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Abstract

We ask whether the notion of a homotopy class of a path on a complex algebraic
variety admits a purely algebraic characterisation, and reformulate this question
as a question of categoricity of the universal covering space of a complex algebraic
variety in a natural countable in�nitary language. We provide partial positive results
towards the question.

Assuming a conjecture of Shafarevich and some assumptions on the fundamental
group of the complex algebraic variety, we introduce a Zariski-like topology on
the universal covering space of a complex algebraic variety which enjoys properties
slightly weaker than those of a Zariski topology: the topology has descending chain
condition for irreducible set, the projection of a closed set is closed, and some
others, and we prove that a natural countable language is able to de�ne �rst-order
the irreducible closed sets of the topology. Then we axiomatise a class of structures
which admit topologies with similar properties; those properties are enough to prove
model stability of the class.

Following the programme of Zilber of �logically perfect structures�, the paper aims
to provide a new class of examples of such structures.
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Chapter 1

Introduction and Motivation

1.1 Introduction

1.1.1 General Framework

The work below is a generalisation of some aspects of the paper of Boris Zilber [Zilb]
on group covers, and and should eventually form a part of author's D.Phil. thesis
done under his supervision.

Is the notion of homotopy on a complex algebraic variety an algebraic notion ?
That is, can the notion of homotopy be characterised in a purely algebraic way,
without reference to complex topology? Restrict to 1-dimensional homotopies only;
a 1-dimensional homotopy is a path; this question becomes then whether the notion
of a path, up to �xed point homotopy, on a complex algebraic manifold, can be
characterised in a purely algebraic way? We provide a partial positive answer to the
following more precise question. Assume that one has an abstract notion of a path
up to homotopy, so that one is able to speak about homotopy classes of paths, their
endpoints, liftings along topological coverings, paths lying in a subvariety; can that
notion be described without recourse to complex topology? Is that true that one
can axiomatise that notion is such a way that any realisation always comes from
a choice of an embedding of underlying �eld into C, or equivalently, a choice of a
complete Hausdor� topology on the underlying �eld ?

Model-theory tools allow one to formulate the question in a mathematical way
as a question of categoricity of a structure related to the fundamental groupoid,
or equivalently the universal covering space, of a complex algebraic variety; more-
over, such categoricity questions are well-studied in model theory, and one may
say that they form the core of a substantial part of the subject, as developed
by Shelah[She83a, She83b]. Rather straightforward model-theoretic analysis shows
that the partial positive answer we are able to provide depends on a conjecture on
the complex analytic geometry of the underlying variety, and some properties of
its arithmetics which are conjectured for some particular types of varieties. Thus,
this question sheds new light on the Diophantine conjectures, and their relation to
complex geometry; the understanding that a natural and simply formulated model-
theoretic question, via model-theory techniques, can shed light on questions and
conjectures in complex geometry and arithmetics may be thought of as one of the
most signi�cant achievements of the paper.

It also turns out that the question falls very naturally into model theoretic frame-
work of Zariski geometries and �logically perfect structures� started by [Hrushovski-
Zilber] and further developed by Zilber [Zil05a, Zild]. The programme of �logically
perfect structures� of Zilber is based on an expectation that many important struc-
tures appearing in physics and mathematics are �logically perfect� when considered

7



8 CHAPTER 1. INTRODUCTION AND MOTIVATION

in an appropriate language; �logical perfection� means that those structures posses
either stability properties, categoricity in a, perhaps non-�rst order, Lω1ω-context,
or are analytic Zariski, or could be obtained via a Hrushovski construction. Thus,
in papers and preprints there are preliminary attempts to show that certain struc-
tures arising in complex analytic geometry (exponential function [Zilb, Zilc, Zile]), in
non-commutative geometry (non-commutative torus [Zil04]), toric geometry (toric
varieties, with L.Smith) and string theory physics ([Zil04]) are either stable, Lω1ω-
categorical, analytic Zariski, a result of a Hrushovski construction, or otherwise ap-
pear naturally in model-theory context. Most of structures mentioned above did not
appear in pure model theory earlier, and thus are hoped to provide new examples of
structures with nice model-theoretic properties; proving those properties sometimes
requires deep arithmetic conjectures (Mordell-Lang and Schanuel conjectures)

Thus, our result may be seen a case where the hopes of the programme are realised,
and lead to a success. However, a distinction is that while in many of those questions
the choice of an appropriate language is sometimes non-trivial, it is essential for us
that the language is the natural one, but the proof depends on rather deep and
recent conjectures in complex geometry and number theory.

From the point of view of model theory, we give a new class of examples of non-
homogeneous, but conjecturally ω-homogeneous and model homogeneous structures
possessing stability properties; namely, structures in the corresponding Lω1ω-class
are model homogeneous and stable over countable submodels, and conjecturally ω-
homogeneous. The examples may be thought of as groupoids associated to classical
model theory structures, namely algebraic varieties; to be the best of my limited
knoweledge, groupoids have not been studied from a model-theory point of view.

Yet another point of view is that the structures in the Lω1ω-class can be thought of
as related to the inverse limits of classical stable structures; indeed, our structure
naturally embeds into an inverse limit of varieties over an algebraically closed �eld.

Let us �rst illustrate the question by an explicit example of Zilber[Zilb] of weak
exponentiation, to which all our considerations apply.

1.1.2 An explicit example

Motivated by the belief that every structure naturally occurring in mathematics,
is �logically perfect�([Zild]), Zilber proves an Lω1ω-categoricity statement for two-
sorted structure

Clin
exp = ((C,+), (C∗ ∪ {0},+,×), exp : C → C∗)

describing the exponential map exp : C → C∗; the language L(Clin
exp) separates the

sorts C and C∗ for the domain and the range of exp; the structure on sort C∗ is that
of an algebraic variety, while the structure on sort C is that of a Q-vector space,
together with the pull-back of the structure on sort C∗. He also gives an explicit
axiomatisation of the Lω1ω(Lexp)-theory.

The integral of dz
z over a path in C∗ does not change with a continuous transforma-

tion of the path �xing the ends and avoiding the singularity 0 of dz
z ; in other words,

the integral depends only on the homotopy class of the paths in C∗, with homotopy
�xing the ends. Thus, the map

{paths [γ] in C∗, γ(0) = 1} −→ C

γ 7→
∫
γ

dz

z
= ln(γ(1)) + 2πik, k ∈ Z
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identi�es C with the homotopy classes γ, γ(0) = 1 of paths in C∗.

The multiplication map m : C∗ × C∗ → C∗ induces a map on paths m∗ : (γ, γ′) 7→
γ · γ′, where (γ · γ′)(t) = γ(t)γ′(t) is the pointwise product of paths γ and γ′ as
functions from [0, 1]; this allows us to express addition on C as∫

γ

dz

z
+
∫
γ′

dz

z
=
∫

γ·γ′

dz

z
= ln(γ(1)) + ln(γ′(1)) + 2πik, k ∈ Z.(1.2)

The above observations make it natural to think of Clin
exp as describing the homotopy

classes of paths in C∗, or indeed C∗n, n > 0 in a language re�ecting the behaviour
of paths under morphisms and their concatenation properties. This approach easily
generalases the question to arbitrary algebraic variety.

It is natural not to restrict oneself to paths γ starting at 1, γ(0) = 1, and consider
integrals over arbitrary paths in C∗.

The set of the homotopy classes of paths with a given starting point forms the
universal covering space; this observation allows us to think instead of Clin

exp as a
structure describing the universal covering space of C∗, and re�ecting the property
of being a connected component of an algebraic closed subset.

We use the latter point of view to generalise the approach of Zilber[Zilb]; the inter-
pretation of Clin

exp in terms of paths allows one to formulate a categoricity question
for arbitrary variety de�ned over Q, or even a �eld of positive characteristic. The
proofs of [Zilb] use Kummer theory, as well as some other number-theoretic tools.
Here we use similar tools, but in a rather di�erent appearance; in particular, we
have to use holomorphic convexity of the complex structure on the universal cover-
ing space to prove Kummer-theory type results over an algebraically closed �eld.

1.1.3 Technical summary of our results

In this paper we de�ne a natural countable language LA
top associated with the uni-

versal covering space p : U → A(C) of a complex projective algebraic variety A(C)
de�ned over Q or Q. Assuming the conjecture of Shafarevich that the universal
covering space U is holomorphically convex, we prove that the positively de�nable
sets in LA form a topology analogous to Zariski topology on the set of geometric
points of a variety. The properties of the topology on U are su�cient to imply that
the structure ULA

top is homogenous over countable submodels. We then consider a

fragment of Lω1ω(LA)-theory Theory
LA

top
ω1ω (U) of ULA

top and introduce several natural
axioms of geometric, analytic Zariski, �avour implying the properties of the topol-
ogy on U . Then we show that the class of models de�ned by those axioms is stable
(in a non-elementary context) over countable models, and, moreover, atomic in a
natural extension of the language.

These are prerequisites, by Shelah's theory, of categoricity in uncountable cardinals.
Notice that some of the properties, e.g. atomicity, could, by Shelah's theory, be
obtained just by an Lω1ω-de�nable extension of the language. Yet, essentially for
us, we stay in some natural language.

Thus, by Shelah's theory, this is enough to imply ℵ1-categoricity of a class con-
taining with ULA

top , for an arbitrary smooth projective variety A with a homorphi-
cally convex universal cover and with some conditions on the fundamental group.
(Cf. De�nition 3.1.2.6 for the exact de�nition of the class of algebraic varieties).

However, in general we do not wish to �x a countable submodel; then there rises
a question of ω-homogeneity and ω-stability, and in general, of the existence of a
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prime model for the theory TheoryLA
top

(U). This question depends on arithmetics
of variety A; for C∗ it is just Kummer theory. This preprint does not concern these
questions. We hope to include in the thesis the results of this kind concerning elliptic
curves over de�ned over a number �eld, and if possible, some abelian varieties for
which corresponding arithmetics results are known.

1.2 Motivations and implications

In this § we discuss the motivations behind our choice of language, its origins, its
relation to other mathematical questions, meanwhile we explain our approach in
greater detail. In a way, the motivations here are more important than the proofs.

1.2.1 Logic approach: What is an appropriate language to talk about
paths ?

The theory of algebraically closed �eld provides a language appropriate to talk
about algebraic varieties; what language would be appropriate to talk about the
homotopies on the algebraic varieties, in particular about paths, i.e. 1-dimensional
homotopies?

There is no notion of a path in abstract algebraic geometry over an arbitrary �eld,
but there is a strong intuition based on the na�ve notion of a path in complex
topology; it is a well-known phenomenon that naive arguments based on the notion
of a path quite often lead to statements which generalise, in one way or another, to,
say, arbitrary schemes, but which are quite di�cult to prove. There have been many
attempts to develop substitute notions, starting from Grothendieck [SGA2,SGA4 1

2 ]
who developed for this purpose the notion of a �nite covering in the category of
arbitrary schemes (étale morphism).

Thus, from the point of view of philosophy of mathematics, it is natural to try to
understand why is the notion of a path so fruitful and applicable, despite the fact
that all attempts to generalise it to non-topological contexts are only partial. A �rst
question to ask is whether this notion is algebraic, i.e. the notion of a path (up to
homotopy) in complex topology, can be axiomatised purely algebraically ?

1.2.2 Categoricity Theory Approach: Can the notion of path be made
algebraic, or categorical ?

Model theory provides a framework to formulate the question precisely, in a math-
ematical fashion. The central model theoretic notion for us is that of categoricity
(of non-elementary classes). The relevance of this notion has been exposed in [Zilb];
categoricity is a model-theoretic criterion for a formalisation of a notion to be seen
as canonical, i.e. for determining when an algebraic formalisation associated to an
object of perhaps geometric character, is canonical and re�ecting the properties of
the object in a complete way.

Thus, in this work we introduce a language LA
top which is appropriate for describing

the basic homotopy properties of algebraic varieties in complex topology, and prove
some partial results towards categoricity and stability of associated structures in
that language. The language LA

top is able to express properties of 1-dimensional
homotopies, i.e. the properties of paths, up to homotopies �xing the ends. Those
properties relate to paths-lifting along a topological covering, paths lying in closed
algebraic subvarieties (i.e. a homotopy class has a representative which lies in the
subvariety), paths in direct products and so on; the properties are su�cient to do
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many basic 1-dimensional homotopy theory constructions. Most notably, following
a construction in Mumford [Mum70] one can de�nably construct a bilinear form
φL : π1(A(C))× π1(A(C)) → π1(C∗) in the second homology group H2(A(C),Z) ∼=∧2

H1(A(C),Z) associated to an algebraic C∗-bundle L over a complex Abelian
variety X(C). Thus, generally the language has more expressive power than the one
considered originally by Zilber in [Zile]; in particular, some Abelian varieties which
may not be categorical in Zilber's language of [Zile] are supposedly categorical in
our language. It would be interesting to know whether our language can interpret
Hodge decomposition on cohomology groups, using the isomorphismHn(A(C),C) ∼=∧n

H1(A(C),C) =
∧n Hom (π1(A(C)),C) (cf. [Mum70]).

The results which we prove are partial results and necessary conditions towards the
categoricity of the universal covering space considered as an LA-structure, in the
in�nitary logic Lω1ω; cf. �1.2.8 for a description of the general theory relating to
categoricity of Lω1ω, and those conditions in particular.

1.2.3 Geometric approach: Analytic Zariski structures

Perhaps one of the simplest analytic structures associated to an algebraic variety
and which is more then an algebraic variety itself, is the universal covering of an
algebraic variety; the universal covering space inherits all the local structure the base
space possesses; and in particular, for a complex algebraic variety it is a complex
analytic space. Thus it is natural to try to consider it in the context of Zariski
geometries [Zil05a]: one wants to de�ne a Noetherian-type, Zariski-like topology on
the universal covering space U of variety A(C) re�ecting the connection between U
and A, and such that U possesses homogeneity, stability and categoricity properties,
perhaps in a non-�rst order, Lω1ω, way, in a countable language related to the chosen
topology on U .

Thus consider the universal covering space p : U → A(C) of an algebraic variety A. It
is natural to assume that the covering map p and the full algebraic variety structure
on A(C) are de�nable. Then the analytic subsets of U which are the preimages
p−1(Z(C)) of algebraic subvarieties Z of A(C), are de�nable. It is natural to let the
analytic irreducible components of such sets also to be de�nable; a justi�cation for
this might be the desire for an irreducible decomposition.

The above considerations lead us to de�ne a topology on U by proclaiming a set
closed i� it is a union of analytic irreducible components of the preimage of an
closed algebraic subvariety W (C) of A(C), or a �nite union of such sets.

It turns out that this topology is rather nice, (almost) admits quanti�er elimina-
tion down to the level of closed sets, DCC (descending chain condition) for irre-
ducible sets, and can be de�ned in a countable language (in full generality assum-
ing Shafarevich conjecture on the universal covering spaces of algebraic varieties).
Those properties of topology are su�cient to imply model homogeneity of the struc-
ture p : U → A(C), and, more generally, to construct an Lω1ω-class containing
p : U → A(C) stable over models and whose models are model homogeneous. It
also turns out that the language obtained is the language appropriate for describing
the paths, as explained in subsection above. We explain the connection in the next
subsection �1.2.5.

1.2.4 Category theory approach: algebraicity of fundamental groupoid

Let us make a side remark that the above considerations of the notion of path admit
a reformulation in terms more familiar to algebraic geometers; we do not make the
considerations of this subsection precise, and neither do we use them in this paper;
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however, see �2.2 to see how to recover groupoid structure from the LA-structure
on U. Also note that here we do not have to choose a language: that has already
been done for us by algebraic geometers.

Indeed, all the properties of the paths on a complex algebraic variety we described
in the previous §, could be expressed in terms of the fundamental groupoid functor
πtop1 : V → Groupoids from the category of complex algebraic varieties V (say de-
�ned over Q) to (discrete) groupoids Groupoids; the functor πtop1 (V ) = πtop1 (V (C))
sends a variety V into its discrete fundamental groupoid πtop1 (V (C)). Then the ques-
tion of categoricity of the notion of paths in the language LA could be reformulated
as a question of the following kind:

Question 1.2.4.1. Given a functor F : V → Groupoids satisfying some algebraic
properties of functor πtop1 : V → Groupoids, there exist automorphisms σ : Q →
Q and σ′ : Groupoids → Groupoids of corresponding categories such that the
diagramme commutes:

V
πtop1−−−−→ Groupoids

σ

y σ′

y
V F−−−−→ Groupoids

(1.2.1)

The question above may motivate us to ask whether it would be true if we restrict
V to some subcategory, say that of elliptic curves (and their closed subvarieties).

Let us make it clear that we do not expect a positive answer to the question in
this generality; what we expect is a positive answer when VQ is restricted to be a
subcategory of subvarieties of a given variety etc.

The most notable of algebraic properties required of F is that the corresponding
fundamental groups coincide.

1.2.5 Equivalence of analytic Zariski and paths approaches

A de�nition of the universal covering space p : U → A(C) (see e.g. [Nov86]) says
that it is a set of homotopy classes of paths leaving a basepoint, with an induced
topology. Thus, it is equivalent to talk about the universal covering spaces instead
of homotopy classes of paths; that is easier from the technical point of view.

The above two observations make it natural to consider the universal covering space
p : U → A(C) in the context of analytic Zariski structures.

We de�ne a topology on U by proclaiming a set closed i� it is a union of analytic
irreducible components of a preimage of an closed algebraic subvariety W (C) of
A(C), or a �nite union of such sets. The critical observation is that a connected
component of the preimage of a normal subvariety is always irreducible; and, if one
thinks of U as a set of paths, then, forgetting technicalities, a connected component
is a set of all paths lying in W (C); thus if subvarieties W were always normal, we
would recover the interpretation of de�nable closed sets in terms of paths, i.e. we
would see that each closed set is de�nable via the basic properties of paths, and
algebraic subsets of A(C). ForW not normal, it turns out that we may still interpret
the irreducible component in a similar way, as a set of paths in a subvariety of
covering spaces of A(C) of �nite degree, which are known to be always algebraic
([Ser56]). However, the latter is not trivial, and requires a geometric argument based
on assumption that U is holomorphically convex manifold; Cn and submanifolds
are examples of such a holomorphically convex manifold. (cf. Def. 4.3.1.1). By a
conjecture of Shafarevich (cf. Conj. 4.3.1.3 this should hold for arbitrary variety,
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say smooth and quasi-projective. In fact, we need a slightly weaker statement that
a universal covering space satis�es the conditions of Fact 3.1.2.1.

Thus, we see that analytic Zariski approach leads us back to the homotopy inter-
pretation as above.

1.2.6 Countable language

In previous �� we have carefully avoided discussing the size of language LA: we have
just discussed the de�nition of a topology on U , but not that of a language LA

top;
what we want is that language LA

top is to be able to de�ne the closed sets in the
chosen topology, and we want to consider U as an analytic Zariski structure in a
countable language. This is desirable for several reasons; one is that if language
were too big, the notion of an isomorphism would have been too strong, and we
cannot hope to have categoricity at all; another is that we want to be able to apply
Shelah's theory of excellent classes, and that theory requires a countable language.
In case of an algebraic variety, one takes the language to consists of all subvarieties
de�ned over a su�ciently large number �eld; similarly, we de�ne the language LA

top

by adding a predicate for connected components of each closed algebraic subvariety
of An de�ned over Q, or a �nite extension of the �eld of de�nition of A. The fact
that LA

top is able to de�ne connected components of the preimage of an arbitrary
subvariety is a geometrically non-trivial result employing Stein factorisation for
normal varieties; and again we use holomorphic convexity to reduce the general
case to that of normal subvarieties.

1.2.7 Future work

To reach categoricity, we need, by Shelah's criteria, to prove existence of prime model
(here it is essential that we work in a natural countable language); this seems to be
an arithmetic statement about Kummer theory of A; for A an abelian variety, that
is a statement about the largeness of Galois action on sequences of division points
of A(Q) (Tate module, Mumford-Tate conjecture).

Combined with the results here, it will give us ℵ1-categoricity of our class.

To obtain categoricity in higher cardinals, we need to consider amalgams of mod-
els, etc; the number theoretic questions appearing there involve linearly disjoint
�elds, tensor products of algebraically closed �elds, and in�nitely divisible points of
A(K̄⊗k̄ K̄) over such �elds, etc; it is not yet clear how di�cult those questions are.

1.2.8 Categoricity theory

In this § let us say a few words on the model-theory machinery of categoricity we
use.

Recall we say that a class < of structures in language L is λ-categorical i� any two
models M1,M2 ∈ < of cardinality λ, are isomorphic. In classical model theory, an
important question is when a class of models of a �rst-order theory is categorical
in uncountable cardinality; a theorem of Morley says that the class of models of a
countable �rst-order theory is λ-categorical for some uncountable λ > ℵ0 i� it is
λ-categorical for any uncountable λ > ℵ0.

In the more modern approach, created and developed by Shelah, one considers
classes < of L-structures with a �strong substructure� partial order relation 4<
which is weaker than the L-substructure relation, i.e. for M1,M2 ∈ <, the relation
M1 4< M2 implies that M1 is an L-substructure of M2. Further assumptions on <
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are formulated in terms of relation 4< and are that the relation 4< is transitive,
is closed under isomorphism, is closed under union of in�nite 4<-chains, and an
analogue of Löwenheim-Skolem theorem holds: there exists a �Löwenheim-Skolem�
cardinal LS(<) such that if A ⊂ M ∈ < is an arbitrary subset of a model M ∈ <,
then there exists a model A ⊂ M0 4< M and cardM0 ≤ cardA + LS(<). A
class satisfying these and some other properties is called abstract elementary class,
cf. [Gro02].

The theory of categoricity has been particulary fully developed for excellent classes;
for us their most most important feature is that the categoricity of such a class de-
pends only on behaviour of its countable models. With some set-theoretic assump-
tions, Shelah was able to prove Morley's theorem for categorical classes, i.e. that
such a class in categorical in uncountable cardinality λ > cardL i� it is categorical
in all uncountable cardinalities λ > cardL. Necessary conditions for uncountable
categoricity include:

1. existence of a prime modelMprime, i.e. a modelMprime ∈ < which is strongly
contained in any other model in <: for any M ∈ < there exists an L-
embedding i : Mprime → M such that i(Mprime) 4< M . A su�cient con-
dition is that there is an L-atomic L-model M0 ∈ <, i.e. such that for every
m ∈M there exists a formula φ(u) ∈ L such that φ(m) holds in M , and for
every other formula ψ(u) ∈ L if ψ(m) holds in M , then ∀u(φ(u) → ψ(u))
holds in M .

2. < is ω-stable, or model stable: there are not more than countably many types
over a countable model M realised in an extension M 4< N , N varies

The model stability of the class allows one to introduce some notion of independence;
and to de�ne an excellent class, one requires some conditions on countability of the
set of types over a �nite union of �independent n-cubes� of countable models; for
n = 2, the conditions is that for any two modelsM1,M2 ∈ < independent over their
intersectionM0 = M1∩M2 4< M1,M2, there exists a modelM1 4< M3,M2 4< M3

prime over M1 ∪M2.
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M1??�����
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M2 __?????
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What we prove in this paper is the condition 2 of model stability of class < required
for categoricity; this turns out to be a question of geometric nature. In a forthcoming
paper we hope to consider questions relating to the existence of a prime model for
some particular examples; these are arithmetic questions.

1.2.9 The structure of the text

The mathematics of what follows is based on model theoretic logic ideas and at the
same time heavily relies on some analytic and algebraic geometry. We have chosen
to emphasise the logic content and so most of the details on analytic theory we need
is shifted to the appendix. So we try to present basic analytic facts and de�nition
in the main body of the text and provide necessarily detailisation and proofs in the
Appendix.



Chapter 2

De�nitions and Examples

2.1 Motivations and Statements

The goal of this chapter is to introduce main objects, state precisely main de�nitions
and motivations, present the main results and give some examples.

2.1.1 The Goal

Let p : U → A(C) be the universal covering space of an algebraic variety A. As
explained in �1.2.3,�1.2.1, we have the following

Aspiration 2.1.1.1. The universal covering space of an algebraic variety is essen-
tially an algebraic object, by which we mean that one may
1. it is an algebraic object, i.e.

(a) there is a countable set L of distinguished subsets Pi of Cartesian powers
of U

(b) there is a countable set of properties of those distinguished set express-
ible by �formulae of countable length and �nite depth�

(c) the distinguished subsets Pi are enough to describe the structure on U
which we are interested in and consider U in

(d) which characterises U uniquely, up to isomorphism preserving the dis-
tinguished relations on U .

2. the distinguished relations Pi on U describe some analytic or homotopic
datum, say
(a) the distinguished relations Pi's on U are enough to describe connected

components of preimages of algebraic subvarieties of A(C)n.
(b) the distinguished relations Pi's on U are enough to de�ne analytic irre-

ducible components of preimages of analytic subsets of A(C)n

An example of an algebraic object are a �eld, a ring, a module over a ring, an
algebraic variety de�ned over a countable ring, considered as the set of its points
over an algebraically closed �eld; on the other hand, a priori a topological space or
an analytic manifold are not algebraic objects in this sense: the topology consists
of uncountably many sets, and a priori there is no way to choose a countable set of
relations de�ning the topology. Thus, what we want is, in particular, to show that
this is possible to do for the universal covering space of some varieties which are
good enough.

In model-theoretic jargon the above translates to

Aspiration 2.1.1.2. There is a countable language LA on the universal covering
space p : U → A(C), describing some analytic or homotopic data on U , such that
p : U → A(C) in LA admits a natural axiomatisation, perhaps non-�rst order, say
in Lω1ω(LA), which is uncountably categorical.

15
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Following considerations of �� in introduction, the aspiration above may be trans-
lated to the following question of model theory; we explain our precise partial results
towards Aspiration 2.1.1.2 (Theorem 3.5.4.7)after giving the de�nition of language
LA in next subsection.

In 3′ below, π(U) = π1(A(C)) denotes the group of deck transformations of covering
p : U → A(C), otherwise known as the fundamental group of A(C); π1(A(C))
consists of the continuous analytic isomorphisms τ : U → U which commute with
the covering map p, τ ◦ p = p; cf. �4.1 for more details and de�nitions.

Aspiration 2.1.1.3. There exist a countable language LA, i.e. a countable collec-
tion LA = {Pi} of predicates (i.e. distinguished subsets of Cartesian powers of U),
and an axiomatisation X = X(LA, p : U → A(C)) of p : U → A(C) in Lω1ω(LA),
i.e. a countable collection φi of sentences in Lω1ω(LA), such that

1 U admits an Lω1ω(LA)-axiomatisation X

1′ all sentences X = {φi} are valid on U , in notation U |= φi, φi ∈ X

2 axiomatisation X is uncountably categorical
2′ for any two uncountable models U1,U2 of the same cardinality, if

U1,U2 |= φi, for all φi ∈ X, then U1 and U2 are isomorphic as LA-
structures, U1

∼=LA
U2, i.e. there exists a bijection φ : U1 → U2

preserving distinguished relations Pi's in LA.
3a language LA describes some of analytic structure on U ,

3′ a closed analytic π1(A(C))-invariant subset S of Un are LA-de�nable,
with parameters, as well as the irreducible analytic components thereof

3b language LA describes some of topological, homotopy theory data on U as
the universal covering space A(C).
3′′ the connected components of a preimage of an algebraic closed subset

of An(C) are LA-de�nable, with parameters

In addition to the precise statements above, we want

1′′ the sentences φi ∈ X have a natural geometric meaning; there is an
explicit description of the class of models satisfying axiomatisation X.

Remark 2.1.1.4. The choice of 3a, 3b is rather arbitrary, and is speci�c to this work;
for example, in [Zilc] Zilber considers A = C∗ and replaces 3a, 3b

3′′′ any analytic set de�nable by polynomial-exponential equations (i.e. those
consisting of +, ×, exp) is LC∗ -de�nable.

2.1.2 LA-structure on the universal covering space p : U → A(C)

Item 3 leads us to introduce the following π(U)-invariant relations.

For a closed subvariety Z ⊂ A(C)n, let ∼Z,A denote the relation on Un given by

x′ ∼Z,A y′ ⇐⇒ points x′ ∈ U
n and y′ ∈ U

n lie in the same (analytic)
irreducible component of p−1(Z(C)) ⊂ U

n.

For Z(C) smooth, or, even normal, subvariety, the connected components of p−1(Z(C))
are irreducible (as analytic closed sets). Thus, for such varieties, the relation ∼Z,A

is an equivalence relation encoding topological data only, and data on A(C).

For a normal subgroup H C π(U)n, let x′ ∼H y′ say that points x′, y′ ∈ U
n are

conjugated by action of H:

x′ ∼H y′ ⇐⇒ ∃τ ∈ π(U)n : τx′ = y′ and τ ∈ H.

De�nition 2.1.2.1. We consider the structure p : U → A(C) in the language LA

which has the following symbols:

the symbols ∼Z,A for Z a closed subvariety de�ned over number �eld k, and,
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the symbols ∼H , for each normal subgroup HC�nπ(U)n of �nite index

Note that we do not assume Z to be connected; that is important, because Z is
de�ned over a small �eld.

The group π(U) acts on U by analytic isomorphisms; and thus π(U) acts by LA-
automorphisms of U as an LA-structure, which is a property we have been after.

2.1.3 Results

Theorem 2.1.3.1 (Model Stability of X(A(C))). Let A be a smooth projective al-
gebraic variety de�ned over Q such that the universal covering space U of A is Stein
(holomorphically convex). Also assume that the fundamental group π1(A(C), x)) of
any connected component of A(C) is residually �nite and lerf.

Let language LA be the countable language de�ned in Def. 2.1.2.1. Then (1′, 3a, 3b)
hold, and 2′ is weaken to 2′ℵ1

:

2′ℵ0→ℵ1
Any two models U1 |= X and U2 |= X of axiomatisation X and of cardi-

nality ℵ1, such that
there exist a common countable submodel U0 |= X, U0 ⊂ U1 and U0 ⊂
U1

are isomorphic, U1
∼=LA

U2, and, moreover, the isomorphism φ is identity
on U0.

According to a conjecture of Shafarevich, the universal covering space of an arbitrary
smooth projective variety is Stein (holomorphically convex), and thus Theorem
above should apply to arbitrary variety. An example of a Stein space are compact
complex spaces, Cn, Gaussian half-plane H, and closed analytic subsets thereof;
thus the conjecture holds for C∗, elliptic curves, and arbitrary curves.

The property that the fundamental group is residually �nite or even lerf is known
([Sco85]) when variety A is of dimension 1, dim A = 1, and also holds A an Abelian
variety.

The general theory of Lω1ω by Shelah [She83a, She83b] implies that there is exists
an ℵ1-categorical countable Lω1ω-axiomatisation X′ = X′(U) extending X.

Corollary 2.1.3.2. The model U belongs to an ℵ1-categorical class.

In a forthcoming paper we hope to prove an ℵ1-categoricity result for the case of
A = E an elliptic curve de�ned over Q.

2.1.4 Linear structure on the universal covering spaces of �eld
multiplicative group C∗ and elliptic curves E(C)

Here we present some examples, and, for certain varieties A carrying abelian group
structure, make explicit a locally modular, linear structure contained in the LA-
structure on the universal covering space U . In general, it is not clear whether
LA-structure on U is a combination of a locally modular structure and the pull-
backs to U of the algebraic variety structure on varieties AH(C)'s. In a few of
the examples we present below, it is so; however, the proof requires a geometric
argument, and we defer it until the last chapter where we actually have to use it to
obtain categoricity.

Example 2.1.4.1 (A = Gm; A(C) = C∗, the complex exponential map as the
structure Clin

exp). Take A = Gm be the multiplicative group of a �eld; as a variety,
it is de�ned over Q. The universal covering space is C exp−−−−→ C∗: UGm = C and
p = exp. Variety Gm is de�ned over Q, as well as the morphisms m : C∗×C∗ → C∗

and morphism zn : C∗ → C∗, and a closed subvariety ∆ ⊂ C∗ × C∗. Thus their
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graphs are also Q-de�ned, and we get that the following equivalence relations on C
are in LA:

(x1, y1) ∼∆ (x2, y2) ⇐⇒ x1 − y1 = x2 − y2

(x1, y1) ∼{zn=y} (x2, y2) ⇐⇒ nx1 − y1 = nx2 − y2

(x1, y1, z1) ∼{xy=z} (x2, y2, z2) ⇐⇒ x1 + y1 − z1 = x2 + y2 − z2

(2.1.1)

The fundamental group 2πiZ acts by translations z 7→ z + 2πik, which is an LA-
automorphism of Clin

exp.

Complex conjugation x→ x provides a continuous LA-autmorphism of Clin
exp which

does not come from the fundamental group; it follows from the property

exp(z̄) = exp(z), z ∈ C.

In general, there are many such automorphisms, but they are not necessarily con-
tinuous or even measurable.

Thus, one can see that any automorphism of the kernel 2πiZ as an abelian group
can be extended to an automorphism of the whole structure. That is a property we
want to keep in other examples; it is a property of homogeneity of the LA-structure.

To conclude, we see that the structure on the C-sort of Clin
exp is the pull-back of

algebraic structure on C∗ enriched by an a�ne, locally modular structure on C
itself.

The language LA is rather robust under change of A; for example, if we take A =
Gm×Gm, then the structure obtained is essentially equivalent to the structure Clin

exp.

Example 2.1.4.2 (A = Gm ×Gm = C∗ × C∗). In this case the relations of 2.1.1
concerning ∆C∗ and {zn = y} are still de�nable, but as relations with two variables
in C×C and not 4 variables in C; the analogues of relation concerning multiplication
is also de�nable; the formulas are as follows; here (xi, yi) denote the coordinates of
zi ∈ UGm×Gm

∼= UGm ×UGm.

z1 ∼∆ z2 ⇐⇒ x1 − y1 = x2 − y2

z1 ∼{xn
1 =y1} z2 ⇐⇒ nx1 − y1 = nx2 − y2

(z1, z2) ∼{x1y1=x2} (z3, z4) ⇐⇒ x1 + y1 − x2 = x3 + y3 − z4

(2.1.2)

We can repeat the previous example word-by-word to get an example about elliptic
curves.

Example 2.1.4.3 (A = E an elliptic curve; theWeierstrass function C → E(C)
). Take A = E be an elliptic curve de�ned over Q and possessing a Q-rational point
O ∈ E(C); thus it carries a addition operation de�ned over Q where O is the zero
point. The universal covering space is C: UE = C and p = ρ is the Weierstrass func-
tion. Thus, the morphisms m : C∗ × C∗ → C∗ and morphism zn : C∗ → C∗, and
a closed subvariety ∆ ⊂ C∗ × C∗ are de�ned over Q, and the following equivalence
relations on UE = C are in LA:

(x1, y1) ∼∆ (x2, y2) ⇐⇒ x1 − y1 = x2 − y2

(x1, y1) ∼{zn=y} (x2, y2) ⇐⇒ nx1 − y1 = nx2 − y2

(x1, y1, z1) ∼{xy=z} (x2, y2, z2) ⇐⇒ x1 + y1 − z1 = x2 + y2 − z2

(2.1.3)
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The fundamental group Λ = Ker ρ is a 2-generated lattice in C acts by translations
z 7→ z + λ, λ ∈ Λ, which is an LA-automorphism of U .

Similarly to C∗-case, it is also true that any automorphism of the kernel Λ as an
EndE-module can be extended to an automorphism of the whole structure U .
However, this is a statement about arithmetic of the elliptic curve, and is more
di�cult to prove. We do it in the last chapter while proving the existence and
homogeneity of the prime model.

We will also see that the structure on the C-sort of Clin
exp is the pull-back of algebraic

structure on C∗ enriched by an a�ne, locally modular structure on C itself.

2.1.5 LA(x′0)-de�nable subgroups π(U , x′0) of U

By abuse of notation, we will use U to refer to the covering map p : U → A(C).

Recall we denote

π(U) = π(p : U → A(C)) = Gal(p : U → A(C))

= {τ :U → U continuous : p ◦ τ = p}
(2.1.4)

and call it group of deck transformations, or the group of Galois transformations,
or Galois group of covering p : U → A(C). For a point x′0 ∈ U , let the �bre of p
above p(x′0) ∈ A(C) be denoted by

π(U , x′0) = {x′ : p(x′) = p(x′0)} = {τx′0 : τ ∈ π(U)}; (2.1.5)

the �bre π(U , x′0) acquires the group structure from π(U) via the bijection

τx′0 7→ τ.

Via that bijection, the group π(U , x′0) acts on U : in particular, x′0 ∈ π(U , x′0)
corresponds to the identity of π(U) and acts trivially. Actions of π(U , x′0) and
π(U , x′1) are conjugated by the unique element of π(U) taking x′0 into x′1.

2.2 The analogue of fundamental groupoid associated to

LA-structure on U

We show that LA-structure U can be equivalently thought of as the fundamental
groupoid of A(C); we do so by interpreting a path in A(C) as an equivalence class
ofU ×U/∼π &∼∆.

2.2.1 Relation to the fundamental group π1(A(C), x0) of A(C)

For any normal subgroup H C π(U), the map p : U → A(C) factors as

U →pH AH(C) →pH

A(C),

where both pH : U → AH(C) and pH : AH(C) → A(C) are covering maps, and

H = π(pH : U → AH(C)) and also π/H ∼= π(pH : AH(C) → A(C)).

For a subset X ′ ⊂ U , let

π(X ′) = {τ ∈ π(U) : τX ′ ⊂ X ′}

π(X ′, x′0) = {τ ∈ π(U , x′0) : τx′0 and x′0

lie in the same connected component of X ′}.

(2.2.1)
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For a topological space B, one de�nes the fundamental group π1(B, b) as the group
of all loops starting and ending at point b, with the operation of concatenation;
the loops are considered up to homotopy, i.e. a continuous transformation of one
into another. Given a universal covering space U of B with a distinguished point
b′ above b, p(b′) = b, there is a well-de�ned action of π1(B, b) on U via path-lifting
property, as explained below.

Path-lifting property of covering p : U → B says that for every path γ : [0, 1] →
A(C), and every point a′, p(a′) = a = γ(0), there exist a unique path γ̃ : [0, 1] → U
such that p(γ̃(t)) = γ(t), 0 ≤ t ≤ 1; intuitively, one should think that we �lift path γ
to the covering space piece by piece�, using the fact that p is the local isomorphism
between the neighbourhoods in U and B, given by the de�nition of the covering.

In fact it can be shown that if any point in U can be joined by a path, then, given
a basepoint b′ ∈ U , path lifting property identi�es U with the set of all paths in
B leaving b. In general, if U is not connected, this identi�es the set of points in
a connected component of U containing b′, and the set of paths in the connected
component of B containing b, up to homotopy (continuous transformation) �xing
the paths; cf. Appendix 4.1.2 for generalities and �4.1.4 for particulars about the
fundamental group and paths-lifting property.

Thus, in our situation there are well-de�ned isomorphisms

π(U , x′0) ∼= π1(A(C), x0), x′0 7→ x0 as the trivial path

and thus we canonically identify

π(U , x′0) = π1(A(C), x0).

Note, however, that the isomorphism π(U) = π1(A(C), x0) is de�ned only up to a
conjugation by an element of π(U); this corresponds to choosing point x′0 above x0.

With an embedding ι : X → A(C), there is also a topological way to associate
a subgroup ι∗π1(X,x0) ⊂ π1(A(C), x0); indeed, a continuous map f : X → A(C)
induces a well-de�ned map on homotopy classes of paths taking γ : [0, 1] → X into
the composition f ◦ γ : [0, 1] → A(C). It is not hard to check that this induces a
group homomorphism

f∗π1(X,x0) ⊂ π1(A(C), f(x0)).

For a subspace X ⊂ A(C), there is a natural embedding of fundamental groups
ι∗ : π1(X,x0) → π1(A(C), x0), which is takes a path into itself. We denote its image
by ι∗π1(X,x0). Then under identi�cation π(U , x′0) = π1(A(C), x0) it holds

ι∗π1(X,x0) = π(X ′, x′0).

2.2.2 Interpretation of U as paths: groupoid structure on U

LA-structure U interprets the paths in A(C) up homotopy �xing the points.

The Lifting Property says that, given a path γ : [0, 1] → A(C), there is a path
γ′ : [0, 1] → U above γ, p ◦ γ′(t) = γ(t), t ∈ [0, 1], starting at any point γ′(0) =
a′0, p(a

′
0) = a0 = γ(0) above the starting point of path γ. Moreover, the homotopy

class of γ′ depends only on the homotopy class of γ. On the other hand, by properties
of the universal covering space, the homotopy class of a path in U is determined
by its endponts. Thus, we see that a path γ in A(C) gives rise to a pair of points
γ′(0), γ′(1) de�ned up to π-action.
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This leads us to the following.

We think of an element of U ×U/∼∆ as a path in A(C) up to loose-endpoint
homotopy ; an element of U ×U/∼π &∼∆ is a path in A(C) up �xed-point ho-
motopy. Namely, (x1, y1), (x2, y2) ∈ U × U are equivalent i� x1 ∼π x2 & y1 ∼π

y2 &(x1, y1) ∼∆ (x2, y2). The endpoints of a path (x, y) are the points x and y con-
sidered up to ∼π, i.e., points p(x), p(y) ∈ A(C) = U/∼π. Thus, two paths (x1, y1)
and (x2, y2) have the same end-points i� x1 ∼π x2 & y1 ∼π y2.

Let π(A(C)) =U ×U/∼π &∼∆ denote the set of paths in A(C) up to �xed-point
homotopy. The set π(A(C)) carries a groupoid structure; we concatenate path (x, y)
and (y, z) to obtain (x, z) = (x, y) · (y, z). A loop is a pair (x, y) of ∼π-equivalent
points, x ∼π y. The set of loops around a given point a0/∼π carries a group struc-
ture; it is customary to represent loops by pairs (a0, y) where a0 ∈ U is �xed. With
this choice, the concatenation is given by the formula

(a0, a1) ◦ ... ◦ (a0, an) = (a0, yn) ⇐⇒

∃x1...∃xn((a0, x1, x1, y1, y1, ..., xn, yn) ∼∆ (a0, a1, a0, a2, ..., a0, an))
(2.2.2)

Note the essential use of existential quanti�ers in the formula.

Let γ in a subset Z of A(C); then any lifting γ′ of γ to U lie in p−1(Z) ⊂ U ; in
particular, each path γ′ has to lie in a connected component of p−1(Z). Thus, we
say that path (a, b) ∈ π(A(C)) lies in Z i� p(a), p(b) ∈ Z and a ∼Z b. Then, we
may think of a connected component of p−1(Z) as the set of end-points, or �xed
homotopy classes, of all paths lying in Z lifted from a particular �xed point in Z.

2.2.3 Topology on the universal covering space p : U → A(C)

It is not hard to notice that all basic LA-de�nable sets have that property that
their π-invariant closure is closed in analytic topology. Provided A is Shafarevich,
we may introduce the following topology on U :
De�nition 2.2.3.1. A subset of U is T -closed i� either of the following two equiv-
alent conditions holds
1. it is a union, possibly in�nite, of irreducible components of a π(U)-invariant

analytic closed subset of U ,
2. it is a union, possibly in�nite, of connected components of an analytic closed

subset of U invariant under action of a �nite index subgroup of π(U),
or a �nite union of such sets.
We will see in those conditions are equivalent Lemma 3.1.4.1 and Corollary 3.5.3.4,
and that T -closed sets do form a topology, provided A is Shafarevich. We use this
fact freely in this chapter to describe examples.

There is another characterisation of the T -topology in terms of the structure on
factor-space AH(C) =U/H; indeed, a closed π-invariant subset ofU is the preimage
of its image inU/H. The action of H on U is free and discrete, and thus factor-
space AH(C) =U/H inherits the analytic structure from U ; similarly the image
of a π-invariant closed analytic set is an analytic subset of U . Now, the analytic
space morphism U/H → A(C) is a covering, and by a result of Serre [GAGA],
U/H = AH(C) carries the structure of a algebraic variety de�ned over the algebraic
closure of k. Since A is assumed projective, AH(C) is projective also. By Chow
lemma, any analytic subset of AH(C) is an algebraic subset of it, and thus we come
to the following equivalent de�nition.
De�nition 2.2.3.2. A subset of U is called T -closed i� it is a union of the con-
nected components of a preimage of a closed algebraic subvariety of AH(C),HC�nπ
(de�ned over C), or a �nite union of such sets.
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The advantage of this as a de�nition is that it could be generalised to other �elds
instead of C.

An important property of T -topology we are after, is that any an analytic irreducible
component of a T -closed set is T -closed and LA-de�nable.

The T -topology is not compact: the �bre p−1(x0) = π(U , x′0) is a countable discrete
subset of U . The discrete group π(U) acts on U by continuous transformations.

2.3 Examples of subvarieties and their associated relations

∼Z

The previous subsections provide us with the de�nition of the object we want to
consider. Let us see the basic constructions which are possible in LA.

2.3.1 Basic Examples of LA-de�nable sets associated to normal
subvarieties

In this �, to give explicit examples, we use the principles that for a large class of an-
alytic sets de�ned by a local property, a connected component is always irreducible.
Namely, if Z is a normal, say smooth, analytic set, then a connected component of
Z is irreducible. Thus, if one considers relations ∼Z for Z normal, it has to be an
equivalence relation.

We give examples of interpretations of basic LA-predicates:

Example 2.3.1.1 (A arbitrary, Z normal). For normal Z, the connected compo-
nents of p−1(Z) are analytically irreducible. Let Z ′ denote a connected component
of p−1(Z), then

x ∼Z y ⇐⇒ ∃γ ∈ π(U) : x, y ∈ γZ ′

Thus, ∼Z is an equivalence relation.

We will later see that for arbitrary Z, ∼Z is a �nite number of several equivalence
relations (cf. Lemma 3.1.4.1, 3.5.3.2).

Example 2.3.1.2 (A arbitrary, Z = ∆ ⊂ A2; LA-de�nability of action of
π(U)). Let Z = ∆ = {(x, x) : x ∈ X} be the diagonal subvariety of A × A. Then
p−1(∆) = {(x′, γx′) : x′ ∈ U, γ ∈ π(U)}, and the connected components of p−1(∆)
have form ∆γ = {(x′, γx′) : x′ ∈ U}, γ ∈ π(U). Thus,

(x, y) ∼∆ (z, t) ⇐⇒ ∃γ ∈ π(U) (x = γy & z = γt) . (2.3.1)

In particular, for any point x0 ∈ U the formula (x0, x0) ∼∆ (z, t) de�nes the diagonal
∆′ = {(x′, x′) : x′ ∈ U}, and, for a point z0 ∈ U , the formula (x0, x0) ∼∆ (z0, t)
de�nes the �bre p−1(p(z0)) = π(U)z0.

In general, given a point x′0 ∈ U , the predicate ∼Z de�nes the action τ : p−1(x0)×
U → U of p−1(x0), x0 = p(x′0) on U by de�ning τy(z) as the unique element such
that

τ : p−1(x0)× U → U

(x′0, y) ∼Z (z, τy(z)).
(2.3.2)

Thus, we have a T -continuous LA(x′0)-de�nable action

π(U , x′0)×U → U

and a LA(x′0)-de�nable group π(U , x′0).
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Example 2.3.1.3 (A arbitrary, Z = Γf is a graph of a morphism f : A→ A).
A connected component of Γf = {(x, f(x)) : x ∈ A(C)} has form {(x, f ′(x)) : x ∈ U ,
for some function f ′ : U → U , and we have p−1(Γf) = {(x, γf ′(x)) : x ∈ U, γ ∈ π}.
Thus, the function f ′ : U → U is LA-de�nable with parameters.

Analogously, the induced homomorphism f∗ : π(U , x0) → π(U , f(x0)) of funda-
mental groups π(U) is also de�nable with parameters.

An important observation is that the function f ′ is quite often bijective while f is
not; an example is A(C) = C∗, U = C, f = z2, then f ′ is just multiplication by 2
(and an additive constant). In a way, this hints that the structure upstairs in U is
simpler then the structure on A(C), at least in some respects.

Example 2.3.1.4 (A arbitrary, X,Y, Z ⊂ A, Z ∼= X × Y ). Let φ : X × Y → Z
be the isomorphism between X × Y and Z; then Γφ embeds into A×A.

The next example hints that to get all the extra structure on U , we may restrict
ourselves by considering only maximal subvarieties with a given fundamental group
(as a subgroup of πn). Sometimes such varieties admit a very clear description and
form a locally modular geometry; for example, in case of C∗n such varieties are
given by Z-linear equations; in case of elliptic curves they are given by EndE-linear
equations. In case of abelian varieties, this class consists of abelian subvarieties; we
will prove that in a forthcoming chapter of thesis; in case π1(A(C)) is abelian, the
�bres of Shafarevich morphisms should be enough (cf. [Kol95] for relevant de�nitions
and results).

Example 2.3.1.5 (A arbitrary, Z ⊂ Y normal, π(Z, z′) = π(Y, z′)). For Z ⊂ Y ,
π(Z, z′) = π(Y, z′), we have γZ ′ ∩ Y ′ 6= ∅ implies γY ′ ∩ Y ′ 6= ∅; Y ′ is a connected
component of p−1(Y ) = πY ′, and thus γY ′ = Y ′, i.e. γ ∈ π(Y ′, z′) = π(Z ′, z′).
Thus we see Z ′ = πZ ′ ∩ Y ′ = p−1(Z) ∩ Y ′.

In general, copies of Z ′ in Y ′ are indexed byπ(Y ′)/π(X ′).

Are connected components of p−1(Z), Z is not necessarily de�ned over k, are LA-
de�nable ?

The following example shows a geometric condition implying that �bres of a LA-
de�nable irreducible set are LA-de�nable with parameters; that condition always
holds for generic �bres, cf. Corollary 3.2.2.2, Proposition 3.2.1.1 for exact statement.

Example 2.3.1.6 (A arbitrary, Z = Y (x, α) connected normal, Y ⊂ A2 is
normal and de�ned over k, α arbitrary). Take Z = Y (x, α) = Yα, Y/k,
and consider �bre Y ′

α′ = Y ′ ∩ U × {α′} where p(α′) = α. Then, Y ′
α′ is a union

of π-translates of Z ′, which do not intersect due to normality of Z, and thus it
is connected i� Y ′

α′ is in fact just Z ′ itself. That is, Y ′
α′ = Z ′ is connected i�

for any γ /∈ π(Z ′), it holds (γ, id) /∈ π(Y ′). Thus, we conclude tat Y ′
α′ = Z ′ i�

π(Y ′) ∩ π × id = π(Z ′)× id.

In general, similar considerations show that the translates of Z ′×{α} within Y are
indexed byπ(Y ′)/π(Z ′)× id.

In fact, we will later see in Lemma 3.2.2.2, Lemma 3.2.1.1 that the condition π(Y ′)∩
π × id = π(Z ′) × id always holds for α ∈ prY (C) generic, provided Y irreducible
(and modulo some mild assumptions on ambient variety A); see the Lemma for
exact formulation. This will imply that LA is able to de�ne generic �bres of closed
sets, and in fact all T -closed sets.

Example 2.3.1.7 (A = X × X, UA
∼= UX ×UX). For A = X × X, Z = ∆ =

{(x, x) : x ∈ X} the diagonal ∆′ = {(x′, x′) : x′ ∈ U} is a connected component of
p−1∆; other connected components are p−1(∆) = {(x′, γx′) : x′ ∈ U}.
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Thus we see that in LA, the decomposition UA
∼= UX ×UX is de�nable over a

parameter.

Example 2.3.1.8 (L∗ is a homogenous C∗-bundle over A, and π1(A(C)) is
Abelian). Let U → A be the universal covering space of A, let pr : L → A be a
homogeneous C∗-bundle over A, and let UL → L be the universal covering space of
C∗-bundle L. We want to de�ne Chern class of L in H2(π1(A),Z).

Take λ′1, λ
′
2 ∈ π(UL), and consider τ = [λ1, λ2] = λ1λ2λ

−1
1 λ−1

2 . Then pr [λ1, λ2] =
[prλ′1,prλ

′
2] = 0, and thus, for each �bre Fa of L, we have [λ1, λ2] ∈ π(Fy) ∼= Z.

Thus we have a map π(UL) × π(UL) → π(Fy). Moveover, a simple topological
argument gives that γλ = λγ for γ ∈ π(Fy) and λ ∈ π(L) arbitrary; using paths
interpretation, this is because one can shift γ along λ in L∗ by multiplicating it by
γ(t). Thus, π(Fy) is central in π(L), and the commutator map on π(UL∗) descends
to a map

π(UA)× π(UA) → π(Fy), (2.3.3)

i.e. a map Λ × Λ → Z. This map could be checked to be bilinear and may be
considered as an element of∧

H1(A(C),Z) ∼= H2(Λ,Z).

The above construction corresponds to constructing group cohomology associated
to short exact sequence of Z-modules

0 → π(Fy) → π(UL∗) → π(UA) → 0

Cf. [Mum70, p.239] for more details on line bundles and their bilinear forms asso-
ciated to Abelian varieties.

To conclude, we see that in the case A = L∗ there is a bilinear form de�nable of
�bres of the covering map. Moreover, if the form is non-degenerate, it allows one to
interpret the ring of integers with addition and multiplication; this makes �rst-order
theory of the structure unstable. Despite this, as was said before, we prove that it
is model stable in Lω1ω; and in general conjecture it to be uncountably categorical
in Lω1ω.

Example 2.3.1.9 (A arbitrary, prZ). We will see later that for every Z ′ irre-
ducible in U, the projection prZ is T -closed, and there exists a �nite index subgroup
H such that π(prZ ′) ∩H = pr (π(Z ′) ∩ [H ×H])

2.4 More examples of universal covering spaces

2.4.1 Examples of 1-dimensional universal covering spaces

Here we give a complete classi�cation of the universal covering spaces of 1-dim
complex algebraic curves. Such curves are also known as Riemann surfaces; they
have two real dimensions.

The following are all simply connected (i.e. π(X) = 0 is trivial):
CP1 is the Riemann sphere
C is the Gaussian plane (i.e. the complex �eld viewed as a complex analytic space)
H = {Im z > 0} is the upper half-plane, or Lobachevsky plane
D = {|z| < 1} is the unit disk
Their group of automorphisms as complex analytic spaces are:
AutC = {z 7→ az + b}
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AutCP1 = GL(2,R)/SL(2,Z)??
AutH = SL(2,R)/± I

Thus, Γ = π1(X(C)) is a discrete subgroup of AutS.

The unit disk D and upper-half plane H are isomorphic as Riemann surfaces.

2.4.2 Classi�cation of 1-dim Riemann surfaces and complete algebraic
curves

Theorem 2.4.2.1. Any Riemann surface X (in particular, a complex algebraic
curve) is isomorphic to a quotient X = S/Γ, where S = CP1,C,H is either of
simply connected canonical regions CP1,C,H, and the group Γ acts on S freely and
discretely by automorphisms.

Thus, Γ = π1(X) is the fundamental group of the Riemann surface X; for X a
Riemann surface, such groups admit an explicit description in terms of generators
and relations.

Γg : For X(C) a complete algebraic curve, i.e. a compact Riemann surface, then
the fundamental group of a complete algebraic curve X(C) is

Γg =< a1, b1, ..., ag, bg : a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g > .

Γg,n : The fundamental group of a punctured compact Riemann surface X(C) −
{p1, ..., pn} without n points, is

Γg,n =< a1, b1, ..., ag, bg, c1, ..., cn : a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g c1...cn > .

For g = 0, Γg is trivial, and X = CP1. For g = 1, X =C/Λ is an elliptic curve, and
Γ1 = Z× Z. For n > 1, the groups Γn are non-commutative, hyperbolic.

2.4.3 Some other examples of covering spaces

Here are the basic examples of the universal covering spaces of complex manifolds.
Incidently, this lists all universal covering spaces of 1-dim Riemann surfaces.

CP1 → CP1 is the universal covering space of itself
C → C is the universal covering space of itself
C →exp C/2πiZ = C∗ is the universal covering space of the multiplicative group C∗

C → C/Λ = EΛ(C) is the universal covering space of an elliptic curve, where Λ is
a 2-dim discrete lattice in C

C2g → C2g/Λ is the universal covering space of a complex torus C2g/Λ; for some
choices of a 2g-dimensional lattice Λ the complex torus C2g/Λ = A(C) has
the structure of an algebraic variety (abelian variety)

H → H/Γ is the universal covering space of the quotient H/Γ where Γ ⊂ SL(2,R)/±I
is a discrete subgroup of SL(2,R)/±I; for some choices of Γ ∼= Γg one obtains
the complete algebraic curves of genius g > 1.

The universal covering space of a direct product is a direct product of the universal
covering spaces.
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Chapter 3

Geometric Case: model stability of the universal

covering space of a variety

In this chapter we study the universal covering space U of a smooth projective
algebraic variety A(C); we assume that U is holomorphically convex, or rather,
that complex analytic space U satis�es the conclusions of Fact 3.1.2.1. We then
introduce a topology on U which has the property that projection of a closed set
is closed; it also posses a property of more technical character relating the topology
and the action of the fundamental group π(U), cf. Proposition 3.2.1.1.

The properties of T -topology allow us to introduce a countable language LA such
that any T -irreducible closed subset of U is LA-de�nable. Then we study U as an
LA-structure and prove that it is model homogeneous.

In the second half of the chapter we introduce an Lω1ω(LA)-axiomatisation for U
and prove that it describes a class of model homogeneous models which satis�es
conclusion 2ℵ0→ℵ1 of Theorem 3.5.4.7.

3.1 A Zariski-type topology on the universal covering space

We de�ne here a topology T on the holomorphically convex universal covering space
U of a projective complex algebraic variety A(C) which is an analogue of Zariski
topology on A(C). The topology T is substantially weaker than the analytic Zariski
topology on U , i.e. the topology given by closed analytic subsets of complex space
U .

An important feature of topology T is that an analogue of Chevalley lemma holds for
T ; recall that Chevalley Lemma for a compact complex algebraic variety says that
a projection of a closed set is closed; model-theoretically it is quanti�er elimination
to the level of closed sets. We prove the analogous property of T in �3.2.2. Note
that this properties fails in general analytic context: there is an example of a closed
analytic subset in C3 whose projection on C is contained in an open disk.

3.1.1 De�nition of T -topology on holomorphically convex universal
covering space U

Recall that p : U → A(C) is the universal covering space of a projective algebraic
variety A(C), and that we assume U to be a holomorphically convex (as a complex
analytic space). We need the latter assumption in order for T to be a topology
indeed.

27
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De�nition 3.1.1.1 (Topology T on holomorphically convex universal cov-
ering space U of an algebraic variety A(C)). An analytic subset ofU is called
T -closed i� it is a union, possibly in�nite, of the irreducible analytic components
of an π-invariant closed analytic subset of U , or a �nite union of such sets.

Similarly we extend the de�nition to Un, for any n.

A π-invariant closed sets of U covers a closed subset of A(C). The covering map
p : U → A(C) being local isomorphism and analyticity being a local property, it
implies that it covers a closed analytic subset. The ambient variety A(C) is assumed
projective, and by Chow Lemma, it is a Zariski closed algebraic subset of A(C).

It would be natural to consider the unions of connected components of such sets and
not that of irreducible ones; this is natural if we try not to use the analytic structure
of U but only the topological structure of it as of the covering space of A(C) as
an algebraic variety. This seems plausible because for analytic sets good enough
(smooth or even normal), the notions of a connected component and an irreducible
component coincide (cf. �4.2.2), and indeed, that is possible, with a price:

A T -closed set is a union of connected components of an H-invariant set, for
a �nite index subgroup HC�nπ, or a �nite union of such sets

We prove the equivalence of these two de�nitions in Decomposition Lemma 3.1.4.1.

3.1.2 Normalisation and Local-to-global principles

The proof of Decomposition Lemma 3.1.3.1 essentially uses the various local-to-
global properties implied by homomorphic convexity: Local Identity Principle(Uniqueness
of Analytic Continuation), and others. It also uses the properties of normalisation
of algebraic varieties; we state them here, too.

We choose to list the properties here to put an emphasis on the properties of complex
analytic space U which we use in the proof of Decomposition Lemma. The exact
formulation of those properties may be useful as a property one would expect from
analytic Zariski structures.

Fact 3.1.2.1. Let U be a holomorphically convex space, and let Y, Z ⊂ U be closed
analytic sets in U . Then

1. (analyticity is a local property) a set X ⊂ U is analytic i� for all x ∈ X,
there exists an open neighbourhood x ∈ Vx such that X ∩ Vx is an analytic
subset of Vx

2. (local identity principle) for an open neighbourhood V ⊂ U , if Y is irreducible
and Y ∩ V ⊂ Z ∩ V then Y ⊂ Z

3. (local identity principle) for an open neighbourhood V ⊂ U , if Y and Z are
irreducible, and Y ∩V and Z∩V have a common irreducible component, then
Y = Z

4. (density of smooth points) for an open neighbourhood V ⊂ U , if Z0 ⊂ Z ∩ V
is an irreducible component of Z ∩ V , then there exist a point z0 ∈ Z0 and
an open neighbourhood z0 ∈ V0 ⊂ V such that V0 ∩ Z ⊂ Z0.

5. (local �niteness) a compact set C ⊂ U intersect only �nitely many of irre-
ducible components of closed analytic set Z

6. (analyticity of a union of irreducible components) a union of, possibly in-
�nitely many, irreducible components of an analytic set is analytic.

7. (irreducible decomposition) For Y, Z closed analytic subsets of U, if Y ⊂ Z
and Y is irreducible, then Y is contained in an irreducible component of Z

Proof. Those are well-known properties of holomorphically convex spaces.
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By Prop. 5.3 of [�85], Theorem 5.1 [ibid.] states (6) and (5). Corollary 2 of Prop. 5.3
[ibid.] implies (2) and (3). Theorem 5.4 [ibid.] implies (4). (2,3,4) together imply
(7).

Fact 3.1.2.2 (Chow Lemma). A closed analytic subset of a complex projective
algebraic variety is algebraic.

Proof. This is a well-known fact in algebraic geometry, cf. Hartshorne[Har77]; there
is also a model-theoretic sketch of a proof in Zilber[Zil05a] in the context of Zariski
structures.

Fact 3.1.2.3 (GAGA). Let A(C) be an algebraic variety. If q : T → A(C) is
a covering of topological spaces, then T admits a structure of a complex algebraic
variety such that q : T → A(C) becomes an algebraic morphism, i.e. there exists
an algebraic variety B(C) over C, an algebraic morphism qalg : B(C) → A(C), and
a homeomorphism φ : T → B(C) of topological spaces such that the diagramme of
topological spaces commutes

T
q−−−−→ A(C)

φ

y id

y
B(C)

qalg−−−−→ A(C)

(3.1.1)

Moreover, the homeomorphism φ : T → B(C) is well-de�ned up to an automorphism
of B commuting with the covering morphism qalg.

Proof. The existence of an analytic space B with the above properties follows from
the fact that we may pull back the local analytic structure of A(C) onto T ; in 1-dim
case this already implies that B would be an algebraic variety; the general case is
done in [Ser56].

Fact 3.1.2.4. A closed analytic subset of a holomorphically convex set admits a
unique decomposition into a countable union of analytic irreducible closed subsets.

Proof. [�85, �5.4,Theorem, p.49].

Fact 3.1.2.5. A connected component of a normal analytic set is irreducible.

Proof. [�85]

We use the following fact as the de�ning property of an etale covering: the morphism
B(K) → A(K) of varieties over an algebraically closed �eld K of char 0 is etale i�
there exists an embedding i : K → C of the �eld of de�nition of A and B into C such
that the corresponding morphism i(B)(C) → i(A)(C) is a covering of topological
spaces.

De�nition 3.1.2.6. We call a smooth projective algebraic variety A(C) Shafarevich
if

1. the universal covering space of A(C) satis�es the conclusions of Fact 3.1.2.1
2. the fundamental group π1(A(C)) has the property that, for every �nitely

generated subgroup H ⊂ πn and an element h 6∈ H outside it, there exists a
�nite index normal subgroup GC�nπ such that h/G×..×G 6∈ H/(G×...×G).

In particular, second condition implies that the fundamental group is residually
�nite, i.e. for every h ∈ π1(A(C)) there exists a homomorphism φ : π1(A(C)) →
F into a �nite group F such that φ(h) 6= ∅. Indeed, take φ to be π1(A(C)) →
π1(A(C))/G, where G is a �nite index normal subgroup from condition 2 where
H = e.
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The property formulated in item (2) is knows as lerf ; it holds for fundamental
groups of surfaces and for Zn; cf. [Sco85].

3.1.3 A geometric Decomposition Lemma; Noetherian property

The lemma states a �niteness property of the irreducible decomposition of the
preimage of an algebraic subvariety in A(C); it may be interpreted as saying that
the irreducible components are not too far from being connected components of the
preimage, up to �nite index.

For a subset Z ⊂ U , let πZ =
⋃

γ∈π
γZ ′ denote the π-orbit of set Z.

For HC�nπ, let pH : U → U/ ∼H be the factorisation map; by Fact 3.1.2.3, we
choose and �x isomorphisms AH(C) ∼= U .
Lemma 3.1.3.1 (First Decomposition lemma; Noetherian property). As-
sume A is Shafarevich.

A π-invariant analytic closed set has an analytic decomposition of the form

W ′ = HZ ′1 ∪ ... ∪HZ ′k,

where HC�nπ is a �nite index normal subgroup of π, the analytic closed sets Z ′1, .., Z
′
k

are irreducible, and for any τ ∈ H either τZ ′i = Z ′i or τZ
′
i ∩ Z ′i = ∅.

Such decomposition also exists for closed analytic sets invariant under action of a
�nite index subgroup of π.

Proof. The proof of the �rst part is relatively simple, and follows from the Fact 3.1.2.1
in a rather straightforward way; we do it �rst.

The proof of the second claim uses rather more delicate local analysis of the struc-
ture, and several local-to-global properties of analytic subsets of holomorphically
convex spaces as well as properties of Zariski geometry of algebraic varieties.

So let us start to prove (a). Let Z ′ be an irreducible component of p−1(Z(C)); by π-
invariance of p−1(Z(C)), for any γ ∈ π, the set γZ ′ is also an irreducible component
of p−1(Z(C)), and so πZ ′ is a union of irreducible components of p−1Z(C); thus,
by Fact 3.1.2.1 above, πZ ′ ⊂ p−1(Z(C)) is analytic.

The covering morphism p : U → A(C) is a local isomorphism, and analyticity is a
local property; by π-invariance of πZ ′, it implies p(πZ ′) is analytic. For di�erent
irreducible components Z ′1 6= Z ′2 of p−1(Z(C)) it can not hold that p(Z ′1) ( p(Z ′2);
indeed, then πZ ′1 = p−1p(Z ′1) ⊂ πZ ′2 = p−1p(Z ′2), and so Z ′1 =

⋃
(Z ′1 ∩ γZ ′2), γ ∈ π;

thus, Z ′1 can not be irreducible unless Z ′1 ⊂ γZ ′2, for some γ ∈ π, which is impos-
sible by π-invariance of p−1Z(C). To conclude, closed sets p(Z ′), Z ′ vary among
irreducible components of an algebraic subvariety Z(C), cover the whole of Z(C);
they are also irreducible. Thus they are the analytic irreducible components of Z.
By [GR65], the analytic irreducible components of an algebraic set are algebraic and
irreducible, and thus they are the algebraic irreducible components; in particular
there are only �nitely many of them. That gives the required decomposition.

Now let us start to prove (b). First of all, note that we may suppose Z to be
irreducible.

Let Z ′(n) =
⋃
Z ′i1 ∩ ...∩Z

′
in

be the union of all intersections of n-tuples of di�erent
irreducible components of p−1(Z(C)).
Claim 3.1.3.2. The set p(Z ′(n)) is an algebraic subset of Z(C), for n > 0. For n
su�ciently large, Z ′(n) is empty.
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Proof. By the local �niteness (Fact 3.1.2.1) a compact subset intersects only �nitely
many of the irreducible components γZ ′i's; thus Z

′(n) is locally a �nite union of
intersections of analytic sets, and therefore is analytic. By the π-invariance of γZ ′i's
it is π-invariant, and thus p provides a local isomorphism of Z ′(n) and its image;
therefore the image p(Z ′(n)) is analytic. By Chow Lemma 3.1.2.2 this implies it is
in fact algebraic. If n is greater then the number of local irreducible components
of a point of Z in A, then by Fact 3.1.2.1(local identity principle) Z ′(n) has to be
empty.

The claim above implies Z ′(n) are T -closed, for any n. By Claim (a) of Lemma, we
may choose �nitely many points z′i's so that any irreducible component of Z ′(n),
n > 0, contains a π-translate of one of z′i's.

By Fact 3.1.2.1(5) there are only �nitely many irreducible components of p−1(Z(C))
containing each point z′i, call them Y ′

j 's. Use residual �niteness of π to see that
there exist a �nite index subgroup H ⊂ π such that pH(Y ′

i ) 6= pH(Y ′
j ); indeed, it is

su�cient to take H large enough to distinguish points y′i ∈ Y ′
i −

⋃
j 6=i

Y ′
j , pH(y′i) 6=

pH(y′j).

Then it follows that for any two intersecting irreducible component X ′ 6= Y ′ of
p−1(Z(C)) it holds that pH(X ′) 6= pH(Y ′). Indeed, there exist γ ∈ π and a point z′i
such that γz′i ∈ X ′ ∩ Y ′, i.e. z′i ∈ γ−1X ′ ∩ γ−1Y ′. Then pH(γ−1X ′) 6= pH(γ−1Y ′),
by construction of H. And now this implies pH(X ′) 6= pH(Y ′), as required.

Now, for γ ∈ H, it holds pH(Z ′i) = pH(γZ ′i), and thus, by the arguments above,
Z ′i ∩ γZ ′i = ∅.

In other words, we have proven that there exists a �nite index subgroupH < π(A(C)
such that Z ′i is a connected component of p−1

H pH(Z ′i), i.e. the connected components
of the preimages of the irreducible components of pHp

−1(Z(C)) are irreducible.

The next corollary allows for an equivalent de�nition of T -topology.

Notice that the notion of an H-invariant set is essentially algebraic; it is a preimage
of a closed algebraic subset of AH(C). Thus, the meaning of next corollary that
in fact T -closed sets encode a mix of algebraic data and topological, homotopical
data, not of analytic one.

Corollary 3.1.3.3. A set is T -closed i� it a union of connected components of a
�nite number of H-invariant sets, for some HC�nπ a �nite index subgroup of π.

Proof. Lemma 3.1.3.1 above implies that each T -closed set can be represented in
such a form.

On the other hand, the lemma implies that each H-invariant set is a �nite union of
sets of the form HZ ′i where Z

′
i are irreducible. Then, πZ

′
i is also closed analytic as a

�nite union of translates of HZ ′i, and moreover, each translate of Z ′i is an irreducible
component of πZ ′i and thus T -closed. This implies the converse of the corollary.

The Lemma has the following algebraic consequence. By Lefshetz principle, it holds
for any characteristic 0 algebraically closed �eld instead of C. One may think of this
property as a rather weak property of irreducible decomposition for etale topology.

Corollary 3.1.3.4. Let A be Shafarevich. Then for any closed subvariety Z ⊂
A(C), there exists a �nite etale cover q : AH(C) → A(C) such that, for any further
etale cover q′ : AG(C) → AH(C), the connected components of q′−1(Zi) ⊂ AG(C)
are irreducible, where Zi's are the irreducible components of q−1(Z).
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Proof. Indeed, it is enough to take H as in Decomposition Lemma.

3.1.4 Decomposition Lemma for topology T

Recall notation πZ ′ =
⋃

γ∈π
γZ ′. Note we do not yet know that the intersection of

two T -closed sets is T -closed.
Corollary 3.1.4.1 (Decomposition Lemma). Assume A is Shafarevich.

The collection of T -closed subsets of U forms a topology with a descending chain
conditions on irreducible sets. A T -closed set possesses an irreducible decomposition
as a union of a �nite number of T -closed sets whose T -connected components are
T -irreducible. A union of irreducible components of a T -closed set is a T -closed.

That is,

1. the collection of T -closed subsets on U
n, n > 0 forms a topology. The pro-

jection and inclusion maps pr : Un → U
m, (x1, ..., xn) 7→ (xi1 , .., xim

) and
ι : Un ↪→ U

m, (x1, ..., xn) 7→ (xi1 , .., xim′ , cm′ , .., cm) are continuous.
2. There is no in�nite decreasing chain .. ( Ui+1 ( Ui ( ... ( U0 of closed

T -irreducible sets.
3. A union of irreducible components of a T -closed set is T -closed.
4. A set is T -closed i� it a union of connected components of a �nite number

of H-invariant sets, for some HC�nπ a �nite index subgroup of π.
5. Each T -closed set is a union of a �nite number of T -closed sets whose T -

connected components are T -irreducible. Moreover, those sets may be taken
so that their connected components within the same set are translates of each
other by the action of a �nite index subgroup HC�nπ.

More speci�c properties are

Corollary 3.1.4.2. 1. For any T -closed set W ′, the set πW ′ is T -closed.
2. An irreducible T -closed set W ′ is a connected component of an H-invariant

set HW ′ for some HC�nπ a �nite index normal subgroup of π.
3. For any two irreducible T -closed sets V ′,W ′ if for any �nite index normal

subgroup HC�nπ it holds HW ′ = HV ′, then W ′ = V ′.

Proof. (1,2) trivially follows from irreducible decomposition; (3) is slightly more
di�cult and requires an additional assumption on A(C). We may assume H be so
that V ′ and W ′ = hV ′ are connected components of HV ′ = HW ′, correspondingly.
Take x ∈ V ′, y = hv′ ∈W ′. With the help of assumption V = A(C) is Shafarevich,
we may assume H su�ciently small of �nite index that Hx 6= Hy = Hhy, a
contradiction.

Note that the latter argument can be done topologically. Consider pH(HW ′) =
HW ′/H ⊂ U/H the subset ofU/H covered by HW ′. The set HW ′ is the preimage
of HW ′/H under the factorisation map pH : U → U/H, and thus a connected
component of HW ′ is the preimage of a connected component of pH(HW ′). Thus,
both pH(W ′) and pH(V ′) are connected components of pH(HW ′) = pH(HV ′). By
the Shafarevich property of A(C), we may take H such that for points x ∈ W ′,
y ∈ V ′, pH(x) 6= pH(y′) and therefore pH(W ′) 6= pH(V ′). That implies W ′ 6= V ′, as
required.

In fact, one of the main interests of these paper is to understand why such arguments
can always be replaced by algebraic �abstract non-sense�.

The following property is �ideologically� important, and is the main property in
proving the properties of T above. An analogue of this property should also hold
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in other examples, say full exponentiation; there it says that a de�nably irreducible
set is analytically irreducible.
Lemma 3.1.4.3. A T -irreducible closed set is analytically irreducible, i.e. it is
irreducible as an analytic subset of U.

Proof of Lemma.. Property (4) is Corollary 3.1.3.3. By de�nition 3.1.1.1, an T -
irreducible T -closed set W ′ is a countable union of irreducible component of π-
invariant closed analytic sets. Those components are T -closed by de�nition, and
thus T -irreducibility implies the union is necessarily trivial. Thus, the set is an
analytic irreducible component of a π-invariant set, i.e. in particular irreducible as
an analytic set.

Proof of Corollary 3.1.4.1. We defer the proof of (1) until we prove (4), (2), (3).

By Lemma 3.1.4.3, a decreasing chain of T -irreducible sets is a decreasing sequence
of closed analytic irreducible sets, and this implies (2) immediately.

Property (3) is immediate from the same property of the irreducible decomposition
of analytic sets (Fact 3.1.2.16).

A �nite union of T -closed sets satisfying (4) also satis�es (4), and thus it is enough
to prove that a union V ′ of the irreducible components of a π-invariant setW ′ = πV ′

satis�es (4). By Decomposition Lemma 3.1.3.1, set W ′ = πV ′ admits a decomposi-
tion

W ′ = HZ ′1 ∪ ... ∪HZ ′k,
where HC�nπ is a �nite index normal subgroup of π, the analytic closed sets
Z ′1, .., Z

′
k are irreducible, and for any τ ∈ H either τZ ′i = Z ′i or τZ

′
i ∩ Z ′i = ∅.

First note that by the de�nition its irreducible components Z ′i's are T -closed. By
assumption, the analytic irreducible decomposition of set V ′ thus has form

V ′ = V ′ ∩W ′ = (HZ ′1 ∩ V ′) ∪ ... ∪ (HZ ′k ∩ V ′) =⋃
h∈H:hZ′

1⊂V ′
hZ ′1 ∪ ... ∪

⋃
h∈H:hZ′

k⊂V ′
hZ ′k.

(3.1.2)

The sets
⋃

h∈H:hZ′
i⊂V

hZ ′i's are T -closed, hZ ′i's are their connected components by

the second claim of Decomposition Lemma 3.1.3.1. Thus this is the T -irreducible
decomposition required in (4).

Let us prove that T is a topology, the most di�cult property.

A union of a �nite number of T -closed set is closed by the de�nition.

Let us prove the intersection of two T -closed set Z ′i and Y
′
i is T -closed.

Assume W ′ and V ′ are unions of connected component of H-invariant sets HW ′

and HV ′. The intersection HW ′ ∩ HV ′ is H-invariant and the set W ′ ∩ V ′ is a
union of the connected components of HW ′ ∩HV ′. The intersection HW ′ ∩HV ′ is
T -closed by Corollary 3.1.3.3, and thus its connected components are also T -closed.
This by de�nition implies W ′ ∩ V ′ is T -closed.

To prove that an in�nite intersection is closed, it is su�cient to prove that the in-
tersection of a decreasing sequence of T -closed sets is T -closed. Use Koenig lemma,
Fact 3.1.2.1(7) and the fact that a sequence of decreasing T -irreducible sets stabi-
lizes.

The argument is as follows. Let ... ⊂ Xi ⊂ Xi−1 ⊂ .. be the decreasing sequence of
T -closed sets, and let Zi

j be the irreducible components of Xi up to π(U)-action.
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Let us make a tree whose vertices are sets Zi
j , and Z

i
j and Zi−1

k are joined by an
edge i� Zi

j ⊂ Zi−1
k . The number of vertices in each level is �nite, and thus tree has

�nite branching; on the other hand, each branch is �nite as it consists of irreducible
sets. Thus, the tree has to be �nite by Koenig's Lemma. This means that for i
large, the intersection of �rst i sets is a union of translates of a �xed �nite number
of T -irreducible sets. As any such union is T -closed, this concludes the argument.

This completes the proof of the lemma.

3.1.5 Θ-de�nable sets, Generic points and Θ-de�nable closure

Recall that U/π ∼= A(C) has the structure of an algebraic variety over C and that
the π-invariant sets are in a bijective correspondence with the algebraic subvarieties
of AH(C). Thus suggests us that we may try to pull back to U the notion of a
generic point in A(C).

The following de�nition behaves well only for Θ ⊂ C algebraically closed.
De�nition 3.1.5.1. We say that a π-invariant T -closed subset W ′ ⊂ U is de�ned
over an algebraically closed sub�eld Θ ⊂ C i� p(W ′) ⊂ A(C) is a subvariety de�ned
over Θ.

A T -closed set is de�ned over a sub�eld Θ ⊂ C i� it is a countable union of
irreducible components of π-invariant T -closed subsets de�ned over Θ.
De�nition 3.1.5.2. For a set V ⊂ Un, let ClΘV be the intersection of all closed
Θ-de�nable sets containing V :

ClΘ(V ) =
⋂

V⊂W,W/Θ is Θ-de�nable closed

W

A point v ∈ V is called Θ-generic i� V = ClΘ(v), i.e. there does not exist a closed
Θ-de�nable proper subset of V containing v.
The following �niteness property will be needed to show that a variant of Chevalley
lemma implies a variant of ω-homogeneity.
Lemma 3.1.5.3. (a) ClΘ(V ) is Θ-de�nable
(b) ClΘ(V ) =

⋃
v∈V ClΘ(v) =

⋃
S⊂�nV ClΘ(S) (union over all �nite subsets)

Proof. (a) : it is immediate that an intersection of Θ-de�nable sets is Θ-de�nable.

(b) : This follows from the Decomposition Lemma. If V is irreducible, then V =
ClΘ(v) for v a Θ-generic point of V . If not, by Decomposition Lemma, V decomposes
as a union of translates of irreducible sets V1, ..., Vn. Thus the union

⋃
v∈V ClΘ(v)

is the union of corresponding translates of closures ClΘ(V1),...,ClΘ(Vn) of irre-
ducible components V1, ..., Vn. By Lemma 3.1.4.1, ClΘ(Vi) being closed implies any
union of translates of ClΘ(Vi) is closed; and thus

⋃
v∈V ClΘ(v) is a �nite union of

closed sets, therefore closed itself. But obviously V ⊂
⋃

v∈V ClΘ(v) and therefore
ClΘ(V ) ⊂

⋃
v∈V ClΘ(v). On the other hand, for any v ∈ V ClΘ(v) ⊂ ClΘ(V ), and

thus ClΘ(V ) ⊃
⋃

v∈V ClΘ(v). This implies the lemma.

Lemma 3.1.5.4. If a setW ′ ⊂ U is de�ned over Q ⊂ C thenW ′ ⊂ U is LA-de�ned
with parameters from p−1(A(Q)).

Proof. An irreducible component of the preimage of algebraic varietyW (C) ⊂ A(C)
de�ned over Q is an irreducible component of the preimage of variety⋃

σ∈Gal(Q/Q)

σW (C).
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In order for the union be �nite, we use that W is de�ned over Q, i.e. over a �nite
degree sub�eld of Q.

Recall we assume Θ to be algebraically closed.

Lemma 3.1.5.5. If W ′ is irreducible T -closed, then w′ ∈ W ′ is Θ-generic i�
w = pH(w′) ∈W = pH(W ′) is Θ-generic in W .

Proof. The point w′ ∈W ′ is not Θ-generic i� there exists a Θ-de�ned irreducible set
w′ ∈ V ′ ( W ′; by Corollary 3.1.4.2 the latter is equivalent to pH(V ′) 6= pH(W ′).

We would rather avoid using this Corollary due to its non-geometric character, but
unfortunately we do use it.

Lemma 3.1.5.6. A connected component of a Θ-generic �bre of a closed irreducible
set de�ned over Θ contains a Θ-generic point.

Proof. The property holds for algebraic varieties. LetW ′c
g′ be a connected component

of a �bre of W ′ over a Θ-generic point g′ of ClprW ′. Then p(W ′c
g′ ) is a connected

component of �breWg, whereW = pH(W ′), g = p(g′) is such thatW ′ is a connected
component of p−1

H (W ); this may be seen with the help of path lifting property, for
example. Genericity of g′ ∈ ClprW ′ implies that the point g ∈ ClprW is Θ-generic,
and, as a connected component of �bre Wg of an algebraic variety, p(W ′c

g′ ) contains
a Θ-generic point, and then its preimage in W ′c

g′ is also Θ-generic.

3.2 Main property of group action

The following property is speci�c to algebraic geometry; it fails in a general topo-
logical situation. It is this property which allows us to connect the Zariski topology
on A(C) and the T -topology on the universal covering space U . This is the property
used to imply Chevalley Lemma for T -closed sets.

Roughly, the property of group action is a corollary of what is know as Stein factori-
sation. Stein factorisation says that every algebraic morphism can be decomposed
as a �nite morphism and a morphism with connected �bres. Moreover, on a Zariski
open subset, over C, any morphism can be decomposed as a �nite etale morphism,
i.e. topological covering in complex topology, and a �bre bundle in complex topol-
ogy, cf. Lemma 4.3.4.1. Thus, it has a rather transparent structure.

Holomorphic convexity is used deal with non-normal case.

3.2.1 Stabilisers of irreducible closed subsets

Recall notation π(V ′) = {γ ∈ π : γV ′ ⊂ V ′}.
Proposition 3.2.1.1 (Action of π(U) on U). Let W ′ and V ′ = ClprW ′ be
T -irreducible closed sets. Then there is a �nite index subgroup HC�nπ such that

1. π(W ′) ∩H = {γ ∈ H : γW ′ ⊂ W ′} = {γ ∈ H : γW ′ ∩W ′ 6= ∅} = {γ ∈ H :
γW ′ = W ′}

2. prπ(W ′) ∩H = π(V ′) ∩H.
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3. for an open subset V 0′ ⊂ V ′ it holds that for arbitrary connected component
W ′c

g′ of �bre W ′
g′ over g

′ ∈ V 0 it holds

π(W ′) ≈ π(V ′) o π(W ′c
g′ ),

i.e. there exists a �nite index subgroup HC�nπ such that

π(W ′) ∩ [H ×H] = π(V ′) o π(W ′c
g′ ) ∩ [H ×H].

Moreover, if W ′ and V ′ are de�ned over an algebraically closed �eld Θ, so
is V − V 0. In particular, the above equality holds for g a Θ-generic point of
V ′ = ClprW ′.

In Proposition, o denotes skew product.

Proof of Proposition. To prove (1), apply Decomposition Lemma to T -closed set
πW ′; by Decomposition Lemma, take HC�nπ to be such that the set πW ′ decom-
poses as a union of a �nite number of H-invariant sets whose connected components
are irreducible, and therefore they are translates of W ′. This implies (1). The item
(2) is implied by (3).

Let us now prove item (3). Let H be such thatW ′ and V ′ are connected components
of p−1

H W (C), p−1
H (V (C)), respectively. where W (C) = pH(W ′), V (C) = pH(V ′).

Consider projection morphism pr : A×A→ A; it induces a morphism pr : W (C) →
V (C). By Lemma 4.3.4.1 it gives rise to a sequence exact up to �nite index:

ι∗π1(W c
g (C), w) → ι∗π1(W (C), w) → ι∗π1(V (C),prw) → 0

where W c
g is a connected component of a �bre of W over g ∈ V , and g varies among

an open subset V 0 of V , and w varies among an open subset of W .

Recall by �2.2.1 we may identify π(W ′) and ι∗π1(W (C), w), and ι∗π1(W c
g (C), w)

and π(W ′c
g′
′), etc.

The existence of such a sequence by de�nition mean that

ι∗π1(W (C), w) ≈ ι∗π1(W c
g (C), w) o ι∗π1(V (C),prw)

That implies (recall we have assumed that π is strongly residually �nite)

π(W ′) ∩ [H ′ ×H ′] = π(W ′c
g′ ) o π(V ′) ∩ [H ′ ×H ′],

for some �nite index subgroup H ′C�nπ.

3.2.2 Corollaries: Chevalley Lemma and Finiteness of Generic Fibres

Corollary 3.2.2.1 (Chevalley Lemma). For T -topology, it holds:
1. Projections of closed sets are closed.
2. Projection of a set open in its closure is a set open in its closure.

Proof. The projection of an H-invariant closed set is closed; indeed, say H = π,
then note pr p(πW ′) = ppr (W ′), and thus prπW ′ = p−1p(prW ′) = p−1p(V ), where
V = pr p(W ′). For A(C) is projective, V is closed algebraic subset of A(C), and thus
p−1p(V ) is a π-invariant closed subset of U . By de�nition of T , it is T -closed.

Let now W ′ be a T -irreducible closed set which is a connected component of HW ′.
As in lemma of preceeding §, let V ′ be the closure of prW ′.
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The set prHW ′ is closed, and thus V ′ ⊂ prHW ′. The set V ′ is closed, and thus it
is contained in a connected component V ′

1 of prHW ′.

Take v′ ∈ V ′ ⊂ V ′
1 , and �nd w′ ∈ W ′ such that pr (hw′) = v′, this is possible due

to V ′ ⊂ prHW ′. Also prW ′ ⊂ V ′, and thus pr (w′) ∈ V ′,pr (h)pr (w′) = v′ ∈ V ′.
Then v′ ∈ pr (h)V ′

1 ∩ V ′
1 . We may further take H is su�ciently small so that

π(V ′
1) ∩H = {τ ∈ π : τ(V ′

1) ∩ V ′
1 6= ∅} = {τ ∈ π : τV ′

1 = V ′
1}.

Then pr (h) ∈ π(V ′
1), and Proposition 3.2.1.1(2) implies there exists an element

h1 ∈ π(W ′) ∩ H × H such that pr (h) = prh1. Then, h1W
′ = W ′, and thus

pr (h1w
′) = pr (h)prw′ = v′, as required.

Again this argument can be given topologically. We prove the second claim topo-
logically.

First, we may assume that W ′ is a connected component of p−1
H pH(W ′) = HW ′,

and By Chevalley Lemma for algebraic varieties there is a set V 0 ⊂ pr pH(W ′) ⊂ V
such that V 0 ( V is open in V . Let V ′ be the connected component of p−1

H (V )
containing prW ′. Take V 0′ = V ′ ∩ p−1

H (V 0); then V 0′ ⊂ V ′ is open in V ′ as an
intersection with an open set.

Take v′ ∈ V 0′, and take w′ ∈ W ′, pr pH(w′) = pH(v′) ∈ V 0 ⊂ prW ; such a point
w′ in W ′ exists by what we call Covering Property of connected components. Now,
prw′ ∈ V ′, and thus γ0 ∈ π(V ′) where γ0 is de�ned by v′ = γ0prw′. Condition
pr pH(w′) = pH(v′) ∈ AH(K) implies γ0 ∈ H. Thus the inclusion prπ(W ′) ∩H =
π(V ′) ∩ H implies there exists γ1 ∈ π(W ′), pr γ1 = γ0, and thus v′ = γ0prw′ =
pr (γ1w

′), and the Chevalley lemma is proven.

Let π0(W ′) denote the set of irreducible components of W ′.

Corollary 3.2.2.2 (Generic Fibres). A generic �bre of a �bre of an irreducible
closed set has �nitely many connected components. A connected component of a
�generic� �bre of an irreducible set can be represented as the intersection of the �bre
with an H-invariant closed set, for some HC�nπ a �nite index normal subgroup.

In notation of Proposition above, W ′
g′ has �nitely many connected components and

for any connected component W ′c
g′ of W ′

g′ , it holds

W ′ ∩ g′ ×HW ′c
g′ = g′ ×W ′c

g′ ,

W ′ ∩ g′ ×HW ′
g′ = g′ ×W ′

g′ .

The Proposition implies that the set of g′ ∈ V such that the �bre over g′ has an
in�nite number of connected components, is contained in a closed proper subset of
V :

there exits a closed subset V ′
0 ( V ′ such that

{ g′ ∈ V : the �bre W ′
g′ has an in�nite number of connected components } ⊂ V ′

0 ( V ′.

Proof. Let H be as in Proposition 3.2.1.1. The �bre W ′
g′ is the intersection of Wg

with a coordinate plane, and therefore is T -closed. By Decomposition Lemma, the
�bre W ′

g′ is a union of H-translates of a �nite number of irreducible sets Z ′1, .., Z
′
k.

We claim that in fact it is the union of π(W ′c
g′ )-translates of Z ′1, ..., Z

′
k. This implies

that the number of connected components of W ′
g′ does not exceed k: indeed, the

action of π(W ′c
g′ ) leaves each connected component of W ′

g′ invariant, and thus two
di�erent components may not contain H-translates of the same Z ′i.
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To prove the claim, take h ∈ H such that Z ′i, hZ
′
i ⊂ W ′

g′ . Then (id, h) ∈ H × H,
and (id, h−1)W ′ ∩ W ′ ⊃ g′ × Z ′i 6= ∅, and by Proposition 3.2.1.1(1) this implies
(id, h−1)W ′ = W ′ and (id, h−1) ∈ π(W ′). However, by Proposition 3.2.1.1(2)
π(W ′c

g′ ) = prπ(W ′) ∩ [H × H], and thus and hW ′c
g′ = W ′c

g′ , h ∈ π(W ′c
g′ ) for any

connected component W ′c
g′ of �bre W ′

g′ .

To prove W ′ ∩ g′ × HW ′c
g′ = g′ ×W ′c

g′ , take h ∈ H such that g′ × hW ′
g′ ∩W 6= ∅.

Then (id, h) ∈ H ×H and

(id, h)W ′ ∩W ′ ⊃ g′ × hW ′
g′ ∩Wg 6= ∅, (3.2.1)

by Proposition 3.2.1.1(1) this implies (id, h)W ′ = W ′ i.e. (id, h) ∈ π(W ′). Now
Proposition 3.2.1.1(2), π(W ′

g′) ∩H = prπ(W ′) ∩H ×H gives hW ′
g′ = W ′

g′ , i.e h ∈
π(W ′

g′), as required.

In particular, W ′ ∩HW ′
g′ = W ′

g′ and W
′ ∩W ′c

g′ = g′ ×W ′c
g′

3.3 Language for topology T : Q-de�nable sets

So far we have de�ned a topology on U (and its Cartesian powers Un's) whose
closed sets are rather easy to understand. Now, to put the considerations above in
a framework of model-theory, we want to de�ne a language able to de�ne closed
sets in topology T . From an algebraic point of view, that corresponds to de�ning
the automorphism group of U with respect to topology T .

Let us draw an analogue of the action of Galois group on an algebraic variety Q
de�ned over Q with Zariski topology. The Galois group may not be de�ned as the
group of bijections continuous in Zariski topology: for example, all polynomial maps
are continuous automorphisms of Zariski topology in this sense; linear and a�ne
maps x→ ax+ b are such continuous bijections.

Thus we distinguish certain Q-de�nable subsets among Zariski closed subsets of
Q3

, and then de�ne Galois group as the group of transformation (of Q) preserving
the distinguished Q-de�ned subsets (of Q3

); in this case the graphs of addition and
multiplication. It is then derived, rather trivially, that this implies that Galois group
acts by transformation continuous in Zariski topology.

Recall the way this is derived: the Q-de�nable subsets are given names, in this case
addition and multiplication, and then each closed set (subvariety) is given a name
by the equations de�ning the set of its points; in fact, in algebraic geometry the
word variety means rather the name, the set of equations, rather that the set of
points the equations de�ne.

In order to de�ne a useful automorphism group of topology T , we follow the same
pattern.

Model theory provides us with means to give precise meaning to the argument
above, and to de�ne mathematically what is it exactly that we want. In these
terms, the distinguished subsets form a language, and the Galois group is the group
of automorphisms of the structure in that language. Model theory studies that group
via the study of the structure.

3.3.1 De�nition of a language LA for universal covers in T -topology

In this §, it becomes essential that A is de�ned over an algebraic �eld k ⊂ Q ⊂ C
embedded in C.

We consider p : U → A(C) as a structure in the following language.
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De�nition 3.3.1.1. We consider the structure p : U → A(C) as a one-sorted
structure U , in the language LA which has the following symbols:

the symbols ∼Z,A for Z a closed subvariety of A(C)n de�ned over number
�eld k, and,
the symbols ∼H , for each normal subgroup HC�nπ(U)n of �nite index

The symbols are interpreted as follows:
x′ ∼Z,A y′ ⇐⇒ points x′ ∈ U

n and y′ ∈ U
n lie in the same (analytic)

irreducible component of the π-invariant closed analytic set p−1(Z(C)) ⊂
U

n.
x′ ∼H y′ ⇐⇒ ∃τ ∈ π(U)n : τx′ = y′ and τ ∈ H.

Note that we do not assume Z to be connected.

Note that by Decomposition Lemma it is enough to introduce predicates for con-
nected components of closed analytic sets which are invariant under the action of
�nite index subgroup of the fundamental group. To such sets, Chow Lemma still
applies.

Thus we may use an alternative de�nition by considering predicates for each Z ⊂
A(C) de�ned over Q.

x′ ∼c
Z,A y′) i� x′ and y′ lie in the same connected component of the preimage

p−1
H (Zi(C)), Zi ⊂ AH(C)n an irreducible component of algebraic variety
p−1

H (Z(C)) ⊂ AH(C)n.
Note that the language LA is countable. This is an essential property, from model-
theory point of view.

Let us use this opportunity to remind that we use symbols ∼Z rather abusively to
mean �lie in the same irreducible component of� either πZ, p−1

H (Z), etc.

3.3.2 LA-de�nability of π(U)-action etc

In next lemma, a closed set means T -closed set.
Lemma 3.3.2.1. For any normal �nite index subgroup HC�nπ it holds

1. the relation
A�H(x, y, z, t) = ∃γ ∈ H : γx = y & γs = t

is LA(∅)-de�nable
2. An H-invariant closed set is LA-de�nable with parameters.
3. A connected component of a generic �bre of an LA-de�nable irreducible closed

set is uniformly LA-de�nable; the de�nition is valid over an over an open
subset of the projection, de�nable over the same set of parameters.

4. Any T -closed irreducible set is a connected component of a �bre of an LA-
de�nable set.

5. An irreducible closed set is LA-de�nable.

Proof. To prove (1), note that

p−1(∆(C)) =
⋃
γ∈π

{(x, γx) : x ∈ U}

where ∆ = {(x, x) : x ∈ A} is an algebraic closed subvariety de�ned over Q. The
connected components {(x, γx) : x ∈ U}, γ ∈ π are the equivalence classes of ∼∆,
and thus are de�nable with parameters.

Evidently A�π(x, y, s, t) i� (x, y) ∼∆ (s, t) lie in the same connected component of
p−1(∆(C)) ⊂ U × U .
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Q-case: An irreducible closed subvarietyZ/Q⊂ A de�ned over Q is an irreducible
component of subvariety

ZQ =
⋃

σ:kZ ↪→C
σ(Z)

of A, where kZ is the �eld of de�nition of Z of �nite degree. The formula implies Z is
LA-de�nable with parameters with the help of symbol ∼ZQ,A; the parameters may
be taken to lie in A(Q) but not necessarily in A(kZ). A slightly more complicated
argument could give a construction de�ning Z as a connected component.

For an analytic T -closed irreducible set Z ′ ⊂ U , it holds that Z ′ is an irreducible
component of πZ ′, i.e. it is an irreducible component of Z = p(Z ′). Thus the above
argument gives that every T -irreducible subset of U de�ned over Q is LA-de�nable
with parameters.

Q(t1, ..., tn)-case: Thus we have to deal with the case when p(Z) is not Q-de�nable.
Our strategy is to show that any such set is a connected component of a Q-generic
�bre of a Q-de�nable set, and then show that such connected components are uni-
formly de�nable. Uniformity will be important for us later in axiomatising U .

Let us see �rst that each T -closed irreducible set is a connected component of a
�bre of a T -closed irreducible? set de�ned over Q.

Take a T -irreducible set Z ′ and take HC�nπ such that Z ′ is a connected component
of HZ ′ = p−1

H (Z), for an irreducible algebraic closed set Z = pH(Z ′). By the
theory of algebraically closed �eld, we know that Z can be de�ned as a Boolean
combination, necessarily a positive one, of Q-de�nable closed subsets and their
�bres; by passing to a smaller subset if necessary, we see that the irreducibility of
Z implies that algebraic subset Z ⊂ A(C) is a connected component of a Q-generic
�bre of a Q-de�nable closed subset W ⊂ A(C)n. Then HZ ′ is the corresponding
�bre of p−1

H (W ). Z ′ is a union of corresponding �bres of the irreducible components
of p−1

H (W ), and irreducibly of Z ′ implies that union is necessarily trivial. Thus, we
have that Z ′ is a connected component of a �bre of an irreducible T -closed set.
We may also ensure that Z ′ is a connected component of a Q-generic �bre of W ′

by intersecting W ′ with the preimage of an irreducible Q-de�nable set containing
prZ ′, and repeating the process if necessary.

Let us now prove that the connected components of the Q-generic �bres of an
irreducible Q-de�nable set are Q-de�nable.

Let W ′ ⊂ A(C)2, and let V ′ = ClprW ′ be as in Proposition 3.2.1.1 and Corol-
lary 3.2.2.2. The morphism pr : W → V admits a Stein factorisation (Fact 4.3.3.4)
pr = f0 ◦ f1 as a composition of a �nite morphism f0 : W → V1 and a morphism
with connected �bres f1 : V1 → V . In particular, two points x1, x2 ∈ Wg lie in the
same connected component of �bre Wg i� f0(x1) = f0(x2).

Now set

x′ ∼c
Wg

y′ ⇐⇒ x′ ∼W y′ & &prx′ = pr y′ & f0(pH(x′)) = f0(pH(y′)) (3.3.1)

In notation of Corollary 3.2.2.2, we have

Claim 3.3.2.2. If g′ ∈ V ′0, then the formula x′ ∼c
Wg

y′ holds i� x′ ∼H y′ and x′ and
y′ lie in the same connected component of �bre W ′

g′ of W . If W,V are Θ-de�nable,
so is V ′0.

Proof. This is a reformulation of the formula W ′ ∩ g′ ×HW ′c
g′ = g′ ×W ′c

g′ . Indeed,
prx′ = pr y′ & f0(pH(x′)) = f0(pH(y′)) holds i� x′, y′ ∈ g′ ×HW ′c

g′ for g′ = prx′ =
pr y′ and some W ′c

g′ connected component of �bre of W ′ above g′. The relation
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of lying in the same connected component of a �bre being translation invariant,
we may as well assume x′, y′ ∈ W ′ if x′ ∼W y′ ∈ W ′ lie in the same connected
component of W ′. Then the formula means that x′, y′ lie in the same connected
component of �bre g′ ×W ′

g′ .

The claim that the formula holds for g′ ∈ V ′0 in an open subset is Θ-de�nable is a
part of conclusion of Corollary 3.2.2.2.

The claim above implies (3); (4) and (3) imply (5) and (2).

Corollary 3.3.2.3. Let Aut LA
(U) be the group of bijections φ : U → U pre-

serving relations ∼Z,A∈ LA; then Aut LA
(U) acts by transformations continuous in

T -topology.

Proof. Immediate by previous results.

The results above justify thinking of Aut LA
(U) as a Galois group of U .

Remark 3.3.2.4. There is a natural inclusion Aut LA
(U) ↪→ Aut (C/Q) induced by

the action of Aut LA
(U) on the interpretable set A(C). What can one say about

Aut LA
(U) as a subgroup of the Galois group, or rather a conjugacy class of such

subgroups ? Is there any relations of Aut LA
(U) with the Grothendieck's funda-

mental group π̂1(AQ) ?

3.4 Model homogeneity; an analogue of n-transitivity of

Aut LA
(U)-action.

Now we want to study the action of Aut LA
(U) on U , and analyse orbits of its

action on U and Un, n > 1. In model theory one would hope that aforementioned
orbits can be analysed in terms of language; in presence of a nice topology with a
Chevalley property we may hope to analyse orbits in terms of closed sets.

The situation when this is possible is called homogeneity; in this � we state and
prove model homogeneity of U . Model homogeneity says, roughly, that two tuples
of points lie in the same orbit (of action �xing an algebraically closed sub�eld) i�
there are no obvious obstructions, i.e. i� they lie in the same closed sets (de�ned
over an algebraically closed sub�eld which we assume �xed).
De�nition 3.4.0.5. We say that W is a Θ-constructible set i�
1. the closure ClW is de�ned over Θ
2. W contains all Θ-generic points of the irreducible components of ClW .
An irreducible constructible set is a set whose closure is irreducible.
Lemma 3.4.0.6. A projection of a Θ-constructible set is Θ-constructible.

Proof. Let W ⊂ U × U be an irreducible set de�ned over Θ, and let W0 be the
set of all Θ-generic points of W ; generally speaking, W0 is not de�nable. We need
to prove that prW is also Θ-constructible. Let g ∈ prW be a Θ-generic point of
the closure of prW ; we know g ∈ prW by Chevalley Lemma. By Lemma 3.2.2.2
we know that the (non-empty) �bre Wg contains a Θ-generic point of W , and thus
g ∈ prW , as required.

The set of realisations of a complete quanti�er-free syntactic type p/Θ with pa-
rameter set Θ is Θ-constructible; and conversely, every Θ-constructible set can be
represented in this form.

Thus, the above lemma is equivalent to ω-homogeneity for such types.
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De�nition 3.4.0.7. We say that U is homogeneous for closed sets over Θ, or
syntactic quanti�er-free complete types over Θ, or model homogeneous i� either of
the following equivalent conditions holds

1. the projection of a Θ-constructible set is Θ-constructible;
2. for any tuples a, b ∈ Un and c ∈ Um if qftp(a/Θ) = qftp(b/Θ) then there

exists d ∈ Um such that qftp(a, c/Θ) = qftp(b, d/Θ)

To see that the conditions are equivalent, note that the set of realisations of quanti�er-
free type qftp(a, c/Θ) is Θ-constructible; its projection contains a and also is Θ-
constructible; a is its Θ-generic point; then tp(a/Θ) = tp(b/Θ) implies b is also
Θ-generic, i.e. belongs to it.

The above proves the following result.

Property 3.4.0.8. The standard model p : U → A(C) in language LA is model
homogenous, i.e. ω-homogeneous for closed sets over arbitrary algebraically closed
sub�eld Θ ⊂ C.

Proof. Follows directly from Def. 3.4.0.7 and Lemma 3.4.0.6.

Corollary 3.4.0.9. The set of realisations of a quanti�er-free type qftp(x/Θ) over
p−1(A(Θ)) consists of Θ-generic points of some T -irreducible closed subset of U.

Proof. Follows from the previous statements.

3.5 An Lω1ω-axiomatisation X(A(C)) and stability of the

corresponding Lω1ω-class.

In this § we introduce an axiomatisation X(A(C)) for Lω1ω(LA)-class which contains
the standard model p : U → A(C), and is stable over models and all models in it
are model homogeneous. We then show that the class of models satis�es 2ℵ0→ℵ1 of
Theorem 3.5.4.7.

3.5.1 Algebraic LA-structures

We know that U/G = AG(C) carries the structure of an algebraic variety over �eld
C. The covering AG(C) → A(C) carries a structure in a reduct LA(G) of language
LA. In fact, similar interpretation works for an arbitrary algebraically closed �eld
K instead of K = C.

For every �nite index subgroup GC�nπ, there is a well-de�ned covering AG → A
of �nite degree. The space A(C) is projective, and thus AG(C) is also a complex
projective manifold. By Fact 3.1.2.3, AG has the structure of an algebraic variety.

Recall that we use the following fact as the de�ning property of etale covering: the
morphism B(K) → A(K) of varieties over an algebraically closed �eld K of char 0
is etale i� there exists an embedding i : K → C of the �eld of de�nition of A and
B into C such that the corresponding morphism i(B)(C) → i(A)(C) is a covering
of topological spaces.

De�nition 3.5.1.1 (Finitary reducts of LA). Let pG : AG(K) → A(K) be a
�nite etale morphism. Let LA(G) ⊂ LA be the language consisting of all predicates
of LA of form ∼Z and those ∼H , G ⊂ H. Then, AG(K) → A(K) carries a LA(G)-
structure as follows:

1. x′ ∼Z y′ ⇐⇒ points x′, y′ ∈ AG(K)n lie in the same irreducible component
of algebraic closed subset p−1

G (Z(K)) of AG(K)n.
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2. x′ ∼H y′ ⇐⇒ there exist an algebraic morphism τ : AG → AG and an etale
covering morphism q : AG → AH such that τ(x′) = y′ and τ ◦ q = q:

AG τ−−−−→ AGyq étale cover

yq

AH id−−−−→ AH

(3.5.1)

For G = e the trivial group and K = C, the construction above degenerates into
the interpretation of U → A if it were well-de�ned.

For G = π, AG = A, and thus LA(π) is just a form of the language for algebraic
variety A; here the point is that we have predicates for Q-de�nable closed subsets
only.

In general, the above is just a variation of an ACF structure on A. In particular, all
closed subsets of AGn are LA(G)-de�nable.

3.5.2 Axiomatisation X

Basic Axioms

These axiom describe quotations U/ ∼H for HC�nπ, and some properties of U →
U/ ∼H .

Axiom 3.5.2.1. All �rst-order statements valid in U and expressible in terms of
LA-interpretable relations

x′ ∼Z,AG y′ := ∃x′′∃y′′(x′′ ∼Z y′′ &x′′ ∼G x′ & y′′ ∼G y′), GC�nπ

and ∼G, GC�nπ.

Note that we do not allow ∼Z,A by itself, the Axioms essentially describe U/G,
which is an algebraic variety.

Lifting Property Axiom, or Covering Property Axiom

Let < = <(A, π) = <(A, π1(A(C)) be a class of substructures U of U(K), for some
K, satisfying the following properties:

Axiom 3.5.2.2 (Lifting Property for W ). For all LA-predicates ∼W and all
GC�nπ su�ciently small, we have an axiom

x′ ∼W,AG y′ =⇒ ∃y′′(y′′ ∼G y′ &x′ ∼W y′′) (3.5.2)

We also have a stronger axiom for �bres of W ; here we use that the relation �to lie
in the same connected component of a �bre of a variety� is algebraic and therefore
the corresponding G-invariant relation is LA-de�nable.

Axiom 3.5.2.3 (Lifting Property for �bres). For all GC�nπ su�ciently small,
we have an axiom

(x′0, x
′
1) ∼c

Wg,AG (y′0, y
′
1) =⇒ ∃y′′1 [y′0 ∼G x′0 & y′′1 ∼G y′1 &(x′0, x

′
1) ∼W (x′0, y

′′
1 )]
(3.5.3)

in a slightly di�erent notation

x′ ∼c
Wg,AG y′ =⇒ ∃y′′(y′′ ∼G y′ & prx′ = pr y′′ &x′ ∼W y′′) (3.5.4)

The relation x′ ∼c
Wg,AG y′ is de�ned by the formula (3.3.1) (cf. Claim 3.3.2.2).
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Axiom 3.5.2.4 (Fundamental group is residually �nite).

∀x′∀y′(x′ = y′ ⇐⇒
∧

HC�nπ

x′ ∼H y′) (3.5.5)

Thus, it says that two elements ∼H -close, have to be equal.

The next property is screeching of this one; namely, if an element b is ∼H -equivalent
to an element of a group generated by a1, .., an, then it is actually in the group.
In terms of paths, this has the following interpretation: take loops γ1, ..., γn and a
loop λ. If for every HC�nπ it holds that λ is ∼H -equivalent to some concatenation
of paths γ1, ..., γn, then it is actually a concatenation of these paths.
Axiom 3.5.2.5 (Translations have �nite length). For all N ∈ N we have an
Lω1ω-axiom

∀b∀a1...∀aN∧
HC�nπ

∨
n∈N

∃h1...hn

(
b ∼H hn &h1 = a1 &

∧
1≤i≤n

∨
1≤j<N

(hi, hi+1) ∼∆ (aj , aj+1)

)

=⇒
∨

n∈N
∃h1...hn

(
b = hn &h1 = a1 &

∧
1≤i≤n

∨
1≤j<N

(hi, hi+1) ∼∆ (aj , aj+1)

)
(3.5.6)

The next axiom is needed to apply the principles above. It re�ects the fact that the
fundamental groups of varieties are �nitely generated, cf. Arapura [Ara95]; this can
also be obtained from the fact that topologically a variety can be split into �nitely
many contractible pieces nicely glued together (CW-complex).
Axiom 3.5.2.6 (Groups π(Wg) are �nitely generated). For all symbols ∼W

and for each H su�ciently small we have an Lω1ω-axiom:

∨
N∈N ∃a1...∃aN∀b( ∧

1≤i≤N

(b ∼W ai & pr b = pr ai) &
∧

1≤i 6=j≤N

(ai ∼W aj & ai ∼H aj & pr ai = pr aj) =⇒

∨
n∈N

∃h1...hn

(
b = hn &h1 = a1 &

∧
1≤i≤n

∨
1≤j<N

(hi, hi+1) ∼∆ (aj , aj+1)& prhi = prhi+1

))
(3.5.7)

Standard model U is a model of X

The universal covering space p : U → A(C) satis�es the axioms Axiom 3.5.2.1 by
de�nition.

To prove U satis�es Axiom 3.5.2.2, note that for GC�nπ small enough, the relations
x′ ∼W,G y′ means that pG(x′) and pG(y′) lie in the same irreducible component Wi

of the preimage of W ⊂ A(C)n in AG(C)n. Take a path γ connecting γ(0) =
pG(x′) and γ(1) = pG(y′) lying in Wi; by the Lifting Property it lifts to a path
γ′, γ′(0) = x′ such that pG(γ′(t)) = γ(t), 0 ≤ t ≤ 1. Then, pG(γ′(1)) = pG(y′),
and thus γ′(1) ∼G y′. On the other hand, γ′(1) and x′ lie in the same connected
component of the preimage of the irreducible component Wi in U . Now note that
by Decomposition Lemma 3.1.4.1 for G small enough such a connected component
has to be irreducible, and thus Axiom 3.5.2.2 holds.

The Axiom 3.5.2.3 has a similar geometric meaning as Axiom 3.5.2.2; the assump-
tion is that pG(x′) and pG(y′) lie in the same connected component of a �bre Wg;
it is enough to take γ to lie in �bre Wg to arrive to the conclusion of Axiom 3.5.2.2.
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Let us see Axiom 3.5.2.4 follows from the condition 2 of the de�nition of a Shafare-
vich variety.

Axioms 3.5.2.5 is condition 2 from the de�nition of a Shafarevich variety.

The geometric meaning of (hi, hi+1) ∼∆ (ai, ai+1) is as follows. The pair of points
ai, ai+1 determines a path γ in A(C), γ(0) = γ(1) = p(ai) = p(ai+1). For points
hi, hi+1 such that p(hi) = p(hi+1), they can be joined by a lifting of γ i� (hi, hi+1) ∼∆

(ai, ai+1). ... Thus the assumption in the axiom says that if any two points of �bre
above p(b) = p(a1) can be joined by a concatenation of liftings of �nitely many
paths γi's in A(C), up to a translate by an element of H, then they can in fact be
just joined by such a sequence. In a way, this can be though of as disallowing paths
of in�nite length.

On the other hand, the condition (hi, hi+1) ∼∆ (ai, ai+1) can be interpreted as
hi+1 = τihi where τi is the deck transformation taking ai into ai+1, τiai = ai+1.
Then, the assumption says that if b ∈ π(U) belongs to the group generated by τi's,
up to ∼H , then b does belong to the subgroup generated by τi's.

The last remaining Axiom 3.5.2.6 means that the fundamental groups π(Wg) is
�nitely generated, which is a well-known fact, see for example Arapura [Ara95].

3.5.3 Analysis of models of X

ModelsU/∼H as algebraic varieties

Let U |= X be a LA-structure modelling axiomatisation X(LA,A), and let U be
the standard model, i.e. the universal covering space of A(C) considered as an LA-
structure.

We know that U/ ∼H
∼= AH(C) for some algebraic varieties AH(C) de�ned over

C. The relations ∼H ,∼Z,H are essentially relations on U/ ∼H , and thus Axiom 0
says that the �rst-order theories of U/ ∼H and standard model U/ ∼H in the
languages LA(H) = {∼H ,∼Z,H : Z varies} coincide. We know by properties of
analytic covering maps that an irreducible T -closed subset ofU covers an irreducible
Zariski closed subset of AH(C), and thus the relation ∼Z,H on U/ ∼H interpreters
as x, y ∈ AH(K) lie in the same (Zariski) irreducible component of the preimage of
Z(K) in AH(K).

Thus, by Lemma 3.1.5.4 any algebraic subvariety de�ned over Q of AH(C) is LA(H)-
de�nable. Thus, full theory of an algebraically closed �eld is reconstructible in
LA(H) on U/∼H ; and thus, there is an algebraically closed �eld K = K̄, charK = 0
such that U/ ∼H

∼= AH(K); here AH(K) corresponds to AH(C) with a di�erent
ground �eld.

Fix these isomorphisms U/ ∼H
∼= AH(K), and let pH : U → AH(K) be the projec-

tion morphism. Then the above considerations say
x′ ∼W,H y′ ⇐⇒ pH(x′) ∼W,H pH(y′) ⇐⇒ x′ and y′ lie the same (Zariski)
irreducible component of the preimage of Z(K) in AH(K).
x ∼G y′ ⇐⇒ there exist an algebraic morphism τ : AG → AH and an etale
covering morphism q : AH → AG such that τ(x′) = y′ and τ ◦ q = q:

AH τ−−−−→ AHyq étale cover

yq

AG id−−−−→ AG

(3.5.8)

An important corollary of above considerations is that any set of form p−1
H (Z(K)), Z(K) ⊂

AH(K) is LA-de�nable.
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Notation 3.5.3.1. Let us introduce new relations on U ; eventually we will prove
that they are �rst-order de�nable. We introduce the relations below for every closed
subvariety of A(K), not necessarily de�ned over Q (those would be in LA)

x′ ∼W y′ ⇐⇒ pH(x′) ∼W,H pH(y′) for all HC�nπ.

An irreducible component of relation ∼W is a maximal set of points in U pairwise
∼W -related. A subset of U is closed i� it is a union of irreducible components of
relations ∼W1 , ...,∼Wn

, for some W1, ...,Wn. An irreducible closed set is an irre-
ducible component of a relation ∼W for some closed subvariety W . Let us call a
subset of U T -closed i� it is a union of irreducible components of a �nite number
of relations ∼W1 , ...,∼Wn

. This de�nes an analogue of topology T on U .

Group action of �bres of p : U → A(K) on U

For a point x0 ∈ U , let π(U, x′0) = {y : y ∼π x′0} = p−1p(x′0) be the �bre of
p : U → A(K). For every point z′ ∈ U and every point y′ ∼π x′0, there exists a
point z′′ ∈ U such that pG(z′, z′) ∼∆ pG(x′0, y

′); this follows from Axiom 3.5.2.1.
Then, by Lifting Property for ∆ ⊂ A2(K), there exists z′′′ ∈ U such that z′′′ ∼G z′′

and (z′, z′′′) ∼∆ (x′0, y
′). Moreover, such a point z′′′ is unique. Indeed, by Axiom 0

the conditions pH(z′′′) ∼H pH(z′′) and (z′, z′′′) ∼∆,H (x′0, y
′) determine pH(z′′′)

uniquely for every HC�nG. This implies that z′′′ is unique by Axiom 3.5.2.4.

The above construction de�nes an action σ of π(U, x′0) = {y : y ∼π x
′
0} = p−1p(x′0)

on U : a point y′ ∼π x′0 sends z′ into z′′′, σy′z′ = z′′′. Axiom 0 and Minimality
Property 1 imply that it is in fact a group action.

Let π(U) be the group of transformations of U induced by π(U, x′0); the group does
not depend on the choice of x′0. We refer to π(U) as the group of deck transforma-
tions, or the fundamental group of U . This terminology is justi�ed by the fact that
τ ◦ p = p, for p : U → A(K) the covering map.

For a subset W ⊂ Un, let π(W ) = {τ : Un → Un : τ(W ) ⊂W, τ ∈ π(U)n}.

In terms of terminology above, the Axiom 3.5.2.5 says that for every subgroup
�nitely generated H of π(U) and every h ∈ π(U), if there exists hG ∈ H such that
h ∼G hG for every GC�nH, then h ∈ H. Since G ranges through all �nite index
subgroups of π1(A(C)), this means that if for a �nitely generated subgroup of π(U),
if ι(h) ∈ π̂1(A(C)) belongs to ι(H) = Ĥ ⊂ π̂1(A(C)), then in fact h ∈ H.

Decomposition Lemma for U

We use a Corollary to Lemma 3.1.3.1.
Lemma 3.5.3.2 (Decomposition lemma; Noetherian property). Assume A
is Shafarevich.

A subset p−1(W ),W ⊂ A(K) has an decomposition of the form

W ′ = HZ ′1 ∪ ... ∪HZ ′k,

where HC�nπ is a �nite index normal subgroup of π, the T -closed sets Z ′1, .., Z
′
k

are irreducible components of relations ∼Zi , for some algebraic subvarieties Zi of
A(K), and for any τ ∈ H either τZ ′i = Z ′i or τZ

′
i ∩ Z ′i = ∅.

Proof. By a corollary to Decomposition Lemma 3.1.3.1 we may choose HC�nπ with
the following property.

Let Zi ⊂ AH(K)'s be the irreducible components of pHp
−1(W ). Then, they have

the property that the connected components of pGp
−1
H (Zi) ⊂ AG(K) are irreducible.
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Choose Z ′i to be an irreducible components of relations ∼Zi , or equivalently of the
closed sets p−1

H (Zi). We claim that these Z ′i's give rise to a decomposition as above.

Before we are able to prove this, let us prove the lifting property for ∼Zi , namely
that the map pH : Z ′i → Zi(K) is surjective. For convenience, we drop the index i
below.

By passing to a smaller subgroup if necessary we may �nd a variety W ⊂ AH(K)n

such that for some g ∈ An(K), Zi is a connected component of �bre Wg of W
over g, and it holds that if points x′, y′ are such that pH(x′), pH(y′) ∈ Zi and
x′ ∼W y′, pH(prx′) = pH(pr y′) = g′ lie in the same connected component of W ′

over g, pH(g′) = g, then in fact x′ and y′ lie in the same connected component of
the preimage of g × Zi, x′ ∼Z y′.

Consider Axiom 3.5.2.3 for all GC�nπ su�ciently small

x′ ∼c
Wg,AG y′ =⇒ ∃y′′(y′′ ∼G y′ &prx′ = pr y′′ &x′ ∼W y′′) (3.5.9)

Now take any point z′ ∈ Z ′ ⊂ U and a point y ∈ Z(K). We want to prove pH(Z ′) ⊃
Z(K), and thus it is enough to prove there exists y1 ∈ U , pH(y1) = y, z′ ∼Z y1. We
know that there exist y2 ∈ U , z′ ∼c

Z,AG y2, due to Axiom 3.5.2.1. Since Z = Wg

for some g ∈ Un−1, we also have (g′, z′) ∼c
Wg,AG (g′, y2), and taking pH(g′) = g,

x′ = (g′, z′), y′ = (g′, y2), Axiom 3.5.2.3 gives the conclusion

∃y′′(y′′ ∼G y′ &prx′ = pr y′′ &x′ ∼W y′′). (3.5.10)

The conclusion says points x′, y′′ ∈ Un, pH(x′), pH(y′) ∈ Zi lie in the same con-
nected component of p−1

H (W ), are ∼G-equivalent, and lie above the same point
g′, pH(g′) = g. Then by Lemma 3.3.2.2 we know that pH(x′), pH(y′) lie in the same
connected component of the corresponding preimage of Zi. By de�nition of Z ′, this
means pr 2y

′ ∈ Z ′. Thus, we have proved that pH(Z ′) = Z(K) is surjective. The
property that pH is surjective from Z ′ to Z(K), we call covering property, or lifting
property for Z(K).

Now the following by now standard argument concludes the proof.

The Covering Property implies that

p−1
H (Z(K)) =

⋃
h∈H

hZ ′ = HZ ′;

indeed, by properties of Z we know that the relations x′ ∼Z,G y′ are equivalence
relations for all GC�nH. Moreover, we know that any two equivalence classes are
conjugated by the action of an element of H; this is so because Covering Property
implies that there is an element of each of the classes above each element of Z(K).
This implies the lemma.

We single out the following part of the proof as a corollary.

Recall that ∼c means �to lie in the same connected component of�.
Corollary 3.5.3.3 (Covering Property). x′ ∼c

Z,G y′ =⇒ ∃y′′(y′′ ∼G y′ &x′ ∼c
Z

y′′).

Proof. The proof of lifting property above proves the corollary for Z ⊂ AH(K) if
the relations ∼c

Z and ∼Z are equivalent. However, by Decomposition Lemma any set
p−1

H (Z) can be decomposed into a union of such sets; then going from one irreducible
component to another one intersecting it gives the corollary.
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Corollary 3.5.3.4 (Topology on U). The collection of T -closed subsets of U
forms a topology with a descending chain conditions on irreducible sets. A T -closed
set possesses an irreducible decomposition as a union of a �nite number of T -closed
sets whose T -connected components are T -irreducible. A union of irreducible com-
ponents of a T -closed set is a T -closed.

That is,

1. the collection of T -closed subsets on U
n, n > 0 forms a topology. The pro-

jection and inclusion maps pr : Un → U
m, (x1, ..., xn) 7→ (xi1 , .., xim

) and
ι : Un ↪→ U

m, (x1, ..., xn) 7→ (xi1 , .., xim′ , cm′ , .., cm) are continuous.
2. There is no in�nite decreasing chain .. ( Ui+1 ( Ui ( ... ( U0 of closed

T -irreducible sets.
3. A union of irreducible components of a T -closed set is T -closed.
4. A set is T -closed i� it a union of connected components of a �nite number

of H-invariant sets, for some HC�nπ a �nite index subgroup of π.
5. Each T -closed set is a union of a �nite number of T -closed sets whose T -

connected components are T -irreducible. Moreover, those sets may be taken
so that their connected components within the same set are translates of each
other by the action of a �nite index subgroup HC�nπ.

Proof. The last item is just a reformulation of Decomposition Lemma. All the items
trivially follow from it but (1).

Let us prove the intersection of two T -closed set Z ′i and Y
′
i is T -closed.

Assume W ′ and V ′ are unions of connected component of H-invariant sets HW ′

and HV ′. The intersection HW ′ ∩ HV ′ is H-invariant and the set W ′ ∩ V ′ is a
union of the connected components of HW ′∩HV ′. The intersection HW ′∩HV ′ =
p−1

H (pH(W ′)∩pH(V ′)) is T -closed by de�nition, and thus its connected components
are also T -closed. This by de�nition implies W ′ ∩ V ′ is T -closed.

To prove that an in�nite intersection is closed, it is su�cient to prove that the
intersection of a decreasing sequence of T -closed sets is T -closed. Use Koenig lemma
and the fact that a sequence of decreasing T -irreducible sets stabilises.

D.C.C. follows from the fact that an irreducible subset of an irreducible set neces-
sarily have lesser dimension.

Chevalley Lemma holds for <-structures

Let W ′ ⊂ U be an irreducible closed subset of U , i.e. a subset of U de�ned by

x ∼W a1 & ...&x ∼W an

where a1, .., an ∈ U are such that

∀y∀z(
∧

1≤i≤n

y ∼ ai &
∧

1≤i≤n

z ∼ ai =⇒ y ∼W z.

Such a set W ′ we call an irreducible component of closed set de�ned by x ∼W x,
or simply an irreducible component of relation ∼W .
Lemma 3.5.3.5 (Chevalley Lemma). A projection of an irreducible closed set
is closed.

Proof. Let W ′ be such an irreducible set, and let V ′ = ClprW ′ be the least
closed set containing its closure. By de�nition of V ′ pH(prW ′) ⊂ pH(V ′); and
by de�nition of closure V ′ ⊂ prHW ′ = p−1

H (pr pH(W ′)); the set pr pH(W ′) is
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closed by Chevalley Lemma for projective algebraic varieties. The inequalities im-
ply pH(prW ′) = pH(V ′) for every subgroup HC�nπ.

A deck transformation leavingW ′ invariant, also leaves V ′ invariant, i.e. prπ(W ′) ⊂
π(V ′). On the other hand, the equality pH(prW ′) = pH(V ′) implies for any HC�nπ,
prπ(W ′)/H = π(V ′)/H.

Let us now use Axiom 3.5.2.5 to show that this implies that pr (π(W )∩ [H ×H]) =
π(V ′) ∩H.

Let us now prove that π(W ′) ∩H ×H is �nitely generated for some HC�nπ.

We know by Corollary to Lemma 3.2.2.2 that W ′ = Y ′
g′ is a �bre of a Q-de�ned set

Y ′ over a point g′ such that pH(g′) ∈ pr pH(Y ′) Q-generic.

We know that for every GC�nH, for a connected component YG of pGp
−1
H (Y ), the

intersection YG ∩ g′ × pGp
−1
H (Yg) is connected; geometrically, that means that a

lifting of W = Yg ⊂ Y along the covering map YG → Y is a �bre of Y . This holding
for every GC�nH, it implies that for Y ′ a connected component of p−1

H (Y ), the
intersection Y ′

g′
c = Y ′ ∩ g′ × p−1

H (Yg) is connected, and therefore it coincides with a
connected component of p−1

H (Yg) = p−1
H (W ). Moreover, this implies that if h ∈ H

is such that hY ′
g′

c ⊂ p−1
H (Yg) then hY ′

g′
c ⊂ Y ′

g′
c, i.e. h ∈ π(Y ′

g′
c) ∩H = π(Y ′

g′) ∩H.
Thus, to prove that π(W ) ∩ H = π(Y ′

g′
c) ∩ H is �nitely generated, it is enough

to prove that π(Y ′
g′) ∩ H is �nitely generated. However, the latter is claimed by

Axiom 5 for every variety Y de�ned over Q.

Let g1, .., gn be the generators of π(W ′)∩H×H. Now take τ ∈ π(V ′)∩H, τ(V ′) = V ′.
We know that τ/G ∈ prπ(W ′)/G, for every GC�nH, and therefore τ , up to ∼G,
is expressible as a product of g1, ..., gn. In other words, that means that x′ and τx′

can be joined by a sequence of points x′ = h1, h2, .., hn = τx′ such that hi+1 = gjihi

for all 1 ≤ i ≤ n, and here n = n(G) depends on subgroup G. By Axiom 5 there is
a uniform bound on such n = n(G), and τ is expressible as a product of g1, ..., gn,
and therefore belongs to prπ(W ′).

Now we �nish the proof by a Covering Property argument similar to the topological
proof of Chevalley Lemma in complex case.

Let V0 ⊂ pr pH(W ′) ⊂ V where V0 ( V is open in V ; then V is irreducible. Recall
V ′ = ClprW ′ and take V ′

0 = V ′ ∩ p−1
H (V0); we know V ′

0 ⊂ V ′ is open in V ′. We also
know V ′

0 ⊂ ClprW ′.

Take v′ ∈ V ′
0 , and take w′ ∈ W ′, pr pH(w′) = pH(v′) ∈ V0 ⊂ prW ; such a point

w′ in W ′ exists by Covering Property. Now, prw′ ∈ V ′, and thus γ0 ∈ π(V ′)
where γ0 is de�ned by v′ = γ0prw′. Condition pr pH(w′) = pH(v′) ∈ AH(K)
implies γ0 ∈ H. Thus the inclusion prπ(W ′) ∩H = π(V ′) ∩H implies there exists
γ1 ∈ π(W ′), pr γ1 = γ0, and thus v′ = γ0prw′ = pr (γ1w

′), and the Chevalley
lemma is proven.

Corollary 3.5.3.6. A projection of a set open in its irreducible closure contains
an open subset of the closure of the projection.

Proof. Let ∅ 6= W 0′ ⊂ W ′ be an open subset of an irreducible closed set W ′. Then
W ′

1 = W ′ \W 0′ ( W ′ is a closed set. Consider W ′ \ HW ′. If W ′ ⊂ HW ′
1, then

by irreducibility of W ′ it holds W ′ ⊂ hW ′
1 ⊂ hW ′

1, for some h ∈ H. This forces
hW ′ = W ′, and also W ′

1 = W ′, which constricts the assumption ∅ 6= W 0′. Thus
W ′ \ HW ′

1 6= ∅, and pr pH(W ′) ) pH(W ′). Now, pH(W ′) is an irreducible closed
subset of AH(K), and therefore pH(W ′) is of smaller dimension then pH(W ′). Now
we may apply Chevalley Lemma for algebraic varieties to get the conclusion.
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3.5.4 Homogeneity and stability over models

In the �� above we have established the main properties of topology T (U) on U (and
its Cartesian powers Un). That allows us to de�ne and prove the basic properties
of Θ-generic points, for Θ an algebraically closed sub�eld of K.

The notion of a Θ-generic point extends to U in a natural way. Recall that for a
closed Θ-de�ned set V ′, the set ClΘV ′ is the set of all Θ-generic points of V ′. Recall
also that a set of Θ-generic points of a Θ-de�ned set is called Θ-constructible.

Lemma 3.5.4.1 (Homogeneity). Any structure U ∈ < is model homogeneous,
i.e. the projection of a Θ-constructible set is Θ-constructible, for any algebraically
closed sub�eld Θ of the ground �eld.

Proof. First note that a point w′ ∈ W ′ in an irreducible set W ′ is Θ-generic i�
p(w′) ∈ p(W ′) is Θ-generic. By Chevalley Lemma, the �bre W ′

g′ is non-empty
for g′ ∈ prW ′ Θ-generic. Moreover, by Lemma 3.1.5.5 a connected component of
�bre Wg, g = p(g′) always contains a Θ-generic point w ∈ W of W . The lifting
w′, p(w′) = w is always Θ-generic, and we may �nd such a lifting in any connected
component of a �bre over a generic point. This implies the lemma.

De�nition 3.5.4.2. Let U ,U1,U2 ∈ < be LA-models of X(A(C)).

We say that tuples a ∈ U
n
1 and b ∈ U

n
2 have the same syntactic quanti�er-free

type over U i n class < if a and b satisfy the same quanti�er-free LA-formulae with
parameters in U .

De�nition 3.5.4.3. A class < of LA-structures is syntactically stable over count-
able submodels i� for any structure U ∈ <, the set of complete LA-types over a
structure U realised in a structure U ′ ∈ < is at most countable.

De�nition 3.5.4.4. A class < of LA-structures is quanti�er-free syntactically stable
over countable submodels i� there are only countably many quanti�er-free syntactic
types in class < over any countable model U ∈ <.
Lemma 3.5.4.5 (Stability over submodels). Assume A is Shafarevich. The
class of LA-models of X(A(C)) is quanti�er-free syntactically stable over submodels.

Proof. If U ≺ U
′ is an elementary substructure, then U = U

′(Θ) = {u ∈ U
′ :

p(u) ∈ A(Θ)}, for some algebraically closed sub�eld Θ.

Every positive quanti�er-free LA-formula over U determines a closed set de�ned
over Θ. For every tuple v′ ∈ U ′, there is a least closed set V ′ = ClΘ(v′) containing v′

and de�ned over Θ; it is irreducible, and is a connected component of an algebraic
subvariety V/Θ of AH de�ned over Θ, for some HC�nπ. Moreover, ClΘ(v′) has
a Θ-point v′Θ. Thus, the quanti�er-free LA-type of tuple v′ is determined by the
point v′Θ ∈ U and a subvariety V/Θ. Therefore, there are only countable number
of such types, which implies that class < is quanti�er-free syntactically stable over
submodels.

Property 3.5.4.6 (Homogeneity and Stability of class <). Assume A is Sha-
farevich.

All structures LA-models of X(A(C)) are model homogeneous. The class of LA-
models of X(A(C)) is syntactically quanti�er-free stable over countable submodels.

Proof. Implied by preceeding two lemmata.

Finally, we may state Theorem 3.5.4.7, which was the goal of the chapter.
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Theorem 3.5.4.7 (Model Stability of X(U)). Let A be a smooth projective
algebraic variety such that the universal covering space U of A is Stein (holomor-
phically convex). and such that the fundamental groups of connected components of
A(C) are lerf. Let language LA be the countable language de�ned in Def. 2.1.2.1.
Then (1′, 3a, 3b) hold, and 2′ is weaken to 2′ℵ1

:

2′ℵ0→ℵ1
Any two models U1 |= X and U2 |= X of axiomatisation X and of cardi-

nality ℵ1, such that
there exist a common countable submodel U0 |= X, U0 ⊂ U1 and U0 ⊂
U1

are isomorphic, U1
∼=LA

U2, and, moreover, the isomorphism φ is identity
on U0.

Proof. This is closely related to Proposition 3.5.4.6; however, let us prove this di-
rectly in an explicit manner; in this argument we try to pun an emphasis the prop-
erties of topology, although this could also be treated as a very common model-
theoretic argument.

We will prove that every partial L-isomorphism f : U1 99K U2, f(a) = b, a ∈
U

n
1 , f|U0 = id|U0 de�ned onU0∪{a1, ..., an}, can be extended toU0∪{a1, ..., an}∪

{c}, f(c) ∈ U2 for any element c ∈ U1. This allows to extend a partial L-
isomorphism from a countable model to its countable extension. This is enough:
by taking unions of chains of countable submodels we get isomorphism between
models of cardinality ℵ1. Note that one cannot get isomorphism between models of
cardinality ℵ2 in this way.

Let V1 = ClU0(a),W1 = ClU0(a, c) be the minimal closed irreducible subsets con-
taining points a ∈ Un

1 and (a, c) ∈ Un+1
1 ; let V2 = ClU0(f(a)) be the corresponding

subset of U2. Since f is an L-isomorphism, sets V1 and V2 are de�ned by the same
L-formulae with parameters in U0.

Take a subgroup HC�nπ su�ciently small such that V1, V2,W1,W2 are connected
components of p−1

H pH(V1), p−1
H pH(V2), p−1

H pH(W1), p−1
H pH(W2), respectively. Pick

points v1, w1 ∈ U0 such that v1 ∈ V1, V2 and w2 ∈W1,W2.

Now, by de�nition of W2 we have pr pHW2 = pHV2, and also prw2 ∈ V2; choose
c′ ∈ U2 such that (pH(b), pH(c′)) ∈ pH(W2) is a U0-generic point of pH(W2).
Then by the lifting property for W2 there exists a point (b′, c′′) ∈ W2 such that
pH(b′) = pH(b), pH(c′′) = pH(c′). However, this implies that b′ ∈ prW2 ⊂ V2 is
a U0-generic point of V2. Therefore by homogeneity properties in Lemma 3.5.4.1,
or equivalently because the projection prW2 is a closed set de�nable over U0, this
implies V2 ⊂ prW2, and, in particular, there exists d ∈ U1 such that (b, d) ∈ W2

is a U0-generic point. Now set f(c) = d. By constructions, the points (a, c) ∈ U1

and (b, d) ∈ U2 lie in the same U0-de�nable closed sets, and, since every basic
relation of L de�nes a closed set, this implies that f is indeed an L-isomorphism,
as required.
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Chapter 4

Appendices

4.1 Appendix A: Basic notions of homotopy theory

Here we introduce basic notions of homotopy theory�that of a homotopy, of a
�bration, a covering, a path, covering homotopy property and paths lifting property,
and the notion of a fundamental group and a universal covering space.

4.1.1 Homotopy Theory: Fundamental Groups, Universal Covering
Spaces

4.1.2 Homotopy and Coverings

We introduce basic notions of homotopy theory, and some analogous notions of
complex algebraic geometry. Exposition follows [Nov86, Ch.4,��2-4].

In this § we assume that all topological spaces are su�ciently nice, i.e. Hausdor�,
locally connected and locally linearly connected.

Homotopies and paths

Let X,Y be topological spaces. A continuous homotopy f : X → Y , or simply a
homotopy, is a continuous map

F (x, t) : X × I → Y, x ∈ X, a ≤ t ≤ b

of a cylinder X × I, where I = [a, b] = {t : a ≤ t ≤ b} is the closed interval of real
line from a ∈ R to b ∈ R, and which coincides with f on boundary X × {a}

F (x, a) = f(x), x ∈ X.

Two maps f, g : X → Y are homotopic if there is a continuous homotopy F such
that

F (x, a) = f(x),

F (x, b) = g(x).

Being homotopic is obviously an equivalence relation; a homotopy class is a class
of maps f : X → Y homotopic to each other.

If maps f and g coincide on a point, f(x0) = g(x0), then one often requires con-
necting homotopy to �x f(x0), that is, F (x0, t) = f(x0) = g(x0); this is called a
homotopy �xing f(x0).

A homotopy between two points is called a path; thus, a path γ in Y is just a
continuous map γ : [0, 1] → Y ; a path γ is trivial i� γ(t) = y0, 0 ≤ t ≤ 1 for all t

53
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and some point y0 ∈ A. Thus, two points are homotopic i� they can be joined by
a path. A path is always homotopic to its endpoint, the connecting homotopy just
contracts the path by itself. To get a non-trivial notion of homotopy of paths, one
usually considers only homotopies of paths �xing the ends. Thus, we say two paths
are �xed point homotopic i� there is a connecting homotopy �xing their endpoints.

Covering homotopies and �brations

Consider continuous maps p : X → Y and an arbitrary map f : Z → Y . The map
f is covered by a map g : Z → X i� p ◦ g = f .

De�nition 4.1.2.1. A map p : X → Y is called a �bration i� for any space Z
any homotopy F : Z × I → Y covered at the initial time t = a, can be covered
at all times a ≤ t ≤ b by some homotopy G : Z × I → X so that p ◦ G(z, t) =
F (z, t), G(z, a) = g(z). That is, if map f(z) = F (z, a) : Z → Y is covered by a
map g : Z → X, f(z) = F (z, a) = p ◦ g(z), z ∈ Z, then there exist a homotopy
G : Z × I → X covering F : Z × I → X,

G(z, a) = g(z)

F (z, t) = p ◦G(z, t).

Homotopy G is called a covering homotopy with initial condition g.

Quite often one weakens the de�nition by restricting Z to a subclass of spaces; an
example of an important notion of this type is when Z = In is required to be a
direct product of intervals.

In all most important cases a covering homotopy can be constructed with the help
of a homotopical connection, i.e. a unique recipe to cover an arbitrary homotopy
of a point y ∈ Y (i.e. a path γ in Y , γ(a) = y) by a path in X starting from an
arbitrary point x0 = γ(a) ∈ X, y = p(x0). The recipe should continuously depend
on the path in Y and on the starting point of the covering path in X. Continuity
on these variables ensures that the covering homotopy property for paths can be
extended to arbitrary (in some reasonable sense) spaces Z.

If p : X → Y is a �bration, then the map p is called a projection, X the total space,
Y the base, and Fy = p−1(y), y ∈ Y a �bre of the �bration p. Using the existence
of a connection, one can prove that all the �bres Fy of a �bration of a base space
Y are homotopically equivalent provided any two points of Y are homotopic, i.e. if
space Y is linearly connected.

Given a connection and a path γ in the base of a �bration p : X → Y , we get a
map from �bre Fy to Fy′ above the ends of the path γ: a point x ∈ Fy goes to the
endpoint of the unique lifting γ̃x of path γ to X starting at x:

x ∈ Fy 7→ x̃′ = γx(1) ∈ Fy′ , where γ̃x(0) = x.

The point x′ varies continuously with x, and in fact, properties of a connection
ensure that x 7→ x′ is a homotopy equivalence between �bres Fy and Fy′ . The map
from Fy to Fy′ may depend on the path γ and not only its homotopy class; if the
correspondence x → x′ depends only on homotopy class of the path γ between
points x and x′, the �bration is called �at. An important case of a �at �bration we
de�ne next.

De�nition 4.1.2.2. A covering p : X → Y is a �bration with a discrete �bre F ,
i.e. F is a space such that all its subsets are open and any point y ∈ Y has a open
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neighbourhood U, y ∈ U ⊂ Y such that the full preimage of U is homeomorphic to
a direct product of U × F , where F =

⋃
α
{xα}:

p−1(U) =
⋃
α

Uα
∼= U × F

and each Uα is a homeomorphic copy of U .
Subsets Uα ⊂ X are open and pairwise non-intersecting; on each of them p is
a homeomorphism with U . The homotopic connection is given by the following
recipe. Given a point x0 ∈ X, to lift a path γ : [0, 1] → Y in Y which is small
enough to �t in a neighbourhood U , we just take path γ̃(t) = (γ(t), xα) ⊂ Uα,
where x0 = (y0, xα) ∈ Uα ⊂ U × F . If γ is not small enough, we split it in pieces
which are small enough, and lift it piece by piece.

If one drops the requirement that �bre F is discrete, then one get the notion of
a locally trivial �bration; the proof of the covering homotopy property requires
an argument, and is not a priori clear; such a �bration has homeomorphic �bres.
In more detail, a map p : X → Y is called locally trivial �bration i� any point
y ∈ Y of the base is contained in a neighbourhood Uα such that p−1(Uα) ⊂ X is
homeomorphic to a direct product Uα × F via a homeomorphism φα : p−1(Uα) →
Uα × F compatible with the projection pr ◦ φα = p. There is also a compatibility
condition on the behaviour of φα's on the intersection Vαβ = Uα∩Uβ ; there are two
homeomorphisms corresponding to the intersection Vαβ = Uα ∩ Uβ :

φα : p−1(Vαβ) → Vαβ × F,

φβ : p−1(Vαβ) → Vαβ × F.

The map λαβ = φα ◦ φ−1
β : Vαβ × F → Vαβ × F leaves the �bres invariant setwise,

and thus has form

λαβ(ω, f) = (ω, λ̂αβ(ω)(f)), f ∈ F,w ∈ Vαβ ,

where λ̂αβ(ω) : F → F is a homeomorphism of the �bre continuously depending on
point ω. In a neighbourhood W = U1 ∩ U2 ∩ U3 we have

λ1 ◦ λ2 ◦ λ3 ≡ 1.

The maps λij are called gluing functions. If we know the gluing functions λαβ for
some covering of a space Y by neighbouhroods Uα's, and the gluing functions satisfy
the condition above, then we can uniquely reconstruct the �bration p : X → Y .
Obviously, we require that above each neighbourhood Uα the �bration decomposes
into the direct product.

The notions of a locally trivial �bration and the general notion of a �bration are
fundamental for the theory of manifolds, di�erential topology, geometry and their
applications.

4.1.3 Fundamental Group, Functoriality and Long Exact Sequence of a
Fibration

De�nition of homotopy groups πn(X,x0), n ≥ 0

Let Sn be the circle in Rn de�ned by

x2
1 + x2

2 + ...+ x2
n = 1,

with a distinguished point s0 = (1, 0, .., 0). Then, S1 is a circle with a basepoint,
and S0 is just a point.
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De�nition 4.1.3.1. For n > 0, the set of homotopy classes of maps of basepoint
spaces (Sn, s0) → (X,x0) is called n-th homotopy group and is denoted πn(X,x0).
We describe group operation only for n = 1. For n = 1, the group operation is given
by concatenation of paths, i.e. by the path which �rst follows the �rst path, and
then goes along the second path:

γ(eπit) = γ1(e2πit), 0 ≤ t ≤ 1,

γ(eπit) = γ1(e2πi(t−1)), 1 ≤ t ≤ 2.

For n = 0, the �0-th homotopy group� π0(X,x0) is not a group, but is just a set
with a distinguished element; it is the set of all the connected components of X. It
is customary to call it a group, although it is an abuse of language.
Thus, the fundamental group π1(X,x0) consists of �xed homotopy classes of loops
based at the point x0; and the group operation is just concatenation of paths; it is
well-de�ned on the homotopy classes.

The fundamental group is a covariant functor on the category of basepoint topo-
logical spaces. That means that each map of basepoint spaces

f : X → Y, x0 → y0

gives rise to a map of fundamental groups

f∗ : πn(X,x0) → πn(Y, y0).

The homomorphisms are de�ned sending each map γ : (Sn, s0) → (X,x0) into the
composition f ◦ γ : (Sn, s0) → (Y, y0).

The correspondence f 7→ f∗ is natural, which means that a composition of maps of
basepoint spaces gives rise to the composition of corresponding maps; that is, for
maps f : X → Y, g : Y → Z, f(x0) = y0, g(y0) = z0 of basepoint spaces we have

(f ◦ g)∗ = f∗ ◦ g∗.

This correspondence is well-de�ned for any n, including n = 0.

The presence of a basepoint is essential for naturality.

The short exact sequence of �bration

The following observation is very important as for development of the theory of
homotopy groups. It allows one to calculate the fundamental group of a �bration;
the fact that this is possible is very important for the methods of the paper.
Property 4.1.3.2. To each �bration

p : X → Y, p−1(y0) = F0, x0 ∈ F0

there corresponds a long exact sequence of homotopy groups

→ πn(F0, x0) → πn(X,x0) →p∗ πn(Y, y0) →∂ πn−1(F0, x0) → πn−1(X,x0) → .

In particular, for n = 0, 1 the end of the sequence looks like

→ π1(F0, x0) → π1(X,x0) →p∗ π1(Y, y0) →∂ π0(F0, x0).

For a �bration with a connected �bre we have π0(F0, x0) = 0, and thus we get an
exact sequence

π1(F0, x0) → π1(X,x0) →p∗ π1(Y, y0) → 0

This �bration sequence is essential for us to prove the geometry properties of a
Zariski-type topology T on the universal covering space U of an algebraic variety
A(C).
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4.1.4 Regular Coverings and Universal Covering Spaces

Let p : X → Y be a covering. A regular covering is a covering such that p∗π(X) ⊂
π1(Y ) is a normal subgroup.

The biggest regular covering is called universal covering space X of base Y ; it is
a covering such that π1(X) is a trivial group. It can be shown that the universal
covering space exists for many spaces, in particular it exists for all complex algebraic
varieties (in complex topology). The group Γ = π1(X,x0) acts freely and discretely
on X, and its orbits coincide with the �bres p−1(y).

Deck Transformations of a covering

Let p : X → Y be a covering. We say that a continuous map g : X → Y is a
deck transformation i� p ◦ g(x) = p(x), x ∈ X. If X is connected, then a deck
transforation g is determined by the image of a point; indeed, if two continuous
deck transformations g1, g2 : X → Y coincide on a point x, g1(x) = g2(x), then they
coincide in a admissible open neighbourhood Uα ⊂ X of x (notation of Def. 4.1.2.2).
The space X can be covered by such neighbourhoods, and this proves g1 and g2
coincide on a connected component of X containing x.

On the other hand, the path lifting property allows one to de�ne a natural action of
the fundamental group π1(Y, y0) on the �bre p−1(y0): for a loop λ ∈ π1(Y, y0), λ(0) =
λ(1) = y0, we set

λ · x = λ̃(1), λ̃(0) = x, p(λ̃) = λ.

where λ̃ is the lifting of λ starting at point x, p(x) = y0.

Therefore we get an action of the fundamental group π1(Y, y0) on a covering space
of a basepoint base space Y .

In fact, the covering is completely characterized by the fundamental group, as the
following important theorem shows:

Fact 4.1.4.1 (Galois correspondence between coverings and subgroups).
There is a bijective correspondence between subgroups of π1(Y, y0) and basepoint
covering spaces of (Y, y0).

For a subgroup H < π1(Y, y0), the corresponding covering is denoted pH : Ỹ H → Y
with a basepoint yH ∈ Ỹ H . The correspondence is natural, i.e. if H1 < H2, then
there is a well-de�ned covering

pH1,H2 : Y H1 → Y H2 , yH1 → yH2 .

The choice of basepoint is important for the functoriality of the interdependence;
otherwise there is no unique way to choose a covering corresponding to embedding
H1 < H2.

In particular, there is a covering corresponding to the trivial subgroup H = 0;
it is called the universal covering space of X, and in next § we give an explicit
construction for the universal covering space in terms of paths. We also give an
explicit construction for deck transformation.

A covering Ỹ H corresponding to a normal subgroup H Cπ1(Y, y0) is called regular.
The regular covering have the property that any two points of a �bre are conjugated
by a deck transformation. For H normal, the group of deck transformations in
this case is the group π(Y, y0)/H, and it acts transitively on the �bres of covering
p : Ỹ H → Y .
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Universal Covering Spaces and Deck Transformation

De�nition 4.1.4.2. A covering p : X → Y is called the universal covering i� the
space X is simply connected, i.e. its fundamental group π1(X,x) = 0 is trivial.
The universal covering space is usually denoted by Ỹ .

Given a basepoint y0 ∈ Y , we can construct the universal covering space as the set
of homotopy classes of paths leaving the basepoint:

Ỹ = {γ : [0, 1] → Y : γ(0) = y0}/{homotopy �xing γ(0)}

with a basepoint ỹ0 being the trivial path in Y

ỹ0(t) = y0, for all t.

Each continuous transforation of basepoint spaces f : (Y1, y1) → (Y2, y2) induces a
transformation on the covering spaces f̃ : (Ỹ1, ỹ1) → (Ỹ2, ỹ2), f̃(ỹ1) = ỹ2.

The dependance is natural, and thus we get a functor from the category of basepoint
topological spaces to itself

(Y, y0) → (Ỹ , ỹ0)

which sends a space with a basepoint to its universal covering space with a basepoint.

The fundamental group π1(Y, y0) acts naturally on the space Ỹ , ỹ0 by prexing a
path in Ỹ with a loop from π1(Y, y0)

(λ ∈ π1(Y, y0), γ ∈ Ỹ ) 7→ λ ◦ γ

where ◦ denotes the concatenation of paths. The concatenation is well-de�ned as
λ(0) = y0 = λ(1) = γ(0).

4.2 Some notions of algebraic geometry: normal varieties

and étale morphisms

4.2.1 Étale morphisms.

In our context the following de�nition of an étale morphism is most useful; however,
it applies only in characteristic 0. The equivalence of this de�nition to the usual one
is given in [DS98].
De�nition 4.2.1.1. A morphism f : Y → X de�ned over a characteristic 0 �eld
k is étale i�, for an embedding k ↪→ C, the induced map f : Y (C) → X(C) is a
topological covering map, with respect to the complex topology on Y (C) and X(C),
i.e. f induces an isomorphism of topological covering spaces of Y (C) and X(C). The
morphism f : Y → X is called étale at a point y ∈ Y if it is an isomorphism of an
neighborhood of y in Y open in the complex topology onto an open neighbourhood
of x in X open in the complex topology.
The de�nition above does not depend on the embedding of k to C; this fact and the
equivalence of this de�nition to the usual one is via an invariant local characterisa-
tion of an étale morphism [Mil80, Ch.1,Th.3.14,p.26].
De�nition 4.2.1.2. A morphism f : Y → X of a�ne varieties de�ned over an
algebraically closed �eld is called standard etale morphism at a point x ∈ X(k)
i� there exist functions a1, .., ar : X → k such that Y is locally described by the
equation P (x, t) = tr + a1(x)tr−1 + ..+ ar−1(x)t+ ar(x) = 0 i.e.

Y (k) ∼= {(x, t);P (t) = 0, x ∈ X(k)}
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and all the roots of the polynomials Px(t) = P (x, t) are simple at any geometric
point x ∈ X(k). A morphism f : Y → X of a�ne varieties de�ned over an alge-
braically closed �eld is called standard étale morphism if it is standard étale at any
geometric point x ∈ X(k).
It is evident that a standard étale morphism induces a covering map in the complex
topology.

By [Mil80, Ch.1,Th.3.14,p.26], an étale morphism is locally standard étale;
Fact 4.2.1.3. Assume f : Y → X is étale in some (Zariski) open neighbourhood
of y in Y. Then there are Zariski open a�ne neighbourhoods V and U of y and
x = f(y), respectively, such that f |V : V → U is a standard étale morphism.

We remark that the notion of an étale morphism is in fact de�ned over arbitrary
rings, and is de�ned via the exactness properties of the functor hY = HomX(−, Y )
from the category of X-schemes to Y -schemes induced by morphism f : Y → X.

4.2.2 Normal closed analytic sets

De�nition 4.2.2.1. A closed analytic subset X of a Stein space is normal if any
bounded meromorphic function on X is holomorphic.

A normalisation morphism n of variety Y is a morphism n : X → Y from a
normal variety X such that any dominant (surjective on an open subset) morphism
f : Z → Y lifts up to a unique morphism f̃ : Z → X such that f = f̃ ◦ n.
Any smooth closed analytic set is normal.

We only the following two properties of a normal variety:
Fact 4.2.2.2. A normalisation morphism exists for any variety, and is functorial.

The following express that normality is a local notion:
Fact 4.2.2.3 (normality is a local notion). 1. if p : X(C) → Y (C) is a

local isomorphism in complex topology, and Y (C) is normal, so is X(C).
In particular,

2. if p : X → Y is étale, then X is normal i� Y is normal.

Fact 4.2.2.4. If X is smooth, then X is normal.

Fact 4.2.2.5. Let X be a closed analytic subset of a Stein manifold, or let X be an
algebraic variety. If X is connected and normal, then X is irreducible.

4.3 Appendix: Geometric Conjectures on the convexity of

the universal covering space of a complex algebraic

variety

4.3.1 Shafarevich conjecture on holomorphic convexity of universal
covering spaces

In [Sha94, IX�4.3] Shafarevich proposed a conjecture that the universal covering
space of an algebraic variety is holomorphically convex; thus �it has many holomor-
phic function�.

Recall the de�nition of a holomorphically convexity and separability:
De�nition 4.3.1.1. A complex space is called holomorphically separable if for
every x0 ∈ U there are holomorphic functions f1, ..., fl on U such that x0 is isolated
in the set {u ∈ U : f1(u) = ... = fn(u) = 0}.

A complex space U is called holomorphically convex i� either of the two equivalent
conditions holds:
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(i) for any compact subset K ⊂ U the set

K̂ = {u ∈ U : |f(u)| ≤ sup |f(K)| for every holomorphic function f on U}

is compact.
(ii) for any in�nite discrete subset S of U there exist a holomorphic function

f : U → C unbounded on S.

A complex space U is called Stein i� it is both holomorphically separable and
holomorphically convex.

Another characterisation of a Stein manifold is that

Lemma 4.3.1.2. A manifold which is biholomorphic to a closed analytic set in
Euclidean space Cn; in particular the Euclidean space Cn itself is Stein.

Proof. [�85]

Conjecture 4.3.1.3 (Shafarevich[Sha94, IX�4.3]). The universal cover of a
projective variety is holomorphically convex, or even Stein.

Another characterisation of a Stein manifold is that a manifold which is biholo-
morphic to a closed analytic set in Euclidean space Cn; in particular the Euclidean
space Cn itself is Stein.

4.3.2 Equivalence of isomorphisms of topological and analytic vector
bundles over a Stein manifold

On Stein manifolds, analytical properties are often determined by pure topology; in
particular, one of the properties of Stein spaces which might turn out to be relevant
is that analytic vector bundles over a Stein manifold are isomorphic analytically i�
they are so topologically.

Theorem 4.3.2.1 (Oka's principle). Let X be a Stein manifold. Then

1. Every topological �bre bundle over X has an analytic structure

2. If two analytic �bre bundles over X are topologically equivalent, then they
are also analytically equivalent.

Also relevant may be Theorems A and B of H. Cartan [Gra91].

Theorem 4.3.2.2 (Theorem A.). Let V → X be an analytic vector bundle over
a Stein manifold X. Then for any x0 ∈ X there are global holomorphic sections
s1, .., sn ∈ Γ(X,V ) of V such that:

If U = U(x0) ⊂ X is an open neighbourhood of x0 and s ∈ Γ(U, V ) is a local
section of V on U(x0), then there exist an open neighbourhood V = V (x0) ⊂
U of x0 and holomorphic functions f1, .., fN on V such that

s|V = f1s1 + ..+ fNsN .

Theorem 4.3.2.3 (Theorem B.). Let π : V → X be an analytic vector bundle
over a Stein manifold X. Then H1(X,V ) = 0.

Moreover, if A ⊂ X is an analytic set, U is an open covering of X and a cochain
ξ ∈ Z1(U, V ) such ξνµ|Uνµ∩A = 0, then we can �nd a cochain η ∈ C0(U, V ) such
that dη = ξ and η|Uν

∩A = 0.
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4.3.3 Stein factorisation and Lefschetz-type properties of algebraic
varieties

In this section we use state several somewhat unexpected results about fundamental
groups of algebraic varieties; arguably one may call such properties rigidity proper-
ties, or Lefschetz-type properties, or positivity properties.

A Zariski open subset has real codimension at least two; the following fact should
not seem surprising:
Fact 4.3.3.1. Let Y be a connected normal complex space and Z ⊂ Y a Zariski
closed subspace. Then π1(Y − Z) → π1(Y ) is surjective.

Proof. Kollar, Prop.2.10.1

Let us state �rst two facts which say that morphisms of complex algebraic normal
varieties have rather easy and well-understood topological structure almost every-
where, i.e. on a dense Zariski open set. It is critical for us that these topological
structure allow us to understand the corresponding morphism of covering spaces.
Fact 4.3.3.2. Let f : X → Y be a morphism of irreducible normal algebraic complex
varieties.

Then there exist an open subset Y 0 ⊂ Y and X0 = f−1(Y 0), and a variety Z0 such
that f factorises as follows:

X0 →f0
Z0 →fet

Y 0

where

1. Z0 → Y 0 is a �nite étale morphism
2. X0 → Z0 is a topological �bre bundle (in complex topology) with connected

�bres

Moreover, if f : X → Y is dominant, then Z0 → Y 0 is surjective.

Proof. Kollar, Propositon 2.8.1.

Note that while f0 : X0 → Y 0 is interpretable in the theory of algebraic varieties
and in LA, as indeed any morphism of algebraic varieties is, the theory may not
say anything about the induced morphism (f0)∗ : U(X0) → U(Y 0) of the universal
covering spaces of X0(C) and Y 0(C).

Indeed, the language allows us to speak about the liftings, or induced morphisms
only for morphisms between closed subvarieties; and even then, we lift those only to
the cover UA which generally speaking is much smaller then the univesal covering
space of subvarieties concerned.

We �nd the following useful.
Corollary 4.3.3.3. Let f : X → Y be a morphism of irreducible algebraic varieties
over Θ, and let g ∈ Y (C) be a Θ-generic point. Then any open Θ-de�nable set
intersects all connected components of generic �bre Wg = f−1(g).

Proof. Such a set intersects all generic �bres of a morphism. Factoring projection
through a morphism with connected �bres, which is possible by Stein factirisation,
the result follows.

Fact 4.3.3.4. Any morphism f : Y → X of algebraic varieties admits a factorisa-
tion f = f0 ◦ f1 as a product of a �nite morphism f0 : Y → Y ′ and a morphism f1
with connected �bres.
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Proof. [Har77]

Corollary 4.3.3.5. If f : X → Y is a Θ-de�nable morphism of Θ-de�nable ir-
reducible algebraic varieties, then there exist an open Θ-de�nable set Y 0 ⊂ Y and
X0 = f−1(Y 0) such that the relation

x, y ∈ X0 lie in the same connected component of Xg = f−1(g), for some
g ∈ Y 0

is Θ-de�nable.

Proof. Indeed, the relation is de�ned by f(x) = f(y) and f0(x) = f0(y), in notation
of previous lemma.

The Fact 4.3.3.2 above leads to

Fact 4.3.3.6. Let f : X → Y be a morphism of normal algebraic connected complex
varieties; let Xg = f−1(g), g ∈ X be a generic �bre of f over a generic point
g ∈ Y (C).

Then sequence

f∗ : π1(Xg(C)) → π1(X(C)) → π1(Y (C))

is exact up to �nite index.

Moreover, if f : X → Y is dominant, then

f∗ : π1(X(C)) → π1(Y (C))

is surjective up to �nite index.

If X,Y and morphism f : X → Y are de�ned over a �eld Θ, then there exists an
open subset Y0 ⊂ Y de�ned over Θ such that the above conclusions hold for g ∈ V0

not necessarily Θ-generic.

Proof. Follows from Facts 4.3.3.1 and 4.3.3.2 and the exact sequence of the funda-
mental groups of a �bration, from Kollar, Proposition 2.8.1 and Kollar, Proposition
2.10.1.

Recall p : U → A(C) is the universal covering of an algebraic variety A.

Recall for a subset W ′ of Un, we denote π(W ′) = {γ ∈ πn : γW ′ ⊂ W ′}. In next
lemma we will drop the assumption on normality using the assumption that the
universal covering space U is holomorphically convex.

Corollary 4.3.3.7. Let W ′ be a T -irreducible closed set, and let V ′ = ClprW ′.
Assume that p(W ′) and p(V ′) are both normal. Then π(prW ′) is a �nite index
subgroup of π(V ′), i.e. π(V ′) . prπ(W ′).

Proof. By Decomposition Lemma 3.1.4.1 we may assume that W ′ and V ′ are
connected components of p−1

H (W (C)), p−1
H (V (C)) for some normal algebraic va-

rieties W and V , respectively; then by properties in �4.1.1 π(W ′) = π1(W (C)), w),
π(V ′) = π1(V (C), v), for some points w ∈W (C), v ∈ V (C).

Furthermore, we may still assume normality because it is preserved under taking
preimage under an étale map. By the previous lemma prπ1(W (C)) . π1(V (C)), as
required.
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4.3.4 Extending to the case of a non-normal subvariety

The above provides an explicit description of morphisms topologically, between
normal algebraic varieties.

However, it is very important for us to deal with an arbitrary subvarieties, not
necessarily normal. We do that by considering the image of the fundamental groups
in the big ambient variety which is normal.
Fact 4.3.4.1. Assume A is Shafarevich.

Let p : U → A(C) be the universal covering space, let ι : X → A × A be a closed
subvariety, and let Y = ClprX.

Assume that

connected components of p−1(X(C)) and p−1(Y (C)) are irreducible

Then there is a sequence of subgroups of π1(A(C))2

ι∗π1(Xg(C)) → ι∗π1(X(C)) → ι∗π1(Y (C)) → 0

which is exact up to �nite index, and the homomorphisms are those of subgroups of
π1(A(C))2.

In particular, the sequence splits, and

1. pr ∗ : pr ι∗π1(X(C)) → ι∗π1(Cl(prX)(C)) is surjective up to �nite index
2. ι∗π1(X(C)) . ι∗π1(Xg(C)) × ι∗π1(Cl(prX(C))), where Xg = f−1(g) is a

generic �bre of X over a generic point g ∈ X(C).
Moreover, if X is Θ-de�nable (Θ = Θ̄)) then there exist a Θ-de�nable open subset
Z0 of ClprX(C) such that the above holds for g ∈ Z0(C).

Proof. The �rst conclusions implies the second, so we only prove the �rst one.

We prove this by passing to the normalisation of varieties W and Z = ClprW .
The assumption about the irreducibility of connected components implies that the
composite maps of fundamental groups π1(Ŵ ) → π(W ) → ι∗π1(W ) and π1(Ẑ) →
π1(Z) → ι∗π1(Z) are surjective.

To show this, �rst note that the universal covering spaces ˜̂
W (C) and ˜̂

Z(C) are
irreducible as analytic spaces; indeed, normality is a local property, and so they are
normal as analytic spaces; they are obviously connected, and for normal analytic
spaces connectness implies irreducibility.

By properties of covering maps, a morphism between analytic spaces lifts up to
a morphism between their universal covering spaces (as analytic spaces); thus the

normalisation map nW : Ŵ →W lifts up to a morphism ñW : ˜̂
W → U . The norma-

sitation morphism nW is �nite and closed by Hartshorne[Ref!!]; therefore ñW is also,

and the image of an irreducible set is irreducible. Therefore ñW ( ˜̂
W ) is an irreducible

subset of a connected component of p−1(W (C)). Moreover, if we choose di�erent
liftings ñW , we may cover p−1(W (C)) by a countable number of such sets. Now, we
use the assumption that a connected component of p−1(W (C)) is irreducible to con-

clude that the image ñW ( ˜̂
W ) coincides with a connected component of p−1(W (C)).

This implies that the map of fundamental groups is surjective; this may be easily
seen if one thinks of a fundamental group as the group of deck transformations.

Let nW : Ŵ → W , nWg
: Ŵg → Wg and nZ : Ẑ → Z be the normalisation of

varieties W ,Wg and Z.

By the universality property of normalisation in �4.2.2 we may lift the normalisation
morphism nWg : Ŵg →Wg to construct a commutative diagram:
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Ŵg → Ŵ → Ẑ
↓ ↓ ↓
Wg → W → Z

By functoriality of π1, this diagram and embedding ι : W → A×A gives us

π1(Ŵg) → π1(Ŵ ) → π1(Ẑ)
↓ ↓ ↓

π1(Wg) → π1(W ) → π1(Z)
↓ ↓ ↓

ι∗π1(Wg) → ι∗π1(W ) → ι∗π1(Z)

Now, g′ is Θ-generic in Ŵ ′
g′ ; We are almost �nished now. By 4.3.3.6 the upper row

of the diagram is exact up to �nite index, and π1(Ŵ ) → π1(Ẑ) are surjective, up
to �nite index; by assumptions on W and Z, the composite morphisms π1(Ẑ) →
ι∗π1(Z) and π1(Ŵ ) → ι∗π1(W ) are surjective. Diagram chasing now proves that
the bottom row is also exact up to �nite index, and the map ι∗π1(Ŵ ) → ι∗π1(Ẑ) is
surjective up to �nite index.

Finally, recall that ι∗π1(Z) ⊂ {e} × π1(A(C)) and ι∗π1(Wg(C)) ⊂ π1(A(C))× {e},
and the maps are induced by projection and embedding, correspondingly. That
proves the conclusion ι∗π1(W (C)) . ι∗π1(Wg(C))×ι∗π1(Cl(prW (C))). Surjectivity
has been noted already.

Corollary 4.3.4.2. Let W ′ be a T -irreducible closed set, and let V ′ = ClprW ′.
Then π(prW ′) is a �nite index subgroup of π(V ′), i.e. π(V ′) . prπ(W ′).

Proof. The proof of the analogous corollary 4.3.3.7 carries on verbatim, except that
now we do not need the assumption of normality.

Recall we use Lemma 3.2.2.2.
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