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Abstract

The main theorem is that if G is a pseudofinite group with stable theory, then
G has a definable normal soluble subgroup of finite index.

1 Introduction

In this paper, we shall say that a group G is pseudofinite if it is an infinite model
of the theory of finite groups; that is, if it is elementarily equivalent to an infinite
ultraproduct of finite groups. The purpose of the paper is to prove the following.

Theorem 1.1 Let Γ be a pseudofinite group with stable theory. Then Γ has a
definable soluble normal subgroup of finite index.

The key step in the proof of Theorem 1.1 is the following proposition, from
which the theorem follows easily (using the classification of finite simple groups).
The proposition ensures that any pseudofinite stable group has a largest soluble
normal subgroup (which will be definable). The existence of this is an open question
for stable groups in general. It seems that our methods make essential use of
pseudofiniteness, so do not answer the general question.

Proposition 1.2 Let Γ be a pseudofinite group with stable theory. Then there is
k ∈ N such that every soluble normal subgroup of Γ has derived length at most k.

There is not a lot of literature on pseudofinite groups. The main result is the the-
orem of J.S. Wilson [19], that any infinite pseudofinite simple group is elementarily
equivalent to a Chevalley group (possibly of twisted type) over a pseudofinite field.
In fact, Point [9] shows that an ultraproduct of simple Chevalley groups (of fixed
type) over finite fields is isomorphic to the Chevalley group over the ultraproduct
of the fields and that a similar result holds for the twisted case. In addition (Propo-
sition 3 of [9]) she verifies simplicity of the ultraproduct, in both the untwisted and
the twisted cases.

There is some discussion at the beginning of Section 5 of a number of other
results, due to Khelif and others, which were communicated to us by G. Sabbagh.
Part of our interest comes from recent work of Macpherson and Steinhorn, extended
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by that of Elwes and Ryten, on asymptotic classes of finite structures. These are
classes of finite structures which satisfy the good asymptotic results on definable
sets that hold for finite fields (see [2]). It has been shown that any ultraproduct
of members of a 1-dimensional asymptotic class of groups is finite-by-abelian-by-
finite, and (by Elwes and Ryten) any ultraproduct of members of a 2-dimensional
asymptotic class of groups is soluble-by-finite. Furthermore, Elwes has shown that
any stable ultraproduct of an asymptotic class is 1-based.

In Section 2, we list some background results used later. Then in Section 3
we prove the technical result Proposition 3.1. This immediately yields the proof
of Theorem 1.1 once we have Proposition 1.2, and is also used in the proof of
Proposition 1.2. In Section 4 we give a proof of Proposition 1.2. Section 5 contains
a short discussion of some related work, and an example.

2 Background results

We recall some well-known facts about stable groups, which can all be found in
[17]. First, by the Baldwin-Saxl Theorem, in a stable theory if G is a group acting
definably on a definable set X, and Y ⊂ X, then there is a finite subset F ⊂ Y such
that G(Y ) (the pointwise stabiliser in G of Y ) is equal to G(F ). More generally, G has
icc, the uniform chain condition on intersections of uniformly definable subgroups
– see Definition 1.0.3 of [17]): for any formula φ there is some nφ < ω such that
any chain of intersections of φ-definable subgroups of G has length at most nφ. In
particular, there is a natural number n such that any chain of centralisers in G has
length at most n.

Furthermore, we have the following, a mixture of results of Berline and Lascar
[1] and Wagner [16] – see Theorems 1.1.10 and 1.1.12 of [17].

Fact 2.1 Let G be a stable group, and k ∈ N. Then
(i) if H is a soluble subgroup of G, then there is a definable soluble supergroup of

H of the same derived length lying in G, with the defining formula depending only
on the derived length;

(ii) there is a definable soluble normal subgroup Rk of G such that every soluble
normal subgroup of G of derived length at most k lies in Rk.

By Theorem 2.1(ii), if G is stable and there is an upper bound on the derived
lengths of the soluble normal subgroups of G, then G has a unique largest soluble
normal subgroup, and the latter is definable.

Since solubility of derived length at most d is determined by a group law, it is
easily seen that if the stable group G has a definable soluble normal subgroup of
finite index, then so does every group elementarily equivalent to G. In particular,
in the proofs of Proposition 1.2 and Theorem 1.1, we shall assume that the group Γ
of Theorem 1.1 is an ultraproduct ΠωGi/U of finite groups Gi (i ∈ ω), with respect
to a non-principal ultrafilter U on ω.

In the proofs below, a non-principal ultrafilter U on ω is fixed, and we shall
say that I ⊂ ω is large if I ∈ U , and I is small if ω \ I ∈ U . In the proofs
of Theorem 1.1 and Proposition 1.2, we argue by contradiction, working with a
supposed counterexample Γ presented as an ultraproduct Γ = ΠωGi/U . Sometimes,
for some property P of groups, we identify a large set I ⊂ ω such that for i ∈ I,
all the Gi have property P. In this case, U induces an ultrafilter UI on I, and
Γ is elementarily equivalent to ΓI := ΠIGi/UI . Hence the latter will also be a
counterexample. Thus, in such a situation we may replace ω by I and Γ by ΓI , but
to avoid proliferation of notation, we keep the symbols U , Γ, and may re-use the
symbol I later.
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In Section 3 we use the following facts. The notion of ‘twisted group’ over an
appropriate pseudofinite field makes sense – it is essentially the same construction
as over a finite field.

Fact 2.2 Let G be a simple Chevalley group, possibly of twisted type, over a pseudo-
finite field F . Then

(i) the field F is definable (with parameters) in G;
(ii) the theory of G is unstable.

Proof. (i) An explicit and uniform first-order formula defining the underlying
field with two parameters was given in [7] for (untwisted) Chevalley groups (and
one can check that the same formula works for the twisted groups as well, see e.g.
[15] 7.6.7 and 7.7.19). The field is obtained by defining a maximal torus T as the
center of the centralizer of an element t of T and considering the orbit of this group
on a central element u of a unipotent subgroup.

(ii) This follows from (i), since by Duret [5], the theory of any pseudofinite field
is unstable.

Remark. Results like that of (i) appear to be folklore. The interpretability of
the field was proved by S. Thomas in the unpublished PhD thesis [14]. A similar
result is proved by M. Ryten in [11]. He shows that, except in the case of Suzuki
and Ree groups, the group is bi-interpretable (over parameters) with the field. In
the Suzuki and Ree case, it is bi-interpretable over parameters with an expansion
of the field by a certain automorphism.

Lemma 2.3 (i) There is a function f : N2 → N such that if G is a finite nilpotent
group of class at most 2 generated by a subset of size k, and H is a soluble group of
automorphisms of G whose Fitting subgroup has class at most `, then H has derived
length at most f(k, `).

(ii) Let N be a nilpotent class 2 group with cyclic centre Z, let d ∈ N, and suppose
that no subset of N/Z of size d generates N/Z. Then N has a strict descending
chain of centralisers of length d+ 1.

Proof. (i) Since G is nilpotent, it is a direct product of (at most k) characteristic
Sylow p-subgroups, so we may assume that G is a p-group. Let Φ(G) be the Frattini
subgroup of G, and put Ḡ := G/Φ(G). Then Ḡ is an elementary abelian p-group.
By the Burnside Basis Theorem (5.3.2 of [10]), the dimension of Ḡ as a vector
space over Fp is k, where we assume k is the size of a minimal set of generators
for G. Let ψ : Aut(G) → Aut(Ḡ) be the natural map, and let H ≤ Aut(G) be a
solvable subgroup. Then Ker(ψ) is nilpotent, as it is a p-group (5.3.3. of [10]), so
Ker(ψ) ∩ H has nilpotency class at most `. On the other hand, by a theorem of
Zassenhaus ([20], see Theorem 16 of [13]), there is a function λ : N → N such that
the derived length of any soluble subgroup of Aut(Ḡ) is at most λ(k). Thus, H has
derived length at most λ(k) + `.

(ii) For each x ∈ N \ Z there is a homomorphism φx : N/Z → Z given by
φx(gZ) = [g, x]. Then (N/Z)/ ker(φx) is cyclic, and as CN (x) is the preimage
of ker(φx) under the map N → N/Z, N/CN (x) is cyclic. There is a finite set
{x1, . . . , xr}, chosen of minimal possible size, such that Z = CN (x1, . . . xr). Then
N > CN (x1) > . . . > CN (x1, . . . , xr) = Z. Now N/Z is a subdirect product of
r cyclic groups N/CN (x1), . . . , N/CN (xr), so is generated by r elements. Hence,
r > d.

Corollary 2.4 Let d be a positive integer, and for each i ∈ ω let Ni be a finite
d-generator nilpotent group of class at most 2, and Hi be a group of automorphisms
of Ni, acting faithfully. Suppose that some infinite ultraproduct H = ΠωHi/U is
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stable. Then there is a large set J ⊂ ω and positive integer c such that for each
j ∈ J , the soluble radical R(Hj) of Hj has derived length at most c.

Proof. First, observe that if R = ΠωR(Hi), then R is a subgroup of the sta-
ble group H, so is an Mc-group, that is, has the descending chain condition on
centralisers. It follows from [4] (see also Theorem 1.2.11 of [17]), that the Fit-
ting subgroup of R (the group generated by the nilpotent normal subgroups of R)
is nilpotent. Hence, there is some e and a large J ⊂ ω such that for all j ∈ J
the Fitting subgroup of R(Hj) has class at most e. The result now follows from
Lemma 2.3(i).

3 Bounded groups and proof of Theorem 1.1

In this section, we prove the following proposition which will be used in the proof
of Proposition 1.2. Theorem 1.1 then follows immediately from the proposition and
Proposition 1.2.

For any group G, if G has a unique largest soluble normal subgroup, this is
called the radical of G, and denoted by R(G). For convenience, we shall say that
a group is unbounded if for each d ∈ N it has a soluble normal subgroup of derived
length greater than d; otherwise, G is bounded.

Proposition 3.1 Let Γ be a pseudofinite group with stable theory. Then Γ is
bounded if and only if Γ has a definable soluble characteristic subgroup of finite
index.

Proof. If Γ has a definable soluble characteristic subgroup of finite index, then
clearly Γ is bounded.

For the other direction we suppose that Γ := ΠωGi/U is stable. As Γ is bounded,
Γ has a unique largest soluble normal subgroup R(Γ), and R(Γ) is definable, of
derived length k, say, and characteristic in Γ. There is a first order sentence which
expresses of a group G that G has no non-trivial abelian normal subgroup: (∀x 6=
1)(∃y)([x, xy] 6= 1). Thus, the fact that Γ/R(Γ) has no non-trivial abelian normal
subgroup is expressible, as is the fact that R(Γ) has derived length k. Hence,
replacing ω by a large subset if necessary, we may suppose that for each i ∈ ω,
the soluble radical R(Gi) of Gi is definable, uniformly in i, and has derived length
k. For each i ∈ ω, let Ni be the socle of Gi/R(Gi), so Ni is a direct product
Ni = Si,1 × . . .× Si,ri of non-abelian simple groups. Let S̄i,j , N̄i be the preimages
of Si,j , Ni respectively under the map Gi → Gi/R(Gi).

Claim 1. There is large I ⊂ ω and r ∈ N such that for all i ∈ I, ri ≤ r.
Proof. If the claim is false then for all r ∈ N there is large Ir ⊂ ω such that

ri > r for i ∈ Ir. Now for i ∈ Ir, and j = 1, . . . r, choose xij ∈ Si,j \ {1}. Then
CNi(xi,1), CNi(xi,1, xi,2), . . . , CNi(xi,1, xi,2, . . . , xi,r) is a proper descending chain of
centralisers. It follows that Γ/R(Γ) has a proper descending chain of centralisers of
length r. As r is arbitrarily large and R(Γ) is definable, this contradicts stability.

By Claim 1, replacing ω by a large subset if necessary, we may suppose that
ri = r for all i ∈ ω.

Claim 2. There is large I ⊂ ω and s ∈ N such that for each i ∈ I and j = 1, . . . , r,
if Si,j is an alternating group An then n ≤ s, and if Si,j is a Chevalley group then
its Lie rank is at most s.

Proof. Suppose that for arbitrarily large s there is large Js ⊂ ω such that Si,1

is the alternating group As. The group As has a centraliser chain of length at least
the integer part of s/2 (consider centralisers of disjoint transpositions), so under
this assumption Γ has an infinite descending chain of centralisers, a contradiction.
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Similarly, the groups Si,1 cannot be of fixed Chevalley type and arbitrarily large
rank: to see this consider centralizers of central elements in the unipotent radical of
the minimal parabolics. If in the associated building, the minimal parabolics move
along a minimal gallery of maximal length, we obtain a proper descending chain of
centralizers (see [18], 11.11, 11.17). Since the maximal length of a minimal gallery
increases with the rank, we obtain a contradiction.

Since there are finitely many types of Chevalley group, this suffices.

To prove the proposition, we must show that there is e ∈ N and large J ⊂ ω
such that for i ∈ J , |Ni| ≤ e. This then gives an upper bound e′ on |Aut(Ni)| (for
i ∈ J), and hence on |Gi/R(Gi)|, since Gi/R(Gi) embeds in Aut(Ni). In particular,
|Γ/R(Γ)| ≤ e′, as required.

Arguing by contradiction, we may suppose that for each e ∈ N there is large
Je ⊂ ω such that for i ∈ Je, |Ni| > e. By Claims 1 and 2, using again that there
are finitely many Chevalley types, we may suppose that there is a fixed type of
finite simple group Chev(q), of fixed Lie rank m, and for each n ∈ N there is large
Kn ⊂ ω such that for each i ∈ Kn, Si,1 is isomorphic to Chev(q) with q > n,m.

There is a natural number d and for each i some gi ∈ Si,1 such that each element
of Si,1 is a product of at most d conjugates (in Si,1) of gi and g−1

i . (In fact, by
the result of Point mentioned in the introduction, the ultraproduct of the Si,1 will
itself be simple, so for suitable d any non-identity gi will do.) It follows that Si,1 is
uniformly definable in Gi, as the set of all elements which are a product of at most
d Zi,1-conjugates of gi and g−1

i . It follows, again by the result of Point mentioned
in the introduction, that a group elementarily equivalent to a Chevalley group over
a pseudofinite field is interpretable in Γ. By Fact 2.2, it follows that Γ has unstable
theory, a contradiction.

Corollary 3.2 Let G be a pseudofinite group with stable theory. Then G is un-
bounded if and only if for every definable normal subgroup N of G either N or G/N
is unbounded.

Proof. For the right-to-left condition, suppose that G is bounded. Then putting
N = {1}, both N and G/N are bounded.

For the other direction, suppose now that G is unbounded. First notice that if R
is a definable soluble normal subgroup of derived length d, then G/R is unbounded:
for any soluble normal subgroup S of G of derived length k gives rise to a soluble
normal subgroup RS/R ∼= S/(R ∩ S) in G/R of derived length at least k − d.

Now let N be a definable (not necessarily soluble) normal subgroup of G, and
suppose that N is bounded. We show that G/N is unbounded. By Proposition 3.1,
there is a definable soluble normal subgroup R of N of finite index. By the previous
paragraph, we know that G/R is unbounded. So for arbitrarily large e, there is a
definable T = T (e) such that R ≤ T ≤ G and T/R is a definable soluble normal
subgroup of G/R of derived length e. Then TN/N ∼= T/(T ∩N) is soluble of derived
length at least e/|T ∩N : R| ≥ e/|N : R|. Thus, G/N is unbounded, as required.

The last corollary will be used frequently, sometimes without explicit mention.

4 Proof of Proposition 1.2

In this section we prove Proposition 1.2, and hence Theorem 1.1 (in view of Propo-
sition 3.1). We begin with two lemmas.

Lemma 4.1 Suppose that G has a soluble normal subgroup R of derived length e
and index f , and let N,S be normal subgroups of G with N < S and S/N soluble.
Then the derived length of S/N is at most e+ f .
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Proof. Replacing R by R∩S, we may suppose that R ≤ S. Now N ≤ RN ≤ S,
and RN/N is isomorphic to R/R ∩N so has derived length at most e, and S/RN
has order, and hence derived length, at most f .

Lemma 4.2 Let G be an unbounded pseudofinite stable group. Then there is in
G an interpretable abelian group A, and an unbounded interpretable group H, such
that H has an interpretable faithful action on A as a group of automorphisms.

Proof of Lemma 4.2. First, by Fact 2.1(ii), there is a function g : N → N
and an increasing chain of definable normal subgroups (Ri : i ∈ ω) of G, with
R0 := {1}, such that for each i, Ri contains all soluble normal subgroups of G
of derived length i, and is definably soluble of derived length g(i). In particular,
g(i + 1) ≥ g(i), and g(i) → ∞. Put R :=

⋃
(Ri : i ∈ ω). By the chain condition

on centralisers, there is n ∈ N such that Z(R) = CR(Rn). Thus, R/Z(R) =
R/(CG(Rn) ∩ R) ∼= RCG(Rn)/CG(Rn), a normal subgroup of G/CG(Rn). Clearly
R/Z(R) is unbounded, so has characteristic soluble subgroups of arbitrarily large
derived length. Hence G/CG(Rn) is also unbounded.

Put m := g(n). There is a chain S0 < S1 < . . . < Sm = Rn of definable
normal subgroups of Rn such that each Si+1/Si is abelian. Let ` be maximal
such that G/CG(S`) is bounded. Then the group A := S`+1/S` is abelian. Also,
CG(S`)/CG(S`+1) is unbounded by Corollary 3.2. Let N := CCG(S`)(A). Then
CG(S`+1) ≤ N ≤ CG(S`), and CG(S`) induces CG(S`)/N on A. Since N/CG(S`+1)
consists of automorphisms of S`+1 which fix S` and A = S`+1/S` pointwise, it
embeds in a direct power of the soluble group S`, so is soluble. It follows that
CG(S`)/N is unbounded, that is, G induces on A an unbounded interpretable group
of automorphisms.

Proof of Proposition 1.2. Let Γ := ΠωGi/U be stable, and suppose for a
contradiction that Γ is unbounded. By the last lemma, there is in Γ an inter-
pretable abelian group A, an unbounded interpretable group H, and an inter-
pretable faithful action of H on A. We shall write A additively. For each x ∈ A, put
xH := {xh : h ∈ H}, where xh denotes the image of x under h. Then CH(xH) �H.
We want to reduce to the situation where H induces an unbounded group on each
xH . Let B := {x ∈ A : H/CH(xH) is bounded}. Clearly, B is H-invariant.

First notice that B is a group. For suppose x, y ∈ B. Then H/CH(xH) and
H/CH(yH) are both bounded, so soluble-by-finite, and H/(CH(xH) ∩ CH(yH))
is a subdirect product of H/CH(xH) and H/CH(yH) so is also soluble-by-finite
and hence bounded. Now CH(xH) ∩ CH(yH) ≤ CH((xy)H), so by Corollary 3.2,
H/CH((xy)H) is also bounded.

In order to show that B is definable we need part (i) of the following:

Claim 1. (i) There is some e ∈ N such that for all x ∈ B, the radical of
H/CH(xH) has derived length at most e.

(ii) The radical of H/CH(B) has derived length at most e.
Proof of Claim 1. (i) By the descending chain condition on centralisers, there

is finite B0 ⊂ B such that CH(B) = CH(B0). Let B0 = {x1, . . . , xr}, and let
H/CH(xH

i ) have radical of derived length ei, with e1 ≤ . . . ≤ er. Put N := CH(B0).
Then N = CH(xH

1 ) ∩ . . . ∩ CH(xH
r ) (as B0 ⊆ xH

1 ∪ . . . ∪ xH
r ⊆ B). Thus H/N is

a subdirect product of the groups H/CH(xH
1 ), . . . ,H/CH(xH

r ), so has radical of
derived length at most er. In particular, H/N is bounded, so by Proposition 3.1 its
radical has finite index d, say. Now let x ∈ B. Then CH(xH) is a normal subgroup
of H containing N . Hence, by Lemma 4.1 applied to H/N , H/CH(xH) has radical
of derived length at most er + f .

(ii) In the proof of (i), we showed that H/CH(B) has radical of derived length
at most er.

6



By Claim 1(i), B is definable, and by (ii), B is a proper subgroup of A: for H is
unbounded and CH(A) = 1.

We now reduce to the case when B = {0}. Let x ∈ A\B. Then H/CH(xH) acts
faithfully on xH , and preserves an equivalence relation ∼, where u ∼ v if uB = vB.
Let F be the subgroup of H consisting of elements which fix each ∼-class of xH . We
claim that H/F (the group induced by H on the set of ∼-classes) is unbounded. We
haveH/F ∼= [H/(CH(xH)∩F )]/[F/(CH(xH)∩F )]. Now for x 6∈ B, H/(CH(xH)∩F )
is unbounded because H/CH(xH) is unbounded. It is left to show that for x 6∈ B,
F/(CH(xH)∩ F ) is bounded. By Claim 1 (i), we know that H/CH(B) is bounded,
and hence F/(CH(B)∩F ) is bounded. Notice that for h ∈ CH(B)∩F there is some
b ∈ B such that xh = x+ b, and thus CH(B) ∩ F induces an abelian group on xH .
Putting this together, we see that F induces a bounded group on xH (for x 6∈ B),
and thus F/(F ∩ CH(xH)) is bounded as required.

We have shown that H induces an unbounded group on (xB)H . Thus, we may
replace A by A/B; that is, we may assume that for all x ∈ A \ {0}, H induces an
unbounded group on xH .

At this point, it is convenient to work with the finite groups Gi. By Los’s
Theorem and the above definability, after first replacing ω by a large subset if
necessary, we may suppose that for all i there are groups Ai and Hi interpretable
in Gi, with Hi acting faithfully on Ai; furthermore these groups and their actions
are uniformly interpretable, though possibly with parameters.

For each i ∈ ω, choose a minimal Hi-invariant normal subgroup Vi of Ai. Then
Vi is elementary abelian, i.e. a vector space over some prime field, and Hi acts
linearly on it. We do not claim that the Vi are definable uniformly in i. However,
by the descending chain condition on centralisers (applied inG), CHi(Vi) is definable
uniformly in i. Put Ki := Hi/CHi

(Vi). Then Ki is uniformly interpretable in Gi,
and acts faithfully and irreducibly on Vi. If xi ∈ Vi \{0}, then CHi

(Vi) = CHi
(xHi

i ),
and so Ki = Hi/CHi(x

Hi
i ). Thus, by the last paragraph but one, ΠωKi/U is

unbounded, so for each d ∈ N there is large Jd ⊂ ω such that for i ∈ Jd, Ki has
radical of derived length at least d.

For each i ∈ ω, let Xi be a maximal abelian normal subgroup of Ki. Since
Xi := CKi

(CKi
(Xi)), it is definable, uniformly in i. Let J := {i ∈ ω : Xi = Z(Ki)}.

Claim 2. J is small.
Proof of Claim 2. Suppose for a contradiction that J is large. In this case, we

may suppose that J = ω. By Schur’s Lemma, Xi is cyclic, for all i. For each i ∈ ω,
let Ti := Soc(R(Ki)/Xi), and T̄i be the preimage of Ti under the map Ki → Ki/Xi.
Then T̄i is nilpotent of class at most 2. Put Yi := CKi

(T̄i). Then Yi∩T̄i is an abelian
normal subgroup of Ki containing Xi, so by maximality of Xi, Yi ∩ T̄i = Xi. In
particular, as Soc(R(Yi)/Xi) ≤ Ti, R(Yi) ≤ Xi. Hence, for all d ∈ N and i ∈ Jd,
Ki induces on T̄i a group of automorphisms with radical of derived length at least
d− 1.

It follows, by applying Corollary 2.4 to the set of pairs {(T̄i,Ki/CKi(T̄i)) : i ∈
ω}, that for each c ∈ ω there is a large subset Lc ⊂ ω such that for i ∈ Lc, any
generating subset of T̄i has size at least c. Hence, by Lemma 2.3(ii), if i ∈ Lc then
T̄i has a descending chain of centralisers of length c. It follows that if T̄ := ΠωT̄i/U ,
then T̄ has an infinite descending chain of centralisers. Since T̄ is a subgroup of
K := ΠωKi/U which is interpretable in the stable group Γ, this is a contradiction,
so proves the claim.

By the claim, we may assume that J = ∅, so for each i ∈ ω, Z(Ki) is a proper
subgroup of Xi.

Claim 3. There is n ∈ N and a large set J ⊂ ω such that for i ∈ J , Xi is
generated by n elements.
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Proof of Claim 3. Suppose not. Then for all n, the set {i ∈ J : Xi is n-generated}
is small, i.e., the set Ln := {i ∈ J : Xi is not n-generated} is large. We will show
that if Xi is not n-generated, then Xi contains a properly descending sequence of
centralizers of length at least n.

Let i ∈ Ln. Then we can construct a sequence of non-trivial subspaces U1
i , . . . , U

n
i

of Vi and a descending sequence Xi > X1
i > . . . > Xn

i in Xi as follows. Choose
U1

i to be any non-trivial irreducible Xi-submodule of Vi, and put X1
i := CXi(U

1
i ).

By Schur’s Lemma, Xi/X
1
i is cyclic, so X1

i is not (n − 1)-generated. If we have
found U1

i , . . . , U
r
i and X1

i > . . . > Xr
i , choose Ur+1

i to be any non-trivial irreducible
Xr

i -submodule of Vi, and Xr+1
i := Xr

i /CXr
i
(Ur+1

i ). Then, by induction, Xr+1
i is

not (n− r− 1)-generated. Now the sequence CXi
(U1

i ), . . . , CXi
(U1

i + . . .+Un
i ) is a

proper descending sequence of centralisers in Xi.
Since n is arbitrary, it follows that some group interpretable in Γ has an infinite

descending chain of centralisers, a contradiction.

We now fix n as in Claim 3, and again, we may assume that J = ω. That is, we
assume that for all i ∈ ω, Xi is n-generated.

Let Yi := CKi(Xi). It follows from Claim 3 and Corollary 2.4 (applied to the
set {(Xi,Ki/Yi) : i ∈ ω}), that for some n′ ∈ N and large J ⊂ ω, if i ∈ J then
R(Ki/Yi) has derived length at most n′. Hence, R(Yi) has large derived length.
More precisely, for each m ∈ N there is a large subset Lm ⊂ J such that for i ∈ Lm,
R(Yi) has derived length at least m: indeed, put Lm := J ∩ Jm+n′ (where Jm+n′ is
such that Ki has radical of derived length at least m+ n′ for i ∈ Jm+n′ .)

For each i ∈ ω, by Clifford’s Theorem there is a direct sum decomposition
Vi = V 1

i ⊕ . . .⊕V
ri
i into irreducible non-trivial Yi-modules, such that the (abstract)

groups Yi/CYi
(V j

i ) are isomorphic (we do not claim that for fixed i the V j
i are

isomorphic Yi-modules). In particular, let K1
i be the group induced by Yi on V 1

i .
Then Yi is isomorphic to a subdirect power of K1

i , so R(K1
i ) has derived length at

least as big as that of R(Yi).
We now iterate the above process with (K1

i , V
1
i ) replacing (Ki, Vi). For each i,

we obtain a sequence (K0
i , V

0
i ) = (Ki, Vi), (K1

i , V
1
i ), . . . , (Kt

i , V
t
i ), . . . as follows: for

each i, Kj
i acts irreducibly and faithfully on V j

i , Kj
i has a maximal abelian normal

subgroup Xj
i , and this is not central in Kj

i , Y j
i := CKj

i
(Xj

i ), V j+1
i is a non-trivial

irreducible Y j
i -submodule of V j

i , and Y j
i induces Kj+1

i on V j+1
i . For each j, the

groups Kj
i will be uniformly (in i) interpretable in the Gi, as they arise by taking

centralisers. We do not claim uniform interpretability of the V j
i .

There are now two cases. Suppose first that for arbitrarily large t ∈ N, there
is large It ⊂ ω such that for i ∈ It, there are at least t values of j such that Kj+1

i is a
proper quotient of Y j

i . This means that the sequence CKi
(Vi), CKi

(V 1
i ), . . . , CKi

(V j
i ), . . .

contains at least t distinct groups. It follows that a group interpretable in Γ has an
infinite chain of centralisers, a contradiction.

In the other case, for each t there is r = r(t) and a large It ⊂ ω such that for
each i ∈ Jt, and each j = r, r + 1, . . . , r + t, Y j

i acts faithfully on V j+1
i . Now Y j

i

is a proper subgroup of Kj
i , since Xj

i 6= Z(Kj
i ). It follows that we have a proper

descending chain of centralisers Kj
i > Kj+1

i = CKj
i
(Xj

i ) > Kj+2
i > . . . > Kj+t

i .
Thus, a group interpretable in Γ has a descending chain of centralisers of length t
for arbitrary t. This contradiction proves the lemma.

5 Further remarks on stable pseudofinite groups

When a first draft of this paper was written, we did not know whether every stable
pseudofinite group is nilpotent-by-finite. However, we understand from G. Sabbagh
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that the answer to this is negative. Indeed, a certain group was constructed inde-
pendently by Chapuis [3] and by Simonetta (Application 3.2.5 of [12]), and shown by
them to be ω-stable, metabelian, but not nilpotent-by-finite. Then Khelif, again in-
dependently, constructed a group elementarily equivalent to this one from scratch,
and showed it to be pseudofinite. He has shown that any pseudofinite ω-stable
group of finite Morley rank is abelian-by-finite. Zilber, also, has sketched to us a
construction of a pseudofinite superstable soluble group which is not nilpotent-by-
finite. Essentially, one finds an appropriate small but infinite subgroup Γ of (C, ·),
such that (C,+,×,Γ) is superstable, and shows that the semidirect product (C,+).Γ
is pseudofinite. Zilber’s construction may give a group elementarily equivalent to
the Chapuis-Simonetta group, but the approach is different.

For general interest, we give below a construction of a pseudofinite ω-stable
group which is nilpotent-by-finite but not abelian-by-finite. A different construction
of such a group was also known to Sabbagh, based on earlier work of Rahantarijao.

Example 5.1 We construct an ω-stable pseudofinite group which is not abelian-
by-finite. The construction uses Mekler’s method for building nilpotent class 2
groups from graphs, preserving various model-theoretic properties [8]. We follow the
explanation in Appendix A.3 of [6], using the notion of special model also described
in [6].

Choose an infinite cardinal λ which is an uncountable strong limit number in
the sense of [6], that is, a limit beth. Then any countably infinite structure over
a countable language has a special elementary extension of cardinality λ (Theorem
10.4.2 of [6]).

For each n, let ∆n be the (undirected) graph on {0, 1, . . . , n− 1}, where a and
b are joined if |a − b| = 1 (modn). Also, let ∆ be the graph on Z where a, b are
joined if |a− b| = 1. Let ∆(λ) be the graph consisting of a disjoint union of λ many
copies of ∆. Finally, let ∆(λ)+ be the graph consisting of ∆(λ) together with λ
many isolated vertices. The graphs ∆n (for n ≥ 5), ∆, and the ∆(λ) are all nice
in the sense of [6]. (A nice graph is one without squares or triangles, and such that
for any distinct vertices a, b, there is a vertex c joined to a but not b.)

Fix an odd prime p, and let Np be the variety of nilpotent groups of class 2
and exponent p. For each cardinal λ, let V (λ) be an elementary abelian p-group
of cardinality λ. Given a nice graph Γ, one can form a group G(Γ) which is freely
generated by the vertices of Γ, subject to the laws of Np and the relation [a, b] = 1
where a, b are adjacent vertices of Γ. By Corollary A.3.11 of [6], the graph Γ is
interpretable inG(Γ) (uniformly in Γ). However, G(Γ) is not in general interpretable
in Γ. Hodges gives an incomplete theory Tng which holds of all groups G(Γ), where
Γ is a nice graph.

The graph ∆ (which is elementarily equivalent to the ∆(λ)), is strongly minimal.
It follows that G(∆(λ)) is ω-stable. (For this, see either Theorem 2.11 of [8], or
Corollary A.3.19 of [6], whose proof does not use uncountability of λ.)

Furthermore, if H is a special model of cardinality λ of Th(G(∆(λ))), then
H ∼= G(∆(λ)+)× V (λ), by A.3.15 of [6].

Suppose now that G is any infinite special model, of cardinality λ, of the theory
of the groups G(∆n). Then G |= Tng. Also, the graph Γ(G) will be an infinite
special model of the theory of the graphs ∆n, so will be isomorphic to ∆(λ). It
follows, again from Corollary A.3.15 of [6], that G ∼= G(∆(λ)+)×V (λ). In particular
G ∼= H, so H is a pseudofinite ω-stable group.

Finally, we check that the group G(∆(λ)) (and hence H) is not abelian-by-finite.
So suppose for a contradiction that A is an abelian normal subgroup of G(∆) of
finite index. It is easily checked that at most 2 of the generating vertices (elements
of ∆(λ)) lie in A. Thus, there is a copy of ∆, say {ai : i ∈ Z} in ∆(λ), such that
none of the ai lie in A. Since |G(∆(λ)) : A| is finite, by the pigeon-hole principle
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there are i < j < k in Z such that aia
−1
j and aja

−1
k lie in A. In particular, they

commute, so (aja
−1
k )(aia

−1
j ) = aia

−1
k . The latter contradicts the uniqueness of

support mentioned in the paragraph following the proof of Lemma A.3.2 in [6].
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