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1 Introduction

This paper contains a result on the reconstruction of certain homogeneous
transitive ω-categorical structures from their automorphism group. The
structures treated are relational. In the proof it is shown that their auto-
morphism group contains a generic pair (in a slightly non-standard sense,
coming from Baire category).

Reconstruction results give conditions under which the abstract group struc-
ture of the automorphism group Aut(M) of an ω-categorical structure M
determines the topology on Aut(M), and hence determines M up to bi-
interpretability, by [1]; they can also give conditions under which the ab-
stract group Aut(M) determines the permutation group 〈Aut(M),M〉, so
determines M up to bi-definability. One such condition has been identified
by M. Rubin in [10], and it is related to the definability, in Aut(M), of point
stabilisers. If the condition holds, the structure is said to have a weak ∀∃
interpretation, and Aut(M) determines M up to bi-interpretability or, in
some cases, up to bi-definability.

A better-known approach to reconstruction is via the ‘small index property’:
an ω-categorical stucture M has the small index property if any subgroup
of Aut(M) of index less than 2ℵ0 is open. This guarantees that the abstract
group structure of Aut(M) determines the topology, so if N is ω-categorical

∗This research was part of the first author’s PhD thesis at the University of Leeds, and
was sponsored by the Istituto Nazionale di Alta Matematica
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with Aut(M) ∼= Aut(N ) then M and N are bi-interpretable. All the struc-
tures handled in this paper are known to have the small index property.
However, in unpublished work A. Singerman has shown that there is an ω-
categorical structure which has a weak ∀∃-interpretation but does not have
the small index property – it is the well-known example whose automorphism
group has a quotient which is elementary abelian of rank 2ℵ0 . There are also
familiar examples, the random tournament and the universal homogeneous
partial order, which are proved in [10] to have a weak ∀∃-interpretation, but
for which the small index property is unknown. On the other hand, there are
easy examples with the small index property but no weak ∀∃-interpretation:
for example, an equivalence relation with all classes of size two, or indeed,
any ω-categorical structure whose automorphism goup has non-trivial centre
– see Proposition 1.2.1 of [3].

Our belief, reinforced by the present paper and by [2], is that the existence
of weak ∀∃-interpretations is rather easier to prove than the small index
property, and that there are many different (slightly ad hoc) approaches.
The existence of a weak ∀∃-interpretation provides extra information which
apparently does not follow from the small index property; namely, that the
structure M is interpretable (with parameters) in Aut(M).

In this paper, we describe a method for obtaining weak ∀∃ interpretations
for a range of relational structures; these include universal homogeneous k-
kypergraphs, homogeneous Km-free graphs and the ‘Henson digraphs’. For
all of these, the small index property is known, through the proof in [7]
together with various extension lemmas for partial isomorphisms proved by
Herwig [6]. These lemmas are an analogue of Hrushovski’s extension lemma
for graphs [8], which is needed to ensure that the argument in [7] applies to
the random graph. Hrushovski’s lemma states that given any finite graph Γ,
there is a finite graph ∆ which contains Γ as an induced subgraph, such that
any isomorphism between subgraphs of Γ extends to an automorphism of
∆. We shall need suitable versions of Herwig’s extension lemmas, relativised
to partial isomorphisms having a specific cycle type. It is possible that the
method that we give here for obtaining weak ∀∃ interpretations might work
where Herwig’s method for small index does not. In particular, the extension
lemmas required here only involve extending two partial isomorphisms.

Section 2 of the paper contains the required theory of ‘generic pairs’ of
automorphisms, and a description of some sufficient conditions for their
existence. In Section 3 we show how to derive a weak ∀∃ interpretation from
the existence of such a pair. Section 4 contains a description of Herwig’s
arguments in [6], and of how to modify them so that the construction in
Section 2 works.

The theorem we prove is the following. We warn, though, that our defini-
tion of ∀∃-interpretation is marginally weaker than that of Rubin (see Defini-
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tion 1.3 below, and the remark before it). In the theorem below our notation
is as follows: if G is a permutation group on a set Y , and y ∈ Y , then Gy

denotes the stabiliser of y, and if g ∈ G then fix(g) := {y ∈ Y : g(y) = y}. In
this paper, a homogeneous structure is always a countable relational struc-
ture such that every isomorphism between finite substructures extends to an
automorphism. The transitivity assumption below is to keep the statements
as simple as possible. All the examples we have in mind are transitive.

Theorem 1.1 Let M be an ω-categorical transitive homogeneous relational
structure, let d ∈M and f1, f2 ∈ Aut(M) be such that

1. fix(f1) = fix(f2) = {d},

2. the conjugacy class (f1, f2)Aut(M)d is comeagre in Xd ×Xd,

where Xd = {g ∈ Aut(M) : fix(g) = {d}}.
Then M has a weak ∀∃ interpretation.

From the above, via Theorem 1.6 below, we obtain the following, which also
follows from the work of Herwig. The ‘Henson digraphs’ are the family of
size continuum of countable homogeneous digraphs described by Henson in
[5].

Corollary 1.2 Let M be a universal homogeneous Km-free graph, a uni-
versal homogeneous k-hypergraph or a Henson digraph, and let N be ω-
categorical and such that Aut(N ) ∼= Aut(M). Then M and N are bi-
interpretable.

We now give the definition of a weak ∀∃ interpretation (to be found in [10]).
In fact, we work (throughout this paper) with a slightly weaker notion of
∀∃ equivalence formula than that of Rubin, since in the final clause below
we do not require that the formula defines an equivalence relation which
is invariant under conjugation in all groups. Inspection of Rubin’s proofs
shows that this does not affect his applications to bi-interpretability and
bi-definability.

Definition 1.3 Let G be a group, and let ḡ = 〈g1, . . . , gn〉 ∈ Gn. Let
φ(ḡ, x, y) be a formula in the language of groups with parameters ḡ. Let
C := gG

1 . We say that φ is an ∀∃ equivalence formula for G if:

• φ is ∀∃;

• Group theory ` ∀ū(φ(ū, x, y) is an equivalence relation on the conju-
gacy class of u1);
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• φ(ḡ, x, y) defines a conjugacy invariant equivalence relation on C.

We shall write Eφ for the equivalence relation defined by φ.

Definition 1.4 (Weak ∀∃ interpretation, transitive case) Let M be ω-
categorical, and such that Aut(M) acts transitively on M. A weak ∀∃ in-
terpretation for M is a triple 〈φ,~g, τ〉, where φ is an ∀∃-equivalence for-
mula, ~g ∈ Aut(M)n, τ is an isomorphism between the permutation groups
〈Aut(M), C/Eφ〉 and 〈Aut(M),M〉, that is, τ : C/Eφ →M is a bijection
such that for all g, h ∈ Aut(M)

[τ(h/Eφ)]g = τ(hg/Eφ).

By the Ryll-Nardzewski theorem, Aut(M) has finitely many orbits on M.
We can thus extend the definition of a weak ∀∃ interpretation to the general
case when M is not transitive.

Definition 1.5 (Weak ∀∃ interpretation) Let M be an ω-categorical struc-
ture with 1-types P1, . . . , Pn. A weak ∀∃ interpretation for M is a tu-
ple 〈~φ,~g, ~τ〉, where ~φ = (φ1, . . . , φn) are ∀∃ equivalence formulae, ~g =
(~g1, . . . , ~gn) are tuples of elements of Aut(M), ~τ = (τ1, . . . , τn) are maps
such that each triple 〈φi, ~g

i, τi〉 is a weak ∀∃ interpretation for the structure
induced on Pi.

We can now state Rubin’s main result. A structureM is without algebraicity
if acl(A) = A for all A ⊂ M .

Theorem 1 (Rubin, 1987) Let K be the class of ω-categorical structures
without algebraicity. Let M ∈ K have a weak ∀∃-interpretation, and let
N ∈ K be such that M ∼= N as pure groups. Then 〈Aut(M),M〉 ∼=
〈Aut(N ),N〉, that is, M and N are bi-definable.

We also state the following consequence of Rubin’s work, noted in [10] and
proved in [3] (Proposition 1.1.10).

Theorem 1.6 Let M and N be ω-categorical structures with isomorphic
automorphism groups, and suppose that M has a weak ∀∃-interpretation.
Then M and N are bi-interpretable.

The existence of weak ∀∃-interpretations also yields the following (which is
not terribly surprising, given that the theory of the automorphism group is
likely to be far wilder than that of the structure).

Proposition 1.7 Suppose that the ω-categorical structure M has a weak
∀∃-interpretation. Then the structure M is interpretable with parameters in
Aut(M).
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Proof If M has a weak ∀∃-interpretation then there are conjugacy classes
C1, . . . , Cn and for each i a G := Aut(M)-invariant equivalence relation Ei

on Ci such that the domain of M can be identified with the disjoint union
of the Ci/Ei, with G acting by conjugation (we can use a formal device to
ensure that the Ci/Ei are disjoint, e.g. replacing a conjugacy class by a
conjugacy class of pairs (g, 1)). Every ∅-definable relation of M is a finite
union of G-orbits, and G-orbits on (C1/E1)r1 × . . .× (Ct/Et)rt are definable
in the group language. 2

In the second part of [10], Rubin showed that many binary relational ω-
categorical structures have weak ∀∃-interpretations. In a further paper [2]
the first author has exhibited weak ∀∃-interpretations (again, with a slightly
different version of the notion) for ℵ0-dimensional projective geometries over
a finite field, possibly equipped with a non-degenerate sequilinear form.

2 Structures with a generic pair of automorphisms

Let M be a transitive ω-categorical structure, G = Aut(M), d ∈ M and
Xd ⊆ G be the set of automorphisms fixing only d:

Xd := {p ∈ G : fix(p) = {d}}.

It is well known that G can be given the structure of a Polish space (i.e. a
completely metrisable space which is also separable): indeed, let {xi : i ∈ ω}
list the domain of M, and put d(g, h) = 1/2n where n is least such that
g(xn) 6= h(xn) or g−1(xn) 6= h−1(xn). Clearly, Xd is closed in G. Hence
Xd is a Polish space in its own right, and so are the stabiliser Gd and the
product space Xd ×Xd.

Definition 2.1 Let X ⊆ Aut(M) be closed in Aut(M), so that X is a
Polish space with the inherited topology. Suppose H ≤ Aut(M) is a subgroup
such that XH := {xh : x ∈ X, h ∈ H} ⊆ X, so that H acts on X by
conjugation. A tuple (g1, . . . , gn) ∈ Xn is an H-generic tuple in X if the
orbit (g1, . . . , gn)H of H on Xn is comeagre in the Polish space Xn.

Fact 2.2 Any two H-generic n-tuples are conjugate in Xn under H.

Proof This follows from the fact that orbits of H on Xn are either disjoint
or equal. 2

We shall be concerned with relational structures whose automorphism group
contains a pair (f1, f2) of automorphisms such that fix(f1) = fix(f2) = {d}
and the pair (f1, f2) is Gd-generic in Xd ×Xd (i.e. (f1, f2)Gd is comeagre in
Xd ×Xd).
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Suppose that M is an ω-categorical, transitive and homogeneous structure
in the relational language L = {R1, . . . , Rn}. Let κ be the class of all finite
substructures of M. For A ∈ κ, consider an expansion A′ of A to the
language L′ = {R1, . . . , Rn, f1, f2, d}, where f1 and f2 are function symbols
and d is a constant. Let κ′ be the class consisting of all structures isomorphic
to such A′, where we require in addition that f1, f2 are automorphisms of
the L-reduct A, and fix(f1) = fix(f2) = {d}.

Definition 2.3 Let κ′ be the class of structures described above. Let A′,B′1,B′2 ∈
κ′ be such that A′ ⊆ B′i, A′ = B′1 ∩ B′2, and suppose that fA

′
j ⊆ f

B′i
j , for

i, j = 1, 2. Let C′ be the disjoint union of B′1 and B′2 over A′ so that:
1. B′i ≤ C′, i = 1, 2;
2. C′ = B′1 ∪ B′2, fC

′
i = f

B′1
i ∪ f

B′2
i ;

3. for all relation symbols R ∈ L and n-tuples ā ∈ C′n, C′ |= Rā if and only
if ā ∈ B′i for some i ∈ {1, 2} and B′i |= Rā.
Then C′ is called the free amalgam of B′1 and B′2.

If for all A′,B′1,B′2 ∈ κ′ we have C′ ∈ κ′, we say that κ′ has the free
amalgamation property.

Free amalgamation is generally treated as a property of structures in a rela-
tional language. As such, k-hypergraphs, Kn-free graphs and, more gener-
ally, the class of structures described by Herwig in [6] all enjoy free amalga-
mation. The property does not hold, for instance, for the class of all finite
tournaments or all finite partial orders. Definition 2.3 may be viewed in this
way, if we parse the function symbols as binary relation symbols.

If we assume that κ′ has the free amalgamation property, Fräıssé’s theorem
ensures that κ′ has a Fräıssé limit N ′ = (N , f1, f2, d), which is countable
and homogeneous (meaning that isomorphisms between finite substructures
extend to automorphisms). The structure will be characterised up to iso-
morphism by being a union of a countable chain of members of κ′, and
having the following property, denoted (EMB).

Let A′,B′ ∈ κ′, with A′ ≤ B′. Let g : A′ → N ′ be an embedding. Then g
extends to an embedding h : B′ → N ′.

Our goal is to ensure M is isomorphic to the L-reduct N of N ′ (so they can
be identified), and that the automorphisms f1, f2 form a Gd-generic pair in
Xd ×Xd. The proof is via a Banach-Mazur game, and it requires that the
class κ has a certain ‘fixed point extension property’.

Definition 2.4 Let S be a relational language, π a class of finite S-structures.
Then π is said to have the fixed point extension property (FEP) for finite
partial isomorphisms if for all A ∈ π, and p1, . . . , pn finite partial isomor-
phisms of A such that fix(p1) = · · · = fix(pn) = {d}, there are B ∈ π such
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that A ≤ B, and f1, . . . , fn ∈ Aut(B) with pi ⊆ fi and fix(fi) = {d} for
i = 1, . . . , n.

We shall use the property with n = 2, which we call FEP2. Section 3 below
will be devoted to proving FEP for a range of different classes of relational
structures.

We first check that N ∼= M.

Lemma 2.5 Let N ′ be the Fräıssé limit of the class κ′ of finite structures in
the language L′ described above, and suppose κ has FEP2. Then the reduct
N := N ′|L is isomorphic to M.

Proof Let A be a finite substructure of N . We want to show that for any
finite L-structure B such that A ≤ B, B embeds into N over A.

Since N ′ = (N , f1, f2, d) is the Fräıssé limit of κ′, it is a union of a chain
of members of κ′. Hence there is a finite L′-structure C′ := (C, f1, f2, d) ≤
(N , f1, f2, d), such that C′ ∈ κ′ and A ≤ C′|L. Let D be an L-amalgam of
C and B over A (we use here that M is homogeneous, so that κ has the
amalgamation property). Let D′ be the expansion of D to L′, where d, f1, f2

are interpreted as in C′ (so the fi are partial).

By FEP2 there is a finite L′-structure E ′ = (E , f ′1, f
′
2, d) ∈ κ′ such that:

1. D′ ≤ E ′;
2. fi ⊆ f ′i for i = 1, 2;
3. fix(f ′i) = {d} for i = 1, 2.

By the universality and homogeneity of N ′ with respect to structures in κ′,
E ′ embeds in N ′ over C′. It follows that B embeds in N over A, as required.
2

By the last lemma, we may writeM′ = (M, f1, f2, d), in place ofN ′. Clearly
fi ∈ Aut(M) and fix(fi) = {d}, for each i.

We now prove that the automorphisms f1, f2 of M are a generic pair.

Proposition 2.6 Let M be an ω-categorical, transitive and homogeneous
structure in the relational language L = {R1, . . . , Rn}. Adopt the nota-
tion d, f1, f2, L

′, κ, κ′ of the discussion above, and suppose that κ′ has the
free amalgamation property and that κ has FEP2. Let (M, f1, f2, d) be the
Fräıssé limit of κ′, so d = fix(f1) = fix(f2), let G = Aut(M), and put
D = (f1, f2)Gd. Then D is comeagre in Xd ×Xd.

Proof We play the Banach-Mazur game of D. Let

P := {f : M→M : f is a finite partial isomorphism with fix(f) = d}.
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Then P is partially ordered by inclusion. Now let P 2 = P ×P . The game is
played as follows: players I and II choose an increasing sequence of elements
of P 2

(p1,0, p2,0), (p1,1, p2,1), (p1,2, p2,2), . . .

so that p1,i ⊆ p1,i+1 and p2,i ⊆ p2,i+1 for all i. Player I starts the game and
chooses (p1,i, p2,i) for i even, player II chooses at odd stages. Player II wins
if and only if (p1, p2) := (

⋃
i∈ω p1,i,

⋃
i∈ω p2,i) ∈ D. Player II has a winning

strategy iff D is comeagre in Xd ×Xd. Player II can always play so that at
stage i, for i > 1 and even,

1. he can choose to put any particular x ∈M into the domain and range
of p1,i, p2,i;

2. (p1,i, p2,i) ∈ P 2 and dom(p1,i) = ran(p1,i) = dom(p2,i) = ran(p2,i);

Player II will also ensure

3. (M, p1, p2, d) is weakly homogeneous, that is: if (A, pA1 , pA2 , d), (B, pB1 , pB2 , d)
are finite L-structures, (A, pA1 , pA2 , d) ≤ (B, pB1 , pB2 , d), and α : (A, pA1 , pA2 , d) →
(M, p1, p2, d) is an embedding, there is an embedding α̃ : (B, pB1 , pB2 , d) →
(M, p1, p2, d) extending α.

At stage i + 1, i even, player II is given a finite structure (∆i, p1,i, p2,i, d),
where the pj,i are finite partial isomorphisms of ∆i. Here, ∆i = dom(p1,i)∪
dom(p2,i) ∪ ran(p1,i) ∪ ran(p2,i). For points 1. and 2., for any x ∈ M, II
can consider ∆∗

i+1 := ∆i ∪ {x} and use FEP2 to obtain extensions ∆i+1

of ∆∗
i+1, and p1,i+1, p2,i+1 ∈ Aut(∆i+1) of p1,i, p2,i, each fixing only d. By

homogeneity ofM, ∆i+1 can be chosen to be a substructure ofM containing
∆i.

In order for 3. to hold, a typical task for II is the following: for (A, pA1 , pA2 , d) ≤
(∆i, p1,i, p2,i, d) and (B, pB1 , pB2 , d) ≥ (A, pA1 , pA2 , d), II has to ensure that
(B, pB1 , pB2 , d) embeds in (∆i+1, p1,i+1, p2,i+1, d) over (A, pA1 , pA2 , d). First, ∆i

is a structure in κ containing d ∈ M, and admits partial isomorphisms
p1,i, p2,i each with fixed point d. Thus, by FEP2, there is (∆∗

i , p
∗
1,i, p

∗
2,i, d) ∈

κ′ with (∆i, p1,i, p2,i, d) ≤ (∆∗
i , p

∗
1,i, p

∗
2,i, d). Now, using free amalgamation in

κ′, there is (∆∗
i+1, p

∗
1,i+1, p

∗
i+2, d) ∈ κ′, the free amalgam over (A, pA1 , pA2 , d)

of (∆∗
i+1, p

∗
1,i+1, p

∗
i+2, d) ∈ κ′ and (B, pB1 , pB2 , d) (replacing B by a copy B′

with B′∩∆∗
i = A, if necessary). Finally, since (M, d) is homogeneous, there

is an embedding g of ∆∗
i+1 into M over ∆i. Let ∆i+1 := g(∆∗

i+1), and put
pj,i+1 := g ◦ p∗j,i+1 ◦ g−1, for j = 1, 2.

It follows that Player II can play so that (M, p1, p2, d) has property (EMB).
By (1) and (2) it is the union of a countable chain of members of κ′, so
(M, p1, p2, d) ∼= M′. Thus, there is h ∈ Gd with (ph

1 , ph
2) = (f1, f2), as

required. 2
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Lemma 2.7 The set fGd
1 is comeagre in Xd.

Proof Consider the projections D1, D2 of D to the first and second coordi-
nates respectively. Clearly D ⊆ D1 ×D2. Since D is comeagre in Xd ×Xd,
D1 ×D2 also is. Via the Kuratowski-Ulam theorem (see e.g. Theorem 8.41
of [9]) , it is easy to see that D1 is comeagre in Xd. Note that fGd

1 = D1.
2

We can now prove our main result:

Proposition 2.8 Let g ∈ fGd
1 and Dg := {h ∈ Xd : (g, h) ∈ D}. Then Dg

is comeagre in Xd for all g ∈ fGd
1 .

Proof Since D has the Baire Property, by the Kuratowski-Ulam theorem,
the set

{h ∈ Xd : Dh is comeagre in Xd}

is comeagre in Xd. Also, fGd
1 is comeagre in Xd, so

{h ∈ Xd : Dh is comeagre in Xd} ∩ fGd
1 6= ∅.

Pick g ∈ {h ∈ Xd : Dh is comeagre in Xd} ∩ fGd
1 , so that Dg is comeagre in

Xd. Note that Gd is transitive on fGd
1 . Also, if Dg is comeagre in Xd and h

is conjugate to g under Gd, then Dh is also comeagre in Xd. Therefore, Dg

is comeagre in Xd for all g ∈ fGd
1 . 2

3 The interpretation

Let M be an ω-categorical, transitive and homogeneous structure in a rela-
tional language which satisfies the hypotheses of Proposition 2.6. Then the
Fräıssé limit (M, f1, f2, d) constructed in 2.6 exists, fix(f1) = fix(f2) = {d},
and (f1, f2) ∈ Aut(M)2 is a Gd-generic pair of automorphisms in Xd ×Xd.
We give a weak ∀∃ interpretation for M based on an equivalence relation
defined in terms of our comeagre orbit on pairs D = (f1, f2)Gd , with the
notation of Section 2.

Define DG = {(g1, g2)g : (g1, g2) ∈ D, g ∈ G}, and let DG
1 be the projection

of DG to the first coordinate; so DG
1 is a conjugacy class of G. Since we

assume G to be transitive, for each a ∈M there is g ∈ G such that ag = d.
The set DG consists of certain pairs (h1, h2) such that fix(h1) = fix(h2) is a
singleton, and for each a ∈M there is a pair in DG fixing a. We shall define
an equivalence relation on DG

1 which identifies automorphisms having the
same fixed point.
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Lemma 3.1 Let E be the following equivalence relation on DG
1 :

g1Eg2 ⇐⇒ fix(g1) = fix(g2).

Then for g1, g2 ∈ DG
1

g1Eg2 ⇐⇒ ∃f ∈ G((g1, f), (g2, f) ∈ DG),

so E is ∃-definable with parameters in the language of groups.

Proof (⇐) is immediate. Indeed, if (g1, f), (g2, f) ∈ DG, then fix(g1) =
fix(f) = fix(g2).

(⇒) Let g1, g2 ∈ DG
1 have the same fixed point e. Then, by transitivity of G,

find a conjugating element h ∈ G so that fix(gh
1 ) = fix(gh

2 ) = d. By 2.8, Dgh
1

and Dgh
2

are comeagre in Xd. Hence Dgh
1
∩Dgh

2
6= ∅. Choose k ∈ Dgh

1
∩Dgh

2
,

so that both (gh
1 , k) ∈ D and (gh

2 , k) ∈ D. But then (g1, k
h−1

) ∈ DG and
(g2, k

h−1
) ∈ DG, so kh−1

is our required f .

It follows that E is ∃-definable in the language of groups via the following
formula.

xEy ↔ ∃vwz (x, v)w = (g1, g2) ∧ (y, v)z = (g1, g2),

where g2, g2 are parameters with (g1, g2) ∈ D. It is easy to check that the
formula

xEy ∧ E is an equivalence relation on DG
1

is an ∀∃ equivalence formula. 2

The following theorem follows from the above discussion.

Theorem 3.2 Let M be an ω-categorical, transitive and homogeneous struc-
ture in a relational language which satisfies the hypotheses of Proposition 2.6.
Then M has a weak ∀∃ interpretation.

4 Extension lemmas

We state a range of extension lemmas which will yield FEP2, so make the
Banach-Mazur game described above work for various relational structures.
The proofs are essentially due to Bernhard Herwig. The motivation in Her-
wig’s work was to obtain a proof of the small index property for the struc-
tures treated, by producing an analogue of Hrushovski’s extension lemma
for graphs [8] used in [7]. Herwig’s proofs cover the extension property for
partial isomorphisms without any restriction on the cycle type of the iso-
morphisms involved. However, minimal modifications of his proofs yield
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the extension property for finite partial isomorphisms having a unique fixed
point. We shall give a brief indication of the changes needed. More details
can be found in the first author’s PhD thesis [3].

Herwig’s proofs are by induction on the maximal arity k of the relation
symbols in the language S concerned, and, later, on the maximal size of
certain forbidden configurations. In both cases the induction hypothesis is
used by reducing k as follows: a k-ary relation symbol Rx̄ is replaced by
(k − 1)-ary symbols Ra, one for each element a of the smaller structure, to
be interpreted in the obvious way (Rab̄ ⇐⇒ Rab̄).

Herwig produces separate extension lemmas for three different classes of
structures:

1. the class of all finite structures in a given finite relational language S;

2. the class of finite Km-free graphs, for m ∈ ω;

3. the class of all finite irreflexive structures omitting certain configura-
tions, described below.

Case 1. is needed in order to prove the base step in the induction arguments
for 2. and 3. The class of Km-free graphs in 2. is included in the class
covered by 3. Nevertheless, it is treated separately as a paradigm of the
more intricate case 3. All of Herwig’s proofs can be adapted to yield the
fixed point extension property FEP required in our argument. We indicate
briefly the change needed in Herwig’s argument in case 1, and state the
result for the structures in 3. For our version of the arguments we need the
following fact, which is easy to prove:

Fact 4.1 Let X, Y be finite sets such that |X| = |Y | ≥ 2. Then there is a
fixed-point free bijection α : X → Y .

The theorem we require in the case of general relational structures (i.e., for
case (1) above) is the following:

Theorem 4.2 Let S be a finite relational language, and let κ be the class of
all finite S-structures. Then κ has FEP, the fixed point extension property
for partial isomorphisms.

Herwig’s proof involves what he calls partial permorphisms, rather than iso-
morphisms. For the purposes of our explanation, in what follows a permor-
phism can be thought of as an isomorphism. Let A ∈ κ be given, let d ∈ A,
and let p1, . . . pn be partial permorphisms of A such that fix(pi) = {d} for
each i = 1, . . . , n. We want to find B ∈ κ and total permorphisms f1, . . . , fn

of B such that fi ⊇ pi and fix(fi) = {d}. The first part of Herwig’s argument
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consists in embedding A in a finite S-structure C by adding enough realisa-
tions of positive atomic types over A so that each such type has the same
number of realisations in C. An inclusion/exclusion argument shows that if
φ is a positive atomic type over dom(pi), then the translate φpi by pi (which
will be a type over ran(pi)) has exactly the same number of realisations in
C as φ. Then each pi can be extended to a map hi : C → C which maps the
realisations of φ bijectively to the realisations of φpi . The hi are not total
permorphisms of C, but they essentially determine the required extensions
fi of the pi. We can ensure that fix(hi) = {d} as follows: for each positive
atomic type φ over A we arrange that φ has at least two realisations in C\A.
Then, in virtue of 4.1, hi \ pi can be chosen to be fixed point-free for each
i = 1, . . . , n.

The rest of the proof goes through exactly as in [6], with one further check
needed, namely, that the extensions fi of the pi that one obtains eventually
have a single fixed point. But this follows easily from the fact that the hi

have a single fixed point.

Herwig’s other proofs can be modified in a similar way to yield FEP for the
classes of structures he describes in [6]. His methods cover, for each of the
following homogeneous structures M, the class of structures isomorphic to
a finite substructure of M.

• the universal homogeneous k-hypergraph;

• the universal homogeneous Km-free graph, for any m ≥ 3;

• each Henson digraph;

• the arity k analogues of triangle free graphs, namely, for any fixed
k, the homogeneous k-hypergraph which is universal subject to not
admitting a (k + 1)-set all of whose k-subsets are hyperedges.

Henson digraphs and Km-free graphs are also handled by Rubin, as they are
in fact ‘simple’ in the sense of Rubin ([10], §3).

We refer the reader to [6] for the definitions involved in the statement of the
following theorem, a slight adaptation of the main theorem of [6]:

Theorem 4.3 Let S be a finite relational language, F a set of finite S struc-
tures which are irreflexive and packed, L a set of irreflexive link structures.
Then KLF has FEP, the fixed point extension property for finite partial iso-
morphisms.

The discussion in Sections 1 and 2 yields the following as a corollary:
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Theorem 4.4 Let L be a set of link structures and F be a set of finite
irreflexive packed structures in a finite relational language. Let M be the
Fräıssé limit of the class KLF, and assume that M is transitive. Then M
has a weak ∀∃ interpretation.
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