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Abstract

We consider the problem of determining the optimal investment level that a firm
should maintain in the presence of random price and/or demand fluctuations. We
model market uncertainty by means of a geometric Brownian motion, and we consider
general running payoff functions. Our model allows for capacity expansion as well as
for capacity reduction, with each of these actions being associated with proportional
costs. The resulting optimisation problem takes the form of a singular stochastic control
problem that we solve explicitly. We illustrate our results by means of the so-called
Cobb-Douglas production function. The problem that we study presents a model, the
associated Hamilton-Jacobi-Bellman equation of which admits a classical solution that
conforms with the underlying economic intuition but does not necessarily identify with
the corresponding value function, which may be identically equal to oc. Thus, our
model provides a situation that highlights the need for rigorous mathematical analysis
when addressing stochastic optimisation applications in finance and economics, as well
as in other fields.

1 Introduction

We consider the problem of determining in a dynamical way the optimal capacity level of a
given investment project operating within a random economic environment. In particular,
we consider an investment project that yields payoff at a rate that is dependent on its
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installed capacity level and on an underlying economic indicator such as the price of or
the demand for the project’s unique output commodity, which we model by a geometric
Brownian motion. The project’s capacity level can be increased or decreased at any time
and at given proportional costs. The objective is to determine the project’s capacity level
that maximises the associated expected, discounted payoff flow.

Irreversible capacity expansion models have attracted considerable interest in the lit-
erature, e.g., see Davis, Dempster, Sethi and Vermes [DDSV87] (see also Davis [D93]),
Kobila [K93], @ksendal [?00], Wang [W03], Chiarolla and Haussmann [CHO05], Bank [B05],
and references therein. Recently, Abel and Eberly [AE96] considered a model involving both
expansion and reduction of a project’s capacity level. These authors assume that the rate at
which the project yields payoff is modelled by a constant elasticity Cobb-Douglas production
function. Our model considers much more general running payoff functions that include the
whole family of the Cobb-Douglas production functions as special cases, and allow for the
situation where a running cost proportional to the project’s installed capacity (reflecting,
e.g., labour costs) is also included (see Example 1). Also, Guo and Pham [GP05] consider
a related partially reversible investment model with entry decisions and a general running
payoff function. The model that these authors consider is fundamentally different from the
one considered by Abel and Eberly [AE96] or the one that we study here because, e.g., it is
one-dimensional instead of two-dimensional.

Our analysis, which leads to results of an explicit analytic nature, involves the derivation
of tight conditions for the project’s value function to be finite. The fact that simple choices
for the project’s running payoff function lead to unique solutions to the associated free-
boundary problem that conform with standard economic intuition but are associated with
value functions that are identically equal to infinity presents a most interesting feature of
our analysis (see Remark 3; also, note that this pathological situation does not arise in the
context of the special case studied by Abel and Eberly [AE96]). Indeed, this possibility
stresses the fact that treating optimisation models related to investment decision making in
a “formal” way, which is often the case in the economics literature, can lead to erroneous
conclusions and can suggest the adoption of potentially disastrous policies.

The paper is organised as follows. Section 2 is concerned with a rigorous formulation of
the investment decision model that we study. In Section 3, we derive tight sufficient con-
ditions, which conform with economic intuition, for the associated optimisation problem to
possess a finite value function. We also establish a number of estimates that we use in our
subsequent analysis. Section 4 is concerned with the proof of a verification theorem that pro-
vides sufficient conditions for the value function of our control problem to be identified with
a solution to the associated dynamic programming or Hamilton-Jacobi-Bellman equation.
Finally, we solve the optimisation problem considered in Section 5.



2 Problem formulation

We fix a probability space (€2, F, P) equipped with a filtration (F;) satisfying the usual
conditions of right continuity and augmentation by P-negligible sets, and carrying a stan-
dard, one-dimensional (F;)-Brownian motion W. We denote by A the family of all caglad,
(Fi)-adapted, increasing processes £ such that & = 0.

We consider an investment project that produces a given commodity, and we assume that
the project’s capacity, namely its rate of output, can be controlled at any given time. We
denote by Y; the project’s capacity at time ¢, and we model cumulative capacity increases
(resp., decreases) by a process (T € A (resp., £~ € A). In particular, given any times
0<s<t& —& and &, — &, are the total capacity increase and decrease, respectively,
incurred by the project management’s decisions during the time interval [s,t]. The project’s
capacity process Y is therefore given by

Vi=y+& -§&, Yo=y>0, (1)

where y > 0 is the project’s initial capacity. Note that the assumptions that the processes
£* are caglad and {-“SE = 0 imply that Yy = y. We make the assumption that the project’s
management controls only the project’s capacity level. Accordingly, we denote by II, the set
of all decision strategies available to the project’s management, namely the set of all pairs
(€1,&7) of processes 7,6~ € A, such that ¥; > 0, for all ¢ > 0.

We assume that all randomness associated with the project’s operation can be captured
by a state process X that satisfies the SDE

dX, = bX,dt + V20X, dW,, Xo==z >0, (2)

for some constants b and o. In practice, X; can be the price of one unit of the output
commodity or an economic indicator reflecting, e.g., the output commodity’s demand, at
time £.

To simplify the notation, we define

Sz{(x,y)E]RQ: x>0,y20},

so that S is the set of all possible initial conditions.
With each decision policy (£,£7) € I, we associate the performance criterion

”

Joy(€7,67) = E[/O 6”h(Xt,Yt)dt—K+/[O [67”d§t+—K* e”dft] , (3)

[0,00]

where h : & — R is a given function, and » > 0 and K+, K~ are constants. Here, h models
the running payoff resulting from the project’s operation, and K* (resp., K ) models the
costs associated with increasing (resp., decreasing) the project’s capacity level.



As it stands in (3), the performance index J,, is not necessarily well-defined because
the random variable inside the expectation may not be integrable or even well-defined. To
address this issue, we define

T
Ur = / e h(X,,Y,) dt — Kt / ertdet — K- | etdes, for T>0.  (4)
0 0.7} 0,7]

In the next section (see Lemma 4, in particular), we are going to impose assumptions on A
such that Ur is well-defined, for all 7" > 0, and either

Uy = Ill_I)I;o Ur exists in R, P-a.s., and Uy € L'(Q,F,P), (5)
in which case, we naturally define
Joy(€7,€7) = E[Ux], (6)
as in (3), or there exists an (F;)-adapted process Z such that
Ur < Zp, forall T >0, and li;n sup E [Zr] = —o0, (7)
00
in which case, we define
Juy(€,67) = —oo. (8)

The objective is to maximise the performance index J;, thus defined over all admissible
decision strategies (£1,£7) € II,. The value function of the resulting optimisation problem
is defined by

v(z,y) = sup Jw,y(§+a§_)- 9)
(ET,67)elly

3 Assumptions and preliminary estimates

The purpose of this section is to establish conditions on the problem’s data under which our
control problem is well-posed and its value function is finite, and to prove certain estimates
that will be used in our analysis. Before we address these issues, we first discuss an ODE
that will play an instrumental role in the solution of our control problem.

Let k :]0,00[ — R be any measurable function such that

E [/ e " k(X)) dt} < oo, forallz>0. (10)
0
With reference to Proposition 4.1 of Knudsen, Meister and Zervos [KMZ98]|, the function
R¥ :]0, 0o[ — R given by

RH(z) = ﬁ [xm /Ox s~ k(s) ds + 2" /:0 57" k(s) ds] (11)

o%(n —
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is well-defined and
R¥(z) = E [ /0 h e " k(X,) dt] (12)
Moreover, every solution of the ODE
o’z’u" (x) + bau' (z) — rw(z) + k(x) = 0. (13)
can be expressed by
u(z) = Az" + Bz™ + R¥(z), (14)

for some A, B € R. Here, the constants m < 0 < n are the solutions of the quadratic
equation

PN+ (b—0*)A—r =0, (15)
given by
—(b—0?%) £ /(b—02)? + 402
— (b—0?) £ /( 0)-1—07“. (16)
202
With regard to R[],
if k is increasing, then R is increasing, (17)
and
k
if k£ is increasing, then liﬂ)l k(=) >0 & liﬁ)l R¥(z) > 0. (18)
T T Z
Also, for future reference, we note that, given any A € R,
E [/oo efrtXt)\ dt} — /006[02/\2+(b02)/\r]tE 6702)\2t+\/§a)\Wti| dt
0 0
oo, if A <mor\>n, (19)
—aM 02X+ (b— )N — 7], if A €]m,n|.

We are going to need the following estimate that is related with the definitions above.

Lemma 1 Given any X\ €]0,n[, there exist constants 1,9 > 0 such that

242

0N + &9 _

— = TEpreot
€2

0'2)\2+82 )\
x bl

-7t YA
E [e Xt} < -

and FE [sup e_”A_’t)‘} <
>0

where X; = SUPg<; Xs-



Proof. Since n is the positive solution of the quadratic equation (15), it follows that there

exist £1,&9 > 0 such that
r—e; >0 and o°N+ (b— o)A —(r —e1) = —&o.
Given such parameters, we define

V =sup

|: O'QAQ + &9
£>0

t+ W,
V2|o|A }

we calculate
e X)) = e e sup exp ((r — £1)s — (0°X\? + €2)5 + V20 AW)
s<t
A

g sup [exp(—(T — 51)(15 — 3)) exp (—(02)\2 + 82)8 + \/§0AWS>}

s<t
S x}\e—flte\/ﬂo")\v,
and we observe that

sup e_”Xt’\ < eV2lNV,
>0

Since V is exponentially distributed with parameter 2 (02A? + &5) / (v/2|0|)) (see Karatzas

and Shreve [KS88, Exercise 3.5.9], the two bounds follow by a simple integration.

g

The following assumptions on the data of the control problem formulated in Section 2
will ensure that the associated free-boundary problem has a unique solution that conforms

with economical intuition.

Assumption 1 7 > 0, the function h is C?, and, if we define
H(z,y) = hy(z,y), (z,9) €S,

then, given any y > 0,

H,(z,y) >0, forallz >0, and lim H(z,y) = oo,

z—r00
and, given any z > 0,

Hy(z,y) <0, forally>0.
Also, K™+ K~ > 0, and

/s_m_1|Hy(s,y)|dS+/ s—n_1|Hy(s,y)|ds<oo, for all y > 0.
0 xr

(20)

(21)

(22)



It is worth observing that (21) and (22) in this assumption have a natural economic inter-
pretation. Indeed, we can think of H(z,y)Ay as the additional running payoff that we are
faced with if we increase the project’s capacity level from y to y + Ay, for small Ay, and the
underlying state process X assumes the value z. In view of this observation, (21) reflects
the idea that, given g, a small amount of extra capacity should be associated with increasing
values of additional running payoff as the value of x, which, e.g., models the price of or the
demand for the project’s output commodity, is increasing. Similarly, (22) reflects the fact
that, for a given value = of the underlying state process, the extra running payoff resulting
from a small amount of additional capacity is decreasing as the level of the already installed
capacity vy increases. Also, the assumption that K+ + K~ > 0, which is an indispensable
one, is a most realistic one. Indeed, the inequality K™ + K~ < 0 gives rise to the unrealistic
scenario where the project’s management can realise arbitrarily high profits by just sequen-
tially increasing and then decreasing the project’s capacity by the same amount sufficiently
fast.

The following additional assumptions will ensure that the value function of the control
problem considered is finite and identifies with the solution of the associated Hamilton-
Jacobi-Bellman equation. Apart from (26), which can be justified by straightforward eco-
nomics considerations such as the ones discussed above, the conditions in the assumption
are of a technical nature.

Assumption 2 K* > 0, and there exist constants
a>0, 3€]0,1, 9€]0, KT A(KT+K")An[and C >0

where n > 0 is as in (16), such that

«

-3 €10, n], (23)
—C(1+y) < h(r,y) <CA+2"" +2%9?) +r(KT =9y, forall (z,y)€S.  (24)
—C < H(z,y) = hy(z,y) < BCz%y P 4 r(KT —09), forall 2,y > 0. (25)
Also,
hy(z,y) >0, forall y> 0. (26)
0

Remark 1 Note that we could have replaced the upper bound in (25) by

C(1+zoy=-9), for allz > 0 and y < y1,
BCzy =B 4 r(K+ —99), forallz >0andy >y,

H(w,y)é{

for some constant y; > 0. Depending on the problem’s data, such a significant relaxation
could result in optimal policies such as the one depicted by Figure 5 that would enrich
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qualitatively the class of optimal capacity control strategies. However, we decided against
such a relaxation because this would complicate both the presentation and the analysis of
our results.

Example 1 A choice for the running payoff function h that has been widely considered in
the literature is the so-called Cobb-Douglas production function given by

h(z,y) = 2*y?, for some constants o > 0 and 3 €]0, 1]. (27)

A related choice that incorporates a running cost proportional to the project’s installed
capacity is given by

h(z,y) = z%y® — Ky, for some constants a, K > 0 and 3 €]0, 1[.

It is straightforward to verify that these choices for the running payoff function A satisfy all
of our assumptions if and only if the parameters o and 8 as in (27) satisfy the inequality
(23). O

It is a straightforward exercise to show that the bounds in (24)-(25) imply the following
estimates.

Lemma 2 With reference to the notation in (11), the bounds provided by (24) and (25) in
Assumption 2 imply that there exists a constant C; > 0 such that

—Cy(1+y) < RMY(2) < 4 (1+y+a"?+2*), forall (z,y) €S,
—C, < REGI(z) < ¢y (1 + xay’(l’ﬁ)) , forall (z,y) €S.

As we have remarked above, bounds such as the ones appearing in Assumption 2 are
essential for the value function to be finite. Indeed, we can prove the following result.

Lemma 3 Consider the control problem formulated in Section 2 that arises if the running
payoff function h is defined by (27) in Example 1, and suppose that ﬁ >n > «a. Then,
under any well-posed definition of the performance index J,, that is consistent with (3),
v(z,y) = 0o, for every initial condition (z,y) € S.

Proof. Consider the strategy defined by
& =X and & =0, forallt>0, (28)

where X; = sup,<; Xs. With regard to (19), we can see that this strategy is associated with

E [/ XY, dt] > FE [/ e " X] dt} = 00. (29)
0 0

8



Now, let us assume that ﬁ >n > «a. If we define \ = "‘%a > 0, then such an assumption
implies A < n. In view of this observation, we can use the first estimate in Lemma 1, the
monotone convergence theorem and the integration by parts formula to see that the strategy
given by (28) satisfies

T
E [ / et dgj} = lim F [r / e et dt+e‘rT§;+}

T
= 111—1>r010 <7°/0 Ele "X} dt+E [e_’TX%])
(3'2)\2 + &9 A
r—
E1€9
< Q.

However, this calculation, (28) and (29) imply that

E[ / e " XoVP dt — / e " dEF — / e”dft]
0 [0,00[ [0,00[

is well-defined and equal to oo, which proves the result. O
We can now prove that our assumptions are sufficient for the optimisation problem con-
sidered to be well-posed and for its value function to be finite.

Lemma 4 Suppose that the running payoff function h satisfies (24) in Assumption 2 and
that KT, KT + K~ > 0. Given any initial condition (z,y) € S, (5)—-(8) provide a well-posed
definition of the performance criterion J;,, and the following statements hold true:

(a) Given any admissible strategy (€1,67) € 1Ly, Jo,(€7,€7) € R if and only if

E [/ e Y, dt+/ e "t dgf +/ e " dﬁt_} < 0. (30)
0 [0,00[ [0,00[
(b) Condition (30) implies

liminfe ™ E [Y7,] = 0. (31)
T—oo

(c) v(z,y) € R

Proof. Fix any initial condition (z,y) € S and any admissible strategy (£,&~) € II,. Since
£+, £ are increasing caglad processes with £ = & = 0, we can use the integration by parts
formula to calculate

—K* / e "dé — K~ e e
[0,T] [0,T]

T
_— /O e [KVer+ K& dt— o T [KHeE, + K 6] (32)



With regard to (1) and the inequality K™ + K~ > 0, we can see that
~KY - K < -KT (6 &) =-K'Y, + Ky,

which, combined with (32), implies

_K+/ e*'rt dé-;l— - K
[0,T7]

[0, 7]

(33)

T
e "dg, < —TK+/ e Y, dt —e "TK Y, + KTy, (34)
0

However, this inequality and (24) in Assumption 2 imply that the random variables Ur

defined by (4) satisfy
T
Up < Kty + / e [h(X,, Yy) — rKHY;] dt
0
T A
< Kfy+ 0/ e (1+X77%) — Zr,
0
where
R T
I = / et [ré‘Yt — cxgytﬂ dt, for T > 0.
0
With reference to (19), we note that

Li(z):=F [C /0 e (1+Xx777) dt}

C Can?
B T (e ) e

Now, suppose that the strategy strategy (£,¢™) € I, is associated with

E [/ e Y, dt] = 00.
0

With regard to (23) in Assumption 2 and (19), we observe that
L(z):=F [/ ethXta/(l_’B) dt] < 0.
0
Therefore, given any constant u > 0,

E [/ e—rtY;tl{Yt<uX?/(17ﬁ)} dt:| < ,uIQ(LL‘) < 0.
0

10
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(36)

(37)

(39)



It follows that (37) is true if and only if

E |:/O eiTtY;gl{YtZuXta/(pg)} dt:| = 00. (40)

Now, let any p > 0 such that r9 — Cu~(=#) > 0, where the constants 9, C > 0 and 3 €10, 1]
are as in Assumption 2, and note that

T
E [ZT} > — CuPE [ / et xUP )1{Yt<qux/(1ﬂ)}dt}
0

T
+ (T19 — C,u’(l’ﬂ)) E [/0 e*”Ytl{YtZuX;x/(l—ﬂ)} dt} .

In view of (39)-(40) and the monotone convergence theorem, the right hand side of this
inequality tends to oo as T — oo, which implies that limg_,e E[Z7] = co. However, this
conclusion, (35) and (36) imply that there exists a process Z such that (7) is satisfied and,
therefore, J; ,(£1,£7) = —o0.

To proceed further, let us assume that

E [/ e Y, dt] < 00, (41)
0

which is necessary for condition (30) to be satisfied. Since Y is a finite variation process, its
sample paths can have at most countable discontinuities. Using Fubini’s theorem, we can
see that this observation and (41) imply

/ e "E[Y,]dt=E [ / e Y, dt} —E [ / e Y, dt] < o0,
0 0 0

which proves that (30) implies (31), and establishes part (b) of the lemma.
Now, using Holder’s inequality, we calculate

o0 o /3
E [ / e XYy dt] < I} P(x) (E { / e, dtD < 00, (42)
0 0

where I(x) is given by (38). This inequality, (36), (41) and the bounds in (24) in Assump-
tion 2 imply

E U e " h(X,, V7)) dt] <E [/ et [0 (1 + X0 XfY;ﬂ) (KT - 19)1@] dt]
0 0
< 00,

which combined with the dominated convergence theorem, implies that

lim E [ /0 ' e ""h(X, Y;) dt] =F [ /0 h e ""h(X,,Y;) dt] eR (43)

T—o0

11



This observation gives rise to two possibilities. The first one is associated with the inequality

FE [/ e "tdgf —I—/ e dft] < 00.
[0,00] [0,00[

In this case, limy_, Ur exists, P-a.s., and belongs to L'(Q, F, P), so J,,(¢%,£7) is finite
and is given by (6). The second possibility is associated with

E [/ e "t dgt +/ e " df{] = 00,
[0,00] [0,00[

which combined with (41) implies

-t + | — —rt - _—
E[/[O’Oo[e dft]_E[/[o,oo[e dft]—oo. (44)

If K= <0, then we can use (1) and the integration by parts formula to calculate

K~ e "dé; = K- e dE + | K| et dy,
0,71 0,7] 0,7]

T
K/ e”dff-l—r\K\/ e Yy dt+ |K e ™ Yr, — |K |y
(0,77 0

> K~ e~ dgS — |K |y,
[0,7]

which implies

E [K+ / emdgf + K[ e dft] > (Kt +K)E [ / e dgj} — K |y.
[0,T] [0,T]

[0,7]

This inequality, the assumption that K™ + K~ > 0, (44) and the monotone convergence
theorem imply

lim {K*’/ e "de + K-
(0,T]

T—oo

e "t dﬁt_] =00 (45)
(0,T]
On the other hand, if K~ > 0, then (44) plainly implies (45). However, (43) and (45) imply
that limy_,., E[Ur] = —o0, so (7) is satisfied for Z = U and J, ,(§7,€7) = —o0.

The analysis above establishes the well-posedness of the definition of J, , given by (5)—(8)
as well as parts (a) and (b) of the lemma. To prove part (c) of the lemma, we first note that
the results presented in (10)—(12) and the bounds in Lemma 2 imply

R[h(-,y)}(x) — FE [/ e_rth(Xt, Y) dt:| € R
0

12



However, this shows that our performance criterion is finite for the strategy that involves no
capacity changes at any time, which proves that v(z,y) > —oo. To show that v(z,y) < oo,
consider any admissible decision strategy (£,£7) € II, such that J, ,(£7,€7) > —oo. With
reference to (41) and (42),

E [ / et [mm - CXfo] dt]
0

o0 o0 /3
> rdE [ / e ", dt] —CIL7P(2) (E [ / e Y, dtD
0 0

_ 1/(1-8)
> —% (%) I(z), forall T >0, (46)

the second inequality following because, given any constants k, A > 0 and S €0, 1],

1/(1-p)
kQ — AQP > —% <@> , forall @ >0,

K

in particular, for Q@ = E [[; e™"'Y, dt]. However, (35), (36) and (46) imply

_ 1/(1-8)
D660 < i)+ g+ S (20) T )

which proves that v(x,y) < oo because the right hand side of this inequality is finite and
independent of £* and £~ O

4 The Hamilton-Jacobi-Bellman (HJB) equation

The problem described in the previous section has the structure of a singular stochastic
control problem. With regard to standard theory of singular control, we expect that its
value function can be identified with a solution w : § — R to the HJB quasi-variational
inequalities

max{o’ Wy, (2, y) + brw, (z, y)—rw(z,y) + h(z,y),
wy(z,y) — Kt, —wy(z,y) — K } =0, =z,y>0, (47)
max {0’z wy,(z, 0) + brw,(z,0)—rw(z,0) + h(z,0), wy(z,0)— KT} =0, z>0, (48)
where wy(z,0) := lim, o wy(z,y).

To obtain some qualitative understanding of the origins of this equation, we observe that,
at time 0, the project’s management has to choose between three options. The first one is to

13



wait for a short time At, and then continue optimally. With respect to Bellman’s principle
of optimality, this option is associated with the inequality

At
v(z,y) > F [/ e " h( Xy, y) dt + e (X g, y)
0

Applying Ito’s formula to the second term in the expectation, and dividing by At before
letting At | 0, we obtain

021204 (1, y) + bavg(2,y) — rv(z,y) + h(z,y) <O0. (49)

The second option is to increase capacity immediately by ¢ > 0, and then continue
optimally. This action is associated with the inequality

v(z,y) > v(z,y +¢e)— Kte.
Rearranging terms and letting € | 0, we obtain
vy(z,y) — Kt <0. (50)

Assuming that y > 0, the final option is to decrease capacity immediately by ¢ > 0, and
then continue optimally. This option yields the inequality

U(l‘, y) 2 U(l‘, Yy — 6) - K_S,
which in the limit ¢ | 0 implies
—vy(z,y) — K~ <0. (51)

Since these three are the only options available, we expect that one of them should be
optimal, so that one of the inequalities (49)—(51) should hold with equality if y > 0, while,
one of the inequalities (49)—(50) should hold with equality if y = 0. However, this observation
combined with (49)—(51) implies that the value function v should identify with a solution w
to (47)-(48).

The following result is concerned with sufficient conditions under which the value function
v of the control problem considered identifies with a solution to (47)—(48). We impose some
of these conditions, (56)—(57) in particular, which are not standard in similar “verification”
theorems, with a hindsight relative to our analysis in the next section.

Theorem 5 Suppose that the running payoff function h satisfies (24) in Assumption 2 and
that K*, Kt + K~ > 0. Also, assume that the HJB equation ({7)-(48) has a C? solution
w:S — R such that

—Cy (1+y+2CP) <w(z,y), forall (z,y) €S, (52)

14



or some constant Cy > 0. The following statements hold true:

f tant Cy > 0. The following stat ts hold t
(a) v(z,y) < w(z,y), for all initial conditions (z,y) € S.
(b) Given any initial condition (x,y) € S, suppose that there exists a decision strategy
,£°7) € I1,, such that, i is the associated capacity process, then

g+, €07) € 11, such that, if Y° is th ated it th

(X, YP) € {(z,y) € S o*2Pwya(z,y) + bawy(z,y) — rw(z,y) + h(z,y) =0},  (53)

Lebesque-a.e., P-a.s.,

/ e " [wy (X, Yy) — KT d€2™ =0, forallT >0, P-a.s., (54)
(0,77
/ e " [wy(Xs,Y;) + K| d€ =0, forallT >0, P-a.s., (55)
[0,T]
and
VP + X2V + &1 < Cy(y) (L+ X)), forallt >0, P-as., (56)
w(X;,Y?) < Cs(y) (1+X77%), forallt >0, P-a.s., (57)

where X; = Sups<; Xs, €3 €]0,9[ is a constant, and C3(y) > 0 is a constant depending on
the initial condition y only. Then v(z,y) = w(x,y) and (£°7,£°7) is the optimal strategy.

Proof. (a) Fix any initial condition (z,y) and any admissible strategy (£1,£7) € II, such

that J;,(E1,€7) > —o0, so that J, ,(£1,£7) = E[Ux] (see (5)-(6)). Using Itd’s formula and
the fact that X has continuous sample paths, we obtain

T
e w( Xy, Yry) = w(z,y) + / e " (02 X7 wee(Xe, Vi) 4+ bXyw,(Xe, Vi) — rw(Xy, V)| di
0

-1-/[ ]e*” [wy(Xt,Y;) d& — wy (X1, Yy) d{f{] + My
0,T

+ Y e w(Xy, Vi) — w(Xe, Vi) — wy (X3, Y;)AY],

0<t<T

where

T
My =20 / e " Xw,(X,,Y,) dW,, T > 0. (58)
0
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Recalling the definition of Ur in (4), this implies
UT + €_rT’U)(XT, YT_|_)

T
= w(z,y) + / e " 0P X wae (Xy, Y2) + bXyw, (Xy, Vy) — rw(Xy, Y2) + h(Xy, Yy)] dt
0

+ /[OT] e [wy (X, Yy) — K*]d (€%)%+ /[07T] e [~wy(Xe,Yy) — K| d (€7)°

+ Mr + Z w(Xe, Yey) — w(Xy, Yy) — KTAY;] Liavis0)
0<t<T
+ Z w(Xy, Yir) —w(Xe, Vi) + K™ AY;t] 1iav,<0}-
0<t<T

Observing that
AY;
[w(Xy, Viy) — w(Xy, V;) — KTAY] 1iayis0) = 1{AYt>0}/ [wy (X, Yy +u) — K] du,
0
[w(X3,Yih) — w(Xy, Yy) + K~AY 1{av,<0)
|AY:|
- 1m<0}/ [—w, (X, Y; — |AY| +u) — K] du,
0
we can see that, since w satisfies the HJB equation (47)—(48),

Up + e w(Xy, Yry) < w(z,y) + Mr. (59)

Now, in view of (34) and the assumption Kt > 0,

—rT —rt j¢e+ |K7 ‘ —rt -
—e YT 2 —/ e d§ - / € d§ - Y,
’ 0.1] t KT Jpo,ry t

which, combined with assumption (52), implies

e ""w(Xy, Yry) > —Cy ( / e "t det —|—/ et de; + e—TTX;/(l—ﬂ)> :
[0,7] [0,7]

for some constant Co; = Cy;(y) > 0. Combining this inequality with
T T C
/ e "h(X,,Y;) dt > —C / e Y, dt— = (1—e"),
0 0 r

which follows from (24) in Assumption 2, we can see that (59) implies

inf My > —Co (1 + / e 'Y, dt + / e " dgf + / e "t d& +sup e"TX;/(l_ﬂ)),
=0 0 [0,00[ [0,00] T>0
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where Cyy = Coy(z,y) > 0 is a constant and X; = sup,<; X;. Recalling the assumption that

125 €]0,n[, we can see that the second bound in Lemma 1 and (30) in Lemma 4 imply

that the random variable on the right hand side of this inequality has finite expectation. It
follows that the stochastic integral M defined by (58) is a supermartingale, and therefore,

E [Mr] <0, for all T > 0. Taking expectations in (59), we therefore obtain
EUr] <w(z,y)+e T E[—w(Xr, Yri)]. (60)

Furthermore, since

Ur > —Cy (1 +/ e Y, dt + / e "td&’ +/ e "t d§t>, for all T > 0,
0 [0,00[ [0500[

and the random variable on the right hand side of this inequality has finite expectation,
Fatou’s lemma implies

Jegy(€7,67) < lim inf £ [Ur], (61)
—00
while (52) implies
liminfe ™ E [—w(X7, Yry)] < lim e Cy + Cyliminfe™  E [Yr,]
T—00 T—00 T—00
+Cy lim e ™E [X%/(l_m}
T—00
=0, (62)

the equality being true thanks to the first bound in Lemma 1 and (31). However, (60)—(62)
imply that J,,(£7,€7) < w(z,y), which establishes part (a) of the theorem.

(b) If (£€°F,£°7) is as in the statement of the theorem, then we can see that the mono-
tone convergence theorem, the integration by parts formula, (56) and the first estimate in
Lemma 1 imply

E[ / e YR dt + / e”dgg+]
0 [0,00[

T
= lim E [ / e YL dt +r / e dt + e ;ﬂ
0 [0,T

T—00

< (141)0() (% + /0 "B [X79] dt) + lim B [57%)

< 00,

which, combined with (1), implies that (30) in Lemma 4 is satisfied, and, therefore,
Jey€,€7) = B | Jim Up] €R (63)
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where U° is defined as in (4). Furthermore, we can verify that (59) holds with equality, i.e.,
Up + e ""w(Xr, Y2,) = w(z,y) + M3, (64)

where the stochastic integral M° is defined as in (58). In view of (24) in Assumption 2 and
(56), there exist constants C3; > 0 and Csy = Cs2(y) > 0 such that

T e’}
sup / e " h(X,, YP) dt < Csy (1 + / e [XPTT + XP(YR)P + YY) dt>
0 0

T>0
< Csy <1 + / e "X e dt) . (65)
0

With reference to (1), the assumption K+ + K~ > 0, the integration by parts formula and
(56), we can see that there exists a constant C33 = C33(y) > 0 such that

sup (—K+ / e dEt — K e " dE; _>
T>0 [0,T7] [0,T7]

<sup K~ (/ e "t deet — / e " d§f>
=0 (0,T] (0,71

< |K™| sup/ e "t dyy
(0,77]

>0
o
< |K~|supe ™YL +r|K™| / e "YP dt
T>0 0

< |K™|supe ™YL + Cas <1 +/ e "X dt) . (66)
0

T>0

Moreover, (56)—(57) imply

supe "TY2 +supe "Tw(Xr, YR) < 2C5(y) (1 + sup eTTXj”TES) . (67)
T>0 T>0 T>0
Now, (19) implies
E [ / e "X dt] < 00, (68)
0
while the second estimate in Lemma 1 implies
E [sup eTTX?E?’] < 0. (69)
T>0

However, (64) and the estimates (65)-(69) imply that E [supys, M§] < oo, which proves
that the stochastic integral M? is a submartingale. Taking expectations in (64), we therefore
obtain

EUS) > w(z,y) + e ™ E[—w(Xr, Y2)]. (70)

18



Furthermore, the estimates (65)—(69) imply that the random variables U2, indexed by T' > 0,
are all bounded from above by a random variable with finite expectation. This observation,
(63) and Fatou’s lemma imply

oy (€1,697) > limsup B [U9]. (71)

T—00

Finally, (57) and the first estimate in Lemma 1 imply

limsupe™™" B [~w(Xr, Y7)] 2 = lim Cy(y) (¢ 77 + B [ X))

T—00

=0,

which, combined with (70) and (71), implies J, ,(£°1,£°7) > w(z,y). However, this inequal-
ity and part (a) of this theorem complete the proof. O

5 The solution of the control problem

We can now derive an explicit solution to the control problem formulated in Section 2 by
constructing an appropriate solution w to the HJB equation (47)—(48). With respect to
the heuristic arguments in Section 4 that led to the derivation of this equation, we start
by conjecturing that the optimal strategy is characterised by three disjoint open subsets of
10,00[ xRy : the “wait” region W where (49) holds with equality, the “investment” region
7 where (50) holds with equality, and the “disinvestment” region D where (51) holds with
equality. Also, we conjecture that each of the regions W, Z, D is connected. In particular,
we expect that, depending on the problem’s data, the optimal strategy can take any of the
forms depicted by Figures 1-4. Note that one can envisage other possibilities such as the
one depicted by Figure 5. However, our assumptions do not allow for the optimality of such
other cases under any admissible choice of the problem’s data (see also Remark 1).

With regard to Figures 1-4, we denote by F and G the boundaries separating the regions
D, W and W, T, respectively, so that

F=DNW and G=WnNTZ,

where W, T and D are the closures of W, T and D in R%, respectively. Furthermore, we
define

y* =inf {y > 0: there exists > 0 such that (z,y) € F}, (72)
with the usual convention that inf () = co. We will prove that

there exists an increasing function G : [0, 00[ — [0, 0o such that

G={(Gy),y): y >0}, (73)
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and, if y* < oo, then

there exists an increasing function F': [y*, oo[ — [0, oo[ such that
FRA{0D) ={(F@W),y): v>y'}.

Given such a characterisation of F and G,

(74)

W= {(z,y) eR%L: y <y and z € [0,G(y)]}
U{(z,y) €RE : y >y and z € [F(y),G(y)]},
I={(z,y) eR}: Gy <z},

while, if y* < oo, then
D= {(:L‘,y) € ]Ri cy>y and x € [O,F(y)]}.
In view of this structure, it is worth noting that, if y* = 0 and 0 < F(0) < G(0) (see
Figure 3), then {(z,0): z < G(0)} C W, so that the segment |0, F/(0)] is part of the “wait”
region W.

Inside the region W, w satisfies the differential equation

0202 Wey (2, y) + brwy(z,y) — Tw(z, y) + h(z,y) = 0. (75)

With regard to the discussion regarding the solvability of (13) in Section 3, every solution
to this equation is given by

w(z,y) = A(y)z" + B(y)z™ + R(z,y), (76)

for some functions A and B. Here, the constants m < 0 < n are given by (16), while the
function R = R is given by

1 xT o0
[mm / s ™ h(s,y)ds + " / s " h(s,y)ds| . (77)
m) 0 T

o2(n —

R(x,y) =

For y € [0,4*] N R, we must have B(y) = 0. This choice is supported by the heuristic
observation that, for fixed capacity level y > 0, the problem’s value function should remain
bounded as the value z of the underlying state process tends to 0. Also, it eventually turns
out that (56)—(57) in the verification Theorem 5 cannot be satisfied if B(y) # 0. To determine
A(y) and G(y) when y € [0,5*] N R, we postulate that w(-,y) is C? at the free-boundary
point G(y). In particular, we postulate that

lim wy(z,y) = lim w,(z, and lim wy(z,y) = lim wy(z,y). 78
#1G(y) (@) 21G(y) v(,9) s ye (T, Y) i ye (T, Y) (78)

Since w satisfies

wy(z,y) = K+, for (z,y) € T, (79)
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which implies
Wey(z,y) =0, for (z,y) € Z, (80)
this requirement yields the system of equations
A'(y)G"(y) = KT — Ry(G(y),y), (81)
A )G (y) =~ Gly) Ry (G 1) ). (52)

With regard to (77) and the identity o?mn = —r, this system implies that G(y) should
satisfy

a(G(y),y) =0, (83)

where
q(z,y) = /05C g—m~1 [H(s,y) - TK+] ds, (z,y) €S, (84)

and H is the function defined by (20). Also, we can calculate

) = 36 "0) [K7 = B(G0),1) = 260 R (Gl0),1)
= _02(%_”0 /(:) s " [H(s,y) —rK"] ds. (85)

The following result is concerned with the solvability of equation (83).

Lemma 6 Suppose that Assumption 1 is true. Given anyy > 0, the equation q(z,y) = 0
has a unique solution x = x(y) > 0 if and only if inf,~o H(z,y) < rK*. If we define

G, = inf {y >0: inf H(z,y) < rK+} , (86)
then equation (83) defines uniquely a function G : ], c0[ — 10,00 that is C*, strictly in-
creasing, and satisfies

H(G(y),y) —rK* >0, forally > i,. (87)

Furthermore, if (25) in Assumption 2 is also true, then §. = 0 and

_1=8 1-p

C, *ya < é(y), forally>0 <« é[_l}(ﬂc) < 0435&, for all x > G(O), (88)

where GI=1 is the inverse function of G, G(0) := lim,y G(y) and Cy > 0 is a constant.
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We collect in the Appendix the proofs of those results that are not developed in the text.

Now, let us consider the case where D # () and the point y* defined by (72) is finite (see
Figures 2-4). For y > y*, w is given by (75) for  such that (z,y) € W, by (79) for = such
that (z,y) € Z, and by

wy(z,y) =K, (89)
for = such that (z,y) € D. Plainly, C? continuity of w inside D implies
Way(2,9) =0, for (z,y) € D. (90)

To determine A(y), B(y), F(y) and G(y), we postulate that w(-,y) is C? at both of the free-
boundary points F'(y) and G(y). With regard to (76), (79)—(80), (89)-(90), the definition
(77) of R(z,y) and the identity o?mn = —r, this requirement yields

Al(y) = —m /F C; s [H(s,y) + K] ds, (91)
) = s | :) s [H(s,y) — K] ds, (92)
B'(y) = —m /0 " sV [H(s,y) + K] ds, (93)
B'(y) = —m /0 v s ' [H(s,y) —rK*]ds, (94)

where H is defined by (20). These calculations imply that the points F'(y) and G(y) should
satisfy the system of equations

where

flanann) = [ s [Hs) K Tds— [ s [Hsg) <K s, (o0

9(x1,22,y) = /00 s " [H(s,y)+rK | ds— / s " [H(s,y) —rKT] ds. (98)

T1 T2

The following result is concerned with the solvability of the system of equations (95) and
(96).

Lemma 7 Suppose that Assumption 1 holds. Given y > 0, the system of equations (95)
and (96) has a unique solution (z1,x2) = (21(y), 22(y)) such that 0 < z1 < x5 if and only if
inf,~0 H(z,y) < —rK~. Moreover, if we define

g*:inf{yZOZ :iCI;EH(:c,y)<—rK_}, (99)
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with the usual convention that inf () = 00, then, if y* < oo, the system of equations (95) and
(96) defines uniquely two functions F',G :]y*,00[ — |0, 0o that are C*, strictly increasing,
and satisfy F(y) < G(y), for all y > g*,

F(y) = lmF(y) =0, ify >0, (100)
A
F(0) :=1lim F(y) <limG(y) =: G(0), ify* =0, (101)
yi0 340
H(F(y),y)+rK <0 and H(G(y),y)—rK" >0, forally>y". (102)

Furthermore, if (25) in Assumption 2 also holds, then

1-8

Cy =y« <Gy, forally>y" & GI(z) < Cywr™®, for allz > G(y"),  (103)

where GI=Y is the inverse function of G and the constant Cy > 0 is the same constant as in
Lemma 6.

In light of the results above, and in the presence of (25) in Assumption 2, g, = 0o, where
U« is defined by (86), and the point g* defined by (99) identifies with the point y* in (72).
Also, the functions F': [y*, oo[ = [0, 00 and G : [0, 00| — [0, oo[ separating the three possible
regions, as conjectured in (73)—(74), are given by

F=F, ify* < oo, (104)
- G f 0,y*
G=G, ify"=o00, and G(y) = _(y), or y € [0,y*], if y* < oo, (105)
G(y), fory >y,

where G is as in Lemma 6, F', G are as in Lemma 7, and y* = §*, where 7* is given by (99).

The results above determine completely the boundaries of the three possible regions. To
specify w inside the “wait” region W, we still have to solve (85) and (91)—(94). To this end,
it is straightforward to see that, if the associated integrals are finite, then the function

A(y) =

o2

1 o o
Tm)/ / s [H(s,u) —rK*t]dsdu>0, y>0, (106)
- y  JG(u)

satisfies (85) as well as (91) and (92). In this expression, the inequality follows thanks to (87)
or the second inequality in (102), depending on the case, and the assumption that H(-,y) is
increasing. It is worth noting that adding a constant on the right hand side of (106) would
yield a further solution to (85). However, it turns out that (106) gives the only solution of
(85) that renders w compatible with the requirements of the verification theorem that we
proved in Section 4.

If y* < 00, then

1 y P
Bly) =———— U H K- * 1
(v) 02(n—m)/y*/0 s [H(s,u) +rK " |dsdu >0, y>y, (107)
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satisfies (93) or (94). Here, the positivity of B follows from the first inequality in (102) and
the assumption that H (-, y) is increasing. As above, we have set a possible additive constant
to zero because for no other choice can the resulting function w be identified with the value
function of the control problem.

With reference to (79), w must satisfy

w(z,y) = w(zr,G(2)) — KT (GF(z) —y), for (z,y) €T,

where GI=! is the inverse of the function G. Also, if D # (), then (89) implies that w should
satisfy

w(z,y) = w(z,®(z)) - K~ (y - ®(x)), for (z,y) €D,

where the function @ :]0, 00 — R is defined by

Fi=1 if 2 > F(y*
0, if y* =0 and F(0) > z,

in which expression, F{=! is the inverse function of F. Summarising, we have two possibili-
ties. If the point y* = y* as in (72) or (99) is equal to oo, then

(2,y) = {A(y)m” + R(z,y), for (z,y) such that 0 < z < G(y), (109)

w(z, GU(z)) — KH(GY(2) —y), for (z,y) such that G(y) < z

On the other hand, if y* < oo, then

w(z, ®(z)) — K~ (y — @(2)), for (z,y) s.t. y > y*, z < F(y),
w(z, y) = A(y)z™ + R(x,y), for (z,y) s.t.y € [0,y NR, = < G(y),
’ wa+3(ﬂ + R(z,y), for (z,y) s.t. y > y*, F(y) <z < G(y),
w(r, G (z)) — K+(GIU(z) —y), for (z,9)s.t. Gy) <=

(110)
It is worth noting that, if y* = 0 and F'(0) > 0, then (76) and (107) imply
w(z,0) = A(0)z" + R(z,0), for 0 <z < G(0),

which is consistent with the associated expression resulting from (110).

The following result is concerned with proving that the construction above indeed pro-
vides a solution to the HJB equation (47)—(48), as well as with certain estimates that we
shall need.
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Lemma 8 Suppose that Assumptions 1 and 2 hold. The function w given by (109)—(110),
where F, G and A, B are as in (104), (105) and (106), (107), respectively, is C* and satisfies
the HJB equation (47)-(48). Also, w satisfies

w(z,y) < Cs (1 +y 4+ GV (y) + G (y)yP + x”_“) , forall (z,y) € S, (111)
for some constants Cs > 0 and €4 € 0,1, as well as (52) in the verification Theorem 5.

Remark 2 A careful inspection of the proof of this result reveals that, had we perturbed the
expressions on the right hand sides of (106) and (107) by additive constants, we would still
have obtained a further solution to the HJB equation (47)—(48). However, such a solution
would not satisfy an estimate such as the one provided by (111) that plays a fundamental
role in the proof of the verification Theorem 5.

We can now prove the main result of the paper.

Theorem 9 Consider the capacity control problem formulated in Section 2, and suppose
that Assumptions 1 and 2 hold. The value function v identifies with the function w given
by (109)—(110), where F, G and A, B are as in (104), (105) and (106), (107), respectively.
The optimal capacity process Y° reflects the joint process (X,Y°) along the boundaries G
and F' in the positive and in the negative y-direction, respectively, and can be constructed as
in the proof below.

Proof. In view of Lemma 8, we only have to construct a process Y° such that (53)—(57) in
the verification Theorem 5 hold. To this end, we construct Y° so that the process (X,Y°)
is reflecting along the boundaries G and F' in the positive and in the negative y-direction,
respectively, as follows. First, we define

B2 05 X2 60) ad ¥ =ylien + 67 (sw X.) 1co,

s<t

where GI=Y is the inverse function of G. If y* = oo, then Y° = YU If y* < oo, then we
define inductively the (F;)-stopping times 7,, and the processes Y™ by

Tok+1 = inf {t 2 0: Xt < F (}/t(?IH—I)) } y

k k i
Y;:(Q 2 = Y;(Q +1)1{t§f2k+1} +o ( int XS) 1{T2k+1<t}’

Tokp+1 <8<t

for k =0,1,..., where

[ Oa lfy<y*7
F(y), ify>y*,



and @ is defined by (108), and by
- inf{t >0: X,>G (Yf’“’)} :

Yt(2k+1) _ Yt@k)l{tgm} + gy ( sup Xs> Lirp <t}

Top<s<t

for k = 1,2,.... Observing that lim,,_,, 7, = oo, P-a.s., and that Y;(") = Y;("H), for all
t € [0, Tpy1], we define Y° by Y? = Yt(") for t < 7,.
In either case, we can see that (53) is satisfied, and, if £°F and £° are the increasing

processes providing the minimal decomposition of Y into Y° = y + £°7 — £°7, then both of
(54) and (55) hold. Also, in either case, we can see that

VP < ylix<ony + GV X)Lk, >6m)) (112)

where X, = sup,<; X,. Combining this inequality with the definition (105) of G and the
estimates in (88) and (103), we can see that

Y < ylizicomn + OX " Migsan) (113)
and
g+ < XU (114)
Now, we can use (113), the observation that

G(Y?) < GW)lix<amy + Xelixisaw)

which follows immediately from (112), to see that, e.g.,

« 0 0 o Sa/(l—
G (Y2) (Y9) < GW)y’Lix,<cwy + CL X ik, a0)
< Gy’ + ofx P,

In view of this and similar calculations involving the other terms, as well as the estimate
(111) and the fact that o < %5 < n (see Assumption 2), we can conclude that (113)-(114)
imply that the estimates (56)—(57) hold true, and the proof is complete. O

We conclude our analysis above with the following result.

Corollary 10 Suppose that h is given by (27) in Example 1, and K*, Kt + K~ > 0. If

ﬁ < n, then v < oo, while, if ﬁ >n > a, then v = oo, where n s the positive solution

of (15). In the former case, the following hold true:
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(a) If K= >0, then y* = oo,

rK+(a—m)]"®
= |-+ 7Y (1-8)/a 11
6 = |- e (115)
and the optimal strategy can be depicted by Figure 1.
(b) If K~ <0, then y* =0 and
lim F(y) = limG(y) = 0. (116)

y40 y40

and the optimal strategy can be depicted by Figure 4.

Proof. As we have observed in Example 1, Assumptions 1 and 2 are satisfied and v < oo if
and only if ﬁ < n. Also, if ﬁ > n > «, then we have proved in Lemma 3 that v = oc.

The condition distinguishing the two cases follows from a simple inspection of (99), while
showing (115) involves elementary calculations. To see (116), we observe that the system of
equations (97)—(98), which specifies F' and G, is equivalent to

ﬁy‘“‘ﬂ’ [G™(y) — F*™(y)] = —% [K*G™™(y)+ K~ F™(y)], (117)
%y_(l_ﬂ) [G™(y) — F*™(y)] = % [KTG™(y)+ K~ F"(y)] . (118)

Since m < 0 < a,1 — 8 and F, G are increasing, the right hand side of (117) remains
bounded as y | 0, and lim, oy~ ~?) = oo. It follows that (117) cannot be true unless (116)
is satisfied, and the proof is complete. Il

Remark 3 In the context of the special case considered in Corollary 10, it is worth noting
that the solution w to the HJB equation (47)—(48) that we have constructed following intu-
ition based on economical considerations is finite for all @« > 0 and 8 €10, 1[. Had we adopted
a formal approach, this observation would have suggested the adoption of the capacity ex-
pansion strategy that keeps the process (X, Y) inside the “wait” region W that is determined
by the functions F' and G provided by the unique solution to the associated free-boundary
problem. However, such a formal approach would have lead us to wrong conclusions because

w(z,y) < oo =wv(z,y), forall (z,y)€S,
if 125 > n.

Remark 4 In the special case of Corollary 10 arising when o =1 — g and K~ < 0, we can
verify that (117) and (118) are satisfied by the functions

F(y)=ky and G(y)=vy, fory>0,
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where k and v are constants satisfying the system of algebraic equations

olz ::7, (127" — g = _% [Ktv ™+ K k™™, (119)
11—« r
—(n—a) _ —(n-e)] — _ tyn kT
n_a[l’ . ] TL[KV +K k. (120)

Abel and Eberly [AE96] considered this special case with 7 > b, which satisfies our assump-
tions thanks to the equivalence r > b < n > 1, and have proved that the system of equations
(119)-(120) has a unique solution such that 0 < k < v.

Appendix: Proof of selected results

Proof of Lemma 6. Suppose that (21) in Assumption 1 is satisfied. Fix any y > 0, and
suppose that inf,~o H(z,y) — 7K' > 0. In this case, H(z,y) — rK* > 0, for all x > 0,
because H (-,y) is a strictly increasing function. This implies that ¢(z,y) > 0, for all x > 0,
and, therefore, the equation ¢(z,y) = 0 has no solution = > 0.

Now, fix any y > 0, and assume that inf,~¢ H(z,y) < rK*. Recalling the assumption
that H(-,y) is strictly increasing, we define

' =z2'(y) :==inf{z >0: H(z,y) —rK* >0} >0,
and we observe that

<0, forallz€]0,z'[,

121
>0, forallz > zf. (121)

%q(x,y) =z " [H(z,y) — K] {

Combining the fact that g(-, y) is strictly decreasing in |0, 2| and strictly increasing in |z, 00|,
with ¢(0,y) = 0, we can see that g(z,y) < 0, for all z < 2f. In particular, ¢(zf,y) < 0.
Therefore, if g(x,y) = 0 has a solution x > 0 then this must satisfy z > zf. Also, given
that it exists, this solution is unique because ¢(-,y) is strictly increasing in ]zf, co[. To prove
that the required solution indeed exists, it suffices to show that lim, . ¢(x,y) = oco. The
assumption that lim, ,,, H(z,y) = oo implies that, given any constant M > 0, there exists
v > x' such that H(z,y) —rK* > M, for all z > ~. However, given any such choice of these
constants, we calculate

lim ¢(z,y) = lim [(Z(% y) + / s ' [H(s,y) — K] dé’]
T—00 rT—00 ,y
: M —m M —-m
> lim |g(y,y)+—7"" = —a™™| =oo0.
m m

T—00
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If (22) in Assumption 1 also holds and the point ¢, defined as in (86) is finite, then
inf,<o H(z,y) < rK, for all y > g,. It follows that equation (83) defines uniquely a contin-
uous function G : 7, oo[ — ]0, oc[. Moreover, the arguments above regarding the solvability
of ¢(z,y) = 0 imply (87).

To see that G is C! and strictly increasing, we differentiate ¢(G(y),y) = 0 with respect
to y to obtain

~ ~ - -1 G
G'(y) = —-G™(y) [H (Gy),y) — rK+] /0 s ™ H,(s,y)ds > 0, (122)

for all y > .. The inequality here follows thanks to (87) and (22) in Assumption 1.
Now, suppose that (25) in Assumption 2 also holds and observe that this implies

iI;EH(x,y) <rK*, forally>0.

However, this inequality implies that g, = 0. Finally, with regard to (25) in Assumption 2
and (121) above, we calculate

9 —m— a, —(1—
5@y <@ L[BCzoy B — ).

Combining this inequality with ¢(0, y) = 0, we can see that, given any y > 0, G(y) is greater
than or equal to the strictly positive solution of the equation

/ g~m=1 [,BCsay_(l_ﬁ) — 7“19} ds =0,
0

which yields

é(y) > (—M> : y%, for all y > 0.

However, this implies (88). O
Proof of lemma 7. Suppose that Assumption 1 holds. To study the solvability of the
system of equations (95) and (96), we first prove that (95) defines uniquely a mapping
L:(R\ {0})* =]0, o[ such that

f(z1,L(z1,y),y) =0 and L(z1,y) > x1. (123)
To this end, fix any z; > 0, y > 0, and observe that

1
f@,z,y)=——r (KT + K )z;™ > 0. (124)
m
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Given M > 0, observe that the assumption that lim, ., H(x,y) = oo, for all y > 0, implies
that there exists a constant v > x; such that H(x,y) —rK* > M, for all z > ~. For such a
choice of parameters, since m < 0, we calculate

- /7 sT™ 1 [H(s,y) —rKT] ds

1

lim f(z1,29,y) = lim [

T2—>00 T2 —r00

—/ 2s_m_l [H(s,y) —rK"]ds— T (KT + K )z™
” m

T2—>0Q

Z2
< lim |:f($1,"y, y) o M/ S_m_l d8:|
Y
M

Iro—00

: —m M —m
= lim |:f($17’>/7 y) - 7 + —T9 :|
m m
= —o0. (125)
Also, it is straightforward to calculate

>0, for all 7, €]0, 2],

126
<0, forall zy > 2, (126)

aa—a‘i(xlax%y) = _‘I’Qimil [H(x%y) - TK+] {

where
gt =2'(y) :==inf{z >0: H(z,y) —rK* > 0}.

Combining the fact that f(z1,-,y) is strictly increasing in the interval [z, z'[, if z; < zf,
and strictly decreasing in the interval |z V x1,00[, with (125) and (124), we can conclude
that the equation f(zi,z2,y) = 0 has a unique solution zo = L(z,y) which satisfies (123)
as well as

H(L(z1,y),y) —rK" > 0. (127)
Furthermore, differentiation of f(z1, L(z1,y),y) = 0 with respect to z; yields
0 o™ H (21, y) + K]
—L(z,y) = L : , 128
00, 1Y) = T oy, ) [H (L, ), ) — K (129

while differentiation of f(z1, L(x1,y),y) = 0 with respect to y gives

a _ L(wlvy)
—L(z1,y) = —L™ (21, y) [H(L(z1,y),y) — rK*] ™ s ™ 'H,(s,y)ds. (129)
dy

To prove that the system of equations (95) and (96) has a unique solution (x1,z2)
such that 0 < x1 < zo we have to show that there exists a unique x; > 0 such that
g(x1, L(x1,y),y) = 0. To this end, we first observe that the calculation

L(z1,y) 1
g(z1, L(z1,y),y) = / s [H(s,y) —rKT] + ~r (KT + K )a™
1
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and the assumptions lim, ., H(z,y) = co, K™ + K~ > 0 imply that
there exists a constant N > 0 such that g(z1, L(z1,y),y) > 0, for all z; > N.  (130)

Now, with regard to (128), we calculate

aixlg(xl, L(z1,y),y) = z;™! [Lm_”(xl, y) — x{”_"} [H(a:l,y) + TK_} } (131)

Since L(z1,y) > 1 and m < n, L™ "(z,y) — 27" < 0. Therefore, if inf,~q H(x,y) >
—rK~, then g(-, L(-,y),y) is decreasing, which, combined with (130), implies that the
equation g(z1, L(z1,y),y) = 0 cannot have a solution z; > 0. Therefore, we must have
inf,~0 H(z,y) < —rK~. Assuming that this condition holds, we recall that H(-,y) is strictly
increasing, we define

gt =zt(y) :==inf{z > 0: H(z,y)+rK >0},
and we observe that
g(-, L(-,y), y) is strictly increasing in ]0,z}[ and strictly decreasing in |z*,00[.  (132)

Furthermore, under this condition, there exist € > 0 and § < z* such that H(z,y) +rK~ <
—g, for all z; < 4. For such a choice of parameters, we calculate

lirﬁ) s [H(s,y) +rK | ds
T1 1
< lim |S6™" — Exf” + /00 s [H(s,y) +rK "] ds
T z1l0 [ n 5
— o (133)

In view of this, (127), and the assumption that H(-,y) is increasing,

lim g(z1, L(z1,9),y)
140

= lim [/ s [H(s,y)+rK "] ds— / s [H(s,y) —rKT] ds]
70 Ly L(z1,9)
< lirf(l) s [H(s,y)+rK "] ds
1 1
= —00. (134)

However, combining (130), (132) and (134), we can see that the equation ¢(z1, L(z1,y),y) =
0 has a unique solution z; > 0, which also satisfies

H(zy,y)+rK- <0. (135)
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Summarising the analysis above, under the assumption that the point y* defined as in
(99) is finite, the system of equations (95) and (96) defines uniquely two continuous functions
F.,G :]y*, 0o[ = ]0, oo that satisfy F((y) < G(y), for all y > 3*, as well as (102). Also, (100)-
(101) follow from a simple continuity argument combining the definition of §* and (135).

Now, assuming that §* < oo, consider any point y > y*. Differentiating the equa-
tion g(F(y), L(F(y),y),y) = 0 with respect to y, using (128), and observing that G(y) =
L(F(y),y), we calculate

-1 — 1

F'ly) = — F™ ()G [G-"(y) — F~"™ ()] [H(F(y),y) + K]~

L[ e oo

the inequality following thanks to assumption (22), the first inequality in (102) and the fact
that m < 0 < n. Also, differentiating the equation f(F(y), L(F(y),y),y) = 0 with respect
to y, and using (129) and (136), we calculate

-1

G'(y) = — F"()G@ [G=m(y) - F0=m ()] [H(G(y),y) — rKT] ™

L1 () e

the inequality following thanks to (102) and (22).
Finally, suppose that (25) in Assumption 2 is also true. With reference to the equation
f(F(y),G(y),y) = 0, we calculate

G(y) 1 B
0= —/ sT™ 1V [H(s,y) —rKT] ds — p— (KT + K~) F™(y)

F(y)
C — 1 7’19 ~—m
> _ [ B Ge (y)y (1-8) + —d (y)
a—m m
- 1 7
+ [ﬂpa‘m(y)y‘“‘m ——r (K" + K~ —=9) F™(y)| .
a—m m

Since ¥ < K™+ K~ by assumption, the second term on the right hand side of this expression
is strictly positive. Therefore, we must have

PC_Gamiyyy 09 4 %Gm(y) > 0.

a—m

This inequality can be true only if G(y) is strictly greater than the unique strictly positive
solution of the equation




which yields

Q=

G(y) > (—%) ylt;_ﬁ, for all y > *.

However, this implies (103). O

Proof of lemma 8. Consider (106), and note that the upper bound in (25) in Assumption 2
implies

0< A(y) < pe / T A G0 (4) . (137)

o?(n—m)(n—a) J,

Recalling the inequalities o < 5 <n,we fix any €9 > 0 such that

[0
1—

o
gg<n— ——<n—ao.

1-5
Using the fact that G is increasing and the estimate provided by (88) and (103), we calculate
/ =B G==0) (4 iy, < G50 1) / U8 G=n=a=20) (4)) iy
y y

- acil—ﬁ)(n—a—so)/a
ST-Am-e)-a

G (y)yt (1*B)L(¥"*EQ)’

which implies

acil—ﬂ)(n—a—so)/a

/ u=0-8) G=n=0) (4)) gy < G0(y), forally > 1. (138)
Y

(1 =pB)n—-e) -«
Also, the fact that G is increasing implies that

1
G™(y) / uw PG () du
y

IN

1
G*(y) / u B dy
y

G*(1), forally < 1. (139)

IN

™| =

However, (137)-(139) imply
A(y)z" < Aly)G"(y)
< pCc

~o%2(n—m)(n— «)

Ckcﬁlfﬁ)(nfafso)/a
(1-=08)n—¢g)—«
acil—ﬂ)(n—a—so)/a ~ 1

+ G" () +-=-G*(1) |1
((1—,6)(n—50)—0f ( ) ,8 ( ) {y<1}
=C5 (1+G"(y)), forally>0andz<G(y), (140)

G" () 1>y
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where Cx; > 0 is a constant.
If y* < oo, then (107), the assumption that K+ 4+ K~ > 0, the lower bound in (25) in
Assumption 2 and the fact that F' is increasing imply that, given any y > y*,

C+rK+ y
By)W<——-—-—— F~™(u)d
e s IR L
__CHrKT
— o?m(n—m)

yF~ " (y).

In light of this calculation and the fact that m < 0, we can see that

sup  B(y)a™ < B(y)F™(y) < Cspy, forally >y, (141)
z€[F(y),G(y)]

where Cso > 0 is a constant. Since R is increasing in z (see (26) in Assumption 2 and (17)),
the upper bound in Lemma 2 implies

sup R(z,y) < R(G(y),y)

z<G(y)
<Cy (1 +y+ G (y) + Go‘(y)yﬂ) , forally >0.

However, combining this estimate with (140) and (141), we can see that w satisfies
w(z,y) < Css (L+y+ G (y) + G(y)y”) , forall (z,y) €W, (142)

for some constant Cj3 > 0. With regard to the structure of w provided by (109)—(110), this
inequality and the estimates provided by (88) and (103) imply

w(z,y) < w(z, G (@) + Ky
< Cs3 (1 + GUY(z) 4 2m=0M 4 g G (x)m + Kty
< Csy (1 +y+a™ oM 4 22/07P)) - for (z,y) € T, (143)
for some constant Csq > 0. Also, since ®(z) < y, for all (z,y) € D, and G is increasing,
w(z,y) < w(z, ®(z)) + K |y

< Css (1+ ®(x) + G (®(2)) + G*(9(2))07 (x)) + |K |y
< Css (L+y+ G (y) + G*(y)y”), for (z,y) € D, (144)

where Cs5 > 0 is a constant. However, in view of the assumption ﬁ < n, if we choose any

64E:|0,60/\19/\<7’L—$>|: and 052053\/054\/055,
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then we can see that (142)—(144) imply (111).
To show that w satisfies (52), we first observe that the positivity of A, B and the lower
bound in Lemma 2 imply that

w(z,y) > —C1(1 +y), forall (z,y) € W. (145)
This estimate and the definition of w in Z, provided by (109)—(110), imply

w(z,y) > —(C, + KNG (z) — Cy
> —(Cy + K+)C4a:°‘/(1_ﬂ) —Cy, forall (z,y) €T, (146)
the second inequality following thanks to (88) and (103). Also, if y* < oo, then (145) and
the definition of w in D, given by (110), imply

—Ci(1 + ®(z)) — |K~ | max{y, ®(z)}
—(C+ |K™|)y — C4. (147)

w(z,y) >
>

However, (145)—(147) establish (52).
With reference to the construction of w, we will show that w is C? if we prove that w;,
Wge and wy, are continuous along the free boundaries F' and G. To this end, we calculate

-1y
we(T,y) = wy (a:, G[_l](a:)) + [wy (:L‘,G[_l](x)) — K’L} dGTE()
=w, (v,GIY(z)), for (z,y) € Z, (148)
and
1)y
W (T, Y) = Way (g, Gl-Y () + way (z, Gl-Y (z)) dGTx()
= wyy (2, G (2)), for (z,y) €T, (149)

the second equalities following thanks to (78) that have been among the requirements leading
to the equations specifying the function G. However, these calculations and the structure of
w provided by (109)-(110) show that w, and w,, are continuous along G.
Now, if y* > 0 and y € [0, y*] N R, we can use (77) and (85) to calculate
lim wy,(z,y) = A"(y)G"(y) + Ry (G(y), v)
z1G(y)
G '(y) ' 1 ¢ _ -1
= s |G') [H(G).) — K] +.Gm7 ) [ a7t (o) ds

o?(n —m)

=0, (150)
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the last equality following thanks to (122). Also, if y* < oc and y > y*, we can use (77),
(92) and (94) to calculate

Jim wy(@,9) = A"W)G" () + B ()G () + R (G0, )

=0. (151)

However, combining (150) and (151) with the fact that wy,(z,y) = 0, for (z,y) € Z, we
conclude that w,, is continuous along G.

Showing that w,, w,, and w,y, are continuous along F' involves similar arguments.

By construction, we will prove that w satisfies the HJB equation (47)—(48) if we show
that

22 Wey (2, y) + brwy(z,y) — rw(z,y) + h(z,y) <0, for (z,y) € T, (152)
wy(z,y) + K~ >0, for(z,y)e€Z, y>0, (153)
wy(z,y) — KT <0, for (z,y) € W, (154)
wy(z,y) + K~ >0, for (z,y)eW, y>0, (155)

and, if D # 0,
022 Wey (2, y) + brwy(z,y) — rw(x,y) + h(z,y) <0, for (z,y) € D, (156)
wy(z,y) — Kt <0, for (z,y) € D. (157)

It is straightforward to see that either of (153) or (157) is equivalent to K™ + K~ > 0,
which is true by assumption. Recalling that H = h,, we can easily verify that, since
y < GI7Y(2), for all (z,y) € Z, (148) and (149) imply that (152) is equivalent to

G (x)
/ [H(z,u) —rK*]du>0, for (z,y) €L
y

However, this inequality follows immediately from the assumption that H(z,-) is strictly
decreasing, for all z, and (87) together with the second inequality in (102). Similarly, we
can show that, if D # (), then (156) is equivalent to

y
/ [H(z,u) +rK~|du <0, for (z,y)€D,
F=1(z)

which is true by virtue of the first inequality in (102) and the assumption that H(z,-) is
strictly decreasing, for all x.

Now, suppose that y* < oo, and fix any y > y*. Since wy(F(y),y) = —K~ and
wy(G(y),y) = KT, we will prove that both of (154) and (155) are satisfied if we show
that

Wy (z,y) >0, forall z €]F(y),G(y)[. (158)
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To this end, we consider the transformation of the independent variable x > 0 provided by
z = Inz, and we write w(z,y) = u(lnz,y) for some function u = u(z,y). It follows that
(158) is true if and only if

Uy, (2,y) >0, forall z€|lnF(y),InG(y)[. (159)
Now, since w = w(z,y) satisfies (75) for x € |F(y), G(y)[, u, satisfies
0*tyzx(2,y) + (b= 0) uya(2,y) — ruy(2,y) + H(e*,y) = 0, for z €]In F(y), InG(y)[.

Recalling that H, is continuous and H,(-,y) > 0 (see Assumption 1), we can differentiate
this equation with respect to z to obtain

UQ(UyZ)ZZ(Zay) + (b - 02) (Uy2)2(2,y) — Tuy(2,y) = —e*Hy(e, y),
<0, forze]lnF(y),InG(y)[.

This inequality and the maximum principle imply that u,,(:,y) does not have a negative
minimum in the interval |In F'(y), InG(y)[, so

inf Uyy(2,Y) > min 0 A Uy, (2,
2€]nF(y)nG) ° (2:9) z=InF(y),In G(y) Y (z:9)
= min 0 A wy(z,
z=F(y),G(y) ve(@)
=0.

However, this calculation implies (159).

To proceed further, fix any y € [0, y*]NR. Using the definition of R in (77), the expression
for A'(y) provided by (85) and the fact that G(y) satisfies (83), we can see that, if we define
U(z,y) = wy(z,y) — KT, then

1

G(y)
Ug(z,y) = o —m) [—mxm_l/w s U [H(s,y) —rK*] ds

G(y)
+ na:n_l / S_n_l [H(sa y) - TK+] ds ’ for z € ]0’ G(y)[

This calculation and the assumption that H (-, y) is strictly increasing imply that u,(z,y) =
wyz(z,y) > 0, for all z € [z7(y), G(y)[, where z'(y) €]0,G(y)[ is the unique point such
that H (z7(y),y) — rK" = 0 (see Lemma 6). This observation and the boundary condition

wy (G(y),y) = K imply
wy(z,y) — KT <0, forallzez'(y),Gy). (160)
Furthermore, since

022Uy (1, y) + b2ty (2, y) — rU(z,y) = — [H(x, y) — rKﬂ >0, forxz€]0,zi(y)],
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the maximum principle implies that the function &% %(x,y) = wy(x,y)— K™ has no positive
maximum in the interval ]0, z'(y)[, so

sup  [wy(z,y) — K] < max 0V [wy(z,y) — K] =0, (161)
z€ 0zt (y)[ z=0,z(y)

the equality following thanks to (160) and the fact that
: - . H(z,y) -
lwlﬁ)lwy(m’y) = lwlﬁ)lRy(xay) ZI;E)IT € [_K :K+[' (162)

The second equality here holds true because of (18), while the inclusion follows from the
context (see Lemmas 6 and 7). However, (160) and (161) establish (154). Finally, if we
define u(z,y) = wy(z,y) + K—, then (162) and the assumption that H(-,y) is increasing
imply

0?8 Uy, (2,Y) + brug(z,y) — ru(z,y) = — [H(z,y) + rK ] <0, forall z €]0,G(y)l.

This calculation and the maximum principle imply that the fanationz 1+ _(2,y) = wy(z,y)+
K~ has no negative minimum inside |0, G(y)|, so

inf |wy,(z,y)+ K |= min OA |w,(z,y)+ K|,
ze]o,G(y)[[ o{2:9) ) 2=0,G(y) [oy(@,9) ]

which combined with (162) and the boundary condition w,(G(y),y)+ K~ = KT+ K~ >0,
proves (155), and the proof is complete. O
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e

Figure 1: A possible optimal capacity control strategy. In this case, it is never optimal to
decrease the project’s capacity.

X

Figure 2: A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting and decreasing the project’s capacity are all parts of the optimal strategy.
Also, the point y* defined by (72) is strictly positive, and F(0) = 0.
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Figure 3: A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting and decreasing the project’s capacity all belong to the set of optimal tactics.
Also, y* = 0, where y* is defined by (72), F'(0) > 0, and {(z,0) : = < F(0)} is a subset of
the waiting region W.
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Figure 4: A possible optimal capacity control strategy. This case arises when the running
payoff function A identifies with the Cobb-Douglas production function and K~ < 0.
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Figure 5: A possible optimal capacity control strategy. This case cannot arise under our
assumptions.
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