter
A and x∗, we appeal to the so-called “smooth-pasting” condition of optimal stopping that
requires the value function to be C1, in particular, at the free boundary point x∗. This
requirement yields the system of equations

Aψ(x∗) = g(x∗) and Aψ′(x∗) = g′(x∗),

which is equivalent to

A =
g(x∗)

ψ(x∗)
=
g′(x∗)

ψ′(x∗)
and q(x∗) = 0, (37)

where q is defined by

q(x) = g(x)ψ′(x) − g′(x)ψ(x), x > 0. (38)

We can now prove our main result.
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Theorem 3.1 Consider the optimal stopping problem formulated in Section 2 and suppose
that Assumptions 2.1, 2.2 and 2.3 hold. The value function v identifies with the function w
defined by (36) with B = 0, A > 0 being given by (37), and x∗ > 0 being the unique solution
to q(x) = 0, where q is defined by (38). Furthermore, given any initial condition x > 0, the
stopping strategy (S∗

x, τ
∗) ∈ Sx, where S

∗
x is a weak solution to (1) and

τ ∗ = inf{t ≥ 0 | Xt ≥ x∗},

is optimal.

Proof. We first prove that the equation q(x) = 0 has a unique solution x∗ > 0. To this end,
we combine the calculation q′(x) = g(x)ψ′′(x)− g′′(x)ψ(x) with the fact that ψ satisfies (64)
to calculate

q′(x) = −2b(x)

σ2(x)
q(x) − 2

σ2(x)

(

1

2
σ2(x)g′′(x) + b(x)g′(x) − r(x)g(x)

)

ψ(x). (39)

This calculation implies

d

dx

(

q(x)

p′x1
(x)

)

= − 2ψ(x)

σ2(x)p′x1
(x)

[

1

2
σ2(x)g′′(x) + b(x)g′(x) − r(x)g(x)

]

(40)

where px1(x) is the scale function defined by (2) and x1 is as in Assumption 2.3b. This
implies that the function q/p′x1

is strictly decreasing in ]0, x1[. However, combining this with
(9) in Assumption 2.3a and Lemma 2.4, we can see that

q(x1)

p′x1
(x1)

<
q(x)

p′x1
(x)

< lim
x↓0

q(x)

p′x1
(x)

≤ 0, for all x ∈ ]0, x1[. (41)

Now, with regard to (40) and Assumption 2.3b, it follows that the equation q(x) = 0 has
a unique solution x∗ > 0 if and only if lim supx→∞ q(x) > 0. To see that this inequality is
true, we observe that

q(x) = g2(x)
d

dx

(

ψ(x)

g(x)

)

, for x > 0. (42)

Now, if lim supx→∞ q(x) ≤ 0, then this calculation implies

lim sup
x→∞

d

dx

(

ψ(x)

g(x)

)

≤ 0.

However, this inequality, (8) in Assumption 2.3a and the continuity of ψ and g imply that

lim sup
x→∞

ψ(x)

g(x)
<∞,
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which contradicts Lemma 2.3. For future reference, we note that these arguments also
establish that

x∗ > x1 and q(x) < 0, for all x ∈ ]0, x1[. (43)

Now, to prove that w given by (36) satisfies the HJB equation (33), we need to show that

1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) ≤ 0, for x > x∗, (44)

w(x) − g(x) ≤ 0, for x ≤ x∗. (45)

With regard to the structure of w, (44) is equivalent to

1

2
σ2(x)g′′(x) + b(x)g′(x) − r(x)g(x) ≤ 0, for all x > x∗,

which is implied by the first inequality in (43) and (10) in Assumption 2.3b. Also, using the
first expression for A in (37), we can see that (45) is equivalent to

A =
g(x∗)

ψ(x∗)
≥ g(x)

ψ(x)
, for all x ≤ x∗.

However, this inequality follows immediately once we observe that

d

dx

(

g(x)

ψ(x)

)

= − q(x)

ψ2(x)
, for all x > 0,

and the second inequality in (43) imply that the function x 7→ g(x)/ψ(x) is strictly increasing
in ]0, x∗[.

To prove that the solution w to the HJB equation (33) that we have constructed identifies
with the value function v of the optimal stopping problem, we fix any initial condition x > 0
and any stopping strategy (Sx, τ) ∈ Sx, and we define

τn = inf
{

t ≥ 0
∣

∣ Xt ≤ 1/n
}

, for n ≥ 1.

Given any T > 0, since w ∈ C1(]0,∞[) ∩ C2(]0,∞[ \ {x∗}), we can use Itô’s formula to
calculate

e−Λτ∧τn∧Tw(Xτ∧τn∧T ) = w(x) +

∫ τ∧τn∧T

0

e−Λs

[

1

2
σ2w′′ + bw′ − rw

]

(Xs) ds+Mn,T
τ , (46)

where

Mn,T
t =

∫ t∧τn∧T

0

e−Λsσ(Xs)w
′(Xs) dWs.
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With reference to Itô’s isometry, (12) and (13) in Assumption 2.3c, the C1 continuity of w
and (43), we can see that

Ex

[

(

Mn,T
T

)2
]

= Ex

[
∫ T

0

[

e−Λsσ(Xs)w
′(Xs)

]2
1{s≤τn}ds

]

≤ sup
x∈[1/n,x∗]

[σ(x)w′(x)]2T + Ex

[
∫ T

0

[σ(Xs)w
′(Xs)]

2
1{Xs>x∗}ds

]

≤ sup
x∈[1/n,x∗]

[σ(x)w′(x)]2T + C

(

T +

∫ T

0

Ex

[

Xj
t

]

dt

)

< ∞,

which proves that Mn,T is a square-integrable martingale. Therefore, by appealing to Doob’s
optional sampling theorem, it follows that Ex

[

Mn,T
τ

]

= 0. In view of this observation, we
can add the term e−Λτg(Xτ )1{τ≤τn∧T} to both sides of (46), take expectations and note that
w satisfies (33) to calculate

Ex

[

e−Λτ g(Xτ )1{τ≤τn∧T}

]

≤ w(x) − w(1/n))Ex

[

e−Λτn1{τn≤T≤τ}

]

− Ex

[

e−ΛTw(XT )1{T<τn<τ}

]

.

(47)

Now, since g is bounded from below, by (7) in Assumption 2.3a, we can use the dominated
and the monotone convergence theorems to obtain

lim
T→∞

lim
n→∞

Ex

[

e−Λτg(Xτ )1{τ≤τn∧T}

]

= Ex

[

e−Λτg(Xτ )1{τ<∞}

]

. (48)

The fact that w remains bounded as x tends to 0 together with the dominated convergence
theorem imply

lim
n→∞

Ex

[

e−Λτnw(1/n)1{τn≤T<τ}

]

= 0. (49)

Furthermore, since there exists a constant C > 0 such that 0 ≤ w(x) ≤ C
(

1 + |g(x)|
)

, for
all x > 0,

0 ≤ Ex

[

e−ΛTw(XT )
]

≤ C(Ex[e
−ΛT ] + Ex[e

−ΛT |g(XT )|]) −−−→
T→∞

0,

with the limit following thanks to (5) in Assumption 2.3a and Assumption 2.3d (see also
Remark 2.1a). However, this shows that

lim
T→∞

lim
n→∞

Ex

[

e−ΛTw(XT )1{T<τn<τ}

]

= 0. (50)
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In view of (48)–(50), (47) implies

Ex

[

e−Λτg(Xτ )1{τ≤∞}

]

≤ w(x),

which proves v(x) ≤ w(x).
To prove the reverse inequality, let (S∗

x, τ
∗) be the strategy considered in the statement

of the theorem. By following the arguments that lead to (47) we can see that

Ex

[

e−Λ∗

τ∗g(X∗
τ∗)1{τ∗≤τ∗

n∧T}

]

= w(x) − Ex

[

e
−Λ∗

τ∗nw(1/n)1{τ∗
n≤T<τ∗}

]

− Ex

[

e−Λ∗

Tw(X∗
T )1{T<τ∗

n<τ∗}

]

.

This calculation and (48)–(50) imply

Ex

[

e−Λ∗

τ∗g(X∗
τ∗)1{τ∗≤∞}

]

= w(x),

which proves v(x) ≥ w(x), and establishes the optimality of (S∗
x, τ

∗), and the proof is com-
plete.

Finally, to see that A > 0, fix any x̂ > x2, where x2 is as in Assumption 2.3. Given any
initial condition x > 0, let (Ŝx, τ̂) be a stopping strategy such that Ŝx is a weak solution to
(1) and τ̂ is the associated hitting time of x̂. With regard to (8) in 2.3a,

J(Ŝx, τ̂) > 0, for all x > 0.

However, this inequality implies that v(x) > 0, for all x > 0, which, in view of the construc-
tion of v, implies A > 0, and the proof is complete. 2
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4 Special cases

We now consider a number of special cases of the general discretionary stopping problem
that we studied in the previous section. These cases are differentiated by the choice of the
underlying state process dynamics. In particular, we investigate the situation when X is a
geometric Brownian motion, in which case

b(x) = bx and σ(x) = σx, for all x > 0,

a square-root mean-reverting process, which arises when

b(x) = κ(θ − x) and σ(x) = σ
√
x, for all x > 0,

an exponential Ornstein-Uhlenbeck process, where

b(x) =

(

κ(θ − lnx) +
1

2
σ2

)

x and σ(x) = σx, for all x > 0,

or a geometric Ornstein-Uhlenbeck process, in which case

b(x) = κ(θ − x)x and σ(x) = σx, for all x > 0.

These Itô diffusions have been well studied in the literature, and they all satisfy Assumptions
2.1, 2.2 and 2.3c. In all cases, we assume that r(x) ≡ r, for some constant r > 0, so that
Assumption 2.3d is satisfied. We also take g to be as in (14)–(16) in Example 2.1.

For X being a geometric Brownian motion and g being given by (14), we can see that
the conditions (18) and (19) in Remark 2.1a3, which are sufficient for the Lisbon condition
(5)–(6) in Assumption 2.3a to be true, are satisfied if

r > ηb+
1

2
η(η − 1)σ2, K > 0 and r > (η + 1)b+

1

2
η(1 + η)σ2, (51)

respectively. Also, for X being a geometric Brownian motion and g being given by (15), the
sufficient conditions (20) and (21) are satisfied if

r > b. (52)

In all other cases, we can appeal to standard theory to conclude that the sufficient conditions
(18)–(23) in Remark 2.1a3 are satisfied. Assuming that (51) or (52) hold, where relevant,
depending on the case, and in view of Remark 2.1a2, it follows that all our assumptions are
satisfied if

(10) in Assumption 2.3b holds true. (53)
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It turns out that a number of the cases considered are related to Kummer’s ordinary
differential equation

zu′′(z) + (β − z)u′(z) − αu(z) = 0, (54)

where α, β > 0 are constants. Independent solutions to this ordinary differential equation
can be expressed in terms of the confluent hypergeometric function 1F1, defined by

1F1(α, β; z) =
∞

∑

m=0

1

m!

(α)m

(β)m

zm,

where (α)0 = 1 and (α)m = α(α+1) · · · (α+m−1), and the function U , which is defined by

U(α, β; z) =
π

sin πβ

[

1F1(α, β; z)

Γ(1 + α− β)Γ(β)
− z1−β 1F1(α+ 1 − β, 2 − β; z)

Γ(α)Γ(2 − β)

]

(see Magnus, Oberhettinger and Soni [MOS66, Chapter VI] or Abramowitz and Stegun
[AS72, Chapter 13]).

For future reference, observe that for α, β > 0, 1F1(α, β; ·) is positive and strictly increas-
ing on ]0,∞[, 1F1(α, β; 0) = 1 and limz→∞ 1F1(α, β; z) = ∞. Also, recalling the identity

π

sin πβ
= Γ(β)Γ(1 − β),

(see Magnus, Oberhettinger and Soni [MOS66, Chapter I] or Abramowitz and Stegun [AS72,
6.1.7]), we can see that

U(α, β; z) =
Γ(1 − β)

Γ(1 + α− β)
1F1(α, β; z) − Γ(β)

(1 − β)Γ(α)
z1−β

1F1(α+ 1 − β, 2 − β; z).

With regard to this expression, it is worth noting that, although the gamma function x 7→
Γ(x) has simple poles at x = −m, m ∈ N

∗, U is well defined and finite for β = 2, 3, 4, . . ..
Although we do not need this result in our analysis, it is worth noting that limz↓0 U(α, β; z) =
∞ if β > 1. Also, for α > 0 and β > 1, U(α, β; ·) is positive, strictly decreasing in ]0,∞[
and limz→∞ U(α, β; z) = 0 (see Magnus, Oberhettinger and Soni [MOS66, Chapter VI] or
Abramowitz and Stegun [AS72, Chapter 13]).

4.1 Geometric Brownian motion

Geometric Brownian motion is the most commonly used model in finance for the value of
an asset. In this case, the state process dynamics are given by

dXt = bXt dt+ σXt dWt, X0 = x > 0,
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where b, σ are constants and the ODE associated with (33) is given by

1

2
σ2x2w′′(x) + bxw′(x) − rw(x) = 0, for x > 0. (55)

The proof of the following well-known result is straightforward and omitted.

Lemma 4.1 The increasing function ψ and the decreasing function φ spanning the solution
set to (55) are given by

ψ(x) = xn and φ(x) = xm,

where the constants m < 0 < n are defined by

m,n =
1

2
− b

σ2
±

√

(

b

σ2
− 1

2

)2

+
2r

σ2
.

It is a straightforward, all be it tedious, exercise to verify that (10) in Assumption 2.3b
is satisfied when

g is given by (14), K > 0 and r > ηb+
1

2
η(η − 1)σ2,

g is given by (15) and K > ξ ln η,

g is given by (16) and ξ > 1,

which addresses (53).

4.2 Square-root mean-reverting process

The diffusion X defined by

dXt = κ(θ −Xt) dt + σ
√

Xt dWt, X0 = x > 0,

where κ, θ and σ are positive constants satisfying κθ− 1
2
σ2 > 0 models the short rate in the

Cox-Ingersoll-Ross interest rate model, and has attracted considerable interest in the theory
of finance. Note that the assumption that κθ − 1

2
σ2 > 0 is imposed because it is necessary

and sufficient for X to be non-explosive, in particular for the hitting time of 0 to be infinite
with probability 1. Also, the ODE associated with (33) takes the form

1

2
σ2xw′′(x) + κ(θ − x)w′(x) − rw(x) = 0, for x > 0. (56)
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Lemma 4.2 The increasing function ψ and the decreasing function φ spanning the solution
set to (56) are given by

ψ(x) = 1F1

(

r

κ
,
2κθ

σ2
;
2κ

σ2
x

)

and φ(x) = U

(

r

κ
,
2κθ

σ2
;
2κ

σ2
x

)

.

Proof. Setting y = 2κx/σ2 and h(y) = w(x), the ODE (56) becomes

yh′′(y) +

(

2κθ

σ2
− y

)

h′(y) − r

κ
h(y) = 0,

which is Kummer’s equation for α = r/κ > 0 and β = 2κθ/σ2 > 1, the inequality as a
consequence of the assumption that κθ − 1

2
σ2 > 0, and the result follows. 2

With regard to (53), we can verify that (10) in Assumption 2.3b is satisfied when

g is given by (14) and K > 0,

g is given by (15) and K > ξ

(

ln η − κθ

ηr

)

,

g is given by (16) and ξ >
r

r + ηκθ
.

4.3 Exponential Ornstein-Uhlenbeck process

The diffusion X := eY , where Y is the Ornstein-Uhlenbeck process given by

dYt = κ(θ − Yt) dt+ σ dWt, Y0 = y ∈ R, (57)

for some constants κ, θ, σ > 0 models the short rate in the Black-Karasinski interest rate
model. Using Itô’s formula we can verify that X satisfies

dXt =

[

κ(θ − lnXt) +
1

2
σ2

]

Xt dt+ σXt dWt, X0 = x > 0, (58)

while the ODE associated with (33) is given by

1

2
σ2x2w′′(x) +

[

κ(θ − lnx) +
1

2
σ2

]

xw′(x) − rw(x) = 0, for x > 0. (59)

Lemma 4.3 The increasing function ψ and the decreasing function φ spanning the solution
set to (59) are given by

ψ(x) =

{

Γ( r+κ
2κ

)

π
U

(

r
2κ
, 1

2
; κ

σ2 (θ − lnx)2
)

, for x ≤ eθ,

1F1

(

r
2κ
, 1

2
; κ

σ2 (θ − ln x)2
)

, for x > eθ,
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and

φ(x) =

{

1F1

(

r
2κ
, 1

2
; κ

σ2 (θ − lnx)2
)

, for x ≤ eθ,
Γ( r+κ

2κ
)

π
U

(

r
2κ
, 1

2
; κ

σ2 (θ − ln x)2
)

, for x > eθ.

Proof. Setting w(x) = u (κ(θ − lnx)2/σ2) and z = κ(θ − lnx)2/σ2, we can see that (59)
becomes

zu′′(z) +

(

1

2
− z

)

u′(z) − r

2κ
u(z) = 0, z > 0,

which is Kummer’s equation with α = r/(2κ) and β = 1
2
. The functions 1F1(α, β; z) and

U(α, β; z) for z = κ(θ − lnx)2/σ2 are not monotone in x. For this reason the functions ψ
and φ have to be defined in a piecewise manner. However, combining this observation with
the requirement that ψ and φ should be C1 with absolutely continuous first derivatives and
that

Γ(α+ 1 − β)

Γ(1 − β)
U(α, β;

κ

σ2
(θ − lnx)2)

∣

∣

∣

∣

∣

x=eθ

= 1F1(α, β;
κ

σ2
(θ − ln x)2)

∣

∣

∣

∣

∣

x=eθ

,

d

dx
U(α, β;

κ

σ2
(θ − ln x)2)

∣

∣

∣

∣

∣

x=eθ

= 0 =
d

dx
1F1(α, β;

κ

σ2
(θ − lnx)2)

∣

∣

∣

∣

∣

x=eθ

,

the results follow. 2

It is a straightforward, all be it tedious, exercise to verify that (10) in Assumption 2.3b
is satisfied when

g is given by (14) and K > 0,

g is given by (16) and ξ > 1,

which addresses (53). When g is given by (15) we have not found conditions under which
(10) is satisfied that are as simple to state as the ones above. However it is straightforward
to check whether (10) is satisfied for specific parameter values.

4.4 Geometric Ornstein-Uhlenbeck process

The diffusion X defined by

dXt = κ(θ −Xt)Xt dt+ σXt dWt, X0 = x > 0, (60)
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where κ, θ and σ are positive constants, has been proposed by Cortazar and Schwartz
[CS97] as a model for a commodity’s price and has played a role in population modelling.
The ordinary differential equation associated with (33) for this diffusion takes the form

1

2
σ2x2w′′(x) + κ(θ − x)xw′(x) − rw(x) = 0, for x > 0. (61)

Lemma 4.4 The increasing function ψ and the decreasing function φ spanning the solution
set to (61) are given by

ψ(x) = xn
1F1

(

n, 2n+
2κθ

σ2
;
2κx

σ2

)

and φ(x) = xnU

(

n, 2n+
2κθ

σ2
;
2κx

σ2

)

,

where

n =
1

2
− κθ

σ2
+

√

(

κθ

σ2
− 1

2

)2

+
2r

σ2
.

Proof. Motivated by Dixit and Pindyck [DP94, Chapter 5, Section 5A], we consider a
candidate for the solution to (61) of the form

w(x) = Axnf(x)

which results in

xnf(x)

[

1

2
σ2n(n− 1) + κθn− r

]

+ xn+1

[

1

2
σ2xf ′′(x)

(

σ2n+ κ[θ − x]
)

f ′(x) − κnf(x)

]

= 0.

This can be true for all x > 0 only if

1

2
σ2n(n− 1) + κθn− r = 0, (62)

and

1

2
σ2xf ′′(x) + (σ2n+ κθ − κx)f ′(x) − κnf(x) = 0. (63)

We note that the negative solution to (62) would result in choices for ψ and φ not having
the required monotonicity properties. Choosing n to be the positive solution to (62), and
setting x = σ2y/(2κ) and g(y) = f(x), we can see that (63) becomes

yg′′(y) +

(

2n+
2κθ

σ2
− y

)

g′(y) − ng(y) = 0,
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which is Kummer’s equation with α = n > 0 and β = 2n+ 2κθ/σ2 > 0 and the expressions
for ψ and φ in the statement follow.

Since xn and 1F1 are both increasing functions, the function ψ is plainly increasing. To
see that φ is decreasing, we recall that

zU(a, b+ 1; z) = U(a− 1, b; z) + (b− a)U(a, b; z)

(see Magnus, Oberhettinger and Soni [MOS66, Section 6.2]). Using this result, we calculate,

d

dx
φ(x) = − (β − α+ 1)nxn−1U(α+ 1, β;x)

which is negative for if and only if β > α − 1. However, we can see that β > α − 1 if and
only if

3

2

κθ

σ2
+

√

(

κθ

σ2
− 1

2

)2

+
2r

σ2
>

1

2
,

which is true for all κ, θ, σ, r > 0. 2

With reference to (53), we can verify that (10) in Assumption 2.3b is satisfied when

g is given by (14) and K > 0,

g is given by (15) and K > ξ ln η,

g is given by (16) and ξ > 1.
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A Study of a homogeneous ordinary differential equa-

tion

We now study the ordinary differential equation

1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) = 0, x ∈ I, (64)

which has played a fundamental role in our analysis above. Here I ⊆ R is a given open
interval. We impose conditions (ND)′ and (LI)′ in Karatzas and Shreve [KS91, Section 5.5
C], as well as Feller’s condition for no explosions (see Karatzas and Shreve [KS91, Theorem
5.5.29]), which are Assumptions 2.1 and 2.2 with I in place of ]0,∞[,

Assumption A.1 The functions b, σ : I → R satisfy the following conditions:

σ2(x) > 0 for all x ∈ I,

for all x ∈ I, there exists ε > 0 such that

∫ x+ε

x−ε

1 + |b(s)|
σ2(s)

ds <∞.

Also,
lim

x↓inf I

uz(x) = lim
x↑sup I

uz(x) = 0,

where the function uz is defined as in (4), for some z ∈ I.

Under this assumption, the Itô diffusion given by (1) has a non-explosive weak solution Sx,
namely a collection (Ω,F,Ft,Px,W,X), where (Ω,F,Ft,Px) is a filtered probability space
satisfying the usual conditions, W is a standard, one-dimensional (Ft)-Brownian motion and
X is a continuous (Ft)-adapted process with values in I, such that (1) is well defined and
satisfied. Moreover, this assumption guarantees that such a solution is unique in the sense
of probability law and X is a strong Markov process as well as a regular diffusion.

We also need the following assumption.

Assumption A.2 The function r : I → ]0,∞[ is locally bounded.

The objective is to show that the general solution to (64) is given by

w(x) = Aψ(x) +Bφ(x), (65)

where A,B ∈ R are constants and the functions ψ, φ are defined by

ψ(x) =

{

Ex[e
−Λτz ] for x < z,

1/Ez[e
−Λτx ] for x ≥ z,

(66)

φ(x) =

{

1/Ez[e
−Λτx ] for x < z,

Ex[e
−Λτz ] for x ≥ z,

(67)
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respectively, for a given choice of z ∈ I. In these definitions, as well as in what follows, given
a weak solution to (1) and any a ∈ I, we denote by τa the first hitting time of {a}, i.e.,
τa = inf{t ≥ 0|Xt = a}, with the usual convention that inf ∅ = ∞. Since X is continuous,
a simple inspection of these definitions reveals that ψ (resp., φ) is strictly increasing (resp.,
decreasing). Also, since X is non-explosive, these definitions imply

lim
x↑sup I

ψ(x) = lim
x↓inf I

φ(x) = ∞.

One purpose of the following result is to show that the definitions of ψ, φ in (66), (67),
respectively, do not depend, in a non-trivial way, on the choice of z ∈ I.

Lemma A.1 Given any x, y ∈ I the functions ψ, φ defined by (66), (67), respectively,
satisfy

ψ(x) = ψ(y)Ex[e
−Λτy ] and φ(y) = φ(x)Ey[e

−Λτx ], for all x < y. (68)

Moreover, the processes (e−Λtψ(Xt), t ≥ 0) and (e−Λtφ(Xt), t ≥ 0) are both local martin-
gales.

Proof. Given any points a, b, c ∈ I such that a < b < c, we calculate

Ea[e
−Λτc ] = Ea

[

eΛτb Ea[e
−(Λτc−Λτb

)|Fτb
]
]

= Ea[e
−Λτb ]Eb[e

−Λτc ],

where the second equality follows thanks to the strong Markov property of X. In view of
this result, given any x < z < y, the choice a = x, b = z and c = y yields

Ex[e
−Λτy ] = Ex[e

−Λτz ]Ez[e
−Λτy ],

which, combined with the definition of ψ, implies the first identity in (68). We can verify
the first identity in (68) when x < y < z or z < x < y as well as the second identity in (68)
by appealing to similar arguments.

Now, given any initial condition x and any sequence (xn) such that x < x1 and limn→∞ xn =
sup I, we observe that the first identity in (68) implies

ψ(Xt)1{t≤τxn} = ψ(xn)EXt
[e−Λτxn ]1{t≤τxn}, for all t ≥ 0.

In view of this identity, we appeal to the strong Markov property ofX, once again to calculate

Ex

[

e−Λτxnψ(Xτxn
)
∣

∣Ft

]

= e−Λtψ(xn)Ex

[

e−(Λτxn
−Λt)

∣

∣Ft

]

1{t<τxn} + e−Λτxnψ(xn)1{τxn≤t}

= e−Λtψ(Xt)1{t<τxn} + e−Λτxnψ(xn)1{τxn≤t}

= e−Λ(t∧τxn )ψ(Xt∧τxn
).
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However, this calculation and the tower property of conditional expectation implies that,
given any times s < t,

Ex

[

e−Λt∧τxnψ(Xt∧τxn
)|Fs

]

= Ex

[

Ex

[

e−Λt∧τxnψ(Xt∧τxn
)
∣

∣Ft

] ∣

∣Fs

]

= e−Λs∧τxnψ(Xs∧τxn
),

which proves that
(

e−Λtψ(Xt), t ≥ 0
)

is a local-martingale. Proving that
(

e−Λtφ(Xt), t ≥ 0
)

is a local-martingale follows similar arguments. 2

We can now prove the following result.

Theorem A.1 Suppose that Assumption A.1 holds. The general solution to the ordinary
differential equation (64) exists in the classical sense, namely there exists a two dimensional
space of functions that are C1 with absolutely continuous first derivatives, and that satisfy
(64) Lebesgue-a.e.. This solution is given by (65), where A,B ∈ R are constants and the
functions ψ, φ are given by (66), (67), respectively. Moreover, ψ is strictly increasing, φ is
strictly decreasing, and, if the drift b ≡ 0, then both ψ and φ are strictly convex.

Proof. First, we recall that, given l < x < m,

Px(τl < τm) =
px0(x) − px0(m)

px0(l) − px0(m)
(69)

(e.g., see Karatzas and Shreve [KS91, Proposition 5.5.22] or Rogers and Williams [RW94,
Definition V.46.10]). Also in view of the first identity in (68), we can see that

ψ(x) < ψ(m)Ex

[

1{τm<τl}

]

+ ψ(m)Ex

[

e−Λτm 1{τl<τm}

]

= ψ(m)Px(τm < τl) + ψ(m)Ex

[

Ex

[

e−Λτm

∣

∣Fτl

]

1{τl<τm}

]

.

Now, since X has the strong Markov property we can see that

Ex

[

e−Λτm

∣

∣Fτl

]

1{τl<τm} = e−Λτl Ex

[

e−Λ(τm−τl) |Fτl

]

1{τl<τm}

= e−Λτl
ψ(l)

ψ(m)
1{τl<τm},

with the last equality following thanks to (68). Combining these calculations we can see that

ψ(x) < ψ(m)Px(τm < τl) + ψ(l)Ex

[

e−Λτl 1{τl<τm}

]

< ψ(m)Px(τm < τl) + ψ(l)Px(τl < τm). (70)
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Now, let us assume that b ≡ 0, so that the diffusion X defined by (1) is in natural scale,
in which case px0(x) = x− x0. Combining this fact with (69), it is straightforward to verify
that

x = lPx(τl < τm) +mPx(τm < τl).

However, this calculation and (70) imply that ψ is strictly convex. In this case, we also have

Px(τl < τm) =
x−m

l −m
. (71)

Under the assumption that b ≡ 0, which implies that ψ is strictly convex, we can use the
Itô-Tanaka and the occupation times formulae to calculate

ψ(Xt) −
∫ t

0

r(Xs)ψ(Xs) ds = ψ(x) +

∫

I

La
t

1

σ2(a)

[

1

2
σ2(a)µ′′(da) − r(a)ψ(a) da

]

+

∫ t

0

ψ′
−(Xs)σ(Xs) dWs,

where ψ′
− is the left-hand-side first derivative of ψ, µ′′(da) is the distributional second deriv-

ative of ψ, and La is the local time process of X at level a. With regard to the integration
by parts formula, this implies

e−Λtψ(Xt) = ψ(x) +

∫ t

0

e−Λs d

∫

I

La
s

1

σ2(a)

[

1

2
σ2(a)µ′′(da) − r(a)ψ(a) da

]

+

∫ t

0

e−Λsψ′
−(Xs)σ(Xs) dWs.

Since (e−Λtψ(Xt), t ≥ 0) is a local-martingale (see Lemma A.1), this identity implies that
the finite variation process Q defined by

Qt =

∫ t

0

e−Λsd

∫

I

La
s

1

σ2(a)

[

1

2
σ2(a)µ′′(da) − r(a)ψ(a) da

]

, for t ≥ 0,

is a local martingale. Since finite-variation local martingales are constant, it follows that
Q ≡ 0, which implies

∫

I

La
t ν(da) = 0, for all t ≥ 0, (72)

where the measure ν is defined by

ν(da) =
1

2
µ′′(da) − r(a)ψ(a)

σ2(a)ψ′′(a)
. (73)
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To proceed further, fix any points l < a < m, define

τl,m = inf {t ≥ 0 |Xt /∈ ]l,m[} ,

and let (Tj) be a localising sequence for the local martingale
∫ ·

0
sgn(Xs−a)dXs. With regard

to the definition of local times and Doob’s optional sampling theorem, we can see that

Ex

[

∣

∣Xτl,m∧Tj
− a

∣

∣

]

= |x− a| + Ex

[
∫ τl,m∧Tj

0

sgn(Xs − a) dXs

]

+ Ex

[

La
τl,m∧Tj

]

= |x− a| + Ex

[

La
τl,m∧Tj

]

.

However, passing to the limit using the dominated convergence theorem on the left hand
side and the monotone convergence theorem on the right hand side, we can see that this
identity implies

Ex

[

La
τl,m

]

= Ex

[

∣

∣Xτl,m
− a

∣

∣

]

− |x− a|

=
(m− a)(x− l)

m− l
+

(a− l)(m− x)

m− l
− |x− a| , (74)

the second equality following thanks to (71). Now, (72), the fact that t 7→ La
t increases on

the set {t ≥ 0 |Xt = a} and Fubini’s theorem, imply

0 = Ex

[

∫

I

La
τl,m

ν(da)
]

= Ex

[

∫

]l,m[

La
τl,m

ν(da)
]

=

∫

]l,m[

Ex

[

La
τl,m

]

ν(da).

Combining this calculation with (74), it is a matter of algebraic calculation to verify that
∫ m

l

h(a; l, x,m) ν(da) = 0, (75)

where h(·; l, x,m) is the tent-like function of height 1 defined by

h(a; l, x,m) =

{

(a− l)/(x− l), for a ∈ [l, x],

(m− a)/(m− x), for a ∈ [x,m].

Now, fix any points xl < xm in I and let (lj) and (mj) be strictly decreasing and strictly
increasing, respectively, sequences such that

l1 <
xl + xm

2
< m1, lim

j→∞
lj = xl and lim

j→∞
mj = xm.
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We can see that
1]xl,xm[(a) = lim

j→∞
Hj(a), for all a ∈ I,

where the increasing sequence of functions (Hj) is defined by

Hj(a) = h

(

a;xl,
xl + xm

2
, xm

)

+
xl + xm − 2lj
xm − xl

h

(

a;xl, lj,
xl + xm

2

)

+
2mj − (xl + xm)

xm − xl

h

(

a;
xl + xm

2
,mj, xm

)

, for a ∈ I and j ≥ 1.

Using the monotone convergence theorem and (75), it follows that

ν(]xl, xm[) = lim
j→∞

∫ xm

xl

Hj(a) ν(da) = 0,

which proves that the signed measure ν assigns measure 0 to every open subset of I. However,
this observation and the definition of ν in (73) imply that the total variation of ν is zero,
and, therefore, µ′′(da) is an absolutely continuous measure. It follows that there exists a
function ψ′′ such that

µ′′(da) = ψ′′(a) da and
1

2
σ2(a)ψ′′(a) = r(a)ψ(a), Lebesgue-a.e..

However, the second identity here shows that ψ is a classical solution to (64).
Now, let us consider the general case where the drift b does not vanish. In this case, we

use Itô’s formula to verify that, if X̄ = px0(X), then

dX̄t = σ̄(X̄t)dWt, X̄0 = px0(x),

where

σ̄(x̄) = p′x0

(

p−1
x0

(x̄)
)

σ
(

p−1
x0

(x̄)
)

, for x̄ ∈ ] inf I, sup I[.

Since X̄ is a diffusion in natural scale, the associated function ψ̄ defined as in (66) is a
classical solution of

1

2
σ2(a)ψ̄′′(a) − r(a)ψ̄(a) = 0. (76)
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Now, recalling that px0 is twice differentiable in the classical sense, we can see that if we
define ψ̃(x) = ψ̄(px0(x)) then

ψ̃′(x) = ψ̄′
(

px0(x)
)

p′x0
(x),

ψ̃′′(x) = ψ̄′′
(

px0(x)
)[

p′x0
(x)

]2
+ ψ̄′

(

px0(x)
)

p′′x0
(x).

However, combining these calculations with (76), we can see that ψ̃ satisfies the ODE (64).
To prove that ψ̃, namely the classical solution to (64), as constructed above, identifies

with ψ defined by (66), we apply Itô’s formula to e−Λ(τy∧T )ψ̃(Xτy∧T ), where T > 0 is a
constant, and we use arguments similar to the ones employed in the proof of Theorem 3.1,
to show that

Ex

[

e−Λτy∧T ψ̃(Xτy∧T )
]

= ψ̃(x), for all x < y.

Since ψ > 0 is increasing, the monotone and the dominated convergence theorems imply

lim
T→∞

Ex

[

e−Λτy∧T ψ̃(Xτy∧T )
]

= ψ̃(y)Ex

[

e−Λτy
]

, for all x < y.

However, these calculations, show that ψ̃ satisfies the first identity in (68) and therefore
identifies with ψ defined by (66). Proving all of the associated claims for φ follows similar
reasoning. 2
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[IM74] K. Itô and H.P. McKean. Diffusion Processes and their Sample Paths. Springer-
Verlag, 1974.

[Kry80] N.V. Krylov. Controlled diffusion processes. Springer-Verlag, 1980.

[KS91] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer-
Verlag, 1991.

[KT81] S. Karlin and H.M. Taylor. A Second Course in Stochastic Processes. Academic
Press, 1981.

[Man68] P. Mandl. Analytical treatment of one-dimensional Markov processes. Springer-
Verlag, 1968.

[Mer73] R.C. Merton. Theory of rational option pricing. The Bell Journal of Economics
and Management Science, 4(1):141–183, 1973.

[MH95] G.E. Metcalf and K.A. Hassett. Investment under alternative return assumptions
comparing random walks and mean reversion. Journal of Economic Dynamics and
Control, 19(8):1471–1488, 1995.

[MOS66] W. Magnus, F. Oberhettinger, and R. P. Soni. Formulas and Theorems for the
Special Functions of Mathematical Physics. Springer-Verlag, third edition, 1966.

[MS86] R. McDonald and D. Siegel. The value of waiting to invest. The Quarterly Journal
of Economics, 101(4):707–728, 1986.

[NS04] A. Novikov and A. Shiryaev. On an effective solution to the optimal stopping
problem for random walks. Research Paper Series, Quantitative Finance Research
Centre, University of Technology Sydney, (131), 2004.

[ØR98] B. Øksendahl and K. Reikvam. Viscosity solutions of optimal stopping problems.
Stochastics and Stochastics Reports, 1998.

[RW94] L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales -
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