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Abstract.
It is shown that if K is an algebraically closed valued field with valuation ring

R, then Th(K) has elimination of imaginaries if sorts are added whose elements
are certain cosets in Kn of certain definable R-submodules of Kn (for all n ≥ 1).
The proof involves the development of a theory of independence for unary types,
which play the role of 1-types, followed by an analysis of germs of definable
functions from unary sets to the sorts.
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1 Introduction

The purpose of this paper is to give the foundations of a study of structures which
are first-order interpretable in an algebraically closed valued field; that is, which
live on a quotient of a power of the field by a definable equivalence relation. The
paper will have a successor [3]. The latter develops some of the tools of stability
theory for algebraically closed valued fields, which, like o-minimal structures,
have the strict order property, so are unstable.

A complete multi-sorted theory T is said to have elimination of imaginaries
if the following holds: for any M |= T , any collection M1, . . . ,Mk of sorts in M ,
any ∅-definable S ⊂ M1 × . . .×Mk, and any ∅–definable equivalence relation E
on S, there is an ∅-definable function f from S into a product of sorts, such that
for any a, b ∈ S we have Eab if and only if f(a) = f(b). Thus, f(a) acts as a code
in M for the E-class of a (an imaginary). The theory of pure algebraically closed
fields has elimination of imaginaries, essentially because a Zariski closed set has
a unique field of definition. The theory of real closed fields has elimination of
imaginaries because the midpoint of an interval is definable from the parameters
defining its endpoints, and these endpoints are determined by the interval.

That the theory of algebraically closed valued fields is reasonably tractable
was proved by A. Robinson [15], who showed that the theory is model-complete
(see Section 2.1), and described the completions. However, it is easy to see that
this theory does not eliminate imaginaries in the Robinson language. The original
impetus for the work in this and the subsequent paper was to prove elimination
of imaginaries to a level suggested in the thesis of J. Holly, that is, relative to
the sorts of the open and closed balls. It was shown by Holly [6] that in equi-
characteristic 0, definable subsets of the field in one variable are coded in the
ball sorts. In fact, it turns out that these sorts are too coarse to code all of the
definable sets. Instead, we need some n-dimensional version of balls, and we see
what these might be by thinking of balls algebraically. A general ball is a coset of
a submodule (over the valuation ring) of the field, and to eliminate imaginaries,
we add sorts for some of the torsors, that is, cosets of submodules of powers of
the field. Our main theorem in this paper is the following.

Theorem 1.0.1 The theory of algebraically closed valued fields in the sorted lan-
guage LG (defined in Section 3.1) has elimination of imaginaries.

In addition to the field sort, one requires certain ‘geometric’ sorts: spaces of
lattices over the valuation ring, and vector spaces over the residue field, which
arise as quotients of these lattices. The proposed language LG is not explicit, but
is based on a stabiity-theoretic notion of a generic lattice basis. Elimination of
quantifiers holds in this language.

If M is a structure, {Ri : i ∈ I} is a collection of sorts in M eq with R :=
∪(Ri : i ∈ I), and A ⊂ R, then an imaginary i ∈ M eq is coded in R over A if
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there is e ∈ dcl(Ai), e a tuple from R, with i ∈ dcl(Ae). Now Theorem 1.0.1 says
that if K is an algebraically closed valued field and G is the collection of sorts for
LG, then every imaginary of Keq is coded in G over ∅. See Hodges [4] for more
on the equivalence of this and the previously stated definition of elimination of
imaginaries (note that K has two constant symbols, 0 and 1).

We give a more concrete version of this theorem. If M is a model and the
definable setX ⊂Mn is the solution set of the formula ϕ(x, a) say, where a ∈Mm,
there is an ∅-definable equivalence relation Eϕ on Mm: Eϕ(y1, y2) if and only if
M |= ∀x(ϕ(x, y1) ↔ ϕ(x, y2)). The Eϕ-class of a is an imaginary which is a code
for X; it is unique up to interdefinability.

Theorem 1.0.2 Let (K,R,+, .) be an algebraically closed valued field, with val-
uation ring R. Then for every imaginary e of K, there is for some n a definable
R-submodule of Kn with a code interdefinable with e.

In fact, we do not need sorts for all definable modules. It suffices to have a
sort for elements of K, a sort Sn (for each n) whose elements are (codes for) R-
lattices in Kn, that is, free rank n R-submodules of Kn; and a sort Tn consisting
of elements of A/MA, where A ∈ Sn and M is the maximal ideal of R. (We also
add sorts for the residue field and value group, for notational convenience.) The
coding of e in Theorem 1.0.2 can be done by a tuple abc, where a ∈ K`, b ∈ Tm,
and c ∈ Sn, for some `,m, n > 0.

Two key roles in the paper are played by definable R-submodules of Kn and
definable R-torsors, that is, cosets in Kn of definable R-submodules. They are
used to code imaginaries; and certain specific torsors, namely 1-torsors (Section
2.3) are used as a generalisation of 1-types.

Our first attempted proof of elimination of imaginaries had a stability-theoretic
flavor, and this led us to develop notions of independence more systematically. In
fact, the proof we give of elimination of imaginaries uses these ideas of indepen-
dence only for 1-types (or rather, ‘unary types’), but the point of view turns out
to be very helpful. In this first paper, we define both genericity and orthogonality
to the value group for unary types, and investigate some of their properties. This
is used both for the proof of elimination of imaginaries and to lay the groundwork
for the subsequent paper [3], in which we develop the theory for n-types.

The residue field (usually denoted by k) of an algebraically closed valued field
is a stably embedded pure algebraically closed field, so strongly minimal. The
value group is a stably embedded divisible ordered abelian group, so o-minimal.
As might be expected from Ax-Kochen-Ershov style results, the model-theoretic
structure of an algebraically closed valued field can be understood in terms of
these familiar theories, which can be loosely regarded as rank one geometries.
The instability seems to live entirely in the value group. Over a base set of
parameters C, an important role is played by an ω-stable structure whose sorts
are the C-definable k-internal sets (see Section 2.6). We exploit this to construct
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a counterexample to the original conjecture that algebraically closed valued fields
eliminate imaginaries to the ball sorts. We exhibit a definable set which is internal
to k, of Morley rank 2, but for which the algebraic closure of a generic element
contains a unique algebraically closed subset of rank 1. If such a set were coded
in the ball sorts, the algebraic closure of a generic element would have to contain
at least two distinct rank one algebraically closed subsets.

The outline of the paper is as follows. In Section 2.1 we explain our notation
and collect together some known facts about algebraically closed valued fields
which we will use. In Section 2.2 we investigate definable modules, and their
homomorphisms. Section 2.3 defines the unary types, which replace 1-types for
general imaginaries. In Section 2.4 we analyse functions from the value group to
the sorts with respect to which we eliminate imaginaries. In Section 2.5 we begin
to develop the theory of the notions of independence and orthogonality that come
from genericity for unary types, and in Section 2.6 we describe the structure of
the sets internal to the residue field.

The proof of elimination of imaginaries is in Section 3. We first give (Sec-
tion 3.1) a precise description of the first order language in which we work, and
prove that the theory of algebraically closed valued fields has quantifier elimina-
tion in this language. It turns out that we really use the proof of this theorem,
rather than the result itself, in the proof of elimination of imaginaries, but it is
reassuring to have the result. In Section 3.2 we give a lemma reducing elimi-
nation of imaginaries to the coding of certain functions on unary sets. Then in
Section 3.3 we prove that germs of definable functions on unary sets are coded,
and deduce in Section 3.4 the elimination of imaginaries (coding of finite sets is
first proved). Section 3.5 contains the example described above of a definable
set which cannot be coded just in the ball sorts. It also contains a proof of a
more general result, that to obtain elimination of imaginaries, one cannot make
do with a finite sub-collection of the sorts.

Some results in this paper, principally in Sections 2.3, 2.5, and the beginning
of Section 2.4, should hold in a more general setting. This might be the notion of
C-minimality, developed in [12] and [2], or might be a related notion of minimality
associated with a uniformly definable chain of equivalence relations on a set. A
valuation on a group or field always provides such a chain. There is also a
development of the model theory of ultrametric spaces (without any assumed
algebraic structure) in [13].

Although the goal of the present paper is Theorem 1.0.1, it includes some
results (such as Lemma 2.5.11 and Lemma 3.4.13) which are not used in this
paper. However, they will be used in [3], and seem naturally to belong here.

Acknowledgements. We thank Françoise Delon, Bradd Hart, Franz-Viktor
Kuhlmann, Tom Scanlon, Philip Scowcroft, and Tim Mellor for a number of
helpful remarks. We particularly thank Marie-Hélène Mourgues and Patrick Si-
monetta for making us aware of a mistake in an earlier draft of this paper, which
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led us to realise the significance of the role played by the torsors. We also thank
Assaf Hasson, Moshe Kaminsky, Liat Kessler, Mark Ryten, Alex Usvyatsov, and
Yoav Yaffe, for running a seminar in Jerusalem which led to several errors being
pointed out.

2 The geometric sorts and unary types

2.1 Fundamental definitions and elementary properties

We work throughout with the following set-up. K is a (2ℵ0)+-saturated homoge-
neous algebraically closed valued field, with value group Γ written multiplicatively
and valuation map | · | : K → Γ. In fact, it would serve our purposes just to
assume that K is sufficiently saturated; reference to automorphisms of K can
always be replaced by reference to elementary partial maps. We order Γ so that
|x+ y| ≤ Max {|x|, |y|}. For convenience, we adjoin to the value group the sym-
bol 0, so 0 ≤ γ for all γ ∈ Γ, and |x| = 0 if and only if x = 0. The valuation
ring is R := {x ∈ K : |x| ≤ 1}, its maximal ideal is M := {x ∈ R : |x| < 1},
and the residue field is k = R/M. When necessary, we denote the residue map
from R to k by res. To begin with, we will work in the language Ldiv, which has
the usual ring language (+,−, ., 0, 1) on K, and the binary predicate div, where
x div y means |y| ≤ |x|. We will take Keq to be the sorted structure with respect
to this language, which has sorts made up of all the imaginaries, that is, the
equivalence classes of Ldiv-∅-definable equivalence relations, and functions from
powers of K to the sorts sending a tuple to the class to which it belongs. We em-
phasise that any language we consider later in the paper will have relations and
functions which are definable in Ldiv, and hence the collection of definable sets
and the structure Keq will always be the same, though the different languages
have different sorts. As usual, definable means definable with parameters. Sets
of parameters will always be assumed to be subsets of Keq, and will always be
taken to be small relative to the size of K, and in particular of cardinality at
most 2ℵ0 .

As noted in the introduction, any definable set X can be identified with an
imaginary which is unique up to interdefinability, and is denoted pXq. We refer
to pXq as a code for X. We sometimes treat the definable set X as an imaginary
by identifying it with pXq. Our purpose is to identify a set G of sorts in Keq, and
prove that any definable set X has a code in G: that is, that there is a sequence e
from G such that dcl(pXq) = dcl(e). Sometimes, in particular contexts, we have
to work over a parameter set C and prove that X is coded by e over C, that is
dcl(CpXq) = dcl(Ce). When such C is not specified, it is assumed that such
coding is over ∅.

We employ some notational conventions fairly consistently. Greek letters α,
β, γ range over the value group or residue field. Lower-case letters a, b, c range
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over the field, but also more generally over singletons or sequences of imaginaries.
We do not usually distinguish notationally between singletons or sequences; more
often than not a = (a1, . . . , an) is a sequence, of which the ai may themselves
be sequences. We use juxtaposition ab for concatenation of sequences; by exten-
sion we frequently write AB for A ∪ B, where A and B are sets of (imaginary)
parameters. In general, the upper-case letters are for sets, which may have addi-
tional structure, in particular, that of a module over the valuation ring. A type
will usually be denoted by p or q, and the set of realisations of the type by the
corresponding upper-case letter P or Q. Finally, if C is a set of parameters and
a, b are tuples, then a ≡C b means that tp(a/C) = tp(b/C).

If A is a subset of Keq, then acl(A) is the algebraic closure of A in Keq

and dcl(A) is the definable closure of A in Keq. In general, a subscript denotes
the intersection of the set with the specified sort; for example, AK := A ∩ K,
aclK(A) = acl(A)∩K. We also write Γ(A) := dcl(A)∩Γ, and k(A) := dcl(A)∩k.

The following quantifier elimination results are basic to our theory.

Theorem 2.1.1 Let K be an algebraically closed valued field.
(i) The theory of K has quantifier elimination in the language Ldiv.
(ii) The theory of K has quantifier elimination in a 2-sorted language with a

sort K for the field (equipped with the language of rings), a sort Γ for the value
group written multiplicatively (with the language (<, ., 0) with usual conventions
for 0), and a value map | · | : K → Γ with |0| = 0.

(iii) The theory of K has quantifier elimination in a 3-sorted language LΓk

with the sorts and language of (ii) together with a sort k for the residue field,
with the language of rings, and a map Res : K2 → k given by putting Res(x, y)
equal to the residue of xy−1 (and taking value 0 ∈ k if |x| > |y|).

We remark that in (i), the theory is model complete if the symbol div is
replaced by a predicate for the valuation ring (the definable sets are the same). By
[11], any valued field having quantifier-elimination in Ldiv is algebraically closed.
Also, by [15], the complete theory (in for example Ldiv) of an algebraically closed
non-trivially valued field K is determined by the pair (char(K), char(k)). This
can take any of the values (0, 0), (0, p), or (p, p) (where p is a prime).

Proof. This is essentially due to A. Robinson [15], though only the model
completeness is stated there. Part (i) is made explicit in [11], but follows quickly
from the model completeness and existence of prime models in [15]. Part (ii) is
Theorem 3.2 of [16].

Part (iii) follows from results in the Ph.D. thesis of F. Delon, but as far as
we know there is no proof in print. We sketch the main steps. The task is the
following. Given a large saturated model M of Th(K) (in LΓk), a substructure
S of K, and isomorphism ϕ : S → S ′ with S ′ ⊂ M , and c ∈ K \ S, find c′ ∈ M
such that we may extend ϕ to an isomorphism taking c to c′ from the structure
generated by S∪{c} to that generated by S ′∪{c′}. This is done as follows. First,
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using the map Res, we may extend ϕ to the field of fractions of S ∩K to ensure
S ∩K is a field. Second, for each α ∈ S ∩ k, if there is no element of S ∩K with
residue α, add some such element a to S, and a corresponding element a′ ∈ α′ to
S ′, and extend ϕ so that ϕ(a) = a′. If in this situation the algebraic closure of
S∩K contains an element of residue α, choose a to be such an element, and a′ to
be an element with minimal polynomial (over S ′ ∩K) corresponding to that of a
over S ∩K. Next, using the fact that extensions of a valuation to a finite normal
extension are conjugate in the Galois group (ch. 4.2 of [14]), we may extend ϕ to
the algebraic closure of S ∩K. Now, if γ ∈ S, we may assume there is a ∈ S ∩K
with |a| = γ. For otherwise, pick such a, and pick a′ ∈ M with |a′| = ϕ(γ), and
put ϕ(a) = a′. Then ϕ extends to an isomorphism of structures; for example, if
f, g ∈ S ∩K[X], then the condition |f(a)| ≤ |g(a)| is preserved by ϕ (split f, g
as products of linear factors). After all of these reductions have been made, we
may assume c is a field element transcendental over S ∩K. Extending ϕ to c is
handled just as in [15]. 2

The definable subsets called balls play an important role in our theory (though
not the one we first envisioned). If a ∈ K, α ∈ Γ, then B≤α(a) is the ‘closed’ ball
{x ∈ K : |x−a| ≤ α} and B<α(a) is the ‘open’ ball {x ∈ K : |x−a| < α}. These
balls are said to have radius α, and we write rad(s) for the radius of the ball s.
If s is a ball of radius γ, and δ > γ, we extend this notation to write B<δ(s) for
the unique open ball (or B≤δ(s) for the unique closed ball) of radius δ containing
s. We write simply Bδ(s) if we do not want to specify whether the ball is open
or closed. Notice that an element a in K is just a closed ball B≤0(a) of radius
0, and the whole field K can be regarded informally as an open ball of infinite
radius.

The following theorem of Holly ([5], Theorem 3.26) gives a precise description
of definable sets in one variable. With our notation, a Swiss cheese is a non-empty
set of the form t \ (s1∪ . . .∪ sn), where t (the block) is a ball of K or the whole of
K, and the si (the holes) are distinct proper sub-balls (remember here that field
elements are balls of radius zero). We allow the case when there are no si.

Theorem 2.1.2 (Holly) Each parameter-definable set X ⊂ K is a union of a
unique set {S1, . . . , Sm} of disjoint Swiss cheeses such that no two are trivially
nested, that is, for no i, j does the block of Si equal a hole of Sj.

The fact that any definable set X can be so expressed is an easy consequence
of quantifier elimination in Ldiv, which gives that any definable subset of K is a
Boolean combination of singletons and balls. It is used frequently in the paper.
The uniqueness of the expression is used in Section 2.3, and in the proof of
Corollary 3.4.9.

If M is a structure and A is a set a-definable in M eq, then A is stably embedded
in M if, for any r and any definable set D in M r, D ∩ Ar is definable over Aa
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(uniformly in the parameters which define D). See (5.6) of [1] for more on this
condition.

Proposition 2.1.3 (i) The value group Γ of K is o-minimal in the sense that
every K-definable subset of Γ is a finite union of intervals.

(ii) The residue field k is strongly minimal in the sense that any K-definable
subset of k is finite or cofinite (uniformly in the parameters).

(iii) Γ is stably embedded in K.
(iv) If A ⊂ K then the model-theoretic algebraic closure acl(A) ∩K of A in

the field sort K is equal to the field-theoretic algebraic closure.
(v) If S ⊂ k and α ∈ k and α ∈ acl(S) (in the sense of Keq), then α is in the

field-theoretic algebraic closure of S in the sense of k.
(vi) k is stably embedded in K.

Proof. All parts follow from quantifier elimination for algebraically closed
valued fields. Parts (i) and (ii) follow immediately from Theorem 2.1.2. Part (iii)
comes from Theorem 2.1.1(ii). Quantifier elimination in Ldiv also yields (iv), and
(v) comes from Theorem 2.1.1(iii).

For (vi), we again use Theorem 2.1.1(iii). It suffices to consider an atomic
formula ϕ(x, a) in this language, with x a tuple of residue field variables. If this
mentions x, it has the form f(x, β) = 0, where β = (β1, . . . , βn) and for each i,
βi = Res(gi(a), hi(a)), with gi(Y ), hi(Y ) ∈ Z[Y ]. Since the βi are in k, the result
follows. 2

For models of a theory to have property (iii) was originally considered by
Shelah as a “stage 0 stability over Γ”. Over a base model of size λ there can
be 2λ distinct types that do not increase Γ. Hence, in the main sense of the
expression, the theory of an algebraically closed valued field is not stable over Γ.

Remark 2.1.4 In (0, 0) or (p, p) characteristic, the algebraic closure of ∅ (in
K) is trivially valued, so no element of Γ \ {0, 1} is definable over it. In any
characteristics, if an element of Γ \ {0, 1} is definable over an algebraically closed
field C, then by quantifier elimination (in the language LΓk with sorts K, k,
and Γ) some element of C is non-trivially valued. This always happens in mixed
characteristic.

Notice that a ball containing 0 is an R submodule of K, and furthermore,
every proper definable R submodule of K is such a ball. A ball which does
not contain 0 is a coset of an R-module. In general, for γ ∈ Γ, we will write
γR = B≤γ(0) = {x ∈ K : |x| ≤ γ} and γM = B<γ(0) = {x ∈ K : |x| < γ}.
Then γR/γM is γ-definably a one-dimensional vector space over k, for every γ.
In [5], Holly proved (in equicharacteristic 0) that the definable sets in one variable
are coded by balls. It turns out that in order to code the definable sets of tuples,
we need what one might call n-dimensional balls, that is, some of the R-modules
and their cosets in Kn.
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Definition 2.1.5 A definable torsor in Kn is a coset in Kn of a definable R-
submodule of Kn. If the torsor X is a coset of the submodule U of Kn, then a
subtorsor of X is a coset (contained in X) of an R-submodule of U . If also Y is a
coset of the submodule V of Km, then we define an affine homomorphism to be
a pair (g, c) where g ∈ Hom(U, V ), c is a function from X to Y , and for all u ∈ U
and x ∈ X, c(x+u) = g(u)+c(x). In particular, if (g1, c) and (g2, c) are both affine
homomorphisms then g1 = g2, so we often refer to the affine homomorphism as c,
with homogeneous component g. We denote the set of all affine homomorphisms
X → Y by Aff(X, Y ). The set Aff(X,V ) of affine homomorphisms to the module
V is naturally an R-module: for g1, g2 ∈ Hom(U, V ) and c1, c2 : X → V , r ∈ R,
define (g1, c1) + (g2, c2) = (g1 + g2, c1 + c2), where, for x ∈ X, (c1 + c2)(x) =
c1(x) + c2(x), and define r(g1, c1) = (rg1, rc1) where (rc1)(x) = r(c1(x)). It has
an R-submodule C (the constant maps), consisting of pairs (0, c) where c is a
constant map X → V , and the quotient module is isomorphic to Hom(U, V ). In
particular, Aff(U, V ) is naturally isomorphic to Hom(U, V )⊕ V .

An R-torsor can be regarded as a pair (U,X), where U is an R-module and
U has a faithful transitive action on X. In this sense, we sometimes talk of
interpretable R-torsors living in Keq, but not necessarily as cosets of submodules
of Kn. Observe that in the notation above, Aff(X, Y ) is in this sense a torsor of
Aff(X,V ).

Definition 2.1.6 We will be using a uniformly definable family of torsors in Kn.
For each natural number n, the set Sn consists of the R-sublattices of Kn, that
is, the free R-submodules of Kn on n generators. (Formally, Sn consists of codes
for lattices, chosen in a uniform way, but we often slur over this distinction.)
The elements of S1 are precisely the modules of the form γR, for γ ∈ Γ. In
general, each element of Sn is definably R-isomorphic to Rn, but not canonically
so. We write S =

⋃∞
n=1 Sn. For any s ∈ Sn, we define red(s) = s/Ms (the

reduction of s modulo M), where Ms = {ma : m ∈ M, a ∈ s}. Then red(s) is
a set of torsors, and also is an n-dimensional vector space over k. For each n, let
Tn =

⋃
{s/Ms : s ∈ Sn} and T =

⋃∞
n=1 Tn. Notice that T1 contains all of the

open balls in K of the form B<|a|(a). Let τn : Tn → Sn be defined by τn(t) = s if
and only if t = a +Ms for some a ∈ s. We will often write τ for τn. Then for
each n and for each s ∈ Sn, τ−1(s) = s/Ms = red(s) is a definable subset of Tn.
In our language (to be defined in Section 3.1) K, k,Γ are sorts, as is each Sn and
each Tn. As noted in Section 2.4, each sort Sn can be regarded as a coset space of
an ∅-definable group by an ∅-definable subgroup, and each Tn can be regarded as
a finite union of coset spaces. We call these sorts the geometric sorts, and write
G = K ∪ Γ ∪ k ∪ S ∪ T . Formally, k and Γ are redundant.

The red(s) notation is occasionally extended: for a ∈ s we sometimes write
red(a) for a+Ms ∈ red(s).
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There is inevitably some confusion between definable subsets from Kn and
elements of Keq. In order to avoid the notation becoming too thick, we will try to
maintain the following convention. Arbitrary torsors will be denoted by capital
letters if thought of as sets, and by corresponding (if possible) lower-case letters
if thought of as elements of Keq. Each Sn and Tn is a sort in Keq, and their
elements will be denoted by small letters s, t. However, we will sometimes write,
for example, A ∈ Sn when we want to consider the module A for which pAq ∈ Sn.

Lemma 2.1.7 Let C be an algebraically closed valued field. Then any element
s of Sn definable over C is C-definably isomorphic to Rn, and in particular, will
contain a tuple from C. The torsor red(s) is C-definably isomorphic to kn.

Proof. This holds automatically if C is a model of the theory of algebraically
closed non-trivially valued fields, for then s has a free basis consisting of ele-
ments of s, and this can be mapped to the standard basis of Rn. Otherwise, by
Remark 2.1.4, no element of Γ \ {0, 1} is definable over C, so the only free R-
submodule of Kn defined over C is Rn itself. The second part is clear, as R/MR
is isomorphic to k. 2

2.2 Definable modules

In this section we develop the theory of the definable modules and torsors. In
particular, we will show that a torsor in Kn is interdefinable with a module in
Kn+1; also that any definable R-submodule ofKn is, up to definable isomorphism,
a direct sum of copies of K, R, and M. We begin with a reminder of some
standard valuation-theoretic terminology.

An extension field L of a valued field F is immediate if F and L have the
same value group and residue field. We occasionally refer to maximal valued
fields, that is, fields with no proper immediate extensions. If λ is a limit ordinal,
then a sequence (aα : α < λ) is pseudo-convergent if, for all µ1 < µ2 < µ3 < λ,
|aµ1 − aµ2| > |aµ2 − aµ3|. An element a of K is a pseudo-limit of the pseudo-
convergent sequence (aα : α < λ) if |a− aµ| = |aµ+1− aµ| for all µ < λ. We recall
the following theorem of Kaplansky [8].

Theorem 2.2.1 (Kaplansky) Let (F, v) be a valued field. Then (F, v) is max-
imal if and only if every pseudo-convergent sequence in F has a pseudo-limit in
F .

The first two lemmas show that a definable homomorphism from either a
proper submodule of K or from K itself to a quotient of modules is essentially
linear.

Lemma 2.2.2 Let V be a definable R-submodule of K, and β ∈ Γ. Then every
definable homomorphism h : βM→ K/V has the form h(x) = ax+ V for some
a ∈ K, so lifts to a definable homomorphism from βR to K/V .
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Proof. We may suppose that β = 1, so βR = R. Clearly, V has the form {0},
or K, or δM, or δR, for some δ ∈ Γ. We shall suppose that V = δR, the other
cases being similar. Now h(M) is a definable R-submodule of K/δR, so has the
form εM/δR, εR/δR, or K/δR. Since M = M.M, we have h(M) = Mh(M).
It follows that if h(M) is finitely generated then by Nakayama’s Lemma h(M) =
0, and the lemma is trivial. Thus, we may suppose that h(M) = K/δR or
h(M) = εM/δR with δ < ε (in which case we may assume ε = 1). Either
way, h is a surjection M → K/δR or M → M/δR. We must extend h to
h∗ : R→ K/δR (or h∗ : R→M/δR).

Choose a sequence (xλ : λ < κ) of elements of M, indexed by a cardinal κ,
with γλ := |xλ| → 1 as λ→ κ. We may suppose κ is the least cardinality of such
a sequence, so is regular. For each λ < κ, choose yλ such that h(xλ) = yλ + δR
and put aλ := yλx

−1
λ . Let x ∈ γλR. Then x−1

λ x ∈ R and, as γλR is a cyclic
R-module and h is an R-module homomorphism, we have

h(x) = h(xλx
−1
λ x) = x−1

λ xh(xλ) = x−1
λ x(aλxλ + δR) = aλx+ δR .

Hence, if µ < λ < κ, then aλxµ + δR = aµxµ + δR, so |aλ − aµ| ≤ δγ−1
µ (use that

xµ lies in both γλR and γµR).
We may suppose that if λ < κ then there is λ′ with λ < λ′ < κ such that for all

λ′′ with λ′ < λ′′ < κ we have |aλ−aλ′′| > δγ−1
λ′′ . For suppose this is false for some

λ. Then we may define h∗ by putting h∗(x) = aλx + δR. For if x ∈ M, choose
λ′ > λ such that |aλ−aλ′| ≤ δγ−1

λ′ and γλ′ > |x|. Then h(x) = aλ′x+ δR = h∗(x).
Now construct inductively a subsequence (bλ : λ < κ′) of (aλ : λ < κ) such

that the following hold:
(i) b0 = a0 and for some strictly increasing function f : κ′ → κ, bλ = af(λ) for
each λ < κ′;
(ii) (bλ : λ < κ′) is pseudo-convergent, that is, if λ1 < λ2 < λ3 < κ′ then
|bλ2 − bλ1| > |bλ3 − bλ2|;
(iii) for all λ1 < λ2 < κ′ and λ3 with f(λ2) < λ3 < κ, we have |bλ1 − bλ2| >
|bλ2 − aλ3|.
Suppose that bµ have been found for all µ < λ, and put λ∗ = sup(f(µ) : µ < λ).
We may suppose λ∗ < κ (otherwise put κ′ := λ). As κ is regular, by the last
paragraph there is ν ∈ κ with λ∗ < ν such that for all µ < λ and ν ′ ≥ ν we have
|bµ − aν′| > δγ−1

ν′ . Put f(λ) = ν, so bλ = aν . Now (ii) holds since (iii) held at the
previous stage. Also, (iii) holds, for if µ < λ and ν ′ > ν, then

|bµ − bλ| = |bµ − aν | > δγ−1
ν ≥ |aν′ − aν | = |aν′ − bλ|,

as required.
It is easy to check that (bα : α < µ) is a pseudo-convergent sequence. Hence,

by Theorem 2.2.1, there is an algebraically closed immediate extension K ′ of K
such that the sequence (bλ : λ < κ′) has pseudo-limit b′, that is, for all λ < κ′,
|bλ+1−bλ| = |b′−bλ|. If h′ is the corresponding function in K ′ and M′, R′ are the

11



corresponding maximal ideal and valuation ring, we have h′(x) = b′x + δR′ for
all x ∈ M′. By Robinson’s model-completeness for algebraically closed valued
fields, there is b ∈ K such that h(x) = bx + δR for all x ∈ M. Now define
h∗ : R→ K/δR (or h∗ : R→M/δR) by putting h∗(x) = bx+ δR for all x ∈ R.
2

Lemma 2.2.3 Suppose that V is an R-submodule of K of the form αM or αR
where α 6= 0. Then every definable R-homomorphism f : K → K/V has the
form f(x) = ax+ V for some a ∈ K.

Proof. This is essentially the same as the proof of Lemma 2.2.2, except that
the sequence (xα : α < ν) satisfies |xα| → ∞ as α→ ν. 2

Lemma 2.2.4 Let V be a definable R-submodule of Kn. Then V is definably
isomorphic to a direct sum of at most n R-modules, each of the form R, M, or
K.

Proof. We shall show, by induction on n, that there is g ∈ GLn(K) such
that g(V ) = ⊕n

i=1Vi, where each Vi is of the form {0}, R, M, or K. Clearly
the induction starts, as any definable R-submodule of K, after multiplying by an
element of K, has the required form.

Let π : Kn → K be the projection onto the first coordinate, and write
V ′ ⊆ Kn−1 for the R-submodule such that {0}× V ′ = ker(π)∩ V . By induction,
there is g′ ∈ GLn−1(K) with g′(V ′) := ⊕n

i=2Vi, where each Vi has the form {0},
M, R or K. Let (aij)2≤i,j≤n be the matrix for g′ (with the standard basis, and
the matrix written on the left), and write A = (aij)1≤i,j≤n for the n × n matrix
whose first row and column are all zeroes. We shall define the n × n matrix
B = (bij)1≤i,j≤n for g. In all cases, b1j = 0 for 2 ≤ j ≤ n and bij = aij for
2 ≤ i, j ≤ n. Let J := π(V ). If J = {0}, let V1 = {0}, b11 = 1 and bi1 = 0 for
2 ≤ i ≤ n. Then g(V ) = V1 + g′(V ′).

If J 6= {0} then J ∈ {K,αR, αM} for some α ∈ Γ. For each i = 2, . . . , n
define an R-homomorphism ϕi : J → K/Vi as follows: for x ∈ J , ϕi(x) =
(Av)i + Vi for any v ∈ V with π(v) = x. Since the difference of any two such
vectors is in {0} × V ′, ϕi is well-defined. By Lemmas 2.2.2 and 2.2.3, for each
i there is ai ∈ K such that ϕi(x) = aix + Vi for all x ∈ J . Now let V1 = α−1J
(take α = 1 if J = K), b11 = a−1 for any a ∈ K with |a| = α, and bi1 = −ai for
i = 2, . . . , n. Then for any v ∈ V and 2 ≤ i ≤ n, (Bv)i = −aiv1 + (Av)i ∈ Vi, so
Bv ∈ ⊕n

i=1Vi as required. 2

Lemma 2.2.5 Let V be a definable R-submodule of Kn, and β ∈ Γ. Then every
definable homomorphism h : βM → Kn/V lifts to a definable homomorphism
βR to Kn/V .
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Proof. By the proof of Lemma 2.2.4 there is g ∈ GLn(K) such that g(V ) ∼=
⊕n

i=1Vi, where Vi = πi(g(V )) (the projection to the ith coordinate). Thus, g
induces an isomorphism g′ : Kn/V → ⊕n

i=1K/Vi. This gives a homomorphism
h∗ : βM → ⊕n

i=1K/Vi, which by Lemma 2.2.2 extends to a homomorphism
h′ : βR→ ⊕K/Vi. Now apply g′−1. 2

Part (ii) of the next lemma enables us to replace torsors by modules in certain
coding arguments.

Lemma 2.2.6 (i) Let L be a definable R-submodule of Kn. Then there is a
definable subtorsor L′ of Kn−1, a definable R-submodule T of Kn−1, and some
γ ∈ Γ, such that pLq is interdefinable over ∅ with the triple (pL′q, pTq, γ).

(ii) Let L′ be a subtorsor of Kn−1. Then there is a R-submodule L of Kn such
that pL′q = pLq.

Proof. (i) Let A := π1(L), where π1 : Kn → K is projection to the first
coordinate, and suppose ker(π1) = {0} × T . Put B := Kn−1/T . Then L can be
regarded as the graph of a homomorphism h : A → B. We may suppose A 6= 0
(otherwise put L′ := T ); so A = K, or A = γR or A = γM for some γ ∈ Γ.

First suppose that A = γR or A = γM. By Lemma 2.2.5, the restric-
tion map Hom(γR,B) → Hom(γM, B) is surjective. Furthermore, since γR is
a free R-module, the map Hom(γR,Kn−1) → Hom(γR,B) (obtained by com-
posing each element of Hom(γR,Kn−1) with the natural map Kn−1 → B) is
surjective. Thus, we obtain by composition a surjection Hom(γR,Kn−1) →
Hom(γM, B), and hence, for A ∈ {γR, γM}, we obtain a (γ, pTq)-definable
surjection ρ : Hom(γR,Kn−1) → Hom(A,B). Let V := ker(ρ). Since any R-
homomorphism γR→ K is given by multiplication by some uniquely determined
a ∈ K, Hom(γR,Kn−1) is canonically (over γ, pTq) R-isomorphic to Kn−1, and
V to some corresponding submodule V ′ of Kn−1.

We have Hom(A,B) ∼= Hom(γR,Kn−1)/V . The element h of Hom(A,B)
corresponds to a coset of V in Hom(γR,Kn−1), so corresponds to a definable
subtorsor L′ of Kn−1 ∼= Hom(γR,Kn−1), namely, a coset of V ′. Now phq and
hence pLq is interdefinable with the triple (pL′q, pTq, γ).

The remaining case of the claim is when A = K. Again, by Lemmas 2.2.4 and
2.2.3, the natural map τ : Hom(A,Kn−1) → Hom(A,B) is surjective, so again h
is interdefinable with a subtorsor of Kn−1. In this case (i) holds with γ = 0.

(ii) Now pL′q is interdefinable with a code for the subtorsor L′′ := {1}×L′ of
Kn. Let L be the R-submodule of Kn generated by L′′. Since L′′ = L ∩ ({1} ×
Kn−1), we have dcl(pLq) = dcl(pL′q). 2

We give an application of Lemma 2.2.4, used in the next section.

Lemma 2.2.7 Let A be an R-lattice in Kn, let 1 ≤ m ≤ n−1, and let π : Kn →
Km be a projection to the first m coordinates. Then π(A) is an R-lattice in Km.
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Proof. SinceA is finitely generated, π(A) is finitely generated. By Lemma 2.2.4,
π(A) is a direct sum of copies of K,R,M, and so by finite generation, π(A) ∼= R`

for some ` ≤ m. Also, the R-module Kn/A is torsion, so Km/π(A) is also torsion.
It follows that ` = m, as required. For otherwise, we could complete an R-basis
for π(A) to a K-basis for Kn−1, and the added basis vectors would generate a
free R-module, modulo π(A). 2

2.3 Unary sets

In our original approach to valued fields, with balls as the basic sorts, we found
that we often needed to consider the type of a single imaginary, say Bγ(a), as
really the type of the pair (γ,Bγ(a)). This led to a dissonance between 1-types
and general n-types. To resolve this, we define the unary sets, which will play
the role of 1-types. We show in this section that any element of G can be coded
by a sequence in which each element lies in a unary set defined over the previous
elements. We will talk of unary types as the type of an element of a unary set,
the underlying unary set fixed by the context.

A definable 1-module is an R-module (living in Keq) which is definably iso-
morphic to a quotient of one definable R-submodule of K by another. It will
be definably isomorphic to one of γR/δR, γR/δM, γM/δR or γM/δM, or to
K/δR or K/δM, where γ, δ ∈ Γ with 0 ≤ δ ≤ γ (and in fact we may always
assume γ = 1). In the case when the 1-module, A say, is definably isomorphic
to K (that is, to K/0R), we actually assume that the 1-module comes equipped
with a definable submodule B, and that the definable isomorphism A→ K maps
B to R; without this it would not be clear below how to define the radius of a
submodule of A. By allowing δ = 0 we include balls containing 0 as 1-modules.
A definable 1-torsor is a definable torsor of a definable 1-module. An ∞-definable
1-torsor is an intersection of a chain of definable 1-torsors. A 1-torsor is a defin-
able or ∞-definable 1-torsor. If C is a set of parameters, then a C-1-torsor is a
definable or ∞-definable 1-torsor for which the parameters come from C; we do
not here require that there be any C-definable isomorphism with, say, γR/δR.

We will say that a 1-torsor is closed if it is definably isomorphic to a torsor of
some γR, γR/δR or γR/δM ; it is open if it is definably isomorphic to a torsor
of a module which is a quotient of M (and we also regard modules definably
isomorphic to quotients of K as open). Notice that if γ < |a| then a closed ball
s = B≤γ(a) is a closed 1-torsor of the 1-module γR/0R. But s is also an element
of the 1-module γ′R/γR, where |a| = γ′. In Section 2.1, we wrote red(s) = s/Ms
(when s ∈ S1) for the set of open balls in s of the same radius as that of s. In
the same way, if T is a closed 1-torsor of the 1-module A we will write red(T )
for the set of all open 1-torsors of MA contained in T . Then red(T ) is also a
closed 1-torsor (it is a torsor of A/MA). As in the ball case, red(T ) is definably
isomorphic to k, hence is strongly minimal. In particular, we have a notion of
generic for elements of red(T ).
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If the elements of a 1-torsor U are subsets of K, that is, U is γR/δR or
γR/δM, etc, then we say that U is a true 1-torsor. More generally, if U is a
definable C-1-torsor and C is a model, then U will be C-definably isomorphic to
a true 1-torsor. Suppose U is a 1-torsor of the 1-module A. We can define the
radius of definable subtorsors V of U as follows. Suppose first A is closed. By
definition, V is a torsor of a definable submodule B of A, and for some unique
γ, B = γRA or γMA. Then rad(V ) := γ. If A is open (but not definably
isomorphic to a quotient of K), then a definable submodule has radius γ if it has
the form γRA or

⋂
(δRA : δ > γ). If U is an intersection of definable 1-torsors

{Ui : i ∈ I}, we fix any i0 ∈ I and define the radius of a subtorsor V of U
to be its radius with respect to the fixed Ui0 (this ensures that the radius of a
definable subtorsor of an ∞-definable 1-torsor lies in Γ rather than its Dedekind
completion). The definition of radius for a subtorsor of a torsor arising from a
quotient of K is clear: if A is definably isomorphic to K/δR for δ > 0, then a
definable submodule D has radius γ if γ is greatest such that γRD = {0}; if A is
definably isomorphic to K/δM, then D has radius δ where δ is greatest such that
γRD is isomorphic to {0} or k; and if the pair (A,B) is definably isomorphic via
an isomorphism f to (K,R), then the radius of D is exactly the radius of f(D)
as a submodule of K (this does not depend on the choice of f).

In all the above cases, if V is a subtorsor of U and rad(U) > γ′ > rad(V ),
then B≤γ′(V ) denotes the closed subtorsor of U of radius γ′ containing V , and
B<γ′(V ) the open subtorsor of U containing V ; these are uniquely determined.
Also, we can define |a − b| for a, b ∈ U . For a − b ∈ A, hence a − b generates a
submodule (a− b)R, and |a− b| is the radius of this submodule.

Definition 2.3.1 A unary set is a 1-torsor or an interval [0, α) in Γ, where
α ∈ Γ ∪ {∞}. A C-unary set is a unary set (possibly ∞-definable) where the
parameters may be chosen from C. A unary type over C is the type of an element
of a C-unary set.

Remark 2.3.2 Below and in Section 2.5, when considering a C-1-torsor U we
frequently assume that the base set of parameters C is algebraically closed in
Keq. However, all that is really needed is that any acl(C)-definable subtorsor
of U is C-definable. In Section 3, we will be considering a restricted class U
whose definable subtorsors are coded in the geometric sorts G. We will then be
able to apply all results of Sections 2.3 and 2.5 under the weaker assumption
C = acl(C) ∩ G.

If U is a 1-torsor, the notions of Swiss cheese and trivially nested set of Swiss
cheeses from Section 2.1 carry through to definable subsets of U : a Swiss cheese
of U is a non-empty set t \ (t1 ∪ . . . ∪ tn) where t and ti are definable subtorsors
of U .
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Lemma 2.3.3 Let C ⊂ Keq and U be a C-1-torsor.
(i) Let X be a definable subset of U . Then X is uniquely expressible as a

finite union of Swiss cheeses, no two trivially nested.
(ii) Assume C = acl(C). If a, b ∈ U and neither of a, b lie in a C-definable

proper subtorsor of U , then a ≡C b. In particular, if there is no C-definable
proper subtorsor of U then all elements of U have the same type over C.

Proof. (i) By expanding C to some C ′, we may assume that U is a true
1-torsor. Existence and uniqueness now follow from Theorem 2.1.2.

(ii) If a 6≡C b, then by (i), some C-definable Swiss cheese t \ (t1 ∪ . . . ∪ tn)
contains just one of a, b, and the uniqueness assertion in (i) ensures we may
assume t and the ti are C-definable. At least one of them must be a proper
subtorsor of U . 2

Definition 2.3.4 Let C ⊂ Keq be a set of parameters. Let U be an acl(C)-unary
set and a ∈ U . Then a is generic in U over C if a lies in no acl(C)-unary proper
subset of U .

Remark 2.3.5 (i) By Lemma 2.3.3, if a, b are generic in a unary set over C,
then a ≡acl(C) b. Thus, we may talk of the generic type of U (over C) as the
type of an element of U which is generic over C. Existence of generic types is by
compactness — one has to check that a 1-torsor is not the union of finitely many
proper subtorsors.

(ii) If T is a closed 1-torsor then the above notion of genericity for the strongly
minimal 1-torsor red(T ) agrees with that from stability theory. Also, suppose T
is a C-definable closed 1-torsor, and a is generic in red(T ) over C. Then all
elements of a have the same type over C; for otherwise, some C-definable subset
of T intersects infinitely many elements of red(T ) in a proper non-empty subset,
contradicting Lemma 2.3.3.

(iii) We adapt slightly the above language, by saying that if δ ∈ Γ, then γ is
generic over C below δ if for any ε ∈ Γ(C), if ε < δ then ε < γ. That is, γ is
generic in the unary set [0, δ).

Lemma 2.3.6 Suppose C = acl(C) ⊂ Keq, and a is an element of a C-unary
set U . Then a realises the generic type over C of a unique unary subset of U .

Proof. We may assume a 6∈ C. Let {Ui : i ∈ I} be the set of infinite C-
definable unary subsets of U containing a. This set is clearly totally ordered by
inclusion, and a realises the generic type over C of the intersection. 2

Remark 2.3.7 It follows in particular that if C = acl(C) then any type over C
of a field element or ball (of radius in C) is the generic type over C of a unary
set.
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Lemma 2.3.8 Let C be any set of parameters in Keq.
(i) If p is the generic type over C of a C-definable unary set, then p is definable

(over C).
(ii) Let {Ui : i ∈ I} be a descending sequence of C-definable subtorsors of

some C-1-torsor U , with no least element, and let p be the generic type over K
of field elements of

⋂
(Ui : i ∈ I). Then p is not definable.

Proof. (i) We assume the unary set is a 1-torsor, as the proof is similar for
subsets of Γ. Suppose p is the generic type of the closed 1-torsor U . Then by
Theorem 2.1.2, for any formula ϕ(x, ȳ) there is a natural number Nϕ so that for
any c̄, ϕ(x, c̄) ∈ p if and only if ϕ(x, c̄) holds on all elements of each torsor in an
infinite subset of red(U), if and only if ϕ(x, c̄) holds on all elements of all except
at most Nϕ torsors in red(U). This gives the definition of p.

If p is the generic type of an open 1-torsor U , then ϕ(x, c̄) ∈ p if and only if
there is a proper definable sub-torsor U ′ of U such that ϕ(x, c̄) holds throughout
U \ U ′. Note here that the collection of definable subtorsors of U is a uniformly
definable family.

(ii) This is a special case of the following general fact. Let M be a large
sufficiently saturated model of some theory, let F be a uniformly definable family
of definable subsets of Mn (such as the collection of subtorsors of a 1-torsor),
and let (Vi : i ∈ I) be a decreasing sequence (totally ordered by inclusion) of
elements of F with no least element, with |I| small relative to |M |. Then if p is
a definable type with solution set P in K, it cannot happen that for all V ∈ F ,
V ⊃ P ⇔ V contains some Vi : indeed, otherwise the partial order consisting of
members of F containing P would be definable and of small infinite cofinality,
contrary to saturation of M . 2

Recall from Definition 2.1.6 the notation S, T . The following notion of a unary
code for an imaginary is the essential idea that allows us to think of elements of
S ∪T as sequences of elements of unary sets. This enables us frequently to apply
results about unary sets to elements of the geometric sorts S and T . In [3], we
use it to extend the notion of generic to a ‘sequential independence’ for n-types.

Definition 2.3.9 Let e be an element of Keq. A sequence (a1, . . . , am) of el-
ements of Keq is a unary code for e if dcl(e) = dcl(a1, . . . , am), and for each
i = 1, . . . ,m, ai is an element of a unary set defined over dcl(aj : j < i).

Proposition 2.3.10 Let s ∈ G. Then s has a unary code whose elements lie in
G.

Proof. The only cases needing proof are when s ∈ Sn ∪ Tn, for some n. We
exhibit a canonical filtration of lattices, and a corresponding filtration of elements
of Tn. For each 1 ≤ i < n let πi be the projection of Kn to the first i coordinates,
and πi the projection to the last n− i coordinates.
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Step 1. Suppose first s ∈ Sn, so s codes an R-lattice A from Kn. Let
Ai := ker(πi|A) (so Ai = A ∩ (Ki × {0}n−i). Now A/An−1 is isomorphic to
πn−1(A), which is isomorphic to R by Lemma 2.2.7. Hence, the sequence 0 →
An−1 → An → R → 0 must split, and as A is isomorphic to Rn, so An−1 is
isomorphic to Rn−1. Continuing this way, we see that each Ai is isomorphic to
Ri, and each quotient Ai+1/Ai is isomorphic to R. If we write A′i for the R-module
in Ki with Ai = A′i × {0}n−i, then pA′iq is in Si.

Step 2. To obtain a unary code for a lattice A in Kn, we reduce by Step 1 and
induction on n to the following. Let Bn−1 = πn−1(A). Then A′n−1 ≤ Bn−1. By
Step 1, A′n−1 is a lattice, and by Lemma 2.2.7, Bn−1 is also a lattice. Thus, they
both have codes in Sn−1 so by induction have unary codes say cn−1, bn−1 from G.
Let B1 := πn−1(A) and {0}n−1×A′′1 = ker(πn−1). By Lemma 2.2.7, B1 is a lattice.
Also, as in Step 1, the sequence 0 → ker(πn−1) → An → Bn−1 → 0 splits (as Bn−1

is free), so A′′1 is also a lattice. Thus A′′1 ≤ B1 are both coded in S1, so by induction
have unary codes c1, b1, say. We claim that (c1, b1, cn−1, bn−1, s) is the unary code
for s. To show the claim, we need to verify that s is in a (c1, b1, cn−1, bn−1)-
definable unary set. So let Y (c1, b1, cn−1, bn−1) be the set of codes of lattices
C of Kn = Kn−1 × K such that C ∩ (Kn−1 × {0}) = A′n−1, πn−1(C) = Bn−1,
C ∩ ({0}n−1 ×K) = A′′1 and πn−1(C) = B1. Then s ∈ Y (c1, b1, cn−1, bn−1), so we
need to show that Y is contained in a unary set.

We claim that there is a (c1, b1, cn−1, bn−1)-definable R-module D, isomor-
phic to some module R/αR, and a canonical identification of Y with a subset
D′ := D \ MD. The module D is HomR(Bn−1/A

′
n−1, B1/A

′′
1), and the subset

D′ consists of the invertible homomorphisms. The identification takes f ∈ D to
{(x, y) ∈ Bn−1 × B1 : f(x + A′n−1) = y + A′′1}. Since Y (c1, b1, cn−1, bn−1) 6= ∅,
Bn−1/A

′
n−1 and B1/A

′′
1 are isomorphic, and each is isomorphic to an R-module

R′ := R/αR for some α < 1 from Γ, i.e. to free R′-modules on one generator.
Now D ∼= HomR(R′, R′) = HomR′(R′, R′) ∼= R′, so is a 1-module, and hence
Y (c1, b1, cn−1, bn−1) is a subset of a 1-module.

Step 3. Finally, we exhibit a unary code for elements a ∈ Tn. Let V =
A/MA ⊂ Tn. With Ai as above, let Vi := Ai/MAi, to obtain a corresponding
filtration 0 ≤ V1 ≤ . . . ≤ Vn = V of k-vector spaces. Now if a ∈ V , we have
a sequence s = τ(a), a + Vn−1, a + Vn−2, . . . , a. Each element a + Vi lies in a
torsor of a 1-dimensional k-vector space Vi+1/Vi defined over the previous element.
Furthermore, a + Vi ∈ red(A/Ai) ∼= red(πi(A)). Thus, pa + Viq is an element of
Tn−i. It follows that if, in the above sequence, s is replaced by a unary code for
A, then we have a unary code for V . 2

Note that in the above lemma, the 1-torsors required are all either strongly
minimal 1-torsors, or 1-modules.

We close this section with some remarks about invariant types. Let C =
acl(C) and p be a type over C. An invariant extension of p is a type p∗ over K
extending p such that Aut(K/C), in its action on the set of types over K, fixes
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p∗. If p has an invariant extension p∗ and C ⊂ C ′ ⊂ K then p∗|C ′ denotes the
restriction of p∗ to C ′. In general, one would not expect there to be a unique
invariant extension of a type p. However, in Section 2.5, we will show that
any unary type has a canonical invariant extension (given by the generic type
over any parameter set); hence we can just write p|C ′ for p∗|C ′, the generic
extension of p over C ′. In [3] we will extend this to n-types. In Remark 2.11 of
[7] it is claimed that invariant extensions of types exist for arbitrary C-minimal
structures. However the Remark rests on Lemma 2.2 of that paper, and the
proof of Lemma 2.2 is incomplete and the result may well be incorrect (other
applications of 2.2 in [7] seem to be unaffected, as problems only arise when
acl 6= dcl).

2.4 Definable functions from Γ

In this section we study definable functions from the value group into G, and
show that they are fairly simple. In order eventually to obtain the technical
Lemma 3.4.12, we actually work in the more general setting of a function from a
finite cover of Γ, in the following sense.

Definition 2.4.1 A definable surjection ρ : X → Y between definable sets X
and Y is a finite cover of Y if all the fibres ρ−1(a) (a ∈ Y ) are finite. We often
just refer to ‘the finite cover ρY ’, meaning the triple (ρ,X, Y ).

First, recall that any o-minimal expansion of an ordered abelian group (with
at least one ∅-definable non-zero element) has definable Skolem functions. For
given an interval I other than {x : 0 < x} or {x : x < 0}, one of (inf(I) +
sup(I))/2, inf(I)+ | inf(I)|/2, sup(I)−| sup(I)|/2, or 0, lies in I, and is definable
from parameters used to define I; the remaining intervals contain an ∅-definable
element. In the next few lemmas, we work in a fixed 1-torsor U . So we may talk
of the radius of subtorsors of U (possibly with respect to some fixed definable
Ui ⊃ U), as defined at the beginning of Section 2.3.

Lemma 2.4.2 Let U be a 1-torsor and Y be the set of subtorsors of U . Let
E ⊂ Y × Γ be definable, and suppose that the second projection p2 : E → Γ is
finite-to-one. Then p1(E), the projection of E to Y, contains only finitely many
elements of Y of any given radius.

Proof. The hypothesis on E persists to definable subsets, so we may suppose
p1(E) consists of subtorsors of equal radius δ, and must show p1(E) is finite. So
suppose p1(E) is infinite. We may suppose that p1(E) is contained in the set of
closed subtorsors in Y , or that p1(E) is contained in the set of open subtorsors
in Y . By Theorem 2.1.2 applied to the union in K of the subtorsors in p1(E),
there is a closed 1-torsor t ∈ Y of radius γ > δ (or γ ≥ δ if the elements of
p1(E) are open) whose sub-torsors of radius δ of the appropriate type all lie in
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p1(E). Let V := {t′ ∈ p1(E) : t′ ⊂ t}, and let ∼ be the equivalence relation on
V , two balls equivalent if they lie in the same element of red(t). Then V/ ∼ is in
definable bijection with red(t) so is strongly minimal (and infinite). Furthermore,
using definable Skolem functions (over an extra constant) we can find a definable
finite-to-one map f : V/ ∼→ Γ: define f so that if v ∈ V/ ∼ then for some
representative t′ of v, (t′, f(v)) ∈ E. This is a contradiction, since there cannot
be a definable finite-to-one map from a strongly minimal set to a totally ordered
set. 2

Lemma 2.4.3 Let (ti : i ∈ I) be a definable chain of subtorsors of a 1-torsor U ,
the chain totally ordered by inclusion. Then there is t ∈ U with t ∈ ti for every
i ∈ I.

Proof. By adding parameters, we may suppose U is a true 1-torsor. Let K ′ be
a maximal algebraically closed immediate extension of K, and let (tj : j ∈ J) be
the chain of subtorsors defined by the same formula in K ′. For each j ∈ J , choose
aj ∈ K ′ with aj ∈ tj \

⋃
(tk : j < k). Then any well-ordered cofinal subsequence

of (aj : j ∈ J) is pseudo-convergent, so (by Theorem 2.2.1) has a pseudo-limit
a′ ∈ K ′. Then a′ lies in tj for each j ∈ J . As K ≺ K ′, there is a corresponding
a ∈ K. Let t be the element of U containing a. 2

Proposition 2.4.4 Let B ⊂ Keq be a set of parameters, U a B-1-torsor, α, γ ∈
Γ, and t be a subtorsor of U of radius γ (possibly 0) with t ∈ acl(Bα) \ acl(B).
Then γ ∈ dcl(Bα) and there is an s ∈ acl(B) (a subtorsor of U) with rad(s) < γ,
such that t ∈ {B≤γ(s), B<γ(s)}.

Proof. Let U be the set of definable subtorsors of U . There is a B-definable set
E ⊂ U ×Γ containing (t, α) such that the projection p2 to the second coordinate
is finite-to-one. Put D := p1(E). It follows from Lemma 2.4.2 that for any δ ∈ Γ,
Dcl(δ) := {B≤δ(t

′) : t′ ∈ D} is finite (we apply the lemma to {(B≤δ(t
′), γ) :

(t′, γ) ∈ E, rad(t′) ≤ δ}, for any fixed δ). By compactness and saturation, there
is a natural number m such that |Dcl(δ)| ≤ m for each δ ∈ Γ. Likewise, for any
δ, Dop(δ) := {B<δ(t

′) : t′ ∈ D} is finite.
We claim that there is a positive integer ` such that any subset of D which

is pairwise incomparable under inclusion has size at most `. For if not, then
by saturation there is an infinite antichain (ti : i ∈ I) under inclusion, and as
each D(δ) is finite, we may suppose that if i < j then rad(ti) > rad(tj). Put
δi := rad(ti) for each i ∈ I. For {i, j, k} ⊂ I with i < j < k, colour {i, j, k} red
if B≤δi

(tj) = B≤δi
(tk), and green otherwise. By Ramsey’s Theorem and the last

paragraph, we may suppose that I = ω + 1 and all triples are red. Let a ∈ tω.
For each i < ω, as ti and tω are disjoint, |x − a| takes fixed value, γi say, as x
ranges through ti. Hence, as each D(δ) is finite, if X := {x ∈ U : ∃t′ ∈ D : x ∈
t′ ∧ a 6∈ t′}, then X meets B≤γi

(a) \ B<γi
(a) in a proper subset; for ti ⊂ X, but
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X meets just finitely many elements of red(B≤γi
(a)), and Dop(γi) is finite. Thus,

X is not a finite union of Swiss cheeses, contrary to Lemma 2.3.3(i).
The semilinearly ordered set D is the union of finitely many chains of subtor-

sors C1, . . . , C`, ordered by inclusion; to see this, choose a maximal antichain
{t1, . . . , t`} in D of size `, and let Ci be a maximal chain containing ti. By remov-
ing those elements of D which do not lie in an antichain of size ` (a B-definable
set) we may suppose (by induction on `) that C1, . . . , C` are disjoint. The relation
of non-disjointness is therefore an equivalence relation on D, whose classes are
C1, . . . , C`; thus each Ci is in acl(B). By Lemma 2.4.3, for each i = 1, . . . , `
there is ai ∈ K such that Ci = {u ∈ D : ai ∈ u}. Suppose t ∈ C1, and put
s :=

⋂
(u : u ∈ C1). Then as a1 lies in each u ∈ C1 and s is definable, s ∈ U

by the existence part of Lemma 2.3.3(i). Also, s ∈ acl(B), and t = B≤γ(s) or
t = B<γ(s). 2

Corollary 2.4.5 Let B ⊂ Keq be a set of parameters and U be a B-1-torsor with
no proper acl(B)-definable subset. Suppose T , T ′ are subtorsors of U , both closed
or both open, of radii δ, δ′ respectively and δ ≡B δ′. Then

(i) T ≡B T ′

(ii) all elements of T have the same type over BpTq.

Proof. (i) We show that all subtorsors of U of radius δ have the same type
over C. If δ 6= δ′ and the type of torsors over δ′ is different from the type over δ,
then δ 6≡B δ′.

Consider the set V of all closed subtorsors of U of radius δ (the open case is
similar). This is a Bδ-definable 1-torsor. Suppose T is not generic in V . Then
there is an acl(Bδ)-definable subtorsor S of V containing T . By Proposition 2.4.4,
there is a proper acl(B)-definable subtorsor S ′ of S. Then

⋃
S ′ is an acl(B)-

definable subset of U , contrary to hypothesis. So T and likewise T ′ are generic in
V . By Remark 2.3.5, T and T ′ have the same type over Bδ, and hence over B.

(ii) Suppose u ∈ T is not generic in T over BpTq. Then there is an acl(BpTq)-
definable subtorsor VT of T . Consider the set

⋃
{VS : S ≡Bδ T ∧ VS ⊂ S}. This

is a definable subset of K which is not a finite union of Swiss cheeses, contrary
to Theorem 2.1.2. 2

Corollary 2.4.6 Let B = acl(B) be a set of parameters, U a 1-torsor over B,
U the set of subtorsors of U , ρΓ a B-definable finite cover of Γ, and f : ρΓ → U
a B-definable function. Then for each complete type p over B with solution set
P ⊂ dom(f), there are a B-definable function g : ρΓ → Γ and a B-definable
subtorsor V of U such that for all δ ∈ P , f(δ) ∈ {B<g(δ)(V ), B≤g(δ)(V )}.

Proof. Let δ realise p, and put γ := ρ(δ). Then f(δ) ∈ acl(Bγ) and is a
subtorsor of U with radius in dcl(Bγ), say g(δ). Now apply Proposition 2.4.4. 2
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Notation 2.4.7 Let Tn(K) denote the ring of n × n upper triangular matrices
over K, Bn(K) the group of invertible elements of Tn(K), Un(K) the group of
elements of Bn(K) with ones on the diagonal, and Dn(K) the group of diagonal
matrices in Bn(K). We have Bn(K) = Un(K)Dn(K), with Un(K) �Bn(K). Let
Tn(R), Bn(R), Un(R), Dn(R) denote the corresponding objects over R (where
inverses are assumed to be over R). Observe that the map Dn(K) → Γn which
takes the diagonal matrix (d1, . . . , dn) to (|d1|, . . . , |dn|) has kernel Dn(R), so
Dn(K)/Dn(R) is ∅-definably isomorphic to (Γ \ {0})n. For groups G,H with
H < G we write G/H for the space of left cosets of H in G. If a ∈ Dn(K) and
A = aDn(R) ∈ Dn(K)/Dn(R), define Un(R)A := aUn(R)a−1; this is well-defined.
Finally, for A,B ⊂ G, AB denotes BAB−1 := {bab−1 : a ∈ A, b ∈ B}.

Let ` =
(

n
2

)
and let ν1, . . . , ν` enumerate the pairs (i, j) with 1 ≤ i < j ≤ n.

For each m ≤ `, let Xm := {ν1, . . . , νm}. We assume the νk are enumerated so
that if (i, j) ∈ Xm then (i′, j) ∈ Xm for i′ < i and (i, j′) ∈ Xm for j′ > j. Now for
each m ≤ `, let Jm := {r ∈ Tn(K) : r(ν) 6= 0 → ν ∈ Xm}, where r(ν) denotes the
νth entry of r. Then Jm is a 2-sided ideal of Tn(K), and Nm := {In +A : A ∈ Jm}
is a normal subgroup of Bn(K). For i ≤ `, put Gi := Un(K)/Ni (so in particular,
G` is trivial). Observe that if i < ` then Ni � Ni+1, and Mi := Ni+1/Ni is
naturally isomorphic to (K,+). There is an exact sequence

1 →Mi → Gi →πi
Gi+1 → 1.

The next lemma shows that, to handle definable functions ρΓ → Sn, we have
to describe definable functions ρΓ → Bn(K)/Bn(R). Observe that Rn ∈ Sn, and
that if B ∈ GLn(K) then B(Rn), which is the image of the subset Rn of Kn

under left multiplication of column vectors by B, is also an R-lattice in Kn; it
has the columns of B as an R-basis.

Lemma 2.4.8 Let A be an R-lattice in Kn. Then there is B ∈ Bn(K) such
that A = B(Rn). If also B′ ∈ Bn(K), then B(Rn) = B′(Rn) if and only if
B′−1B ∈ Bn(R).

Proof. For existence, we use the filtration of A in the proof of Proposi-
tion 2.3.10. For each i < n, let Ai be the kernel of the projection of A to
the last n − i coordinates. Choose a basis (u1, . . . , un) of A so that for each i,
(u1, . . . , ui) is a basis for Ai. Then let uT

i be the ith column of B.
For uniqueness, suppose B(Rn) = B′(Rn). Then B′−1B(Rn) = B−1B′(Rn) =

Rn, so B′−1B and B−1B′ have entries in R. Since they are upper triangu-
lar, B′−1B ∈ Bn(R). For the converse, observe that if B′−1B ∈ Bn(R) then
B′−1B(Rn) ⊆ Rn. If this containment is strict, then B−1B′(Rn) strictly contains
Rn, which is impossible. 2
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Remark 2.4.9 The above proof can also be thought of in the following way,
useful below. Let TB(K) be the set of triangular bases of Kn, that is, bases
(v1, . . . , vn) where vi ∈ Ki × {0}n−i (that is, the last n − i entries of vi are
zero). An element a = (v1, . . . , vn) ∈ TB(K) can be identified with an element
of Bn(K), with vi as the ith column. Now Bn(R) acts on Bn(K) = TB(K) on
the right. Two elements M,M ′ of TB(K) generate the same R-module precisely
if MBn(R) = M ′Bn(R): indeed, M,M ′ generate the same R-module precisely if
there is some N ∈ GLn(R) with MN = M ′, and as M,M ′ ∈ Bn(K), we must
have N ∈ GLn(R) ∩ Bn(K) = Bn(R). This gives an identification of Sn with
TB(K) modulo the right action of Bn(R), that is, with the set of orbits of Bn(R)
on TB(K). Equivalently, Sn can be identified with the set of left cosets of Bn(R)
in Bn(K).

We wish also to treat Tn as a finite union of coset spaces. For each m =
1, . . . , n, let Bn,m(k) be the set of elements of Bn(k) whose mth column has a 1 in
the mth entry and other entries zero. Let Bn,m(R) be the set of matrices in Bn(R)
which reduce (elementwise) modulo M to an element of Bn,m(k). Let e ∈ Sn, and
put V := red(e). We may put e = aBn(R) for some a = (a1, . . . , an) ∈ TB(K)
(so e is the orbit of a under Bn(R), or the left coset aBn(R) where a is regarded
as a member of Bn(K)). There is a natural filtration

{0} = V0 < V1 < . . . < Vn−1 < Vn

of V , where Vi is the k-subspace of red(e) spanned by {red(a1), . . . , red(ai)} (here
red(aj) = aj +Me). Let TB(V ) be the set of triangular bases of V , that is, bases
(v1, . . . vn) where vi ∈ Vi \ Vi−1. Now Bn(k) acts sharply transitively on TB(V )
on the right, with

(v1, . . . , vn)(aij) = (a11v1, a12v1 + a22v2, . . . ,Σ
n
i=1ainvi).

For each i = 0, . . . , n, put Oi(V ) = Vi\Vi−1 (so O0(V ) = {0}). It is easily verified
that two elements of TB(V ) are in the same orbit under Bn,m(k) precisely if they
agree in the mth entry. Thus, Om(V ) can be identified with TB(V )/Bn,m(k), and
V \ {0} with

⋃n
m=1 TB(V )/Bn,m(k).

If M is the triangular basis (a1, . . . , an) of the lattice e, then

red(M) := (red(a1), . . . , red(an)) = (a1 +Me, . . . , an +Me).

¿From the last two paragraphs, it follows that if M,M ′ ∈ TB(K), then they are
Bn,m(R)-conjugate (i.e. there is N ∈ Bn,m(R) with MN = M ′) precisely if they
generate the same lattice A, and their reductions red(M), red(M ′) are Bn,m(k)-
conjugate. This holds precisely if they generate the same lattice, and red(M),
red(M ′) have the same element of Tn in the mth entry. The identification of
TB(K) with Bn(K) now yields the following lemma.
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Lemma 2.4.10 For each n > 0, there is a ∅-definable bijection between Tn and
∪n

m=1Bn(K)/Bn,m(R).

Below, when we say a definable function f : ρΓ → X is ‘piecewise ∗’, we mean
that its domain can be partitioned into finitely many definable pieces, and the
restriction of f to each part has the form ∗. By compactness, Corollary 2.4.6 can
also be formulated in this way.

Proposition 2.4.11 Let i ≤ ` and let g be a definable map on a definable subset
I of a finite cover ρΓ of Γ, with g(γ) a subgroup of Gi for each γ ∈ I. Suppose f
is also a definable map on I, with f(γ) ∈ Gi/g(γ). Then there is a partition of I
into finitely many definable subsets I ′ such that for each I ′ there is b ∈ Gi with
f(γ) = bg(γ) for all γ ∈ I ′.

Proof. We argue by induction on ` − i. Suppose first that for all γ ∈ I,
f(γ) ∈ Mig(γ)/g(γ). The latter is canonically in bijection with Mi/Mi ∩ g(γ).
Since Mi

∼= (K,+), f(γ) is a finite union of R-torsors each algebraic over Bγ,
where B is a parameter set defining the data in the proposition. The result
follows in this case from Proposition 2.4.4.

As a slight extension of this, suppose there is fixed b0 ∈ Gi such that f(γ) ∈
b0Mig(γ)/g(γ). Then if f ′(γ) = b−1

0 f(γ), then f ′ satisfies the assumptions of the
last paragraph. Hence, after subdividing I finitely we find b such that (piecewise)
f ′(γ) = bg(γ), so

f(γ) = b0f
′(γ) = b0bg(γ) = (b0b)g(γ).

For the general case, let G(γ) := πi(g(γ)), a subgroup of Gi+1. Let F (γ) be
the image of f(γ) in Gi+1/G(γ). Using induction and arguing piecewise we may
assume there is B0 ∈ Gi+1 with F (γ) = B0G(γ) for each γ ∈ I. There is b0 ∈ Gi

with B0 = πi(b0). Then f(γ) ∈ b0Mig(γ)/g(γ). The result now follows from the
last paragraph. 2

Corollary 2.4.12 (i) Let f : ρΓ → Bn(K)/Bn(R) be B-definable, where ρΓ is
a finite cover of Γ. Then, piecewise, there is a B-definable function h : ρΓ →
Dn(K)/Dn(R) and some fixed b ∈ Un(K) such that f(γ) = bh(γ)Bn(R).

(ii) Let ρΓ be a finite cover of Γ, let m ∈ {1, . . . , n}, and let f : ρΓ →
Bn(K)/Bn,m(R) be definable. Then, piecewise, there is a B-definable function h :
ρΓ → Dn(K)/Dn(R) and some fixed b ∈ Un(K) such that f(γ) = bh(γ)Bn,m(R).

Proof. (i) To obtain h, suppose f(γ) = b(γ)Bn(R) = u(γ)d(γ)Bn(R), where
u = u(γ) ∈ Un(K) and d = d(γ) ∈ Dn(K). If also f(γ) = u′d′Bn(R), then
d′−1u′−1ud ∈ Bn(R), which forces that d′−1d ∈ Dn(R). Thus the map h(γ) =
d(γ)Dn(R) is well-defined (and B-definable).

Now write f(γ) = u(γ)h(γ)Bn(R). Here u(γ) is not well-defined, but f ∗(γ) :=
u(γ)Un(R)h(γ) is: for uh(γ)Bn(R) = u′h(γ)Bn(R) if and only if

u′−1u ∈ h(γ)Bn(R)h(γ)−1 ∩ Un(K) = h(γ)Un(R)h(γ)−1.
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By applying Proposition 2.4.11 (with i = 0) to f ∗, there is b ∈ Un(K) with
f ∗(γ) = bUn(R)h(γ) (piecewise). Then,

f(γ) = u(γ)h(γ)Bn(R) = u(γ)Un(R)h(γ)h(γ)Bn(R) = bUn(R)h(γ)h(γ)Bn(R),

which equals bh(γ)Bn(R).
(ii) This is similar to (i). 2

We now consider definable functions from a finite cover of Γ to G, again using
the notation of Definition 2.1.6.

Theorem 2.4.13 Let ρΓ be a definable finite cover of Γ, let f : ρΓ → G be a
definable function, and let B be a set of parameters over which Γ, f and ρ are
defined. Then, piecewise, the following hold.

(i) If ran(f) ⊂ k ∪K, then f is constant;
(ii) If ran(f) ⊂ Γ, then there are q ∈ Q and δ ∈ Γ(B) with f(γ) = δxq for all

x and γ ∈ ρ−1(x).
(iii) Suppose ran(f) ⊂ Sn. Then there is b ∈ Un(K), and B-definable h :

ρΓ → Γn given in each coordinate by a definable function hi satisfying (ii), such
that for γ ∈ ρΓ, f(γ) is the lattice spanned by the columns of bD(γ). Here, D(γ)
is any n × n diagonal matrix over K whose (i, i)-entry has norm hi(γ) for each
i.

(iv) Suppose ran(f) ⊂ Tn. Then there are b, h,D(γ) as in (iii) and some
m ∈ {1, . . . , n}, such that for each γ, if am is the mth column of bD(γ), and g(γ)
is the lattice spanned by the columns of bD(γ), then f(γ) = am +Mg(γ). Also,
g(γ) = τ(f(γ)).

Proof. As usual, we work piecewise. (i) is immediate for k and follows from
Proposition 2.4.4 forK. Part (ii) follows from Proposition 2.1.3(iii) and quantifier
elimination for divisible ordered abelian groups.

(iii) By Lemma 2.4.8, there is B-definable f ′ : ρΓ → Bn(K)/Bn(R) such that
for γ ∈ ρΓ, f(γ) = A(Rn) for any A ∈ f ′(γ). By Corollary 2.4.12, and arguing
piecewise, there are fixed b ∈ Un(K) and h : ρΓ → Dn(K)/Dn(R) such that for
γ ∈ ρΓ, f ′(γ) = bh(γ)Bn(R). Thus, f(γ) is the lattice with an R-basis given by
the columns of bh(γ). Regarding h as a function ρΓ → Γn (as mentioned under
Notation 2.4.7), we obtain (iii).

(iv) In this case, we apply the identification from Lemma 2.4.10. There is a B-
definable function f ′ : ρΓ → Bn(K)/Bn,m(R) such that if f ′(γ) = ABn,m(R) then
g(γ) = τ(f(γ)) is the lattice spanned by the columns of A, and f(γ) = v +MA
where v is themth column of A. By Corollary 2.4.12(ii), there is b ∈ Un(K) and B-
definable h : ρΓ → Dn(K)/Dn(R) such that (piecewise), f ′(γ) = bh(γ)Bn,m(R).

Remark 2.4.14 1. We mention another way of viewing definable functions f :
ρΓ → Tn. Given such f , there is definable g : ρΓ → Sn with g(γ) = τ(f(γ)).
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Then, piecewise, there are b,D(γ) as in Theorem 2.4.13(iii), and a set V such
that, for all γ, V lies in a single coset of Mg(γ) and f(γ) is the element of
red(g(γ)) containing V .

To see this, argue as follows. The existence of b,D(γ) for g is by (iii). By
adding parameters for a matrix C mapping the lattice identified with b to Rn, we
may suppose that b = Rn. Let hi(γ) denote the norm of the (i, i)-element ofD(γ).
Then g(γ) = ((h1(γ)R, . . . , hn(γ)R), and red g(γ) = (red(h1(γ)R), . . . , red(hn(γ)R)).
Thus, f(γ) = (f1(γ), . . . , fn(γ)) with fi(γ) ∈ red(hi(γ)R). By Proposition 2.4.4,
for each i there is a torsor Vi with fi(γ) equal to the element of red(hi(γ)R) con-
taining Vi. Put V := Πn

i=1Vi. Then piecewise, V ′ lies in a single coset of Mg(γ)
and f(γ) is the element of red(g(γ)) containing V .

2. If f is definable over a parameter set B, then the pieces can be chosen to
be B-definable. This is essentially the content of Lemma 3.3.6 below.

We will show later (Proposition 3.3.4) that definable functions Γ → G are
coded in G. This is not immediate, since in Theorem 2.4.13 (iii), the element b
is not in general determined by the function f .

2.5 Independence and orthogonality to Γ for unary types

Definition 2.5.1 Let a ∈ Keq be an element of a unary set, and C,B be sets of
parameters with C = acl(C) ⊂ dcl(B). We say that a is generically independent
from B over C, and write a ↓g

C B, if either a ∈ acl(C), or, whenever a is generic
over C in a C-unary set U , it remains generic in U over B.

In the subsequent paper [3], we shall extend this to obtain a notion of se-
quential independence for n-tuples, and in particular, for elements of G. This
will give an invariant extension of any type, partly because of the next result,
which ensures that unary types have invariant extensions. As in Section 2.3, the
frequent assumption C = acl(C) in this section can be weakened: the most that
is needed is that in an ambient C-1-torsor U , any subtorsor algebraic over C is
definable over C.

Proposition 2.5.2 Let B,C be sets of parameters with C = acl(C) ⊂ dcl(B),
and let p be the type of an element of a C-unary set U . Then there is a unique
unary type q over B extending p such that if tp(a/B) = q then a ↓g

C B.

Proof. We may suppose that p is non-algebraic, as otherwise the result is
immediate. By Lemma 2.3.6, p is the generic type of a unique C-unary subset of
U . The type q must be the generic type of this unary set over B. 2

Lemma 2.5.3 Let C0 ⊆ C with C0 = acl(C0), and let P be the solution set of a
non-algebraic unary type over C0. Suppose that z ∈ Keq, d ∈ P is generic in P
over Cz, and z ∈ acl(Cd). Then z ∈ acl(C).
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Proof. Since z ∈ acl(Cd), we may suppose that z ∈ F (d), where F (d) is a
Cd-definable set of size m. Suppose for a contradiction that z 6∈ acl(C), and
let z1, . . . , zm+1 be conjugates of z over C. Then for each zi and any d′ ∈ P
generic in P over Czi we have d ↓g

C0
Cz and d′ ↓g

C0
Czi, so by Proposition 2.5.2

dz ≡C d′zi, and so zi ∈ F (d′). Choose d′ ∈ P generic in P over z1, . . . , zm+1.
Then z1, . . . , zm+1 ∈ F (d′), which is impossible. 2

Next, we introduce a notion of orthogonality to Γ. At this stage, it is intro-
duced just for unary types, and it is extended to arbitrary types in the subsequent
paper.

Definition 2.5.4 Let C = acl(C), and a ∈ Keq be an element of a C-unary
set. We write tp(a/C) ⊥ Γ, and say tp(a/C) is orthogonal to Γ if, for any
algebraically closed valued field M such that C ⊂ dcl(M) and a ↓g

C M , we have
Γ(M) = Γ(Ma).

Our first lemma shows that orthogonality to Γ is equivalent to genericity in
a closed unary set.

Lemma 2.5.5 Let C = acl(C) and a ∈ Keq \ C lie in a C-unary set U . Then
the following are equivalent:

(i) a is generic over C in a closed subtorsor of U defined over C.
(ii) tp(a/C) ⊥ Γ.

Furthermore, if A = acl(Ca) then condition (iii) trdeg(k(A)/k(C)) = 1 implies
both (i) and (ii). If in addition C = acl(C ∩K), then (i), (ii) are equivalent to
(iii).

Proof. (i) ⇒ (ii) Suppose that a is generic over C in the closed subtorsor
T of U . Let M be an algebraically closed valued field with C ⊂ dcl(M) and
a ↓g

C M , and suppose for a contradiction that there is γ ∈ Γ(Ma) \ Γ(M).
Since aclΓ(Ma) = dclΓ(Ma), there is an M -definable function f : T → Γ with
f(a) = γ, defined on anM -definable setD containing generic elements of T . Since
γ 6∈ dcl(M), f is not generically constant onD. It follows that f is not constant on
generic elements of red(T ), since otherwise it would induce a definable generically
non-constant function from a strongly minimal set to an o-minimal set. For each
generic V ∈ red(T ), {f(x) : x ∈ V } is a finite union of intervals and singletons
of Γ, and for simplicity we suppose it is always an interval, denoted f(V ). By
considering the corresponding function to the endpoints, the map V 7→ f(V )
from red(T ) is generically constant, with f(V ) = I for generic V ∈ red(T ). It
follows that if δ ∈ I, then the definable set f−1(δ) meets each generic element of
red(T ) in a proper non-empty subset, contrary to Lemma 2.3.3.

(ii) ⇒ (i) Suppose (i) is false. Then a is generic in a unary set T which is
an open 1-torsor or an ∞-definable 1-torsor or a subset of Γ. We may assume
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the last case does not occur as it clearly contradicts (ii). There is a model M
containing C, and containing an element b ∈ T . We may choose M with a ↓g

C M .
Then |a− b| is in Γ(Ma)\Γ(M), so tp(a/C) 6⊥ Γ (recall the notation |a− b| from
the beginning of Section 2.3).

(iii) ⇒ (i). Suppose (iii) holds, and let p := tp(a/C), with solution set P .
Let s ∈ k(Ca) \ k(C), and let s = s1, . . . , sm be the conjugates of s over Ca.
Then there is a C-definable function with domain containing P and with range
in the set of m-element subsets of k, with f(a) = {s1, . . . , sm}. Since finite sets
are coded in the field k by tuples, we may suppose that m = 1. If now (i) is
false, then p is the generic type of an open 1-torsor or an ∞-definable 1-torsor or
a subset of Γ and f is a definable function from P taking infinitely many distinct
values in the strongly minimal set k, which is clearly impossible.

(i) ⇒ (iii). Suppose C = acl(C ∩ K) and a is generic in the closed 1-torsor
T . Then there is a C-definable bijection between red(T ) and k. The element of
red(T ) containing a is thus interdefinable over C with an element of k(A) \ k(C).
Thus, trdeg(k(A)/k(C)) ≥ 1. Since T is in C-definable bijection with the true
1-torsor R, there is a′ ∈ A ∩K with A = acl(Ca′), and so we have equality. 2

Despite the fact that a generic element of an open torsor or an ∞-definable
torsor is not orthogonal over the parameters to Γ, it still need not increase the
value group.

Lemma 2.5.6 Let C ⊂ Keq, and let T be a C-1-torsor which is not closed. Then
the following are equivalent:

(i) no proper subtorsor T ′ of T is algebraic over C;
(ii) for all a generic in T , Γ(C) = Γ(Ca).

Proof. For the direction (i) ⇒ (ii), suppose for contradiction that a is generic
in T and δ ∈ Γ(Ca) \Γ(C). Then there is a C-definable function f : T → Γ with
f(a) = δ, and f−1(δ) is a proper subset of T . By Lemma 2.3.3, there is a proper
subtorsor Tδ of T (possibly a field element) algebraic over Cδ, and we may choose
Tδ to be definable over Cδ. By Proposition 2.4.4, Tδ is a neighborhood of some
T ′ algebraic over C, contrary to the hypothesis.

For (ii) ⇒ (i), let T ′ be a proper unary subset of T algebraic over C. If a
is generic in T over C, then |a − T ′| is Ca-definable (it is the constant value of
|a− c| as c ranges over T ′); it is not in Γ(C). 2

The definition of tp(a/C) ⊥ Γ says that a does not increase the value group
of a model from which a is independent. The next lemma shows that this is true
for C itself. Its converse is false. For if C is the algebraic closure (in Keq) of
an algebraically closed valued field which is not maximal, then there is a C-∞-
definable 1-torsor T which is not C-definable such that {x ∈ T} determines a
complete type p over C. If a realises p, then Γ(C) = Γ(Ca) by Lemma 2.5.6, but
tp(a/C) 6⊥ Γ by Lemma 2.5.5.
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Lemma 2.5.7 Suppose C = acl(C) and tp(a/C) ⊥ Γ. Then Γ(C) = Γ(Ca).

Proof. By Lemma 2.5.5, a is chosen generically over C in a closed 1-torsor.
The proof of 2.5.5 (i) ⇒ (ii) easily yields Γ(C) = Γ(Ca) (the fact that M is a
model is not used here). 2

Next, we give an easy lemma on closed 1-torsors, which shows that when we
choose a sequence of elements generically from a sequence of closed 1-torsors,
the order of the sequence does not affect the genericity. It will be used without
explicit reference in the remainder of the paper. Generalisations will appear in
the subsequent paper.

Lemma 2.5.8 Let T1, . . . , Tn be closed 1-torsors defined over a parameter set C,
and suppose that for each i = 1, . . . , n, ai is generic in Ti over Ca1 . . . ai−1. Then
for each i, ai is generic in Ti over C ∪ {aj : j 6= i}.

Proof. We prove the result by induction on n. For convenience we suppose
i = 1. So suppose that a1 is generic in T1 over Ca2 . . . an−1 but not over Ca2 . . . an.
Let S ∈ red(T1) contain a1. Then as red(T1) is strongly minimal, there is an
algebraic formula ϕ(u, an) over Ca1 . . . an−1 such that ϕ(S, an) holds. Hence, as
red(Tn) is strongly minimal, for all elements S ′ ∈ red(Tn) except for finitely many,
and all y ∈ S ′, the formula ϕ(u, y) is algebraic and ϕ(S, y) holds. This contradicts
that a1 is generic in T1 over Ca2 . . . an−1. 2

We conclude this section with a lemma which gives symmetry of ↓g, under
weaker conditions than in Lemma 2.5.8. It will be used in the subsequent paper,
when ↓g-independence is extended to n-types.

Definition 2.5.9 If C = acl(C), and a ∈ Keq is an element of a unary set, we
shall say that tp(a/C) is order-like if a is generic over C in a C-unary set which is
either (i) contained in Γ, or (ii) an open 1-torsor, or (iii) an ∞-definable 1-torsor
which contains a proper C-unary subset.

Remark 2.5.10 If tp(a/C) is order-like (and if C = acl(C ∩ K) in case (ii))
then the second part of Lemma 2.5.6 will apply and Γ(C) 6= Γ(Ca). Conversely,
if tp(a/C) is not order-like but a is an element of a unary set, then either a is
generic in a closed 1-torsor or a is generic in an ∞-definable 1-torsor which does
not contain a proper C-unary subset. By Lemma 2.5.5 in the first case, and by
the first part of Lemma 2.5.6 in the second case, Γ(C) = Γ(Ca).

Lemma 2.5.11 Let C = acl(C). Let a, b ∈ Keq be elements of C-1-torsors U
and V respectively, and put A = acl(Ca) and B = acl(Cb). Assume that at least
one of tp(a/C), tp(b/C) is not order-like. Then a ↓g

C B if and only if b ↓g
C A.
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Proof. By Proposition 2.5.2, it suffices to find a 2-type r(x, y) ⊃ tpx(a/C) ∪
tpy(b/C) such that if r(a′, b′) holds then a′ ↓g

C b′ and b′ ↓g
C a′.

Suppose first that one of a, b, say a, is generic in a closed 1-torsor T of C,
and write [a] for the element of red(T ) which contains a. Now a ↓g

C b if and only
if [a] 6∈ acl(Cb). Thus, it suffices in this case to show that b ↓g

C a if and only if
[a] 6∈ acl(Cb). For this, in one direction, suppose [a] has n conjugates over Cb,
and argue as in Lemma 2.5.3. Choose a1, . . . , an+1 |= tp(a/C) with the [ai] all
distinct, and choose b′ ≡C b with b′ ↓g

C a1 . . . an+1. We cannot have tp(b′ai/C) =
tp(ba/C), so b 6↓g

C a by the uniqueness in Proposition 2.5.2. Conversely, if b 6↓g
C a

then there is a proper subtorsor S of V algebraic over Ca and containing b.
We can assume V is the intersection of a chain (Vi)i∈I of C-1-torsors, possibly
with a least element. Fix i0 ∈ I and take radius to be defined with respect
to Vi0 . Let γ := inf{rad(W ) : W is a C-substorsor of Vi0 containing b}, and
δ = rad(S). Suppose for contradiction that [a] 6∈ acl(Cb). Then this situation
holds for all generic elements of red(T ). Hence there is a C-definable partial
function f : T → Γ, defined generically on T , with f(a) = δ. Now for each
u ∈ red(T ) generic over Cb, put f̂(u) := sup{f(x) : x ∈ u}. Since red(T ) is
strongly minimal, f̂ is generically constant with value γ̂, say. Then there is a
C-unary set containing b of radius γ̂, hence γ̂ = γ, and I has a least element. It
follows that if δ′ is chosen generically below γ, then f−1(δ′) contains some, but
not all, elements of infinitely many members of red(T ). Since f−1(δ′) is definable,
this contradicts Theorem 2.1.2. The lemma is thus proved in the case when either
of a or b is generic in a closed 1-torsor.

Suppose now that tp(b/C) is order-like. Then by our assumption, tp(a/C)
is not order-like, so by the last paragraph, we may suppose that tp(a/C) is the
intersection E of a chain {Ui : i ∈ I} of 1-torsors with no least element, such that
there is no C-definable proper unary subset of E. By Lemma 2.5.6, Γ(C) = Γ(A).
We shall show that in this situation, b ↓g

C a. This suffices, by the first paragraph
of the proof, and Proposition 2.5.2; for we can choose a′ ≡C a with a′ ↓g

C b, and
our argument shows that b ↓g

C a′, and we have ab ≡C a′b.
Suppose first that b is generic over C in a chain of 1-torsors (Vi : i ∈ I)

which contains a proper subtorsor W all defined over C. If b 6↓g
C a then there

is a sub-torsor T of the Vi which contains b and lies in acl(Ca). It follows that
|T −W | = sup{|x− y| : x ∈ T, y ∈ W} lies in Γ(Ca) \Γ(C), which is impossible,
by Lemma 2.5.6.

Next, suppose b is generic over C in an open 1-torsor S. We may suppose
there is no C-definable proper subtorsor of S, since otherwise the above argument
works. If b 6↓g

C a, then again there is a subtorsor T of S, algebraic over Ca and
containing b. Since Γ(C) = Γ(Ca), δ := rad(T ) ∈ Γ(C). Also, since we may
replace T by the smallest 1-torsor containing all its conjugates over Ca, we may
suppose T ∈ dcl(Ca), with T = f(a) for some C-definable function f . Now, the
domain of f contains E. Let D be the set of closed subtorsors of S of radius δ.
Then by Lemma 2.4.5(i), D is a 1-type over C so we may suppose the range of
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f is exactly D and hence that dom(f) = Ui. Since D is a 1-type over C, for any
T ′ ∈ D, f−1(T ′) contains some but not all elements of Uj \ Uk for any j, k ∈ I
with i < j < k. This contradicts Lemma 2.3.3. This concludes the case when
tp(b/C) is order-like.

Thus, we may suppose that neither of tp(a/C), tp(b/C) is order-like or generic
in a closed 1-torsor. Thus, a is generic in an intersection E of a chain of subtorsors
of U over C whose radii (with respect to a fixed element of the chain) have infimum
rad(E) (a cut in Γ), and b is generic in an intersection F of a chain of subtorsors
of V over C whose radii have infimum rad(F ). Furthermore, by Lemma 2.5.6,
Γ(C) = Γ(A) and Γ(C) = Γ(B).

Claim. For a′ ∈ E and b′ ∈ F , a′ ↓g
C b′ if and only if for all acl(Cb′)-subtorsors

U ′ of U and for all α ∈ Γ(C) if α < rad(E) then for some x ∈ U ′, |a′ − x| > α.
Proof of Claim. The direction ⇒ is immediate. Conversely, if a′ 6↓g

C b′, then
there is a Cb′-algebraic closed 1-torsor U ′ contained in E and containing a′, and
we may put α = rad(U ′) (so α ∈ Γ(C) as Γ(C) = Γ(Cb′)).

Suppose there is no type r(x, y) as at the beginning of the proof. Then
by compactness and the claim, there are α, β ∈ Γ(C) with α < rad(E) and
β < rad(F ), and formulas ϕ(x, u), ψ(v, y) over C such that ϕ(a, u) and ψ(v, b)
each have finitely many solutions, and such that the following holds: there is
no pair (a′, b′) with a′ ∈ E and b′ ∈ F , so that ∀x ∈ d(|a′ − x| > α) for each
d satisfying ψ(d, b′), and ∀y ∈ c(|b′ − y| > β) for each c satisfying ϕ(a′, c). By
compactness, E and F can be replaced by closed 1-torsors T, S (containing E, F
respectively) such that the same statement holds. This implies there do not exist
a′′, b′′ in U , generic in T , S respectively, with a′′ ↓g

C b′′ and b′′ ↓g
C a′′. However,

this contradicts Lemma 2.5.8. 2

2.6 Sets internal to k

By Proposition 2.1.3, the residue field k is stably embedded and strongly
minimal. This enables us to construct, over any base set of parameters, a part
of the structure which inherits stability-theoretic properties from k, and plays
a crucial role later. We give a tidy description of this part of the structure,
denoted Intk,C where we work over parameters C, prove that members of any
k-internal set are coded in it, and that it has elimination of imaginaries. In [3]
it will determine independence (for types orthogonal to Γ), and motivates the
development of stable domination.

Recall that G = K ∪ k ∪ Γ ∪ S ∪ T is the union of the geometric sorts.

Definition 2.6.1 A definable set D is k-internal if there is a finite F ⊂ G with
D ⊆ dcl(kF ).
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Lemma 2.6.2 Let C ⊂ Keq and let D ⊂ G` be C-definable. Then the following
are equivalent.

(i) D is k-internal.
(ii) D, expanded by predicates for C-definable relations, has finite Morley

rank.
(iii) D (with the induced C-definable structure as in (ii)) does not have the

strict order property.
(iv) For any k, there is no definable surjective map from Dk to an infinite

interval in Γ.
(v) D is finite or (possibly after a permutation of coordinates) is contained in

a finite union of sets of the form red(s1)× . . .× red(sm)×F where s1, . . . , sm are
acl(C)-definable elements of S and F is a C-definable finite set of tuples from G.

(vi) D ⊂ dcl(kE) for some finite E ⊂ D.
(vii) For i = 0, . . . , n there are definable sets Di ⊂ G`i with D0 finite and

D ⊆ dcl(Dn) and for i = 1, . . . , n there is a definable map fi : Di+1 → Di whose
fibres are stably embedded and k-internal (that is, D is k-analysable).

Proof. The implication (i) ⇒ (ii) holds since k is strongly minimal and stably
embedded, and (ii) ⇒ (iii), (iii) ⇒ (iv) are trivial.

(iv) ⇒ (v) Let a be any coordinate of an element of D. If a ∈ Γ then by (iv),
a ∈ dcl(C). We show that if a ∈ Sn then a ∈ acl(C) (an easier argument shows
the same if a ∈ K). Then, if a ∈ Tn, we have τ(a) ∈ acl(C).

So suppose a ∈ Sn, and let (a1, . . . , ar) be a unary code for a with elements
from G, as given in Steps 1 and 2 of Proposition 2.3.10. We show inductively
that ai ∈ acl(C) for each i. Suppose it holds for all j < i. We may suppose that
ai is chosen in a unary set T in definable bijection with R/γR for some γ ∈ Γ;
otherwise, by inspection of the proof of 2.3.10, T ⊂ Γ, and clearly ai ∈ acl(C).
If ai 6∈ acl(C), then there is a definable surjection from D to an infinite subtorsor
of R/γR. By composing this with the map x 7→ |x − b| (for some parameter b)
we obtain a contradiction to (iv).

(v)⇒ (vi) We may suppose by (v) thatD is a subset of red(s1)×. . .×red(sm)×
F with the si and F as above. Let s′i be the projection of D to si, and let Ei be
a maximal linearly independent (over k) subset of s′i. Then s′i ⊂ dcl(kEi). Thus,
we may choose E to be any finite set which projects onto F and onto each Ei.

The implication (vi) ⇒ (i) is trivial. Also, (vi) ⇒ (vii) is trivial, and (vii) ⇒
(ii) is an easy induction on n. 2

Remark 2.6.3 The above lemma yields that for C-definable D ⊂ G`, D is k-
internal if and only if it is stably embedded and stable (when equipped with its
C-definable structure). Indeed, (vi) above yields stable embeddedness, whilst
in the other direction, any C-definable stable set satisfies (iii), and hence (i).
The same result will follow for arbitrary D from elimination of imaginaries (see
Proposition 3.4.11 below).
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In (v) the lattices and tuples are acl(C)-definable. In Proposition 3.4.11 it
will be shown that they can be taken to be C-definable.

For any parameter set C, we denote by Intk,C a many-sorted structure whose
sorts are the k-vector spaces red(s) where s ∈ dcl(C) ∩ S. Each sort red(s)
is equipped with its k-vector space structure, along with any other C-definable
relations as ∅-definable relations. As in condition (vi) of Lemma 2.6.2, we have
that if s ∈ Sn is C-definable then there is finite E ⊂ red(s) with red(s) ⊂ dcl(kE).
It follows that Intk,C is stably embedded in Keq, and is stable. Proposition 3.4.11
below, which rests both on elimination of imaginaries and on some of the lemmas
for coding finite sets, will clarify the role of Intk,C , which will be central in [3].

Below we prove elimination of imaginaries for Intk,C . The first step is to prove
that subspaces of its sorts are coded in T ∪ k.

Lemma 2.6.4 Let Rn,` be the sort consisting of all `-dimensional subspaces of
the k-spaces red(A) where A ∈ Sn. Then every member of Rn,` is coded in T ∪ k.

Proof.
(1) Let N =

(
n
`

)
. Then KN can be identified with Λ`(Kn), the `th exterior

power, via the standard basis {e1, . . . , en} for Kn and the standard basis {ei1 ∧
. . . ∧ eil : i1 < . . . < il} for Λ`(Kn). We have an alternating multilinear map
c` : (Kn)` → KN . If A ∈ Sn, let Λ`(A) = c`(A

`). Now A is a free R-module on
some a1, ..., an; this is equally a basis for Kn, and so clearly the various wedges
ai1 ∧ . . . ∧ ai` , i1 < ... < i`, form a basis for the exterior power Λ`(Kn), and also
a free basis for the R-module Λ`(A). Moreover, c` induces a (canonical) k-vector
space isomorphism Λ`(red(A)) → red(Λl(A)).

We may canonically identify Knm with the K-vector space Kn ⊗ Km, via
the standard basis. Hence, given A ∈ Sn and B ∈ Sm, we find C ∈ Snm and
a canonical isomorphism A ⊗R B → C. Identify Kn with its dual space (Kn)∗,
again via the standard basis. Given A ∈ Sn, define

A∗ := {f ∈ (Kn)∗ : for all a ∈ A, f(a) ∈ R}.

It is easy to see that A∗ is indeed isomorphic to HomR(A,R), and A∗ ∈ Sn (via
the above identification).

(2) It follows that if A ∈ Sn and B ∈ Sm, then there exists C ∈ Snm and a
canonical isomorphism HomR(A,B) → C. Namely,

HomR(A,B) ∼= HomR(A,R)⊗R B = A∗ ⊗R B

(for the isomorphism see for example Corollary 5.5 on p. 580 of [9]).
(3) IfA ∈ Sn andB ∈ Sm then there is an isomorphism ϕ : red(HomR(A,B)) →

Homk(red(A), red(B)): for f ∈ HomR(A,B) and a ∈ A define

ϕ(f +MHomR(A,B))(a+MA) = f(a) +MB.
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An `-dimensional subspace of red(A) can be coded by a 1-dimensional sub-
space of Λ`(red(A)) (namely the space generated by c1, ..., c` is coded by the
space generated by c1 ∧ ... ∧ c`.) Thus, by the identification of Λ`(red(A)) with
red(Λ`(A)) from (1), we see that the union of all the sorts Rn,1 suffices to code
all the Rn,`. We shall prove by induction on n that all the sorts Rn,1 are coded
in T ∪ k.

Let 0 → A → B → C → 0 be an exact sequence of R-modules, with C free.
Then 0 → MA → MB → MC → 0 and 0 → red(A) → red(B) → red(C) → 0
are also exact. (For since C is free, the first sequence splits, and is isomorphic to
0 → A→ (A⊕ C) → C → 0; for this sequence the result is obvious.)

Let A ∈ Sn, and let H ∈ Rn,1 be a 1-dimensional subspace of red(A). We aim
to code H, and argue by induction on n. Let h : Kn = (K ×Kn−1) → K be the
first coordinate projection, and let A′ be so that {0} × A′ = ker(h). Then

0 → A′ → A→h hA→ 0

is exact. As hA ⊂ K is a finitely generated R-submodule of K, it is free, so by
the last paragraph,

0 → red(A′) →f red(A) →red(h) red(hA) → 0

is exact. If red(h) vanishes on H ≤ red(A), then H = f(H ′) for a unique
1-dimensional H ′ ≤ red(A′) , and to code H it suffices to code H ′. The lat-
ter is possible by induction on n. If on the other hand red(h) : red(A) →
red(hA) is injective on H, then H is inter-definable with an element H∗ of
Homk(red(hA), red(A)); namely, H∗ is the unique homomorphism on red(hA)
with image H and such that hH∗ = idred(hA). But Homk(red(hA), red(A)) is
canonically isomorphic to red(HomR(hA,A)) by (3); and by (2) HomR(hA,A) is
canonically isomorphic to some element B of Sn. As red(B) ⊂ Tn, H is coded
(in Tn). 2

Proposition 2.6.5 Let C ⊂ Keq. Then Intk,C has elimination of imaginaries.

Proof. We first reduce to coding subsets of red(s), where s ∈ S is C-definable.
For this, note that any definable U ⊂ red(s1)

i1 × . . .× red(sk)
ik (where the si are

C-definable) is interdefinable over C with some U ′ ⊂ red(si1
1 × . . .× sik

k ).
Observe that the collection of sorts red(s) in Intk,C is closed under duals and

tensors, by (1), (2) of the proof of Lemma 2.6.4. We suppose A ∈ Sn ∩ dcl(C),
and V = red(A), and that Y is a definable subset of V . If a basis of V is fixed,
then V may be identified with kn, and so we may talk of Zariski closed subsets
of V ; furthermore, this notion is independent of the choice of basis. Since any
definable subset of V is a Boolean combination of Zariski closed sets defined over
the same parameters, we may suppose Y is Zariski closed. (This reduction to the
Zariski closed case appears to require a coding of finite sets, in order to code the
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Boolean combination; this is not a problem, as finite sets of tuples are Zariski
closed.)

If a basis of V is fixed, then V ∗ has a corresponding (dual) basis, and hence
there is an identification of the polynomial ring k[X1, . . . , Xn] with the ring
S(V ) := k ⊕ V ∗ ⊕ Σ∞

i=2 Symi(V ∗), where Symi(W ) denotes the symmetric ith

power of W . Furthermore, elements of S(V ) induce functions V → k indepen-
dently of the choice of basis of V . Also, the ideal in S(V ) which vanishes on Y is
independent of basis, and it follows from the above identification that this ideal
determines Y . As S(V ) is noetherian, this ideal is determined by its intersection
with the vector space Sm(V ) := k⊕V ∗⊕Σm

i=2 Symi(V ∗) for some sufficiently large
finite m. This intersection is a subspace U of Sm(V ). Let U ′ be the pullback of
U in Tm(V ) := k ⊕ V ∗ ⊕ Σm

i=2 ⊗i (V ∗). Now as Intk,C is closed under duals and
tensors, Tm(V ) is a union of sorts in Intk,C . It follows from the first paragraph
of the proof and Lemma 2.6.4 that U ′ is coded in Intk,C , and hence so are U and
Y , as required. 2

Part (i) of the next lemma will be crucial in Section 3.

Lemma 2.6.6 (i) Every definable R-subtorsor of Kn is coded in G.
(ii) If C is any set of parameters, and A is any C-definable R-submodule of

Kn, then the elements of red(A) are coded in Intk,C.

Proof. (i) Let A be a definable subtorsor of Kn. By Lemma 2.2.6, there is
an ∅-definable R-submodule of Kn+1 interdefinable with A, so we may reduce to
the case when A is an R-submodule (of Kn).

Next, we reduce to the case when A contains no K-vector spaces of dimension
greater than 0. Let U := {a ∈ A : Ka ⊂ A}. Then U is aK-subspace ofKn. Pick
a basis I0 for U , and find a subset I1 of the standard basis of Kn such that I0∪I1 is
a basis of Kn. Let U ′ be the subspace of Kn generated by I1. Then Kn = U⊕U ′;
let π : Kn → U ′ be the corresponding projection. Since I1 is chosen from the
standard basis, π(A) is pAq-definable. Also U ⊂ A, so we have A = π−1(π(A)).
Thus, it suffices to code π(A) ⊂ U ′. However, U ′ is ∅-definably isomorphic to
Km for some m. Since π(A) contains no positive-dimensional K-spaces, we have
made the reduction.

Now let B := {a ∈ Kn : Ma ⊂ A}. Then by the last paragraph, B contains
no copies of K. Furthermore, for any c ∈ B, {r ∈ K : rc ∈ B} is a definable
R-module, and is of the form γR for some γ ∈ Γ. Thus, B has no direct summand
isomorphic to M. Thus, by Lemma 2.2.4, B is definably R-isomorphic to R` for
some ` ≤ n. LetKB be theK-subspace ofKn generated byB, so dimK(KB) = `.
There is a coordinate projection π : Kn → K` which is injective on KB. Now
KB is coded in G by elimination of imaginaries in the pure algebraically closed
field K. Also, B = KB ∩ π−1(π(B)) and A = KB ∩ π−1(π(A)). Thus, since
pBq ∈ dcl(pAq), we may if necessary replace A and B by their images π(A) and
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π(B). Hence we may suppose that n = `, so B is definably R-isomorphic to Rn,
that is, B ∈ Sn.

Now MB ⊂ A, and A is determined by MB ∈ Tn and the image iA of A
in B/MB. Since B ∈ Sn ⊂ G, and B ∈ dcl(pAq), it suffices to show that iA
is coded in G. The latter is a subspace of red(B), so the result follows from
Lemma 2.6.4.

(ii) We apply the proof of (i) to A. If U, π are as in the second paragraph,
then elements of red(A) are interdefinable with elements of red(π(A)). Thus, we
may suppose that A has no K-subspaces of positive dimension. Part (ii) then
follows, for B ∈ Sn ∩ dcl(C), and MA ⊂ A ⊂ B, so red(A) ⊂ red(B) ⊂ Intk,C .
2

Finally, we give a lemma which is required not for the proof of elimination of
imaginaries, but for Proposition 3.4.11.

Lemma 2.6.7 Let C ⊂ Keq and let e ∈ dcl(C) ∩ Sn, and V = red(e). Suppose
that F ⊂ V is C-definable and finite. For each a ∈ F , let sa ∈ dcl(Ca) ∩ Sm (so
the map a 7→ sa is C-definable). Then red(sa) ⊂ dcl(C ∪ Intk,C) for each a ∈ F .

Proof of Lemma 2.6.7. Let F = {a1, . . . , am}.
Claim. We may suppose that F is linearly independent over k.
Proof of Claim. First, we may suppose that 0 = 0V 6∈ F , since otherwise s0

is C-definable, so red(s0) ⊂ Intk,C . We shall show that for some n′ there is C-
definable e′ ∈ Sn′ and a C-definable injection h : V → V ′ (where V ′ := red(e′)),
such that h(F ) is a linearly independent subset of V ′. We shall show, by induction
on `, that for every ` ≤ |F | there are n′ = n′`, V

′ := V ′
` and h := h` : V → V ′ such

that every `-subset of h`(F ) is linearly independent. To construct these, suppose
inductively that for all `′ < `, every `′-subset of F is linearly independent. Put
V ′ := V × (V ⊗ V ), and h`(v) := (v, v ⊗ v). It is left to the reader to check that
every `-subset of h`(F ) is linearly independent.

Given the claim, let A be the R-submodule of Kn ⊗Km generated by

{v ⊗ w : v ∈ e with red(v) = a ∈ F,w ∈ sa}.

Clearly A is C-definable. Put F = {a1, . . . at}, and for each i choose ci ∈ e
with ai = ci + Me. Then c1, . . . , ct are K-linearly independent: for given a
dependence relation d1c1 + . . . + dtct = 0 with d1, . . . , dt ∈ K, one can arrange
that all the di lie in R but some di does not lie in M, and by the reduction map
this contradicts k-linear independence of F . Let A′ be the R-module generated
by

⋃t
i=1(ci ⊗ sai

) and A′′ be generated by Me ⊗ Σt
i=1sai

. Then A is generated
as an R-module by A′ + A′′, and MA = MA′′ = A′′. Also, as c1, . . . , ct are
K-linearly independent, each element of A′ is uniquely expressible in the form
Σt

i=1ci⊗ui for ui ∈ sai
. It follows that A′∩A′′ ⊆MA′. Hence the map A′/MA′ →

(A′+A′′)/M(A′+A′′) = A/MA given by x+MA′ 7→ x+MA is an isomorphism.
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Let ϕi : sai
→ A/MA be the homomorphism given by y 7→ (ci ⊗ y) +MA. Now

for y ∈ sai
, ci⊗ y ∈MA⇔ ci⊗ y ∈MA′ ⇔ y ∈ red(sai

), so ϕi has kernel Msai
.

The map ϕi clearly does not depend on the choice of the ci, so is (C ∪ Intk,C)-
definable, as ai ∈ F ⊂ V ⊂ Intk,C . Thus, red(sai

) ⊂ dcl(C ∪ Intk,C ∪ red(A)) for
each i. Since A is C-definable, red(A) ⊂ dcl(C ∪ Intk,C) by Lemma 2.6.6(ii), and
the claim follows. 2

3 Elimination of imaginaries

3.1 Quantifier elimination for the geometric sorts

We shall need repeatedly a notion of generic basis for an element of Sn. In fact,
we need a generic sequence of bases for a sequence (s1, . . . , sm) of lattices, but as
s1 × . . . × sm is a lattice and red(s1) × . . . × red(sm) is naturally isomorphic to
red(s1 × . . .× sm), we focus on a single lattice s ∈ Sn, and work over a set C of
parameters, with s ∈ dcl(C).

Let B(s) := {a ∈ (Kn)n : a = (a1, . . . , an), s = Ra1 + . . .+Ran}, the set of all
bases of s. We shall describe an invariant extension qs of the partial typeB(s) over
C. As red(s)n is a definable set of Morley rank n2 and degree 1 in the structure
Intk,C , it has a unique generic type (in the sense of stability theory) qred(s)n . If
C ′ ⊃ C then a = (a1, . . . , an) |= qs|C ′ if and only if (red(a1), . . . , red(an)) |=
qred(s)n|C ′. To show that qs is complete, choose C ′ ⊃ C such that there is a C ′-
definable isomorphism s → Rn. Then we may suppose s = Rn. Now qred(s)n|C ′

is just the type over C ′ of a generic element (β1, . . . , βn2) of kn2
. It follows easily

from Remark 2.3.5(ii) that for such a sequence, any two tuples (b1, . . . , bn2), where
res(bi) = βi for each i, have the same type. This gives completeness of qs, and,
along with the invariance of qred(s)n , yields invariance of qs. We call a realisation
of qs a generic resolution of s, and also talk of a generic resolution of a sequence
s1, . . . , sm of lattices, over a given set of parameters. The order of the sequence
is irrelevant.

Remark 3.1.1 In the notation above, if D ⊃ C and a |= qs|D, then Γ(D) =
Γ(Da). To see this, suppose γ ∈ Γ(Da), so there is a D-definable function f with
f(a) = γ. Choose γ′ ≡D γ. We must show γ′ = γ, for then γ is definable over
D. Choose a model M ⊃ D with a |= qs|M (to do this, first choose an arbitrary
model M ′ ⊃ D and a′ ≡D a with a′ |= qs|M ′, and apply an automorphism over
D taking a′ to a). Then as in the last paragraph, a is interdefinable over M with
a generic sequence of length n2 from the closed 1-torsor R. Each of the n2 steps
does not add to the value group, by Lemma 2.5.5, so Γ(Ma) = Γ(M). Hence
γ ∈ M , so in particular, a |= qs|Dγ. Now choose a′ ≡D a with a′ |= qs|Dγγ′.
Then aγ ≡D a′γ′ ≡D a′γ. Since f is D-definable and f(a) = γ, f(a′) = γ′ = γ,
as required.
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The language LG in which we prove elimination of imaginaries is richer than
Ldiv in order to give quantifier elimination with the sorts G. We emphasise that
the geometric sorts and the functions and relations of the language are definable
in the standard language Ldiv for valued fields, hence all of the results of Section 2
remain valid for our new language. As usual, there is a sort K consisting of field
elements (but if the field is called F , say, we shall refer to the sort F ), and the
usual ring language (+,−, ·, 0, 1) on it. We have a sort Γ for the value group with
an extra symbol 0. We write the operation as multiplication, and the language is
the language of ordered groups, with an additional constant symbol (·,−1 , 1, <, 0).
Here, 0 is not part of the group structure, and for x ∈ Γ \ {0} we assume 0 < x,
and 0 · x = x · 0 = 0. There is also a sort for the residue field k, with the
usual ring language (+,−, ·, 0, 1). In general, the use of the same symbols for
the languages on the different sorts should not cause confusion. For functions
between these sorts there is the valuation function | · | : K → Γ (the ultrametric
axiom becomes |x + y| ≤ Max {|x|, |y|} for x, y ∈ K, and we have |0| = 0), and
the residue function Res : K×K → k, where Res(x, y) is the residue in k of x/y,
and is 0 if |x| > |y|. We saw in Theorem 2.1.1(iii) that the theory of K eliminates
quantifiers in this three-sorted language LΓk.

In addition, we have the sorts Sn and Tn for all n > 0, with additional
structure on them. We first describe relations involving just k and T . For each
s ∈ Sn, τ−1

n (s) has definably the structure of a k-vector space. For the moment
consider the structure N consisting of k, and for each n the sort Tn and the
map τn : Tn → Sn with each Sn regarded as a pure set. For each n we also
have a k-vector space structure (given from the original structure K) on each
fibre of τn, with addition given by a partial function + : T 2

n → Tn, and a scalar
multiplication k×Tn → Tn, interpreted naturally and in the signature of N . For
any choice n1, . . . , nr ∈ N and s1, . . . , sr with si ∈ Sni

, put Vi := τ−1(si) for each
i = 1, . . . , r. If we choose a basis for each Vi, then k × V1 × · · · × V` becomes
identified with a power of k, so we can talk of the Zariski closed subsets of powers
of k × V1 × . . . × V`. Furthermore, the notion Zariski closed is independent of
the choice of bases. For the structure on k ∪ T , we impose relation symbols
(involving lattice variables for s1, . . . , s`, uniformly) for all the Zariski closed sets
in k×V1×· · ·×V` which are {s1, . . . , s`}-definable in the above structure N . We
will not have symbols for the vector space addition and scalar multiplication.

This structure on k×V1×· · ·×V` (over s1, . . . , s`) has quantifier elimination in
this language (uniformly in the si), as a result of the usual quantifier elimination
for algebraically closed fields. For suppose C is a projection of a quantifier-free
∅-definable set. Then C is ∅-definable in this structure, so its Zariski closure
C̄ is ∅-definable, and C̄ \ C is ∅-definable of lower Zariski dimension. Hence,
by induction, C̄ is a Boolean combination of ∅-definable Zariski closed sets, and
hence so is C. It follows in particular that if V is one of the vector spaces,
and t1, . . . , tn is a basis for V , and α1, . . . , αn ∈ k with t =

∑n
i=1 αiti, then the

atomic type of either (t1, . . . , tn, t) or (t1, . . . , tn, α1, . . . , αn) determines that of
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(t1, . . . , tn, t, α1, . . . , αn).
In the language forK∪Γ∪k∪S∪T there is, for each n, a relation ∈n⊂ Kn×Sn,

defined by ∈n (a1, . . . , an, s) if and only if (a1, . . . , an) ∈ s. We have also the
functions τn : Tn → Sn defined by τn(t) = s if and only if t ∈ red(s) and partial
functions νn : Kn × Sn → Tn defined by νn(a, s) = a+Ms if and only if a ∈n s.

We are not quite finished with the language. Suppose ϕ(X1, . . . , Xr) is an
atomic formula where each Xi is an n2

i -tuple of field variables (possibly some
other variables are not listed). We introduce a new relation symbol ∗ϕ with the
same other variables, where ∗ϕ(s1, . . . , sr) holds if and only if ϕ(a1, . . . , ar) holds
for (a1, . . . , ar) any generic resolution of (s1, . . . , sr) over the other parameters.
This is well-defined because the type qs1×...×sr is complete. The above symbols
together constitute the language LG.

Theorem 3.1.2 The theory of algebraically closed valued fields in the sorts K,
k, Γ, Sn, Tn (for n > 0) has elimination of quantifiers in LG.

Proof. We show that the quantifier-free type of any finite set F implies the
complete type. We may suppose F is closed under the τn, and for ease of notation
we suppose it contains a single lattice s ∈ Sn. We add parameters from Kn2

for
a generic resolution a = (a1, . . . , an) for s (so ai ∈ Kn for each i). If ψ(x) is any
atomic formula, then ψ(a) holds if and only if ∗ψ(s) holds. Since ∗ψ is in the
language, the quantifier-free type of F (listed as a tuple) implies that of Fa. In
the structure generated by Fa (using the νn), red(s) has a basis t1, . . . , tn, where
ti := ai +Ms. If t ∈ red(s)∩Fa, then t =

∑n
i=1 αiti for some α1, . . . , αn ∈ k, and

the atomic type of Fa determines that of F1 := Faα1, . . . , αn, as noted in the
discussion before the theorem. If F2 is obtained from F1 by deleting the elements
of red(s), and F3 is obtained from F2 by deleting s, then F3 is in K ∪ k ∪ Γ. By
the quantifier elimination for these sorts in Theorem 2.1.1(iii), the quantifier-free
type of F3 determines its complete type. Since s is definable over F3, and the
elements of red(s) are definable over F2, the atomic type of F3 determines the
complete type of F1, and hence of F . 2

In fact, Theorem 3.1.2 is not used in our proof of elimination of imaginaries,
though ideas from its proof are.

3.2 Preliminaries on coding

The following lemma is central to our proof of elimination of imaginaries.

Lemma 3.2.1 Let M be a sufficiently saturated homogeneous structure (in a
sorted language, with at least one ∅-definable symbol which for convenience we will
write ∞), and suppose that M has an Aut(M)-invariant family V of definable sets
with the following property: for every a ∈ Mn there is a sequence (a1, . . . , am)
from M eq such that dcl(a) = dcl(a1, . . . , am) and for each i ≤ m, there is an
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a1 . . . ai−1-definable set U which contains ai and is in a1 . . . ai−1-definable bijection
with some U ′ ∈ V. Suppose also that whenever g is a definable function from a
set U ′ in V to M , the function g is coded in M over pU ′q. Then all definable
subsets of Mn are coded in M , so Th(M) has elimination of imaginaries.

Proof. Let X ⊂ Mn be a definable set which needs to be coded in M (over
an arbitrary base set B of parameters). By assumption, for each element a of
X, there is a tuple (a1, . . . , am) from M eq such that dcl(a) = dcl(a1, . . . , am) and
for each i ≤ m, there is a pair (U,U ′) as in the statement of the lemma. By
compactness, we can assume m is independent of a and the ‘coding’ is uniform.
Let X ′ be the definable set of such tuples. Then dcl(pXq) = dcl(pX ′q), so
dcl(BpXq) = dcl(BpX ′q) and so it suffices to code X ′ over B. We argue by
induction on m. So we assume that over any base set F of parameters, if l <
m and X∗ is a definable set of l-tuples (b1, . . . , bl) from M with each bi in an
(F ∪ {bj : j < i})-definable set which is in (F ∪ {bj : j < i})-definable bijection
with a member of V , then X∗ is coded in M over F .

To start the induction, observe that if m = 1 then by compactness there are
finitely many B-definable sets U1, . . . , Ur, each Ui in B-definable bijection with
some U ′

i ∈ V , such that X ′ ⊂ U1 ∪ . . . ∪ Ur. Let gi : Ui → Ui ∪ {∞} be given by
gi(x) = x if x ∈ X ′ ∩ Ui, and gi(x) = ∞ otherwise. By assumption (and using
the bijections), each function gi is coded over B by some sequence ei from M ,
and (e1, . . . , er) codes X ′ over B.

Now assume the result for m − 1. Let Y be the set of first coordinates of
tuples from X ′. Each such a1 lies in an ∅-definable set in ∅-definable bijection
with a member of V , and again by compactness, we can assume they all lie in the
same such set U . For each a ∈ Y , let X ′(a) := {x : (a, x) ∈ X ′}. By induction,
each X ′(a) is coded in M over Ba by a sequence ca = (c1a, . . . , c

l
a) ∈ M l. By

compactness, we may suppose l is fixed. By assumption, each coordinate function
a 7→ cia is coded over B, and a tuple listing these codes is a code for X ′ over B
(in M).

The final assertion of the lemma (elimination of imaginaries for Th(M)) now
follows by saturation of M . 2

Remark 3.2.2 Lemma 3.2.1 is a refinement of an earlier version, which has
the following easier statement, and a similar proof. Let M be a structure, and
{Ri : i ∈ I} be a collection of sorts from M eq, with R0 = M and R :=

⋃
i∈I Ri.

Assume that for every definable subset U of M , every i ∈ I, and every definable
function f : U → Ri, the pair (U, f) is coded by some tuple from R. Then every
element of M eq is coded in R.

Proof of Remark 3.2.2. We show by induction that every n-ary relation on
M is coded. The case n = 1 holds by assumption. Suppose that X ⊂ Mn+1 =
M ×Mn is definable, and let Y be the projection of X to the first coordinate.
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For each a ∈ Y , let X(a) := {x : (a, x) ∈ X}. By the inductive assumption,
each X(a) is coded by some tuple h(a) in R. By compactness, the function h
is definable, and Y can be partitioned into finitely many pieces U1, . . . , Uk such
that for each i = 1, . . . k, h|Ui

is to some product of the Ri (and i is determined
by the product). By assumption, each pair (Ui, h|Ui

) is coded by some tuple ci in
R. Now X is coded by (c1, . . . , ck). 2

In our case, the structure, of course, is an algebraically closed valued field with
sorts G, and we take the family V of Lemma 3.2.1 to consist of those members of
the following family U which are definable, i.e. which satisfy (i) or (ii) below.

Definition 3.2.3 Let U be the collection of unary sets of the following kinds:
(i) intervals in Γ,
(ii) for definable R-submodules M < N of Kn, 1-torsors which are cosets of

N/M in Kn/M ;
(iii) the ∞-definable 1-torsors which are intersections of chains of 1-torsors in

(ii).

Lemma 3.2.4 The collection V of definable unary sets in U satisfies the hy-
potheses of Lemma 3.2.1.

Proof. Apply Proposition 2.3.10 and its proof. The main point is that, in Step
2 (using its notation), there is a bijection, defined over pBn−1q, pA′n−1q, pB1q, pA′′1q,
between D′ = HomR(B1/A

′′
1, Bn−1/A

′
n−1) and a member of V . Here, A′′1 < B1

are R-submodules of K, and A′n−1 < Bn−1 are R-submodules of Kn−1. To
see the existence of this bijection, note that there is some α < 1 such that
each of Bn−1/A

′
n−1 and B1/A

′′
1 is isomorphic (not canonically) to R′ = R/αR.

Then D′ is canonically isomorphic to Hom(B1, B
′
n−1/A

′
n−1), where B′

n−1 = {x ∈
Bn−1 : ax ∈ A′n−1 whenever |a| = α}. Write B1 := d−1R (so d is not canonical,
but |d| is). Then there is also a canonical isomorphism ϕ : dB′

n−1/dA
′
n−1 →

Hom(B1, B
′
n−1/A

′
n−1): for x ∈ B′

n−1, ϕ(dx + dA′n−1)(y) = dxy + A′n−1. Thus, D′

and dB′
n−1/dA

′
n−1 are canonically isomorphic, over pBn−1q, pA′n−1q, pB1q, pA′′1q.

Finally, observe that dB′
n−1/dA

′
n−1 ∈ V . 2

Lemma 3.2.5 (i) Any definable subtorsor of a torsor in U is coded in G.
(ii) Any element of a torsor in U is coded in G.

Proof. This is immediate from Lemma 2.6.6(i). 2

Remark 3.2.6 1. By Lemma 3.2.5 and Remark 2.3.2, for unary sets in U we
can apply all results from Sections 2.3 and 2.5 over a base C with C = aclG(C)
(rather than C = acl(C)).

2. It would be possible to use Remark 3.2.2 rather than Lemma 3.2.1, and
prove elimination of imaginaries by coding functions from K rather than from any
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unary set. This would be marginally simpler, but the methods given here have
other uses; in particular, they support Lemma 3.4.13, which will be important in
[3].

3.3 Coding of functions

In this section we prove coding results for definable functions on unary sets.
The key result, Proposition 3.3.9, gives a kind of weak coding. The remaining
ingredient is the coding of finite sets. This rests on Theorem 3.3.2, and is in the
following section.

Suppose that T is any complete theory, M |= T , p is a type over M with
solution set P such that p is definable over some B ⊂ M , and f is an M -
definable function whose domain contains P . Suppose that f = fa is defined by
the formula ϕ(x, y, a) (so fa(x) = y). We say that fa, fa′ have the same germ on
P , or the same p-germ, if the formula fa(x) = fa′(x) lies in p. By the definability
of p, the equivalence relation ‘has the same germ’ is definable over B. Hence,
the germ of f on P (which is defined to be the equivalence class of ϕ-definable
functions with the same germ), lies in M eq. Furthermore, up to interdefinability
over B this germ is independent of the choice of ϕ. We shall not always mention
the base set B explicitly. For example, if p is the generic type of a closed ball b,
then B could be taken to be the singleton pbq.

We say that a code c in M for the germ of f on P is strong if there is a
c-definable function g such that the formula f(x) = g(x) lies in p.

We also may talk of an M -definable function g having the same germ on
P as f , even if g is not ϕ-definable. By this we mean again that the formula
f(x) = g(x) is in p. If the type p is not definable, then the equivalence relation
‘has the same germ on P ’ still makes sense, but we avoid talking of the ‘germ of
f on P ’, as this is not an interpretable object.

Remark 3.3.1 1. Suppose that T is an arbitrary complete theory, M is a model
of T , and p is a type over M defined over B ⊂M . If f is an M -definable function
with domain containing P , and c is a code for the germ of f on P , we could say
the code c is strong over B if there is a Bc-definable function with the same
germ as f on P . If T is stable, then any code for f on P is strong over B, by the
following argument. We may suppose M is sufficiently saturated. Let c be a code
for the germ of f = fa on P . Let q := tp(a/Bc), with Q its set of realisations (in
the monster model). Let p|Bc denote the restriction of p to parameters in Bc,
and d |= p|Bc. If a, b ∈ Q∩M with d ↓Bc ab (in the sense of stable non-forking),
then fa(d) = fb(d), and it follows that if a, b ∈ Q and d ↓Bc a and d ↓Bc b then
fa(d) = fb(d) (for we may choose e ∈ Q ∩M with e ↓Bc abd). Hence, if a ∈ Q
and d ↓Bc a, then fa(d) ∈ dcl(Bcd). It follows by compactness that there is a
Bc-definable function g such that for all x |= p|Bc, and a ∈ Q with a ↓Bc x we
have g(x) = fa(x).
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2. In the situation of the paper, M = KG for an algebraically closed valued
field K. If t is a definable 1-torsor, then by Lemma 2.3.8, the generic type p of
t over KG is definable over ptq. If f is a definable function on t, then the germ
of f on t is the germ of f on P (and so is an element of Keq). Similarly, for a
definable function on Γ and γ ∈ Γ we can talk of the germ of f on {x ∈ Γ : x < γ},
meaning the germ of f on the generic type of elements of Γ immediately below
γ. It turns out that if p is a generic type of Γ, or of an open 1-torsor, then germs
of functions on P may not be strong. For example, let c be generic in R over ∅,
and let f : M→ Bcl be the function x 7→ B|x|(c). Then the germ of f is coded
by the ball M+ c, but this germ is not strongly coded. We show below that this
problem does not arise for closed 1-torsors.

By Lemma 3.2.1 and Corollary 3.4.8 below, our proof of Theorem 1.0.1 reduces
to showing the following: if U ∈ V and f : U → G is definable, andB = aclG(pfq),
then f is definable over B. We use compactness and consider the restriction of
f to types over B. The key is the next theorem, which shows that the germ
of a function on the generic type of a closed 1-torsor has a strong code. We
then consider the germ of f on the generic type of U , an open 1-torsor or the
intersection of a chain of 1-torsors, and approximate U from inside by closed
1-torsors, piecing together the corresponding functions defined by strong codes,
to obtain Proposition 3.3.9.

Theorem 3.3.2 Let U be a unary set in V which is a closed 1-torsor. Let f :
U → G a definable function. Then, working over the parameter pUq,

(i) the germ of f on U is coded in G, and
(ii) the code in G for the germ of f on U is strong.

Proof. By Lemma 3.2.5 (ii), we may suppose that the elements of V are se-
quences from G, and by compactness we may suppose that this coding is uniform.

(i) We first replace U by a definable set U ′ of tuples with entries in K ∪ k, to
make an application of quantifier elimination easier. For convenience of notation
we suppose that suppose U ⊂ Sm ∪ Tm (the general case U ⊂ Gr is not much
harder). There is an ∅-definable V1 ⊂ (Km)m and an ∅-definable surjection
h1 : V1 → Sm, such that for (a1, . . . , am) ∈ V1 we have h1(a1, . . . , am) = a1R +
· · ·+ amR. Also, there is ∅-definable V2 ⊂ V1 × km and an ∅-definable surjection
h2 : V2 → Tm, with h2(a1, . . . , am, β1, . . . , βm) = Σm

i=1βi(ai + Mh1(a1, . . . , am)).
We may replace U by U ′ = h−1

1 (U) if U ⊂ Sm or U ′ = h−1
2 (U) if U ⊂ Tm and

f by the corresponding composition. Notice that U ′ is no longer a unary set.
If U ⊂ Sm, we say that a is generic in U ′ if h1(a) is generic in U and a is a
generic resolution of h1(a) in the sense of Section 3.2 (over a given parameter
set). Similarly, if U ⊂ Tm, we may talk of a generic element of U ′. Observe that
if M is a model over which U is defined, and a is generic in U ′ over M , then
Γ(M) = Γ(Ma). Also, the generic type of U ′ is definable. Finally, the germ of
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f on U has a code in G if and only if the germ of f ◦ h1 on U ′ is coded in G (if
U ⊂ Sn), or if and only if the germ of f ◦ h2 on U ′ is coded in G (if U ⊂ Tn). We
shall in fact assume U ⊂ Tm, so U ′ = h−1

2 (U), as this is the more involved case.
Write F for the function f ◦ h2 : U ′ → G.

We shall consider the cases when ran(F ) is a subset of Sn or Tn, as the cases
when the range lies in K or k are easier. Let B := dclG(pgerm(F )qpUq), let F
be c-definable where c is a tuple from K, and put q := tp(c/B), with solution set
Q. For any c′ ∈ Q, write F ′ for the function defined by the same formula as F
with parameters c′. Observe that since U is definable over B, so is U ′. Let p be
the generic type over B of elements of U ′.

Claim 1. Let c′ ∈ Q. Then for all a ∈ U ′ generic over Bcc′, we have F (a) =
F ′(a).

This claim already yields that F, F ′ have the same germ on p, so the germ of
F on p is definable over B, and hence (i) holds.

Proof of Claim. We fix one notational convention: if e = (e1, . . . , em) ∈ Km

and β = (β1, . . . , βn) ∈ kn, and P (X, Y ) ∈ K[X,Y ], write |P (e, β)| < 1 if for all
b1 ∈ β1, . . . , bn ∈ βn we have |P (e, b1, . . . , bn)| < 1. Here we do not assign a value
to |P (e, β)| – just a truth value to |P (e, β)| < 1.

Let M be any small elementary submodel of K containing Bcc′. We shall
suppose a = āᾱ, where ā is a tuple in K and ᾱ is a tuple in k.

Suppose first F : U ′ → Sn. Choose a generic resolution over Ma (in the sense
of Section 3.1) d̄ of F (a) and d̄′ of F ′(a). We must show that āᾱd̄ ≡M āᾱd̄′, for
then aF (a) ≡M aF ′(a), which (as F and F ′ areM -definable) forces F (a) = F ′(a).
If a is a generic element of U ′ over M , then, as observed above, Γ(Ma) = Γ(M),
so Γ(Mad̄) = Γ(M). Hence, by the quantifier elimination for (K, k,Γ) proved in
Theorem 2.1.1(iii), tp(āᾱd̄/M) is determined by expressions of the form

|g(ā, d̄)| = γ (1)

together with those of form

h(res(p1(ā, d̄), q1(ā, d̄)), . . . , res(pr(ā, d̄), qr(ā, d̄)), ᾱ) = 0.

Here g(X, Y ), pi(X, Y ), qi(X,Y ) ∈ M [X, Y ], and h(W,V ] ∈ Mk[W,V ], where
W = (W1, . . . ,Wr). (Recall that Mk denotes M ∩ k.) Since Γ(Mad̄) = Γ(M), we
may multiply pi, qi by elements of M to ensure pi(ā, d̄) and qi(ā, d̄) have norm 1;
hence, after multiplying out, we can replace the above equation involving h by one
of the form h′(res(p′1(ā, d̄)), . . . , res(p

′
s(ā, d̄)), ᾱ) = 0. Lifting h′ to a polynomial

over R and composing with the pi, we replace this by one of form:

|P (ā, d̄, ᾱ)| < 1 (2)

where P (X, Y, Z) ∈M [X, Y, Z].
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To handle expressions of the form (1), let

JF := {P (X, Y ) ∈ K[X, Y ] : for generic a ∈ U ′, generic d̄ ∈ F (a), |P (ā, d̄)| ≤ 1}.

For each ` > 0 let J `
F consist of the polynomials in JF of total degree at most `.

If we identify each member of J `
F with a tuple of coefficients, we see that J `

F is an
R-module. Define JF ′ , J `

F ′ correspondingly. Now J `
F is definable and so is coded

in G, by Lemma 2.6.6; hence, as dclG(Bpgerm(F )q) = B, J `
F is definable over B.

It follows that any B-automorphism taking F to F ′ fixes the J `
F , so J `

F = J `
F ′ for

each `.
Now suppose a is generic in U ′ overM and |P (ā, d̄)| = ε > 0, where P (X,Y ) ∈

M [X, Y ]. Pick e ∈ M with |e| = ε. Then e−1P (X, Y ) ∈ J `
F for some `, whence

e−1P (X, Y ) ∈ J `
F ′ , so |P (ā, d̄′)| ≤ ε. Reversing F, F ′ we get |P (ā, d̄′)| = ε. If

|P (a, F (a))| = 0, apply a similar argument; note here that the set of polynomials
P ∈ K[X, Y ] of degree at most n such that |P (a, F (a))| = 0 for generic a ∈ U ′

corresponds to a definable set in K (as a pure algebraically closed field); hence
it is coded in G.

For expressions of the form (2), argue similarly. This time, we define J ′F to
consist of

{P (X, Y, Z) ∈ K[X,Y, Z] : for generic a ∈ U ′, generic d̄ ∈ F (a)(|P (ā, d̄, ᾱ)| < 1)}.

Again, J ′F is a collection of definable modules, each coded in G (by Lemma 2.6.6)
and so definable over B, so J ′F = J ′F ′ . It follows that if P ∈M [X, Y, Z], then

|P (ā, d̄, ᾱ)| < 1 ↔ |P (ā, d̄′, ᾱ)| < 1.

Thus, in the case when F is a map to Sn, aF (a) ≡M aF ′(a), as required.
Suppose next that F is a map to Tn. Now τn ◦F is a map U ′ → Sn, so by the

above, τn ◦F (a) = τn ◦F ′(a) for a generic in U ′ over M . Thus, by the above case
we may suppose there is a map g : U ′ → Sn with germ definable over B, so that
for all a ∈ U ′, F (a) ∈ red(G(a)), where G(a) is the lattice coded by g(a). We
must show that tp(āᾱg(a)F (a)/M) is determined as above by definable modules.

We fix some notation. Suppose now g ∈ Sn and h ∈ red(g). Given a basis
d̄ for g with induced basis red(d̄) := (red(d1), . . . , red(dn)) for g/Mg, let λ =
(λ1, . . . , λn) = λ(d̄, h) be the unique element of kn such that Σn

i=1λi red(di) = h.
Now let JF be the set of polynomials P (X,W,Ξ,Λ) ∈ K[X,W,Ξ,Λ] such that for
generic a ∈ U ′ (over K) and generic basis d̄ for G(a), and for λ = λ(d̄, F (a)) ∈ kn,
we have |P (ā, d̄, ᾱ, λ)| < 1. Then JF is a collection of R-modules which are coded
in G (by Lemma 2.6.6) and definable over germ(F ) and hence over B. Thus,
JF = JF ′

.
As in the argument around (2) above, we show that

tp(āᾱg(a)F (a)/M) = tp(āᾱg(a)F ′(a)/M).
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Let d̄ be a generic basis of G(a), let λ := λ(d̄, F (a)) and λ′ := λ(d̄, F ′(a)).
It suffices (by the quantifier elimination for K, k,Γ) to show that for any tu-
ple of polynomials H ∈ M [X,Y ]` and any h ∈ Mk[W1, . . . ,W`, V ], we have
h(res(H(a, b)), δ)) = 0 if and only if h(res(H(a, b)), δ′)) = 0. Lifting h to a poly-
nomial over R, and composing with H, we find that this follows from the equality
JF = JF ′

.
It remains (for Claim 1) to check that if a is generic in U ′ over Bcc′ (rather

than over M), then F (a) = F ′(a). However, if this is false for some a, then we
may choose a′ generic in U ′ over M such that F (x) 6= F ′(x). We have just shown
that the latter is impossible. This finishes the proof of Claim 1, and hence of (i).

(ii) We now need to show that the germ of f on U is strongly coded (with
the original f, U of the theorem). For c, c′ ∈ Q, let A(c, c′) := {x ∈ U : fc(x) 6=
fc′(x)}. Suppose that U is a torsor of the definable 1-module A, and recall that
red(U) := {x+MA : x ∈ U}. Then red(U) is a strongly minimal set. Let

Z(c, c′) := {u ∈ red(U) : u ∩ A(c̄, c̄′) 6= ∅}.

Since red(U) is strongly minimal, it follows from the last paragraph that Z(c, c′)
is finite. Also, for any c, c′, c′′ ∈ Q,

A(c, c′) ⊂ A(c, c′′) ∪ A(c′, c′′), so

Z(c, c′) ⊂ Z(c, c′′) ∪ Z(c′, c′′).

Claim 2. Let c′ ∈ Q, and a ∈ U be generic over Bc and over Bc′. Then
fc(a) = fc′(a).

Proof. Let z ∈ red(U) with a ∈ z. We shall show there is c′′ ∈ Q with z 6∈
acl(Bcc′′)∪acl(Bc′c′′). For then z 6∈ Z(c, c′′)∪Z(c′, c′′), so a 6∈ A(c, c′′)∪A(c′, c′′),
so a 6∈ A(c, c′), and hence fc(a) = fc′(a).

To find c′′ = (c1, . . . , cn), we inductively find ci in the required type, Ri say,
over aclG(Bc1 . . . ci−1). To start, we clearly have z 6∈ acl(Bc) ∪ acl(Bc′), and we
may suppose

z 6∈ acl(Bcc1 . . . ci−1) ∪ acl(Bc′c1 . . . ci−1).

We may suppose that ci 6∈ acl(Bc1 . . . ci−1), as otherwise there is no problem.
Choose ci generically (in Ri) over Bcc′c1 . . . ci−1z. We apply Lemma 2.5.3 twice,
both times with C0 := aclG(Bc1 . . . ci−1), the first time with C := C0c and the
second time with C := C0c

′. This gives z 6∈ acl(Bcc1 . . . ci) ∪ acl(Bc′c1 . . . ci), as
required.

For any B-conjugate f ′ of f , let pf ′q denote the corresponding canonical
parameter. It follows from Claim 2 by compactness that there is a Bpfq-definable
setW (pfq) ⊂ U (a finite union of elements of red(U)), such that for any conjugate
f ′ of f over B, if a ∈ U \ (W (pfq ∪W (pf ′q)) then f(a) = f ′(a). Now define
a function g on a subset of U as follows: if x ∈ U and there is f ′ ≡B f with
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x 6∈ W (f ′), define g(x) = f ′(x). By the above, this definition is independent of
the choice of f . Also, since W (f) is a finite union of elements of red(U), g is
definable, so as g is B-invariant, g is B-definable by compactness. Clearly g and
f have the same germ on U . There is a tuple d in B such that both g and the
germ of f on U are B-definable, and such d is a strong code for the germ of f .2

Remark 3.3.3 The proof in Part (i) generalises. Suppose that f is a definable
function with domain X ⊂ Gn, and that p is a C-definable type over K whose
realisations lie in X. Suppose also that for any model M containing C, pfq and
any a |= p|M , we have Γ(M) = Γ(Ma). Then the germ of f on p is coded in G
over C. Here, if f has range in Gm, then the germ of f is interdefinable with the
tuples of germs of its coordinate functions. This will be used in the proof that
finite sets are coded (Theorem 3.4.1, via Lemma 3.4.7).

Next, we use the results from Section 2.4 (in particular Theorem 2.4.13, ap-
plied with ρΓ = Γ) to show that definable functions from Γ are coded in G.

Proposition 3.3.4 Let f : Γ → G be a definable function.
(i) The function f is coded in G.
(ii) Let γ0 ∈ Γ ∪ {∞}. Then the germ of f below γ0 is coded in Gover γ0.

The main problems in the proof arise with functions Γ → Sn and Γ → Tn. We
need two lemmas. We identify Sn with Bn(K)/Bn(R), using Lemma 2.4.8. A de-
finable function Γ → Dn(K)/Dn(R) will be called affine if, when Dn(K)/Dn(R)
is identified canonically with Γn, each of the n coordinate functions has the form
x 7→ δix

qi for δi ∈ Γ and qi ∈ Q. We say that a (partial) function f : Γ → Sn de-
fined on an interval I ⊂ Γ has canonical form if it has the form x 7→ uh(x)Bn(R),
where u ∈ Un(K) and h is an affine map I → Dn(K)/Dn(R). Likewise, if
f : Γ → Tn, it has canonical form on I if for some m ≤ n it has the form
x 7→ uh(x)Bn,m(R), for some affine h on I. Recall also from Section 2.4 our
convention that if g, h are elements of a group G, then gh := hgh−1.

Lemma 3.3.5 Let G be a soluble linear algebraic group, let I be an interval in
Γ, and let (Bγ : γ ∈ I) be a sequence of cosets of subgroups of G, such that
δ < γ implies Bδ ⊆ Bγ, and such that the function γ 7→ Bγ is definable (in the
algebraically closed valued field K). Then

⋂
γ∈I Bγ 6= ∅.

Proof. We may suppose G is connected, and we argue by induction on the
Zariski dimension of G. For the inductive step, suppose dim(G) ≥ 2. Since G
is conjugate in GLn(K) to a subgroup of Bn(K), G has a normal subgroup N
such that G/N has dimension 1. By induction, the images BγN/N in G/N of
the Bγ have a point of intersection cN . Then c−1Bγ ∩ N 6= ∅ for each γ. So
(c−1Bγ ∩ N : γ ∈ I) is a definable sequence of cosets of subgroups of N , so by
induction has a point of intersection d. Then cd ∈

⋂
(Bγ : γ ∈ I).
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To start the induction, note that if dim(G) = 1 then G is definably isomorphic
to the additive group Ga or the multiplicative group Gm of K. If G ∼= Ga then
every coset of every definable subgroup is a finite union of balls; the result follows
in this case from Lemma 2.4.3. Finally, the group Gm has normal subgroups
H1 < H2 with H1 = 1 +M, H2/H1

∼= (k \ {0}, .), and G/H2
∼= Γ. As in the last

paragraph, it suffices to prove the result for each of these quotients. The group
H2/H1 and G/H2 are strongly minimal and o-minimal respectively, so have no
proper infinite definable subgroups. The group 1 +M is handled like the group
Ga. 2

Lemma 3.3.6 Let f : Γ → Bn(K)/Bn(R) be a definable function. Then there
is a unique finite sequence γ1 > . . . > γm in Γ such that (with γ0 := ∞ and
γm+1 = 0):

(i) on each interval Ij := (γj+1, γj), f |Ij
has canonical form;

(ii) for each i = 0, . . . ,m − 1 and for any δ < γi+1, f |(δ,γi) does not have
canonical form.

Proof. The existence of some γ′1, . . . , γ
′
m′ satisfying (i) comes from Theo-

rem 2.4.13 (iii). Now define γ1, . . . , γm inductively: for each i > 0, γi := inf{δ :
f |(δ,γi−1) is canonical}. Then inductively, γi < γ′i for each i, so γm+1 = 0 for some
m ≤ m′. It remains to verify the following claim, which ensures also that the γi

are infima of definable sets, so lie in Γ not just its Dedekind completion.
Claim. If δ1 > δ2 lie in Γ, and f |(δ,δ1) is canonical for all δ with δ1 > δ > δ2,

then f |(δ2,δ1) is canonical.
Proof of Claim. We may write f(x) = u(x)h(x)Bn(R) on (δ2, δ1), with h(x) ∈

Dn(K)/Dn(R), and u(x) ∈ Un(K). Now the function x 7→ h(x) is affine on
(δ, δ1) for all δ > δ2, so must be affine on (δ2, δ1). For each δ > δ2, there
is uδ ∈ Un(K) such that for all x ∈ (δ, δ1), u(x)h(x)Bn(R) = uδh(x)Bn(R).
Put C(δ) :=

⋂
δ<x<δ1

Bn(R)h(x). The cosets uδC(δ) form a decreasing chain.
By Lemma 3.3.5, there is u ∈

⋂
δ2<δ<δ1

uδC(δ). Then f(x) = uh(x)Bn(R) for
x ∈ (δ2, δ1). 2

The analogue of the last lemma also holds for functions f : Γ → Bn(K)/Bn,m(R),
where 1 ≤ m ≤ n.

The lemma below, and its proof, are phrased in order to handle simultaneously
functions Γ → Sn and Γ → Tn.

Lemma 3.3.7 Let n > 0, let C be a parameter set, T be a C-definable subgroup of
Dn(K), and let H be one of the groups Bn(R) or Bn,m(R). Put G(T ) :=

⋂
t∈T H

t.
Then each element of Bn(K)/G(T ) is coded in G over C.

Proof. Let diag(t) be the diagonal matrix with t = (t1, . . . , tn) ∈ (K \ {0})n

as its sequence of diagonal entries, and put G(t) := diag(t)Bn(R) diag(t)−1.
Observe first that G(t) depends only on the sequence γ1 = |t1|, . . . , γn = |tn|.

48



Thus, for γ = (γ1, . . . , γn), we may define G(γ) := G(t), and may write G(γ) =
diag(γ)Bn(R) diag(γ)−1.

We wish to treat expressions x < γ, x ≤ γ, x = 0, x <∞ (for x ∈ Γ) on the
same footing, in order to handle functions to Sn and to Tn simultaneously. So
for convenience we write x ≤ γ− for x < γ. We write Γ̄ for the set of expressions
γ, γ−, 0,∞ (for γ ∈ Γ). There are obvious rules for the min and inf of a subset
of Γ̄, and for the product of two elements (with 0×∞ = 0).

Let Σ be the set of all functions

σ : {(i, j) : 1 ≤ i < j ≤ n} → Γ̄

with the property that for 1 ≤ i < j < k ≤ n we have σ(i, k) ≥ σ(i, j)× σ(j, k).
For σ ∈ Σ, put

G[σ] := {(aij) ∈ Bn(K) : |aii| = 1, |aij| ≤ σ(i, j) for each i < j}.

Observe the following.

(a) If σ ∈ Σ then G[σ] is a subgroup of Bn(K).

(b) If Φ is a C-definable subset of Σ, define inf(Φ) by inf(Φ)(i, j) := inf{σ(i, j) :
σ ∈ Φ} (these infima are defined, by o-minimality of Γ). Then inf(Φ) ∈ Σ, and
if Φ is C-definable, so is inf(Φ). Also, G[inf(Φ)] :=

⋂
σ∈ΦG[σ].

(c) If γ = (γ1, . . . , γn) ∈ Γ̄n and σ ∈ Σ with σ(i, j) = γiγ
−1
j for each i < j,

then G[σ] = G(γ).
Now, let Σc be the collection of C-definable σ ∈ Σ such that all elements of

Bn(K)/G[σ] are coded.

(d) If σ ∈ Σ only takes values in {0,∞}, then G[σ] is an algebraic group, so
σ ∈ Σc by elimination of imaginaries for algebraically closed fields.

(e) If σ1, . . . , σ` ∈ Σc, then all elements of Bn(K)/
⋂`

i=1G[σi] are coded: in-

deed, Bn(K)/
⋂`

i=1G[σi] embeds naturally into Bn(K)/G[σ1]×. . .×Bn(K)/G[σ`].

(f) Suppose that σ ∈ Σ is C-definable and σ(i, j) = 1 or σ(i, j) = 1− for each
i < j. Then σ ∈ Σc. Indeed, let B∗ := Bn,1(R) ∩ . . . ∩Bn,n(R). Then Bn(K)/B∗

embeds into Bn(K)/Bn1(R) × . . . × Bn(K)/Bn,n(R), so elements of Bn(K)/B∗

are coded in G, via the sort Tn. Now B∗ ≤ G[σ] ≤ Bn(R) ≤ Bn(K). Thus, there
is a map ϕ : Bn(K)/G[σ] → Bn(K)/Bn(R) = Sn. If s ∈ Sn, then each element of
ϕ−1(s) is an imaginary of red(s), so is coded in G over Cpsq by Proposition 2.6.5,
and hence is coded in G over C. (We here use that, by compactness, Intk,Cpsq has
elimination of imaginaries uniformly in s.)

Now let H be one of the groups G[σ] in (f). For t = (t1, . . . , tn) and γi = |ti|,
the coset H diag(t) depends only on (γ1, . . . , γn).

(g) Let γ be a C-definable element of Γn, and define σ ∈ Σ by σ(i, j) = γiγ
−1
j

for each i < j. Then σ ∈ Σc, and indeed, if σ′(i, j) is obtained from σ(i, j) by
putting a − whenever H has a −, then σ′ ∈ Σc. To see the latter, observe that
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as in (c), G[σ′] = G(γ) = diag(γ)H diag(γ−1) (with a slight abuse of notation).
Thus, there is a C-definable 1-1 correspondence between left cosets of G[σ′] in
Bn(K) and left cosets of H, given by right multiplication by diag(γ)H: indeed,

eG[σ′] diag(γ)H = e diag(γ)H diag(γ−1) diag(γ)H = e diag(γ)H.

Thus, as elements of Bn(K)/H are coded in G over C (by (f)), so are elements
of Bn(K)/G[σ′].

Now let

∆ := {(γ1, . . . , γn) : ∃t = diag(t1, . . . , tn) ∈ T with |ti| = γi for each i}.

Let Φ be the set of all σ (or possibly the set of all σ′ as in the last paragraph (g))
which arise from some γ ∈ ∆. That is, σ(i, j) = γiγ

−1
j (or possibly (γiγ

−1
j )−) for

each i < j. Put τ := inf(Φ). We shall first assume that there is a C-definable non-
zero element of Γ, and then modify the argument in the remaining case. Under
this assumption, the C-definable structure on Γ has definable Skolem functions,
by o-minimality.

By (b), it suffices to show that τ ∈ Σc, so the lemma follows from the following
claim.

Claim. (i) For ` =
(

n−1
2

)
, there are C-definable σ1, . . . , σ` ∈ Σ such that τ =

min{σ1, . . . , σ`). Furthermore, each σi either corresponds to some C-definable
(γ1, . . . , γn) ∈ Γn as in (g), or only takes values in {0,∞}, as in (d) above.

(ii) τ ∈ Σc.
Proof of Claim. (i) For each (i, j) entry, we put an element into the list

σ1, . . . , σ`. Fix i < j, and let τij := τ(i, j). For each δ > τij, there is µ(δ) ∈ Φ
with (µ(δ))(i, j) < δ. By Skolemisation of Γ, we may suppose that µ is a C-
definable function from the interval (τij,∞) to Φ. For each such δ, there is
γ(δ) ∈ Γn such that for all i′ < j′, (µ(δ))(i′, j′) = γi′(δ)(γj′(δ))

−1 (or, as usual,
µ(δ)(i′, j′) may take value (γi′(δ)(γj′(δ))

−1)−). Here, each γi′ is a C-definable
function from (τij,∞) to Γ.

We have τij ∈ Γ̄. Suppose first that τij > 0. As definable functions on
Γ are affine, limδ→τ+

ij
(γi′(δ)) is finite for each i′ ∈ {1, . . . , n}. It follows that

limδ→τ+
ij
(µ(δ)) is a C-definable element of Φ. Furthermore, inf(Φ) ≤ limδ→τ+

ij
(µ(δ)),

and limδ→τ+
ij
(µ(δ))(i, j) = inf(Φ)(i, j). Thus, in this case we put limδ→τ+

ij
(µ(δ))

into the list σ1, . . . , σ`, and have taken care of the (i, j) entry.
Suppose now that τij = 0. Consider the behaviour of µ(δ)(i′, j′) = γi′(δ)γj′(δ)

−1

(possibly with −) as δ → 0. As the functions γi′ are affine, for some such entries
(i′, j′), the function µ(δ)(i′, j′) will be constant as δ → 0, and for other (i′, j′),
limδ→0 µ(δ)(i′, j′) will equal 0 or ∞. Let ρ : {(i′, j′) : i′ < j′} → Γ̄ take value
∞ on (i′, j′) if limδ→0 µ(δ)(i′, j′) is non-zero, and take value 0 otherwise. Then
ρ ∈ Σ (this is easily checked), and is C-definable of type (d) above, so ρ ∈ Σc.
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Also, ρ(i′, j′) ≥ inf(Φ)(i′, j′) for each (i′, j′), and ρ(i, j) = inf(Φ)(i, j) = 0. Thus,
in this case we put ρ into the list σ1, . . . , σ` and so take care of the (i, j) entry.

(ii) By (b) and part (i) of the claim, G[τ ] =
⋂`

i=1G[σi]. By (d) and (g), each
σi ∈ Σc. It follows by (e) that τ ∈ Σc.

In the case when there are no non-zero C-definable elements of Γ, we again
consider τ := inf(Φ) as in the claim. For each i < j, τ(i, j) is one of 1, 1−, or 0.
Let σ1 be obtained from τ by putting σ1(i, j) = ∞ whenever i < j and τ(i, j) ∈
{1, 1−}. Also let σ2 be the modification of τ arranged by putting σ2(i, j) = 1−

whenever i < j and τ(i, j) = 0. Then σ1, σ2 ∈ Σc (using (d) and (f)). Also,
τ = min{σ1, σ2}, so τ ∈ Σc by (e).

Proof of Proposition 3.3.4. (i) The cases when the range of f is in K ∪ k ∪ Γ
are handled by Theorem 2.4.13 (i) and (ii). For example, if f : Γ → Γ, then there
are pfq-definable γ0 = ∞ > γ1 > . . . > γm+1 = 0 such that on each (γi+1, γi), f
has the form x 7→ δix

qi ; then (γ1, . . . , γm, δ0, . . . , δm) is a code for f .
Suppose that f : Γ → Sn. There are γ1, . . . , γm and I0, . . . , Im so that (i) and

(ii) of Lemma 3.3.6 hold. Clearly these γi lie in dcl(pfq). We shall fix some
j ∈ {0, . . . ,m}, and show that if I = Ij, then fI is coded. On I, f has canonical
form x 7→ uh(x)Bn(R).

Clearly the function h|I is coded. The element u is not uniquely determined
by f |I , but the set {ug : g ∈

⋂
x∈I Bn(R)h(x)} is uniquely determined, and

together with h|I , determines f |I . Furthermore, by Lemma 3.3.7, {ug : g ∈⋂
x∈I Bn(R)h(x)} is coded in G.
If f : Γ → Tn, then for some m ∈ {1, . . . , n} the function f is of the form

Γ → Bn(K)/Bn,m(R). This case is handled as above (since Lemma 3.3.7 covers
this case too).

(ii) We let C := pγ0q, and show that the germ is coded over C. Let p be the
generic type below γ0. We shall suppose that the germ of f below γ0 is the set
{f (λ) : λ ∈ Λ} of functions. If f is constant on p with value a, its germ below γ0

has code (γ0, a). If f : Γ → Γ has form f(x) = δxq, the germ has code (γ0, δ).
Next, suppose that f has range in Sn, identified as usual with Bn(K)/Bn(R).

For each λ ∈ Λ there is γ(λ) < γ0 with γ(λ) ∈ dcl(pf (λ)q), such that f (λ) has
canonical form f (λ)(x) = u(λ)h(λ)(x)Bn(R) on (γ(λ), γ0). It is easily checked that
the h(λ) are all equal, say h(λ) = h; these will be part of the code of the germ, as
is γ0. We may suppose also that u(λ) = u for all i, by Lemma 3.3.5 (but u is not
uniquely determined). Hence, for each λ ∈ Λ there is a smallest γ′(λ) < γ(λ) such
that f (λ)(x) = uh(x)Bn(R) on (γ′(λ), γ0).

In the argument in (i), to code f(γ′(λ),γ0), we had to code the coset uH(γ′(λ)),

where H(γ′(λ)) :=
⋂

γ′(λ)<x<γ0
Bn(R)h(x). Clearly, if γ′(λ) < γ′(µ) then H(γ′(λ)) ≤

H(γ′(µ)), and hence uH(γ′(λ)) ⊆ uH(γ′(µ)). Thus, to code the germ of f below
γ0, we must code u

⋃
λ∈ΛH(γ′(λ)).

If S is a set of pairs (i, j) with 1 ≤ i < j ≤ n, let GS be the set of matrices A =
(aij) ∈ Bn(R) such that |aij| < 1 whenever (i, j) ∈ S. Then, as in Lemma 3.3.7,
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GS is a group precisely if S has the property that whenever i < k < j and
(i, j) ∈ S, then (i, k) ∈ S or (k, j) ∈ S. Let S be the collection of all sets S with
this property.

For each i = 1, . . . , n, let δi(x) be the norm of the (i, i)-entry of the diag-
onal matrix h(x). Then, δi(x) = εix

qi for some εi ∈ Γ and qi ∈ Q. Now let
S := {(i, j) : i < j and qi > qj}. Then S ∈ S. It is now easily verified that⋃

λ∈ΛH(γ′(λ)) = X ∩Gh(γ0)
S for some algebraic group X. (The point here is that

if qi > qj, then for x < γ0, the (i, j) entry of any element of Bn(R)h(x) has norm
at most δiδ

−1
j xqi−qj which is increasing below γ0 so the norm of the (i, j) entry

of elements of
⋃

λ∈ΛH(γ′(λ)) is less than δiδ
−1
j γ

qi−qj

0 ; the group X arises because

possibly γ′(λ) = 0 for all i, and hence an (i, j)-entry of
⋃

λ∈ΛH(γ′(λ)) may be zero

even though δiδ
−1
j γ

qi−qj

0 6= 0.) Thus, we must code uG
h(γ0)
S . This is done exactly

as in part (g) in the proof of Lemma 3.3.7.
Finally, we code germs of functions Γ → Tn, and as in (i) we treat these

as functions Γ → Bn(K)/Bn,m(R). We argue almost exactly as with germs of
functions Γ → Sn, except that the set S may be slightly larger. Indeed the set
S may contain certain additional pairs (i,m), arising from certain <-inequalities
obtained before the union process. 2

Lemma 3.3.8 Let U ∈ U be an open 1-torsor. Let f : U → G be a definable
function. Then the germ of f on U is coded in G.

Proof. We handle the case when U is not definably isomorphic to a quotient
of K; the other case is similar. As in Theorem 3.3.2, we assume for convenience
that C = ∅.

We may suppose U is a torsor of the open 1-module A. Let u ∈ U . Then
the u-definable map gu : x → x − u maps U bijectively to A. Furthermore, for
sufficiently large γ < 1, A has a γ-definable closed submodule Aγ :=

⋂
(δRA :

γ < δ < 1), and the Aγ form a chain under inclusion with union A. For each
sufficiently large γ < 1, let Uγ,u := g−1

u (Aγ). Then Uγ,u is a closed unary set, so
by Lemma 3.3.2 there is a code c(u, γ) ∈ Gn (for some n) for the germ of f on
Uγ,u. By compactness we may suppose that c(u, γ) is uniform in u, γ. For each
u ∈ U the function cu : Γ → Gn given by cu(γ) := c(u, γ) is definable, so by
Proposition 3.3.4 its germ below 1 is coded (uniformly in u) by some c′(u) in G.
Now for u, u′ ∈ U , c′(u) = c′(u′), since Uγ,u = Uγ,u′ for sufficiently large γ. Thus,
if c′ := c′(u), then c′ is a code for the germ for f on U . 2

We must clarify the notion of germ of a function on a unary set with non-
definable generic type. Let B be a base set of parameters, and (ti : i ∈ I) be a
chain of 1-torsors, strictly ordered under reverse inclusion. Put E :=

⋂
(ti : i ∈ I),

and let p be the generic type of E over B. Suppose first that the definable
functions f, g on E have the same germ on P . Then by compactness, there is
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n ∈ I such that {x ∈ tn : f(x) 6= g(x)} lies in a proper subtorsor of ti for
each i ∈ I. If this holds, then they have the same germ on ti for each i ≥ n.
Conversely, suppose f, g are definable functions on E and for some n they have
the same germ on ti for each i ≥ n. Then by Lemma 2.3.3, {x ∈ tn : f(x) 6= g(x)}
is a Boolean combination of subtorsors of tn, and meets each ti for i > n in a
proper subtorsor. By adding parameters to identify tn with a true 1-torsor, we
see that f, g have the same germ on P . Thus, f, g have the same germ on P if
and only if for sufficiently large i, f and g have the same germ on ti.

Proposition 3.3.9 Let U ∈ U , f be a definable function to G with domain
containing U , and B ⊂ G with B = aclG(Bpfq). Suppose that U is ∞-definable
over B. Then there is a B-definable function g with the same germ on U as f .

We emphasise that the assumption B = aclG(Bpfq) ensures that the G-part of
the code for f lies in B. In the case when U is an open unary set, this proposition
does not say that the germ of f on U has a strong code (this is false in general
by Remark 3.3.1(2)). This is because g may not be definable from a code for the
germ of f .

Proof. First, suppose that U is a closed 1-torsor. Then by Theorem 3.3.2, B
contains a strong code for the germ of f on U , and the lemma follows. Next, if
U is a unary subset of Γ, the result follows from Proposition 3.3.4(i).

We suppose now that U is an open 1-torsor or an intersection of a chain
(ti : i ∈ I) of B-definable open 1-torsors. For uniformity of notation, we suppose
in the first case that U = ti0 and in the second case that i0 is some fixed element
of I. Suppose each ti is a torsor of the module ei, and that U is a torsor of e :=⋂

(ei : i ∈ I). Let ∆ := {γ ∈ Γ : γRei0 ⊆ e} (so ∆ = (0, 1) when e is definable).
Let δ := sup ∆, a cut in Γ. For each γ < δ, let sγ :=

⋂
(εRei0 : δ > ε > γ), a

closed submodule of e. We refer to cosets of sγ as closed subtorsors of radius γ,
and cosets of γRei0 as open subtorsors of radius γ. For any u ⊂ U , write B≤γ(u)
for the closed subtorsor of radius γ containing u, and B<γ(u) for the open one.
The argument splits into two cases.

Case 1. U contains a B-definable element or subset s.
Case 2. Not Case 1 (in which case, by Lemma 2.3.3, U is a complete type

over B).
Fix γ ∈ Γ with γ < δ. The equivalence relation x− y ∈ sγ partitions U into

a set S(γ) of closed 1-torsors t of radius γ. For each such t, by Theorem 3.3.2
there is a strong code c(t) for the germ of f on t, and a c(t)-definable function
gt with the same germ as f on t. Let X(t) := {x ∈ t : f(x) 6= gt(x)}. If
X(γ) :=

⋃
(X(t) : t ∈ S(γ)), then for t ∈ S(γ), X(γ) ∩ t is a proper subset of t,

soX(γ) is contained in a proper subtorsorX ′(γ) of U . By choosingX ′(γ) as small
as possible, we may ensure that X ′(γ) is Bpfqγ-definable. Thus, the function
γ 7→ X ′(γ) is Bpfq-definable on some interval (δ1, δ2), with δ1 < δ < δ2. By
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Proposition 3.3.4 it is coded in G so is B-definable. It follows by Corollary 2.4.6
that either X ′(γ) = ∅, or there is a proper B-definable subset s of U with the
following property: for some B-definable function h : Γ → Γ, and all generic γ
below δ, X ′(γ) is the closed or open subtorsor of radius h(γ) containing s. In the
latter case, we must be in Case 1.

Proof in Case 1. There is B-definable δ′ > δ so that c(B≤γ(s)) (and hence
gB≤γ(s)) is definable for each γ with rad(s) < γ < δ′. For such γ, put c′(γ) :=
c(B≤γ(s)). Then the function c′ from Γ is Bpfq-definable, and coded in G by
Proposition 3.3.4, so is B-definable.

For x 6∈ s, let |x − s| denote the radius of the smallest submodule of U
containing {x − y : y ∈ s}. Let B(x) := B≤|s−x|(x). Since c′ and the function
x 7→ |x−s| are B-definable, so is the function x 7→ c(B(x)). For sufficiently large
γ < δ, f and gB≤γ(s) agree generically on B≤γ(s), so agree on B≤γ(s) \ B<γ(s)
(since the generic type of U over B is the type of all elements of B≤γ(s)\B<γ(s) for
sufficiently large γ < δ). Since gB(x) is c(B(x))-definable, there is a B-definable
function H (with domain B≤δ′(s) \ s) given by H(x) := gB(x)(x) for all x ∈
B(x) \B<|x−s|(s). The function H has the same germ on U as f .

Proof in Case 2. Now, by the argument before Case 1, for generic γ < δ
and a closed subtorsor t of U of radius γ, the functions gt and f agree on t.
We must show that for any conjugate f ′ of f over B, the functions f and f ′

agree on U . So suppose not, for some f ′. By Lemma 3.3.8 (if U is an open
torsor) or Theorem 3.3.2 applied to the B≤rad(ti)(ti) (if I has no least element),
f and f ′ have the same germ on U ; hence, {x ∈ U : f(x) 6= f ′(x)} lies in a
proper subtorsor s of U . Pick a ∈ s, and choose a′ ∈ U so that af ≡B a′f ′.
Choose γ < δ generically over Bafa′f ′, and let s′ := B≤γ(s). Then f, f ′ have
the same germ on s′. Furthermore, afγ ≡B a′f ′γ, so there is a B-automorphism
σ with σ(afγ) = a′f ′γ. Then σ fixes s′ := B≤γ(a) = B≤γ(a

′). Hence, as f
and σ(f) have the same germ on s′, σ fixes this germ, so σ fixes c(s′) (here
the full force of the notion of strong code is used). Thus, σ fixes gs′ . Now
f |s′ = g|s′ = σ(g|s′) = σ(f |s′) = f ′|s′ , the first equality coming by the discussion
before the proof in Case 1. Hence f, f ′ agree on s ⊂ s′, and so on all of U . 2

3.4 Proof of elimination of imaginaries

We begin with a proof that finite sets (of sequences from G) are coded in G.
This, via Theorem 2.1.2, easily implies that definable subsets of K are coded in
G. The latter was proved by Holly in [5] and [6] in equi-characteristic 0. We give
a different proof, which applies in all characteristics. Elimination of imaginaries
then follows rapidly from this and Proposition 3.3.9.

Proposition 3.4.1 For each r ∈ N, every finite subset of Gr is coded in G.
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Before proving this, we give a sequence of lemmas. We shall say that a finite
set F is primitive over A if there is no proper non-trivial ({pFq} ∪ A)-definable
equivalence relation on F (so the permutation group induced on F by its setwise
stabiliser in Aut(K/A) is primitive). Let S∗n denote the set of all cosets in Kn of
elements of Sn, and T ∗n denote the set of cosets in Kn of elements of Tn. Also, let
MSn denote {MA : A ∈ Sn}.

Lemma 3.4.2 Let C ⊂ Keq, and let F be a C-definable finite primitive subset
of Sn. Then F ⊂ dcl(C ∪ Intk,C).

Proof. Let F := {s1, . . . , sm}. We may assume m > 1. By primitivity, there
is fixed n such that si ∈ Sn for each i. Let s be the subgroup of Kn generated
by s1 ∪ . . . ∪ sm. Then s is a finitely generated R-submodule of Kn. It follows,
by Lemma 2.2.4, that s is a lattice, i.e., s ∈ Sn. Clearly s is C-definable. Also,
si 6= s for each i.

Let ϕ : s→ red(s) = s/Ms be the reduction map. By Nakayama’s Lemma, as
si 6= s, also, ϕ(si) 6= ϕ(s). On the other hand, red(s) = ϕ(s) = 〈ϕ(s1), . . . , ϕ(sm)〉.
Hence, the ϕ(si) are not all equal, so do not all have the same type over red(s) ⊂
Intk,C . Hence neither do the si, so by primitivity all the si have distinct types
over C ∪ Intk,C . 2

Lemma 3.4.3 Every finite primitive set of balls is coded in G.

Proof. We shall assume the balls are all open. If they are all closed, then the
same argument applies, with < and ≤ interchanged.

Let F = {t1, . . . , tm} ⊂ T ∗1 be a finite set of open balls. By primitivity (or
just transitivity) of F , all the ti have the same radius, γ say, and by primitivity,
there is some δ > γ such that if i 6= j and x ∈ ti, y ∈ tj then |x − y| = δ. Let
T := t1 ∪ . . . ∪ tm (regarding the ti as subsets of K).

Let JF be the set consisting of one variable polynomials

{Q ∈ K[X] : deg(f) ≤ m ∧ ∀x ∈ T (|f(x)| < δm−1γ)}.

Then JF is a definable R-submodule of Km+1, so is coded in G by Lemma 2.6.6.
Also, JF , together with γ and δ, are definable from pFq. We must check that
F is recoverable from JF , γ, δ. For this, it suffices to check that if f ∈ K[X] is
monic of degree m, then f ∈ JF if and only if f has a root in each ti.

In one direction, suppose that f has a root αi in each ti. Then f(X) =
Πm

i=1(X − αi). Suppose x ∈ T , with say x ∈ t1. Then |x − α1| < γ, and
|x− αi| = δ for i = 2, . . . ,m. Hence |f(x)| < δm−1γ.

In the other direction, suppose that f ∈ JF is monic of degree m and has
roots β1, . . . , βm (listing repeated roots according to multiplicity). Then for all
j = 1, . . . ,m there is i such that βi lies at distance less than δ from (all elements
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of) tj: indeed, otherwise there is some tj so that all βi are at distance at least
δ from tj; then if x ∈ tj, we have |f(x)| ≥ δm, a contradiction. Hence, after
relabelling, we may assume that for each i and all x ∈ ti, |βi − x| < δ. Thus, if
i 6= j and x ∈ tj, we have |βi − x| = δ. Now choose x ∈ T , with x ∈ ti say. Then
|f(x)| = Πm

i=1|x − βi| = δm−1|βi − x|. As f ∈ JF , this forces |βi − x| < γ, and
hence βi ∈ ti, as required. 2

For any a+ s ∈ S∗n (with s ∈ Sn), write red(a+ s) for {a+ t : t ∈ red s}. This
is a torsor of the k-vector space red(s). Its elements are torsors of Ms.

Lemma 3.4.4 (i) Let s ∈ Sn and a ∈ Kn, so a + s ∈ S∗n. Let s′ be the lattice
in Sn+1 which codes a + s, (as in Lemma 2.2.6); that is, s′ is the R-submodule
of Kn+1 generated by {1} × (a + s). Then there is an ps′q-definable injection
g : red(a+ s) → red(s′).

(ii) Let s be an R-lattice in Kn, let a ∈ Kn, and let 1 ≤ r < n, and let
π : Kn → Kr be the projection to the first r coordinates. Then π(Ms+ a) ∈ T ∗r .
In particular, if r = 1 then π(Ms+ a) is an open ball.

(iii) In the notation of (ii), let b ∈ π(Ms + a) and put Eb := {x − y :
(b, x), (b, y) ∈ Ms+ a}. Then Eb = MSn−r, and is independent of the choice of
b.

Proof. (i) The map g takes b+Ms to (1, b) +Ms′.
(ii) First, π(Ms+ a) is a coset of π(Ms). As in Proposition 2.3.10, π(s) is a

lattice s′ ∈ Sr. Now π(Ms) = Ms′, and the result follows.
(iii) We omit this. The main point is the observation (see Step 1 of the proof

of Proposition 2.3.10) that kernels of projections of lattices are lattices. 2

Lemma 3.4.5 Let F be a finite set of balls, and f : F → G be a function.
Suppose that F is primitive over pfq.

(i) For any parameter set C, if f(F ) ⊂ Intk,C, then f is coded in G over C.
(ii) If F ′ := f(F ) ⊂ S∗n, then f is coded in G over pFq.
(iii) If F ′ := f(F ) ⊂ T ∗n , then f is coded in G over pF ′q.
(iv) If f(F ) ⊂ K, then f is coded in G.

Proof. (i) By Lemma 3.4.3, the set F is coded in G. Let U be the smallest
closed ball containing the elements of F . Then the elements of F lie in distinct
elements of red(U), by primitivity. Let h : F → red(U) be the map taking each
member of F to the member of red(U) which contains it. Let s be the element of
S2 which codes U , and g : red(U) → red(s) the injection given by Lemma 3.4.4
(i). Put F ∗ := g(F ) ⊂ red(s). By Proposition 2.6.5, Intk,Cpsq has elimination of
imaginaries, so f ◦h−1 ◦ g−1|F ∗ is coded over Cpsq; a code for this, together with
s and a code for F , codes f over C.

(ii) We adopt the notation and proof of Lemma 3.4.2. We may suppose that
f is injective, and (by the usual identification of elements of S∗n with elements
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of Sn+1) that F ′ ⊂ Sn+1. As in 3.4.2, let F ′ = {s1, . . . , sm}, let s be the lattice
generated by the si, put C := psq, and let ϕ : s→ red(s). For each i = 1, . . . ,m,
there is ui ∈ Intk,C interdefinable over CpF ′q with si: write ui = g(si). Then by
(i), g ◦ f is coded over C, and this code, together with s, codes f over pF ′q.

(iii) Let F ′ := {t1, . . . , tm}. For each i, there is si ∈ Sn and ai ∈ K with
ti = ai +Msi. The elements a1 + s1, . . . , am + sm, lie in S∗n, and are all equal or
all distinct, by primitivity. If they are all distinct, then f is coded over pF ′q by
a code for the corresponding map to S∗n, which exists by (ii).

So suppose that the ai + si all equal the same element s∗ of S∗n. Let s be the
element of Sn+1 which codes the torsor s∗. Then by Lemma 3.4.4, there is an
s-definable injection g : red(s∗) → red(s). Now g ◦ f is coded over s by (i), and
hence, so is f . Since s ∈ dcl(F ′), f is coded over pF ′q.

(iv) Let U be the smallest closed ball containing all elements of f(F ). By
primitivity, the elements of f(F ) all lie in distinct elements of red(U). Let c be
a code in K for f(F ) (this exists by elimination of imaginaries in algebraically
closed fields). Let h be the map which takes each element of U to the element of
red(U) containing it. Then h ◦ f is coded over c by (iii), and f is coded over ∅
by c and a code for h ◦ f . 2

Lemma 3.4.6 Let F be a finite subset of Sr, and f : F → S∗n∪T ∗n be a function.
Suppose that F is primitive over pfq, and put F ′ := f(F ). Then f is coded over
pFqpF ′q.

Proof. This is just a slight variant of Lemma 3.4.5(iii). We use that if F =
{s1, . . . , sm} and s is the member of Sr generated by the si, then the si are coded
over psqpFq by sequences from Intk,psq. 2

Next, we give an application of Remark 3.3.3, and a slight extension of
Lemma 3.3.8.

Lemma 3.4.7 Let {e1, . . . , en} be a transitive C-definable set of balls. Put W :=
{{c1, . . . , cn} : ci ∈ ei} (so the elements of W are n-element subsets of K, so coded
by elements of Kn). Then there is a definable type q on W such that any definable
function f : W → G has germ on q coded in G over C.

Proof. By transitivity, the balls ei all have the same radius γ ∈ dcl(C).
Case 1. The balls ei are all closed. In this case, for any (x1, . . . , xn) ∈

e1 × . . . × em, let x∗ ∈ Kn be a code for the set {x1, . . . , xn}; here x∗ lists the
coefficients of the polynomial Πn

i=1(X − xi). There is a C-definable type p (over
C) realised by (x1, . . . , xn) where xi is chosen generically in ei over C∪{xj : j < i}
(see Lemma 2.5.8). Let q be the corresponding type of the set {x1, . . . , xn}, and
q∗ the type (over C) of x∗. By Remark 3.3.3, any definable function has germ on
q∗ coded over C, and the result follows.
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Case 2. The balls ei are all open. Let rγ be the generic type in Γ below γ.
For a := {a1, . . . , an} ∈ W , and δ |= rγ, let c(a, δ) = {c1(a), . . . , cn(a)}, the n-set
of closed balls around the ci of radius δ. Let qa

δ be the symmetrised generic type
of c1(a) × . . . × cn(a), i.e. the type of an imaginary coding the set {x1, . . . , xn},
where (x1, . . . , xn) is generic in c1(a)× . . .× cn(a). Let qa be the definable type
such that, for any model M containing C, a, γ, we have d |= qa if and only if
there is δ |= rγ|M such that d |= qa

δ |Mδ. The type qa does not depend on the
choice of a. Indeed, if a′i ∈ ei for each i (a′i chosen in M) and a′ = {a′1, . . . , a′n},
and δ |= rγ|M , then c(a, δ) = c(a′, δ), so qa

δ = qa′

δ . Thus, we may write q = qa.
Now let fb(w) = f(w, b) be a Cb-definable function on W . We must show

that the q-germ of fb is coded in G.
First, by Case (i), if a ∈ W and δ |= rγ|Ca, then the qa

δ -germ of fb is coded
in G over Ca, by say g(a, b, δ). Now g is a function of b, δ, ca(δ), so write g =
g′(b, δ, ca(δ)). If we view a, b as parameters, then g is a function on rγ, and its germ
on rγ is coded over C, by Lemma 3.3.4(ii); that is, there is a code h = h(a, b) such
that g(a, b, δ) has the same rγ-germ as g(a′, b′, δ) if and only if h(a, b) = h(a′, b′).
However, h(a, b) does not depend on a: given a, a′ ∈ W and b, for δ |= rγ we have
c(a, δ) = c(a′, δ), so g(a, b, δ) = g(a′, b, δ), and hence h(a, b) = h(a′, b). Thus we
can write h(b) = h(a, b) for any a ∈ W , and h(b) is a code for fb over C. 2

Proof of Proposition 3.4.1. We shall prove by simultaneous induction on the
natural number m the following two statements.

(I)m For each r > 0, every subset of Gr of size m is coded in G.
(II)m For any F ⊂ G of size m, every function f : F → G is coded in G.

Both statements are trivial for m = 1.
We first prove (I)m, for r = 1, assuming that (I)` and (II)` hold for all

` < m, and that m > 1. We then prove (II)m, and finally deduce (I)m for all r.
In the proof of (I)m, we may assume that F is primitive. For suppose that E is
a proper non-trivial pFq-definable equivalence relation on F . Let C1, . . . , C` be
the E-classes. Then for each i there is by induction on m a code ci in G for Ci,
and also a code e in G for {c1, . . . , c`}. Then e is a code for F .

By elimination of imaginaries for algebraically closed fields, every finite subset
of K is coded. Thus, it suffices to show that finite primitive subsets (of size m)
of Tn and of Sn are coded. In fact, we prove by induction on n that primitive
subsets of T ∗n of size m are coded. The case n = 1 is handled by Lemma 3.4.3.
We omit the proof of the corresponding result for primitive subsets of S∗n, as the
proof is very similar (but slightly easier, with, for example, open balls replaced
by closed balls).

So let F = {Z1, . . . , Zm} ⊂ T ∗n . Then each Zi is a coset of MLi for some
lattice Li ∈ Sn. By our primitivity assumption and the corresponding result for
primitive subsets of S∗n, {L1, . . . , Lm} is coded by some sequence λ from G. Let
Ai be the projection of Zi to the first coordinate. Then, by Lemma 3.4.4(ii), Ai

is an open ball, a torsor of some Bi ∈ MS1. For a ∈ Ai, let Ei,a := {x − y :
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(a, x), (a, y) ∈ Li}. Then Ei = Ei,a is independent of a, and is an R-submodule
of Kn−1 lying in MSn−1, by Lemma 3.4.4(iii). For each i = 1, . . . ,m, and each
x ∈ Ai, let hi(x) := {y : (x, y) ∈ Zi}. Then hi(x) is a coset of Ei, so is a member
of T ∗n−1.

Observe that Zi is interdefinable (over ∅) with the triple consisting of pLiq, pAiq,
and the germ of hi on Ai. Indeed, if c +MLi, c

′ +MLi are distinct, then they
are disjoint, so either they have distinct projections to the first coordinate, or the
corresponding functions do not agree anywhere on this projection.

By primitivity, the Ai are all equal or all distinct, as are the Li.
Case 1. A1 = . . . = Am = A and L1 = . . . = Lm = L. Now, for x ∈ A, let

h(x) be a code in G for the set {h1(x), . . . , hm(x)}; this exists by induction, as
the hi(x) lie in T ∗n−1. By Lemma 3.3.8, the germ of h on the open ball A is coded
in G, by germ(h) say, and (pAq, pLq, germ(h)) is a code for F .

Case 2. A1 = . . . = Am = A, and the Li are all distinct. In this case,
for each x ∈ A there is a code in G, denoted h(x), for the map {L1, . . . , Lm} →
{h1(x), . . . , hm(x)} taking each Li to hi(x); indeed, this map is coded by Lemma 3.4.6
— we may take the code to be over ∅ since λ codes {L1, . . . , Lm} and {h1(x), . . . , hm(x)}
is coded in G by induction. Again, the germ of h on A is coded in G by germ(h),
say, and (pAq, germ(h)) is a code in G for F .

Case 3. A1, . . . , Am are all distinct. We shall assume that the Li are also
distinct, but the other case is easy.

For (x1, . . . , xm) ∈ A1× . . .×Am, let x∗ be a code in K for {x1, . . . , xm}. For
each such x∗, consider the map f(x∗) : {A1, . . . , Am} → {x1, . . . , xm} which takes
each Ai to xi, the map h(x∗) : {A1, . . . , Am} → {h1(x1), . . . , hm(xm)} taking each
Ai to hi(xi), and the map `(x∗) : {A1, . . . , Am} → {L1, . . . , Lm} which takes each
Ai to Li. By Lemma 3.4.5 (and induction, in the case of h, where we need that
{h1(x1), . . . , hm(xm)} is coded in G), each of f(x∗), h(x∗), and `(x∗) is coded in
G. Let g(x∗) be a code in G for the triple (f(x∗), h(x∗), `(x∗)).

We consider the germ of the function g on the definable type q, provided by
Lemma 3.4.7 (Case 2, in the proof). Let c be a code in G for {A1, . . . , Am}; this
exists by Lemma 3.4.3. The above germ of g is coded in G over c, and its code,
together with c, is a code for F . This completes the proof of (I)m for r = 1.

We now prove (II)m, that if F ⊂ G with |F | = m, then any function f : F →
G is coded. For each n, let τn denote the natural map Tn → Sn. By an easy
induction, we may suppose that F and F ′ are primitive over pfq. By (I)m, F
and F ′ := f(F ) are coded in G.

Suppose first that F ⊂ Tn, and F ′ ⊂ Tn′ . By primitivity, τn|F is injec-
tive or constant; likewise for τn′|F ′ . In all the four cases, Proposition 2.6.5 and
Lemma 3.4.2 ensures that f is coded.

If F (or similarly F ′) is a subset of K, then there is a canonical map F → T1

(take the map to the reduction of the smallest closed ball containing F ). Likewise,
if F ⊂ Sn, then by Lemma 3.4.2 there is an pFq-definable injection F → Intk,pFq.
Thus, we can reduce all cases to that handled in the last paragraph.
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Finally, we deduce (I)m for all r. Let r > 1, and let F ⊂ Gr have size m,
and for i = 1, . . . , r let πi be the projection Gr → G to the ith coordinate. As in
the r = 1 case, by induction on m we may suppose that F is primitive. Then by
primitivity, each πi is constant or injective. As |F | > 1, there is some projection,
say π1, which is injective. But now F is coded by a code for π1(F ) ⊂ G, together
with the sequence of codes for functions πi ◦ π−1

1 : G → G. 2

The following corollary enables us to work with a weaker-looking definition of
coding.

Corollary 3.4.8 If i ∈ Keq and there is a tuple e in acl(Ai) ∩ G such that
i ∈ dcl(Ae) then i is coded in G over A.

Proof. Let S be the set of conjugates of e over Ai. Then pSq ∈ dcl(Ai),
and i ∈ dcl(ApSq). Furthermore, since finite subsets of Gn can be coded by
Theorem 3.4.1, S has a code e′ in G over A, and e′ is a code of i over A. 2

Corollary 3.4.9 Let U ∈ V be definable, let C ⊂ G be such that there is a
C-definable injection U → G, let f : U → G be a definable function, and let
B = aclG(Cpfq). Then f ∈ dcl(B).

Proof. Consider Σ := {D ⊂ U : D, f |D both definable over B}. If
⋃

Σ = U ,
then by compactness, f is B-definable, so we may suppose

⋃
Σ 6= U . Then

there is a complete type p over B whose set P of realisations lie in U \
⋃

Σ. By
Lemma 2.3.6, p is the generic type of a unary set V over B. As V is a subtorsor
of U , V ∈ U . By Proposition 3.3.9, there is a B-definable function g with the
same germ on V as f . If X := {x ∈ U : f(x) = g(x)}, then X ∩ P 6= ∅. By
Lemma 2.3.3, X is uniquely a finite set of Swiss cheeses no two trivially nested.
By Theorem 3.4.1, as subtorsors of U are coded, each of the Swiss cheeses is
coded in G, and hence X is coded in G by Theorem 3.4.1 again. But X is Bpfq-
definable, so B-definable, as B = aclG(pfq) . Hence, as p is a complete type over
B, X ⊇ P . But as g is B-definable, f |X is B-definable, so X ∈ Σ, a contradiction.
2

Theorem 3.4.10 The theory TG in the language LG has elimination of imagi-
naries.

Proof. By Lemma 3.2.1 and Remark 3.2.6 it suffices to code definable func-
tions f from sets in V to G. By Corollary 3.4.8, it suffices to show that pfq ∈
dcl(aclG(pfq)). This is precisely what Corollary 3.4.9 says. 2

We also justify the more concrete version of elimination of imaginaries stated
in the Introduction.
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Proof of Theorem 1.0.2. Let e be an imaginary in the algebraically closed
valued field K. By Theorem 3.4.10, there is a sequence āb̄c̄ interdefinable with
e, with ā a tuple of field elements, b̄ a tuple from T , and c̄ a tuple from S.
(We identify Γ with S1 and k with red(R) ∈ T1.) If ā ∈ Kn then it can be
regarded as a torsor of the trivial submodule of Kn, hence as a submodule of
Kn+1. We may identify c̄ with a single lattice c (the product of the entries of
c̄). Likewise, b̄ is identifiable with a singleton element of Tm, for some m, and
hence, by Lemma 2.2.6, with an R-submodule of Km+1. The product of the three
modules obtained is an R-module which codes e. 2

We give now a corollary of Theorem 3.4.10 for k-internal sets. This extends
the results of Section 2.6, and will be essential in [3].

Proposition 3.4.11 Let D be a C-definable subset of Keq. Then
(i) D is k-internal if and only if D is stable and stably embedded;
(ii) D is k-internal if and only if D ⊂ dcl(C ∪ Intk,C).

In the proof of (ii) we shall freely use the fact that any tuple of Intk,C is
interdefinable over C with an element of Intk,C (using the product of the corre-
sponding lattices). The ingredients of the proof are elimination of imaginaries,
Lemma 3.4.2 (to handle finite primitive sets of lattices) and Lemma 2.6.7 (to
reduce finite sets of lattices to the primitive case).

Proof. (i) By elimination of imaginaries for ACVF, we may suppose that the
entries of D lie in G. Then (i) follows from Lemma 2.6.2.

(ii) The right-to-left direction is trivial. For the other direction, let D be
k-internal. As in (i) above, we may suppose that the entries of D lie in G. By
Lemma 2.6.2 (i)⇔(v), it suffices to show

(a) if F is a C-definable finite subset of G, then F ⊂ dcl(C ∪ Intk,C), and
(b) if s is a lattice with s ∈ acl(C), then red(s) ⊂ dcl(C ∪ Intk,C).
We first prove (a). The proof is by induction on |F |. We may suppose that

F is a single orbit over C. Suppose first that F is imprimitive over C, with
an equivalence relation having non-trivial classes F1, . . . , Fr, say. By elimination
of imaginaries each Fi has a canonical parameter bi (a tuple from G), and by
induction (as {b1, . . . , br} is C-definable and r < |F |), b1, . . . , br ∈ dcl(C∪ Intk,C).
Let ti be chosen canonically in Intk,C such that bi is Cti-definable. We may
suppose that there is a C-definable lattice s such that {t1, . . . , tr} is a C-definable
subset of red(s). Put Ci := Cti. By induction, Fi ⊂ dcl(Ci ∪ Intk,Ci

). Thus,
there is a Ci-definable lattice si (for i = 1, . . . , r) and ui ∈ red(si) such that
Fi ⊂ dcl(Ctiui). Now, by Lemma 2.6.7, red(si) ⊂ dcl(C ∪ Intk,C), and it follows
that F ⊂ dcl(C ∪ Intk,C).

Thus, we may suppose that F is primitive over C. If F ⊂ Sn, then F ⊂
dcl(C ∪ Intk,C) by Lemma 3.4.2. If F ⊂ K, then by primitivity there is a C-
definable closed ball U such that all elements of F lie in distinct members of
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red(U). By Lemma 3.4.4 (i), red(U) ⊂ dcl(C ∪ Intk,C), and the result follows, as
F ⊂ dcl(red(U) ∪ {pFq)}. Finally, suppose that F ⊂ Tn, and let τ : Tn → Sn be
the natural map. If τ takes constant value s on F , then F ⊂ dcl(red(s)) ⊂ dcl(C∪
Intk,C). Otherwise, by primitivity, τ is injective on F . Let si := τ(ti). Then (by
the Sn-case just above), s1, . . . , sm ∈ dcl(C∪Intk,C). Hence, there is a C-definable
lattice s, and u1, . . . , um ∈ red(s) such that si is Cui-definable. By elimination
of imaginaries in Intk,C we may suppose that the ui are chosen canonically, so
{u1, . . . , um} is C-definable. Then, by Lemma 2.6.7, red(si) ⊂ dcl(C ∪ Intk,C) for
each i, so F ⊂ dcl(C ∪ Intk,C).

We now prove (b). So let F = {s1, . . . , sm} be a C-definable subset of Sn.
By (a), F ⊂ dcl(C ∪ Intk,C), so we may suppose there is a C-definable lattice s,
and a C-definable subset {t1, . . . , tm} of red(s), such that si is Cti-definable. but
now, by Lemma 2.6.7, red(si) ⊂ dcl(C ∪ Intk,C), as required. 2

Finally, we give two results which use the ideas of the last section, and are
crucial to the independence theory developed in [3]; they are used particularly
for the existence of invariant extensions of arbitrary types, and for the maximum
modulus principle.

Lemma 3.4.12 If B ⊇ acl(B ∩G), and α ∈ Γ, then acl(Bα)∩G = dcl(Bα)∩G.

Proof. If a ∈ acl(Bα)∩G, then a lies in a fibre above α of a B-definable finite
cover ρΓ of Γ. We apply the results of Section 2.4, together with Lemmas 3.3.5
and 3.3.6, to the identity function id on ρΓ. We suppose that ρ has fibres of size
r.

We shall consider the case when a ∈ Sn, as the other cases are similar. First,
if I is an interval of Γ, we say that id has canonical form on I if there are
affine functions hi : I → Dn(K)/Dn(R) and ui ∈ Un(K) (for i = 1, . . . , r)
such that if ρ(x) = y ∈ I then id(x) = x ∈ {uihi(y)Bn(R) : 1 ≤ i ≤ r}.
Observe that as the identity function is injective, for each such x = ρ−1(y), if
i 6= j then uihi(y)Bn(R) 6= ujhj(y)Bn(R). As in Lemmas 3.3.5 and 3.3.6, one
can partition Γ into finitely many B-definable intervals, on each of which id has
canonical form. Suppose I is such an interval. Then for all y ∈ I and x ∈ ρ−1(y),
x ∈ {uihi(y)Bn(R) : 1 ≤ i ≤ r}. Now each of the functions x 7→ uihi(y)Bn(R)
is coded in G, and they are algebraic over B, so each is definable over B (as
B ⊇ acl(B∩G)). Hence, for each i = 1 . . . , r, {x ∈ ρ−1(I) : x = uihi(ρ(x))Bn(R)}
is definable over B. This set intersects each fibre of ρ in a singleton, and it follows
that for each x ∈ ρ−1(I), x ∈ dcl(Bρ(x)), as required. 2

Proposition 3.4.13 Let B ⊂ Keq with acl(B) = B, and let U be a unary set
over B. Let f be a definable function (not necessarily B-definable) with range in
G such that for all x ∈ U we have f(x) ∈ acl(Bx). Then there is a B-definable
function h with the same germ on U as f .
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Remark. By elimination of imaginaries to G (Theorem 3.4.10), the assumption
B = acl(B) could be replaced by B ⊇ aclG(B).

Proof. In the case when dom(f) ⊂ Γ, the hypothesis implies by Lemma 3.4.12
that f (or its restriction to some set containing U) is itself B-definable. So we
shall suppose U is a 1-torsor.

Let n be the number of conjugates of f(x) over Bx, for x ∈ U . Suppose first
that p is the generic type of an open or closed 1-torsor defined over B. Then
by Lemma 2.3.8, the germ of f on P is definable, and we claim that it is B-
definable. For suppose not. Then as B = acl(B), the germ of f on P is not in
acl(B), so there are conjugates f = f0, . . . , fn of f with distinct germs. Now let
a ∈ P be generic over Bf0, . . . , fn. Then the fi(a) are pairwise distinct, which is
a contradiction.

The lemma follows if p is the generic type of a closed 1-torsor, for B contains
a code c for the germ of f on P , and by Theorem 3.3.2, this code is strong.

Suppose now that U is either a B-definable open 1-torsor or the intersection of
a chain (ti : i ∈ I) of B-definable closed 1-torsors. We first suppose that U has a
proper B-definable subtorsor s. We adopt the notation (i0, δ, ei, e, B≤γ(s), etc.)
of the proof of Proposition 3.3.9. For each γ ∈ Γ with rad(s) < γ < δ, consider
sγ := B≤γ(s). By the closed subtorsor case above, for each such γ ∈ Γ there is a
function gγ on sγ, defined over aclG(Bγ) and agreeing with f generically on sγ.

Furthermore, by compactness gγ is definable uniformly in γ. Now by Lemma 3.4.12,
aclG(Bγ) ⊂ dcl(Bγ), so gγ is Bγ-definable. We now argue as in the proof of Case
1 of Proposition 3.3.9. For sufficiently large γ < δ, gγ and f agree on sγ \B<γ(s).
Define h to agree with gγ(x) on sγ \B<γ(s) for all γ > rad(s). Such a function h
can be chosen to be B-definable, and if U is an intersection of a chain (ti : i ∈ I)
of 1-torsors, then the domain of h will contain the generic type of one of the ti.
Now h and f have the same germ on P , as required.

Finally, suppose that U has no B-definable subtorsor. Then by Lemma 2.3.3,
U is the solution set of a complete type p over B. By Corollary 2.4.5, for generic
γ < δ, all closed subtorsors t of U of radius γ have the same type, and indeed,
all elements of t have the same type over Bt. For each x ∈ U , let Dx denote the
set of conjugates of f(x) over Bx, a Bx-definable set of size n.

Let γ < δ, and t be a closed subtorsor of U of radius γ. By the closed torsor
case, there is an aclG(Bt)-definable function g on t agreeing generically with f
on t. Let g1, . . . , gm be the conjugates of g over Bt. Since the elements of t
all have the same type over Bt, there are no Bt-definable proper subtorsors of
t, and hence no acl(Bt)-definable proper subtorsors of t (otherwise, take unions
of conjugates). It follows that for any i, j ≤ m, {x : gi(x) = gj(x)} is empty
or equals t, and the former must hold if i 6= j. From this a short argument
shows that m = n and for x ∈ t, Dx = {gi(x) : 1 ≤ i ≤ n}. Furthermore, if
γ′ < δ is chosen generically over Bt (so γ′ > γ), and t′ is the closed subtorsor
of radius γ′ containing t, and g′1, . . . , g

′
m are analogues of g1, . . . , gm for t′, then
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{g′i|t : 1 ≤ i ≤ m} = {gi : 1 ≤ i ≤ m}.
Now define as follows an equivalence relation ∼ on the set of conjugates of

(γ, t, g): (γ′, t′, g′) is equivalent to (γ′′, t′′, g′′) if for generic (over the above data)
γ′′′ < δ, the ball t′′′ of radius γ′′′ containing t′ and t′′, has a function g′′′ such that
tp(γ′, t′, g′) = tp(γ′′, t′′, g′′) = tp(γ′′′, t′′′, g′′′) and g′′′|t′ = g′, g′′′|t′′ = g′′. By the
last paragraph, the relation ∼ has m classes. Furthermore, ∼ is the restriction to
tp(γ, t′, g′) of a B-definable equivalence relation with m classes. As B = acl(B),
each class is definable over B. Now there is (γ, t, g) such that g and f |t have the
same germ on t, and the union of all g′ with (γ′, t′, g′) ∼ (γ, t, g) is the required
function h. 2

3.5 Necessity of the geometric sorts

In this section we show that the main theorem is in a sense optimal, that is,
elimination of imaginaries could not be proved with very much simpler sorts.
The first result shows that we could not make do with the Sn and just finitely
many Tn, in order to obtain elimination of imaginaries. Given any base C of
parameters, let Intn

k,C be the many-sorted substructure of Intk,C consisting of
sorts red(s) for s ∈ dcl(C) ∩ Sm for all m ≤ n (with the induced C-definable
structure). The result shows that in general Intn

k,C does not even interpret the
whole of Intk,C .

Proposition 3.5.1 Let n ∈ N, with n > 1.
(i) There is a base C and s ∈ dcl(C) ∩ Sn+2 such that red(s) is not a subset

of dcl(C ∪ Intn
k,C).

(ii) The theory of an algebraically closed valued field K does not admit elimi-
nation of imaginaries to sorts K, k,Γ, Sm (m ∈ N) and Tm (m ≤ n).

Proof. (i) First observe that if s ∈ Sn ∩ C, then the group of automorphisms
of V = red(s) induced by the subgroup of Aut(K) which fixes k ∪ C pointwise
preserves the k-vector space structure on V . It also preserves the filtration on
V (that is, the filtration used for example in Step 3 of the proof of Proposi-
tion 2.3.10); hence it embeds in Bn(k), the group of upper triangular matrices
over k, so is soluble of derived length at most n. Thus, the group induced on Intn

k,C

by Aut(K/k∪C) (the pointwise stabiliser of k∪C) is soluble of derived length at
most n. In particular, if n′ > n and s ∈ Sn′∩dcl(C) and red(s) ⊂ dcl(C∪ Intn

k,C),
then Aut(K/k∪C) induces a soluble group of derived length at most n on red(s).

On the other hand, for any m > 0 let s ∈ Sm, and let C = dclG(s). We show
that if s is chosen carefully then the group of automorphisms induced on red(s)
by Aut(K/k∪C) has derived length m−1; this can be arbitrarily large, contrary
to the last paragraph.

To see this, first observe that if γ1 < . . . < γt is a sequence of elements of Γ,
with each γi chosen generically large over the previous γj, and Vi := {x ∈ K :
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|x| = γi}, then V1× . . .× Vt is a complete type over k ∪ {γ1, . . . , γt}. Now choose
a lower unitriangular matrix B = (bij) over K, with

1 < |b21| < . . . < |bm1| < |b32| < . . . < |bm2| < . . . < |bm,m−1|.

We also assume each |bij| is chosen generically large over the previous |bi′j′| in the
above sequence. Let A be any lower unitriangular matrix over R. The genericity
(and the fact that corresponding elements of B and AB have the same norms)
ensures there is σ ∈ Aut(K/k) with σ(B) = AB.

Let L be the lattice generated by the rows of B. Then σ takes these rows to
the rows of AB, so fixes L, and induces an automorphism of V = L/ML. Also,
σ fixes C := dclG(pLq). As σ fixes k, this is a k vector space automorphism of V .
Furthermore, with respect to the basis of V consisting of the reductions of the
rows of B, σ is represented by the matrix red(A)T (acting by left multiplication).
Thus, left multiplication by any element of Um(k) gives an automorphism of V
induced by Aut(K/k ∪ C). The derived length of Um(k) is m − 1, so (i) follows
provided m ≥ n+ 2.

(ii) Let m = n+2, and V = L/ML as in (i). In (i), as Um(k) has no definable
proper subgroups of finite index, its action on V is induced by Aut(K/k∪acl(C)).
Choose g ∈ Um(k)(m−1) \ {1}, that is, non-trivially in the penultimate term of
the derived series. Let σ ∈ Aut(K/k ∪ acl(C)) induce g; we may suppose that σ
can be expressed as a product of a sequence τ of elements of Aut(K/k ∪ acl(C))
so as to witness that g ∈ Um(k)(m−1). There is v ∈ V with σ(v) 6= v. Let
c = (c1, . . . , cr) be a code for v in Intn

k,C . Then each ci lies in a k-internal C-
definable set. If ci is a lattice or field element, then by Lemma 2.6.2 ci ∈ acl(C),
so σ fixes ci. Otherwise, ci ∈ red(s) where s ∈ acl(C) ∩ S` for some ` ≤ n. Then
by the first paragraph of the proof of (i), the elements of τ fix s, and σ fixes ci.
It follows that v 6∈ dcl(c), a contradiction. 2

The next result gives an alternative proof that the original conjecture (that
elimination of imaginaries holds to sorts consisting of open and closed balls)
is false. This fact is implied by Proposition 3.5.1; for all balls are coded in
S1∪S2∪T1∪T2 (as in the last paragraph of the proof of Lemma 2.2.6). However,
the next result also contains slightly more delicate information about k-internal
sorts. It shows that in general, over a base C, we do not have elimination of
imaginaries for the multi-sorted structure with a sort red(u) for each C-definable
closed ball.

Proposition 3.5.2 (i) There is a parameter set C such that the multisorted k-
internal structure Intop

k,C does not have elimination of imaginaries. Here, Intop
k,C is

the structure which has a sort for each set red(t) (t a C-definable closed ball), and
its ∅-definable relations are those induced by the C-definable relations of Keq.

(ii) The theory of an algebraically closed valued field does not have elimination
of imaginaries to the level of sorts consisting of field elements and open and closed
balls.
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Proof. (i) We work over an arbitrary parameter set C0. Pick generic ε < 1
(in Γ). Then choose b1 generic in R over C0ε and b2 generic in R over C0εb1, and
put Ui := B≤ε(bi) for each i. Let V := red(εR), a 1-dimensional k-space, and for
i = 1, 2 let Ai := red(Ui) = Ui/εM, a torsor of V . Let C := acl(C0pU1qpU2q).
Let Aff(A1, A2) be the set of affine homomorphisms A1 → A2. This is clearly a
C-definable k-internal set of Morley rank 2: a generic affine homomorphism h is
determined by the induced element of Hom(V, V ) (a Morley rank one set), and,
for any fixed a ∈ A1, the image h(a). If elimination of imaginaries to balls held in
Intop

k,C , then each generic element of Aff(A1, A2) would be coded over C in Intop
k,C

by an independent (over C) pair of elements of C-definable strongly minimal sets
of the form red(e), where e is a C-definable closed ball. In particular, if h were
generic in Aff(A1, A2) then acl(h) would contain two distinct rank 1 algebraically
closed subsets (in Intop

k,C). We now work over C, so omit reference to parameters
from C.

Claim 1. The action of V × V on A1 × A2 by translation is elementary over
k, V .

Proof. It suffices to check that for (a1, a2) ∈ A1 × A2 and (v1, v2) ∈ V × V ,
tp(a1, a2/kV ) = tp(a1 + v1, a2 + v2/kV ). This follows from the generic choice of
U1 and U2. As a first step, observe that if tp(a1/kV ) 6= tp(a1 + v1/kV ), then for
each generic U ∈ R/εR there is a finite non-empty subset U∗ of red(U) definable
over C0pUqpU2qv̄ (v̄ from kV ), with U∗ := f(pUq, v̄) say. Let

g(pUq) := {v̄′ ∈ kV : f(pUq, v̄′) is a finite non-empty subset of red(U)}.

Then g is an C0pU2q-definable function from R/εR into the stable structure
Intk,C . It follows easily that g is constant on an infinite subtorsor W of R/εR
containing U . Hence, {f(pU ′q, v̄) : U ′ ∈ W} is a definable subset of W which is
not a finite union of Swiss cheeses, contrary to Lemma 2.3.3. Thus tp(a1/kV ) =
tp(a1 + v1/kV ). A similar argument shows that all elements of U2 have the same
type over kV A1, and completes the proof of the claim.

Part (i) of the proposition now follows immediately from the following claim.

Claim 2. Let h be a generic element of Aff(A1, A2). Then acl(h) contains a
unique algebraically closed subset of Morley rank 1.

Proof. There is a natural map π : Aff(A1, A2) → Hom(V, V ), where for
h ∈ Aff(A1, A2) and a1 ∈ A1, v ∈ V , we have h(a1 + v) = h(a1) + π(h)(v).
We shall show that if h is generic in Aff(A1, A2) and b ∈ acl(h) with rk(b) =
1, then b ∈ acl(π(h)) (so acl(π(h)) is the claimed rank 1 algebraically closed
subset). Suppose this is false, and choose b as above but with b 6∈ acl(π(h)),
so b is independent from π(h) over ∅. Let h′ be an independent conjugate of
h over acl(b), and g := π(h), g′ := π(h′). Then as Hom(V, V ) has rank one,
g, g′ are independent elements of Hom(V, V ), so in particular are distinct. Now
since Aff(A1, A2) is invariant under the action of V × V , the induced action on
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Aff(A1, A2) is elementary over CkV , by Claim 1. For any f ∈ Hom(V, V ), let
∆(f) be the graph of f and let A(f) := π−1(f). Then V × V fixes A(f) setwise,
and so acts on A(f) with kernel ∆(f) (this is easily checked). Thus, V × V acts
on A(g′) × A(g) with kernel ∆(g) ∩ ∆(g′) = {0}, so the action is faithful. It is
also easily checked that V × V is transitive on A(g), so ∆(g′) is transitive on
A(g), and likewise ∆(g) is transitive on A(g′). Thus, V × V = ∆(g′) ⊕ ∆(g) is
transitive on A(g) × A(g′). In particular, some generic (h1, h2) ∈ A(g) × A(g′)
has the same type (over kV ) as (h, h′). Now as (g, g′) is generic in Hom(V, V ),
in fact (h1, h2) is generic in Aff(A1, A2). In particular, acl(h1)∩ acl(h2) = acl(∅).
Since tp(h1h2) = tp(hh′), this contradicts the fact that b ∈ acl(h) ∩ acl(h′). 2

(ii) Suppose G∗ is a collection of sorts consisting of a sort for open balls and a
sort for closed balls. (We can add sorts for K, k, and Γ, but these are redundant -
for example elements of K are closed balls of radius zero.) Much as in the proof of
Lemma 2.6.2, it can be shown that if C = acl(C), then any C-definable k-internal
subset of (G∗)n is a subset of a finite union of sets red(u1)× . . .× red(um)× {c},
where c is a tuple in C and the ui are C-definable closed balls. The result now
follows from (i). 2
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