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We consider the effect of inertia on the high frequency response of a general linear viscoelastic
material to local deformations. We calculate the displacement response and correlation functions for
points separated by a distance r. The effects of inertia and incompressibility lead to anticorrelations
in the correlation/response functions, which become more pronounced for more elastic materials.
Furthermore, the stress propagation in viscoelastic media is no longer diffusive, as for simple liquids.

PACS numbers:

The motion of small bodies in simple incompressible
liquids is usually characterized by low Reynolds num-
bers, for which the velocity response at a distance r from
a point force varies as 1/r [1–3]. Such Stokes flow, for
instance, accurately describes the motion of micron-size
objects in water on time scales longer than a few mi-
croseconds. Over short times, however, the inertia of
the liquid prevents the long-range stress propagation im-
plicit for Stokes flow. Any instantaneous disturbance of
the fluid must be confined to a small region after a short
interval of time. Given that liquids are also incompress-
ible, this means that a point-force disturbance must give
rise to back flow on short time scales. In fact, a ring
vortex much like a smoke ring occurs. The resulting
back-flow has important implications, for both correla-
tions of velocity/stress fluctuations in liquids, as well as
for the non-Brownian motion of colloidal particles in liq-
uids. While simulations [4] have demonstrated the pres-
ence of this vortex-like flow, experiments have focused on
indirect consequences of this flow, e.g., for the motion of
colloidal particles in liquids [5]. Here, we show how corre-
lations in the thermal velocity fluctuations of liquids can
be used to directly resolve the spatial structure of these
vortices, as in the accompanying article by Atakhorrami
et al. [6]. We also show how the effects of such vortex-like
flow become more pronounced in viscoelastic media such
as polymer solutions. In viscoelastic media, the propa-
gation of stress is more rapid, resulting in a faster decay
of velocity correlations than in simple liquids.

Newtonian liquids are described by the non-linear
Navier-Stokes equation. The non-linearity, however, can
be neglected either over small distances or for low veloc-
ities [1, 2]. The relative importance of non-linearities is

characterized by the Reynolds number Re = ULρ
η , where

U , L, ρ, and η are, respectively, the characteristic veloc-
ity and length scale, the density, and the viscosity. At
low Reynolds number, however, no assumptions are made
about the flow being stationary [3]. Instead, one has the
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unsteady Stokes approximation for non-stationary flows:

ρ
∂

∂t
~v = η∇2~v − ~∇P + ~f, (1)

where ~v is the velocity field, P is the pressure that en-

forces the incompressibility of the liquid and ~f is the
force density applied to the fluid. By taking the curl of

this equation we observe that the vorticity ~Ω = ~∇ × ~v
satisfies the diffusion equation with diffusion constant
ν = η/ρ. Thus, since the short-time response of a liquid
to a point force involves a vortex, as described above, the
propagation of stress away from the point disturbance is
characterized by diffusive motion of this vortex. After a
time t, this vortex expands away from the point force to
a size of order δ ∼

√

ηt/ρ. In the wake of this moving
vortex is the usual Stokes flow that corresponds to a 1/r
dependence of the velocity field. For an oscillatory dis-
turbance at frequency ω, this defines a penetration depth

δ ∼
√

η/(ωρ) [1] (see Figure 1). On length scales shorter
than this, the propagation of stress is effectively instanta-
neous. In addition to Re one can introduce a dimension-
less number N = L2ρ

ηT ∼ L2/δ2 where T is the typical time

scale associated with the flow. For N � 1, the fluid re-
sponse can be considered instantaneous, while for N ≥ 1
inertia and the corresponding propagation of stress are
important [3].

The discussion above generalizes to a homogenous vis-

coelastic medium characterized by a single, isotropic
time-dependent shear modulus that relates the local
stress to strain [7]. We also assume that the medium is
incompressible, which is a particularly good approxima-
tion for polymer solutions such as those considered here,
at least at high frequencies [8–10]. The deformation of
the medium is characterized by a local displacement field
~u(~r, t). Force balance leads to the viscoelastic analogue
of Eq. (1):

ρ
∂2

∂t2
~u(~r, t) = ~∇ · σ↔(~r, t) − ~∇P + ~f(~r, t) ; (2)

σ
↔

(~r, t) = 2

∫ t

−∞

dt′G(t − t′)γ
↔

(~r, t′) (3)
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where σ
↔

is the local stress tensor, γ
↔

= 1
2

[

~∇~u +
(

~∇~u
)†
]

is the local deformation tensor and the time dependence
of the viscoelastic response is encoded in the memory
function, G(t) [7]. Causality requires that stress at time
t depends only on earlier states of strain, which limits
the range of integration above. Incompressibility leads

to the constraint ~∇ · ~u = 0
Equations (2,3) can be simplified by a decomposi-

tion of the force density and deformation into Fourier
components. Taking spatio-temporal Fourier Transforms

defined as ~u(~k, ω) =
∫

d3r
∫∞

−∞ dt ei(ωt−~k·~r)~u(~r, t), and

defining the complex modulus G(ω) ≡ G′(ω)+ iG′′(ω) =
∫∞

0 dteiωtG(t) , we can eliminate the pressure by impos-
ing incompressibility in Eqs. (2,3). This leads to

~u(~k, ω) =

(

1− k̂k̂

G(ω)k2 − ρω2

)

· ~f(~k, ω) , (4)

where k̂ = ~k/|k|. We invert this Fourier transform to
obtain the displacement response function due to a point
force applied at the origin.

The linear response of the medium at a distance ~r
is in general characterized by a tensor, since both force
and response (displacement field) are vectors: ui(~r, ω) =

αij(~r, ω)fj(~0, ω), where αij = α′
ij + iα′′

ij is complex.
Given our assumptions of homogeneity and isotropy, the
displacement field must lie in a plane common to both

~r and the force ~f . By rotational and translational sym-
metry there are only two distinct contributions to the
response function. These are (1) a parallel response that

is given by a displacement field ~u parallel to both ~f and
~r, and (2) a perpendicular response given by ~u parallel to
~f and perpendicular to ~r. (These are illustrated in Figs.
2 and 3.) The parallel response function α‖, for instance,
is obtained from the inverse Fourier transform of Eq. 4,

where θ represents the angle between ~r and ~k:

α‖(r, ω) =

∫

k2dk sin θdθ

(2π)2
1 − cos2 θ

Gk2 − ρω2
eikr cos θ. (5)

A similar calculation yields α⊥(r, ω).
The response functions for general G(ω) are given by

α‖ (r, ω) = χ‖

(

r
√

κ
)

/(4πGr), (6)

α⊥ (r, ω) = χ⊥

(

r
√

κ
)

/(8πGr) (7)

where κ = ρω2/G is complex and

χ‖ (x) = 2
[

(1 − ix) eix − 1
]

/x2, (8)

χ⊥ (x) = 2
[

1 +
(

x2 − 1 + ix
)

eix
]

/x2. (9)

The magnitude of κ defines the inverse (viscoelastic) pen-
etration depth δ. We have written these response func-
tions in a form in which the noninertial limits (x → 0)
are simple: χ‖,⊥ → 1. Thus, for instance, for a sim-
ple liquid, for which G(ω) = −iωη, the limit x → 0

reduces to a displacement response consistent with the
(time-independent) Oseen tensor [2, 11] and for finite x,
these response functions give the dynamic Oseen tensor
[11, 16]. This is also shown in Fig. 1, where for small
r/δ the parallel and perpendicular velocity response (i.e.,
−iωα‖,⊥) approach 1

4πηr and 1
8πηr for a unit force at the

origin. These then decay for r & δ. Here, the region of
negative response in the perpendicular case corresponds
to the back-flow of the vortex.
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FIG. 1: The velocity response of a Newtonian fluid for parallel
and perpendicular motion. The solid lines show the in-phase
(real) velocity response, which decays on the scale of the pen-
etration depth. The dashed lines show the out-of-phase ve-
locity response (specifically, ωα′). In the non-inertial limit of
small r, the Oseen tensor is recovered, for which the (veloc-
ity) response is real. The decay of the various components
of the response illustrates the finite penetration depth for the
response. The strong dip in the perpendicular response is a
manifestation of the vortex-like flow at short times.

The response functions above represent the equilibrium
displacements due to forces acting in the medium. These
response functions also govern the equilibrium thermal
fluctuations and the correlated fluctuations from point
to point within the medium. The relationship between
thermal fluctuations and response is described by the
Fluctuation-Dissipation theorem. Specifically, for points
separated by a distance r along the x̂ direction,

C‖,⊥(r, ω) =
2kBT

ω
α′′
‖,⊥(r, ω), (10)

where C‖(r, ω) =
∫∞

−∞
dteiωt〈ux(0, 0)ux(r, t)〉 and

C⊥(r, ω) =
∫∞

−∞
dteiωt〈uy(0, 0)uy(r, t)〉.

An experimentally pertinent illustration is given by the
high frequency complex shear modulus of a polymer so-
lution, G(ω) = −iωη + ḡ(−iω)z which has both solvent
and polymer contributions. Assuming that the polymers
dominate the shear modulus leads to the simple scaling
form G(ω) ' ḡ(−iω)z[12]. For the Rouse model of flexi-
ble polymers z = 1/2 [13], while for semiflexible polymers
z = 3/4 [9, 14, 15]. These cases are shown in Figs. 2 and
3. We see that the oscillatory or anti-correlated response
becomes more pronounced in viscoelastic materials.
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Further simplification of Eq. (10) using the definitions in Eqs. (8,9) leads, e.g., to

C‖(r, ω) =
kBT

2πω|G|r
{ 2

β2
e− sin( zπ

4 )β
[(

1 + sin
(

zπ
4

)

β
)

sin
[

cos
(

zπ
4

)

β
]

− cos
(

zπ
4

)

β cos
[

cos
(

zπ
4

)

β
]

]}

, (11)

where β = r
√

ρω2/|G|.
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FIG. 2: The parallel response for viscoelastic media with G(ω) = ḡ(−iω)z, where z = 1/2, 3/4, 1. For reference, the response
function for a Newtonian liquid (z = 1) is shown in gray. In each case, z = 3/4 is intermediate between z = 1 and z = 1/2.
Both real (A) and imaginary (B) parts are shown.
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FIG. 3: The perpendicular response for viscoelastic media with z = 1/2, 3/4, 1. Again, the response for a Newtonian liquid is
shown in gray, and the case of z = 3/4 is intermediate between z = 1 and z = 1/2. Both real (A) and imaginary (B) parts are
shown.

The displacement field exhibiting the vortex pattern
is shown in Fig. 4 for a point force at the origin pointed
along the x-axis. We note the strict inversion symmetries
of this flow: vx (vy) is symmetric (antisymmetric) for ei-
ther x → −x or y → −y, as can be seen by the fact that
the (linear) response must everywhere reverse if the direc-
tion of the force is reversed. The self-sustaining back-flow
represented in Fig. 4 gives rise to long-lived correlations
that, for instance, affect the crossover from ballistic to
diffusive motion of a particle in a liquid. For a simple liq-
uid, the fluid velocity (auto)correlations 〈~v(0, t) · ~v(0, 0)〉
decay proportional to ∼ |t|−3/2. This is known as the
long time tail [4, 5, 17]. For a viscoelastic fluid, stress

propagation is faster than diffusive, resulting in a more
rapid decay of velocity correlations. The decay is, how-
ever, still algebraic. The velocity correlation function
〈~v(0, 0) · ~v(r, t)〉 is given by

kT

∫

dω

2π
(−iω)

[

α‖(r, ω) + 2α⊥(r, ω)
]

e−iω|t| . (12)

By taking the limit r → 0, we find that this correlation
function decays as |t|−ν , where ν = 3(2−z)/2 for G ∼ ωz

as above.
The principal effect of inertia in the response of vis-

coelastic media as well as liquids is the finite propaga-
tion of stress. This is more precisely characterized by
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FIG. 4: The displacement field displays a clear vortex-like
structure. Here, a force in the x̂ direction is applied at the
origin (as shown by the filled circle and arrow). Distances

are shown in units of the penetration depth δ =
p

|G|/(ρω2).
This example has been calculated for the Rouse model with
z = 1/2.

the penetration depth δ. More microscopically, the man-
ifestation of inertia is the vortex-like flow or displacement
field, which appears both in the equilibrium response at
a distance, as well as in the correlations of fluctuations

about thermal equilibrium. It is because of the latter
correlations of thermal fluctuations that an important in-

direct consequence of the vortex has been observed: the
long time tail in the crossover between ballistic and Brow-
nian motion of particles in simple liquids [5, 17]. Never-
theless, no direct experimental observation of this vortex
and resulting back-flow has been made. Recent advances
in combined two-particle tracking and manipulation at
high frequencies [18, 19] make possible the direct ob-
servation of such fundamental fluid dynamics. Specifi-
cally, since the penetration depth is of order micrometers
in ordinary water at now accessible frequencies of order
kilohertz, two-particle tracking, either for active or pas-
sive/thermal motion, should be able to detect the under-
lying hydrodynamic/inertial response or correlations [6].
We emphasize however that these high frequency iner-
tial effects are distinct from lower frequency correlations
due to an imposed external potential (such as an optical
trap) [18, 20] that are not inertial in origin. Interest-
ingly, we also see above how for viscoelastic media the
correlations, and specifically the oscillatory character of
the response functions, becomes much more pronounced
with increasing elastic component of the shear modulus.
This difference can in principle be used to characterize
the high frequency viscoelastic response of a particular
material [6].
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