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Abstract

We discuss certain recent mathematical advances, mainly due to Perelman,
in the theory of Ricci flows and their relevance for renormalization group
(RG) flows. We consider nonlinear sigma models with closed target manifolds
supporting a Riemannian metric, dilaton, and 2-form B-field. By generalizing
recent mathematical results to incorporate the B-field and by decoupling the
dilaton, we are able to describe the 1-loop β-functions of the metric and
B-field as the components of the gradient of a potential functional on the
space of coupling constants. We emphasize a special choice of diffeomorphism
gauge generated by the lowest eigenfunction of a certain Schrödinger operator
whose potential and kinetic terms evolve along the flow. With this choice,
the potential functional is the corresponding lowest eigenvalue, and gives the
order α′ correction to the Weyl anomaly at fixed points of (g(t), B(t)). Since
the lowest eigenvalue is monotonic along the flow and reproduces the Weyl
anomaly at fixed points, it accords with the c-theorem for flows that remain
always in the first-order regime. We compute the Hessian of the lowest
eigenvalue functional and use it to discuss the linear stability of points where
the 1-loop β-functions vanish, such as flat tori and K3 manifolds.
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I Introduction

A standard approach to renormalization group (RG) flow for a quantum field
theory consists of deriving differential equations governing the behaviour of
the coupling constants under changes in the renormalization scale ([1], [2],
[3]). These RG flow equations are written in terms of β-functions which are
components of a vector field tangent to the flow on the space of coupling
constants of the theory. The β-functions can be computed in a loop expan-
sion. For the worldsheet (i.e., 2-dimensional) bosonic sigma model, the loop
expansion parameter is α′, the square of the string scale.

A basic result is Zamolodchikov’s c-theorem [4, 5], which implies that
certain RG flows are irreversible. This theorem asserts the existence of a
function on the space of coupling constants of certain 2-dimensional quantum
field theories called the C-function, which decreases monotonically along any
renormalization group trajectory from an unstable to a stable fixed point, and
equals the basic Weyl anomaly (the central charge of the Virasoro algebra)
at fixed points. The c-theorem was extended to nonlinear sigma models
with compact target spaces by Tseytlin [6]. The C-function obeys dC/dt =
−κ(β, β) for t a parameter along the flow, κ a non-negative quadratic form
on the space of coupling constants, and β the array of β-functions of the
coupling constants. The c-theorem is not contingent on the loop expansion
for β.

A longstanding question is whether RG flow is a gradient flow: Is the vec-
tor field defined by the β-functions orthogonal to level surfaces of a potential
function on the space of coupling constants? Recent advances in mathematics
have shed some light on this question. Consider the special case of a nonlin-
ear sigma model whose target space is purely gravitational (in particular, the
anti-symmetric B-field is absent), and with β replaced by its 1-loop (order
α′) approximation. Then the 1-loop RG flow for the target space metric is
known in the mathematics literature as Ricci flow [7]. Perelman [8] has now
shown that this flow on closed (target) manifolds of arbitrary dimension is
in fact a gradient flow.

Then what do these recent mathematical advances mean for RG flows
of sigma models more generally, when B is not held to zero? This paper
is intended to address this issue. We restrict our attention to the first of
many potentially relevant results announced in [8], the gradient nature of
the flow for g. We endeavour to set out this result in some detail in language
appropriate to the RG setting. Our first task is therefore to generalize it to
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incorporate not only the target manifold’s Riemannian metric g but also the
anti-symmetric 2-form field B and dilaton Φ (though the dilaton can often
be ignored by decoupling it from the system using a suitably chosen diffeo-
morphism). We find that for sigma models whose target space is a closed
manifold, the order α′ RG flow of (g, B) is gradient and thus irreversible.4

The irreversibility argument is easiest when we choose a certain diffeomor-
phism gauge along the flow, and then we call the potential function λ. We
note that the full RG flow (i.e., not the order α′ truncation) on closed target
manifolds is known to be irreversible—this is a consequence of the c-theorem.
However, in the absence of knowledge of the higher loop corrections to the
β-function, it is not practically possible to compute the C-function on closed
target manifolds. Our result can be considered valid when the 1-loop trunca-
tion of the β-function is a good approximation. In this case, we can explicitly
compute the potential function λ that generates the 1-loop RG flow with-
out requiring knowledge about regimes where “stringy” (higher order in α′)
corrections become important.

We find the value of the potential function λ at fixed points to be non-
negative, and zero at any Ricci-flat fixed point. This raises the undesirable
possibility that a Ricci-flat fixed point such as a flat torus might flow to a non-
Ricci-flat one. To preclude this possibility, we compute the Hessian of the
potential and use the resulting second variations to discuss the linear stability,
as well as the rigidity (or isolation), of Ricci-flat fixed points. We confirm
linear stability for the particular examples of flat tori and K3 manifolds.
Our considerations lead us to briefly discuss the possible rigidity of Ricci-flat
perturbative string vacua, at which the β-functions vanish to all orders in α′.
This may be of interest when viewed in the light of investigations into the
topology of the configuration space of string theory [10, 11].

In Section II, we discuss the sigma model under consideration, recalling
its RG flow equations at order α′ and decoupling the dilaton from the flow
of g and B.

Section III is the heart of the paper, particularly the first subsection,
wherein we describe and generalize Perelman’s approach. Perelman’s re-
markable insight is that the Ricci flow of g, modified by the correct choice
of diffeomorphism, becomes the gradient flow of a potential λ which is ac-
tually the lowest eigenvalue of a certain Schrödinger operator on the target

4Elsewhere, we have extended Perelman’s work to noncompact asymptotically flat man-
ifolds with somewhere-negative scalar curvature and zero B-field [9].
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manifold, and we show that this carries over mutatis mutandis to the (g, B)
flow as well. This leads to an easy proof of the absence of periodic or homo-
clinic behaviour (i.e., the “irreversibility”) of the 1-loop flow. In the second
subsection, we evaluate this eigenvalue at a fixed point. We show that it is
≥ 0 and is −4 times the order α′ correction to the Weyl anomaly at fixed
points. The final subsection contains a brief aside on the gradient nature of
RG flow with an arbitrary diffeomorphism; i.e., not a diffeomorphism chosen
as above to connect to the Schrödinger problem.

Section IV contains a derivation of the second variation of the potential
function at a fixed point. This section builds on a similar result for Ricci
flow presented in [12]. In Section V we apply the second variation formula
to discuss linear stability of fixed points, including some particular Ricci-flat
examples. We conclude Section V with some speculative remarks concerning
the potential applicability of our results to an issue in string theory. Section
VI contains remarks on higher-order flows and the C-theorem.

An Appendix contains some calculations related to Section III that we
believe would unnecessarily clutter the main text. That said, we have tried
to provide a certain level of calculational detail, especially when such detail
has not been provided in the mathematics literature.

Throughout, the target manifold is closed and is assumed to carry a
positive-definite Riemannian metric. Our RG flow equations agree with those
that appear in [13].

II RG Flow of the Worldsheet Nonlinear Sigma

Model

The 2-dimensional, or worldsheet, nonlinear sigma model is a quantum field
theory of maps X i from a 2-dimensional Riemannian manifold (Σ, h), the
worldsheet, to another Riemannian manifold (M, g), the target manifold or
target space, which herein we take to be a closed manifold of dimension
at least 3. We let ε denote the volume element on the worldsheet and let
R(h) be the worldsheet scalar curvature. The sigma model action is (using
coordinates σα = (σ1, σ2) on Σ)

S = − 1

α′

∫

Σ

d2σ
[√

hhαβgij∂αX i∂βXj + εαβBij∂αX i∂βXj − α′
√

hΦR(h)
]

,

(II.1)
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where gij, Bij = −Bji, and Φ are the target space metric, B-field, and
dilaton, respectively. This model describes the motion of a bosonic string
in a background wherein the massless string modes have acquired vacuum
expectation values gij, Bij, and Φ. The action is invariant under reparame-
trizations and conformal rescalings on the worldsheet and under the addition
B 7→ B + dω of an exact form dω to B, which is a target space 2-form. The
gauge-invariant 3-form field strength for B is H := dB.

Cut-off independence of the regulated quantum theory leads to renormal-
ization group flow equations (see, e.g., [13])

∂gij

∂t
= −α′

(
Rij + 2∇i∇jΦ− 1

4
HiklHj

kl

)
, (II.2)

∂H

∂t
= α′

(
1

2
∆LBH − d〈H, gradΦ〉

)
, (II.3)

∂Φ

∂t
= −A + α′

(
1

2
∆Φ− |∇Φ|2 +

1

24
|H|2

)
, (II.4)

where ∆ is the Laplacian, ∆LBH := −(dδ + δd)H is the Laplace-Beltrami
operator acting on the 3-form H := dB, A is a constant whose value depends
on the target manifold dimension (and the number of ghost fields when they
are present), and t is the log of the renormalization scale.5

Equation (II.3) is actually derived by taking the curl of the flow equation

∂Bij

∂t
= α′

(
1

2
∇kHkij −Hkij∇kΦ +∇iωj −∇jωi

)

= −α′
(

1

2
δH + 〈H, gradΦ〉+ dω

)

ij

. (II.5)

The ω terms arise because B is determined only up to the exterior derivative
of an arbitrary 1-form θ. Then ∂B

∂t
acquires a contribution which, because

exterior differentiation commutes with ∂
∂t

, can be written as the exterior
derivative of the 1-form ω := ∂θ

∂t
.

These equations are written with respect to a coordinate basis fixed with
respect to t. In a basis that changes with t, extra terms will be introduced
into the evolution equations. We will exploit this now to decouple Φ, and
later to demonstrate the monotonicity formula.

5We do not presume t to be in any way related to physical time here, although it has
been conjectured that RG flow could model real time evolution in certain situations.
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Pulling back by the t-dependent diffeomorphism ϕt generated by the vec-
tor field α′gradΦ adds a Lie derivative term to each of the flow equations.
For example, the left-hand side of the equation for gij becomes ϕ∗t

∂
∂t

gij =
( ∂

∂t
g̃ij − £gij) ◦ ϕt = ( ∂

∂t
g̃ij − 2α′∇i∇jΦ) ◦ ϕt, where g̃ij := ϕ∗t gij. The

right-hand side is natural under diffeomorphisms and becomes, schemati-
cally, ϕ∗t (RHS) = RHS ◦ ϕt. The other evolution equations transform simi-
larly, yielding

∂g̃ij

∂t
= −α′

(
R̃ij − 1

4
H̃iklH̃j

kl

)
, (II.6)

∂H̃

∂t
=

α′

2
∆LBH̃ , (II.7)

∂Φ̃

∂t
= −A + α′

(
1

2
∆Φ̃ +

1

24
|H̃|2

)
. (II.8)

We say these equations are expressed in Hamilton gauge in recognition of the
relationship of (II.6) to the Ricci flow equation of R Hamilton. Notice that
Φ̃ has now decoupled from the evolution equations for g̃ij and H̃ijk.

It will prove convenient to express these equations in an arbitrary t-
dependent coordinate system; i.e., to pull back by an arbitrary t-dependent
diffeomorphism. To do so, we simply add Lie derivative terms to each equa-
tion. We are interested in particular in diffeomorphisms generated by the
gradient of a scalar, so for later convenience we choose to write the generator
as −α′∇ψ where ψ is arbitrary. Then the evolution equations become

∂gij

∂t
= −α′

(
Rij +∇i∇jψ − 1

4
HiklHj

kl

)
=: −βg

ij , (II.9)

∂Hijk

∂t
=

α′

2
(∆LBH − d〈H, gradψ〉)ijk =: −βH

ijk , (II.10)

∂Φ

∂t
= −A +

α′

2

(
∆Φ−∇Φ · ∇ψ +

1

12
|H|2

)
=: −βΦ . (II.11)

The right-hand sides of these equations define what are called β-functions.
We have dropped the tildes now, but note that there is of course a distinction
between quantities such as gij appearing in equations (II.2–II.4) and those in
(II.9–II.11). Namely, the former are obtained from the latter by choosing the
gauge ψ = 2Φ. Hamilton gauge (denoted by the tildes) is the choice ψ = 0.

In the arbitrary gauge, (II.5) becomes

∂Bij

∂t
=

α′

2

[∇kHkij −Hkij∇kψ
]
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+2α′∇[i

[
ωj] −Bj]k∇k

(
Φ− 1

2
ψ

)]
, (II.12)

with square brackets on indices indicating anti-symmetrization. However, we
will fix the evolution of the “internal gauge” by imposing the flow equation

∂Bij

∂t
=

α′

2

[∇kHkij −Hkij∇kψ
]

=: −βB
ij . (II.13)

This forces

σi := ωj −Bjk∇k

(
Φ− 1

2
ψ

)
(II.14)

to be a closed 1-form. We will now show that the flow given by (II.9, II.13)
is a gradient flow.

III The Gradient Flow

III.1 The Monotonicity Formula

In this section we elucidate the first two sections of [8] (see also the detailed
notes [14]) and generalize that work to sigma models with B-field.

The space of coupling constants G 3 (gij(x), Bij(x), Φ(x)), x ∈ M , factors
as G = G × C∞(M), where (gij(x), Bij(x)) ∈ G. The C∞ factor6 will be
used to accommodate both the dilaton Φ and the diffeomorphism generating
function ψ, but it is important not to equate these.7

Consider now a section (gij, Bij, ψ) of G, where we take g, B, and ψ
to be related by (II.9) and (II.13) respectively, but the t-evolution of ψ
is arbitrary. If a choice of t-evolution for ψ is made, equations (II.9) and
(II.13) will then determine an evolving section (g(t), B(t)) in G. Because
the dilaton Φ is decoupled, we do not need to compute its t-evolution si-
multaneously. Rather, we can compute Φ(t) a posteriori from (II.11), once
the t-evolutions for g(t) and B(t) are determined. In this way, each choice
of evolution ψ(t) gives a distinct t-evolving parametrization of the coupling
constants (gij(t, x), Bij(t, x), Φ(t, x)).

6According to the way we have defined points of G, strictly speaking it is not C∞(M)
that splits off from G but rather a trivial bundle whose sections belong to C∞(M).

7That would be a gauge choice; e.g., the choice ψ = 2Φ produces Hamilton gauge
(II.2–II.4).
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In Subsection III.3 we describe, for each choice ψ of parametrization of the
coupling constants, a potential that generates a gradient flow for (g(t), B(t))
on the space G ⊆ G endowed with a natural choice of inner product. However,
by choosing ψ in a certain very natural way (which we dub Perelman gauge),
the resulting gradient flow is particularly useful, and it is that choice which
we concern ourselves with first. Define the functional

F [g, B, ψ] :=

∫

M

dV e−ψ

[
R + |∇ψ|2 − 1

12
|H|2

]
. (III.1)

Integrating by parts, we can write

F [g, B, ψ] =

∫

M

dV e−ψ/2

[
R− 1

12
|H|2 − 4∆

]
e−ψ/2 . (III.2)

Now let u(t, x), x ∈ M , be the lowest eigenfunction of the Schrödinger op-
erator R − 1

12
|H|2 − 4∆. The operator depends on t through the flowing

metric g(t), and thus so do the eigenfunctions. Normalize u (and the other
eigenfunctions) to unity: ∫

M

u2dV = 1 . (III.3)

Since the lowest eigenfunction u has no nodes, it has a well-defined logarithm.
We use this to define a function P by

e−P (t,x)/2 := u(t, x) . (III.4)

Then, for λ the eigenvalue belonging to u, we have

[
R− 1

12
|H|2 − 4∆

]
u =: λu

⇒ R− 1

12
|H|2 + 2∆P − |∇P |2 = λ . (III.5)

Clearly, the choice P = ψ minimizes the functional (III.2) over all C∞(M)
functions obeying

∫
M

e−ψdV = 1. Thus on G there is a new functional
λ[g, B], equal in value at (g(t), B(t)) to λ(t), defined by

λ[g, B] := inf
{ψ| RM e−ψdV =1}

F [g,H, ψ] , (III.6)

⇒ λ(t) = λ[g(t), B(t)] .
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and the infimum is realized by the choice ψ = P .
We can compute the gradient of λ[g,B] on G by evaluating the first

variation of F [g, B, ψ], requiring ψ to be a solution ψ = P of (III.5) all along
the variation. The first step is to compute the free variation in which ψ is not
constrained. This variation is familiar in physics. If we momentarily think
of ψ as the dilaton8 for purposes of computing this variation, then F is the
low energy effective action in string theory and its variational derivative is
well-known. For completeness, we provide a derivation in the Appendix; cf.
equation (A.9). The variation gives

dF

ds
=

∫

M

[(
−Rij −∇i∇jψ +

1

4
H i

klH
jkl

)
∂gij

∂s

+

(
R− 1

12
|H|2 + 2∆ψ − |∇ψ|2

)(
1

2
gij ∂gij

∂s
− ∂ψ

∂s

)

+
1

2

(∇kH
kij −Hkij∇kψ

) ∂Bij

∂s

]
e−ψdV . (III.7)

Now impose the constraint that, for each value of s along the variation,
ψ is not freely varied but rather is fixed to obey (III.4). That is, ψ(s) =
P (s) = −2 log u(s), where u(s) is the lowest eigenfunction of the Schrödinger
operator determined by the varied metric and B-field. Then (III.7) becomes
the first variation formula for λ[g, B]. As well, on the right-hand side of
(III.7) we use first (III.5) and then (III.3) and (III.4) to write

∫

M

(
R− 1

12
|H|2 + 2∆P − |∇P |2

)(
1

2
gij ∂gij

∂s
− ∂P

∂s

)
e−P dV

= λ

∫

M

(
1

2
gij ∂gij

∂s
− ∂P

∂s

)
e−P dV

= λ
d

ds

∫

M

e−P dV

= 0 . (III.8)

Thus, the middle line of (III.7) vanishes and we are left with

dλ

ds
=

∫

M

[(
−Rij −∇i∇jP +

1

4
H i

klH
jkl

)
∂gij

∂s

8keeping in mind of course that it is Φ, not ψ, that obeys the dilaton RG flow; indeed,
when ψ is constrained in the manner of Subsection III.3, it can be shown to evolve in t
according to a backwards parabolic evolution equation.
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+
1

2

(∇kH
kij −Hkij∇kP

) ∂Bij

∂s

]
e−P dV . (III.9)

Now we can consider the elements of G to be 2-index tensors with sym-
metric part g and skew part B. Then the inner product is given by

〈T, T ′〉 :=

∫

M

e−P gikgjlTijT
′
kldV

=

∫

M

e−P gikgjl [SijS
′
kl + AijA

′
kl] dV , (III.10)

where S is the symmetric part of T ∈ TG and A is the anti-symmetric part.
Then (III.9) is the directional derivative 〈T, Grad λ〉 of λ in the direction
T :=

(
∂g
∂s

, ∂B
∂s

)
. Then we can read off the gradient.

Proposition 3.1. The RG flow for (g,B), with diffeomorphism gauge ψ
fixed to be a solution P of (III.5), is the gradient flow in G generated by the
potential λ[g,B]:

∂

∂t

(
gij

Bij

)
≡

( −α′
(
Rij +∇i∇jP − 1

4
HiklHj

kl
)

α′
2

[∇kHkij −Hkij∇kP
]

)

= α′ Grad λ[g, B] , (III.11)

and λ(t) is monotone increasing along the gradient flow:

dλ

dt
= α′

∫

M

[∣∣∣∣Rij +∇i∇jP − 1

4
HiklHj

kl

∣∣∣∣
2

+
1

4

∣∣∇kHkij −Hkij∇kP
∣∣2

]
e−P dV . (III.12)

Furthermore, fixed points of (III.11) (where H = dB) are stationary points
of λ.

Proof. The gradient formula (III.11) can be read off from (III.9). To obtain
(III.12), consider the special case in (III.9) of a variation in (g,B) produced
by evolving (g,B) along the RG flow. That is, let

(
∂g
∂s

, ∂B
∂s

)
in (III.9) be given

by the flow equations (II.9, II.13) with s = t. Finally, for fixed points of
(III.11), the right-hand side of (III.12) vanishes. ¤

Corollary 3.2. λ is monotonic along RG flow (II.9, II.13).
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Proof. Starting from the same initial data, the resulting solutions of the
gradient flow (III.11) and the RG flow with arbitrary ψ (II.9, II.13) are related
by at worst a time-dependent diffeomorphism. But λ(t) is diffeomorphism-
invariant, and monotonic along the gradient flow. ¤

We now discuss briefly the absence of periodic 1-loop RG flows. We will
call a solution of the flow (II.9, II.13) a breather if it is periodic up to gauge
and diffeomorphism; i.e., if there is a diffeomorphism ϕ, a 1-form ω, and
parameter values t1 < t2 such that (g(t1), B(t1)) = (ϕ∗g(t2), ϕ

∗B(t2) + dω).
A solution that is not a breather is a homoclinic orbit if it is eternal (i.e.,
defined for all t ∈ (−∞,∞)) with (g(t), B(t)) converging to (g0, B0) for
t → −∞ and to (ϕ∗g0, ϕ

∗B0 + dω) for t → +∞.

Proposition 3.3. There are no periodic or homoclinic orbits of the RG flow
other than the fixed points of (III.11).

Proof. For a periodic orbit of the flow (II.9, II.13), there will be some t1 < t2
such that λ(t1) = λ(t2) =: Λ. Then by monotonicity, λ(t) = Λ for all t ∈
[t1, t2]. But by (III.12), this can only happen if the right-hand side of(III.11)
vanishes throughout [t1, t2]. This is the condition for a fixed point (with
ψ = P ). For the homoclinic case, note that the sequence λ(nT ) − λ(−nT ),
n ∈ Z, T > 0, is increasing. However, for a homoclinic orbit, this sequence
must converge to zero. Therefore λ(nT ) − λ(−nT ) = 0 for all n. Setting
t1 = −nT , t2 = nT , we see as before that the flow on [t1, t2] = [−nT, nT ] is
at a fixed point. But we can take n arbitrarily large. ¤

Note that this result implies that if the flow equations with any potential
ψ have a fixed point in which the right-hand sides of (II.9) and (II.13) vanish,
then the diffeomorphism generator ψ must be a solution P of (III.5).

Perelman, in Section 2 of [8], was able to go farther. Using λ as we have
defined it, but of course with B = 0, he was able to prove the non-existence
of nontrivial expanding breathers, metrics that are equal at two different t-
values up to a diffeomorphism and a homothety such that the metric with
greater t-value has greater volume. However, the argument does not go
through generally if the B-field is permitted to have nonzero field strength
H at some time during the flow.
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III.2 λ and the Weyl Anomaly at Fixed Points

We can now evaluate the eigenvalue λ at a stationary point, thus at a fixed
point of the flow for which H is an exact 3-form. Since we consider a one-
parameter family of flows with parameter s, we write λs for the eigenvalue
and denote the stationary point by s = 0. At such a point, each term in
(III.12) vanishes, and thus in particular we must have

R + ∆P − 1

4
|H|2 = 0 . (III.13)

When this holds, (III.5) takes the form

λ0 = ∆P − |∇P |2 +
1

6
|H|2 . (III.14)

Multiply this by e−P and integrate. On the left-hand side,
∫

M
λ0e

−P dV =
λ0

∫
M

e−P dV = λ0, and on the right-hand side the derivatives of P vanish
upon integration by parts (since M is closed). This yields

λ0 =
1

6

∫

M

|H|2e−P dV . (III.15)

Notice now that, from the right-hand side of (II.11) with the diffeomorphism
now chosen so that ψ = P as must be the case at a fixed point, we can write

∫

M

e−P βΦdV = A− α′

24

∫

M

e−P |H|2dV = A− α′

4
λ0 . (III.16)

(Recall that A is a constant depending on the dimension of the target man-
ifold and the number of ghost fields, if any are present.) We compare this
expression to Tseytlin [6], according to which the basic Weyl anomaly is9

β̃ := βΦ − 1

4
gijβg

ij . (III.17)

At a fixed point, βg
ij vanishes and thus we obtain

∫

M

e−P β̃dV = A− α′

4
λ0 . (III.18)

9Tseytlin’s definition of t differs from ours by a sign, but the signs in his RG equations
are such that his β-functions agree with ours.
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But at fixed points, β̃ is constant on M ([16]; for the case where no B-field is
present, this follows as an integrability condition for the fixed point equation
βg

ij = 0 as discussed in [17]; for the case with B-field, see the discussion in
[18]). Then (III.18) reduces to the relation

β̃ = A− α′

4
λ0 . (III.19)

An example is provided by a fixed point of (g(t), B(t)) with |H|2 :=
HijkH

ijk constant over the closed manifold M and with dilaton linear in the
scale t. We must first note that (III.14) can now be written as

∆e−P =
1

6
e−P

(
|H|2 −

∫

M

|H|2e−P dV

)
. (III.20)

Since |H|2 is constant over M (and so by (III.15) |H|2 = 6λ), the right-hand
side of (III.20) vanishes and e−P is harmonic. Then P is constant. (For the
B = 0 case, the result was already known from work of Bourguignon [15].)
Then (II.11) reduces to

∂Φ

∂t
= −A +

α′

2

(
∆Φ +

1

2
λ

)
= −βΦ , (III.21)

A solution is given by

Φ =

(
α′

4
− A

)
t + Φ0 , (III.22)

∂Φ0

∂t
=

α′

2
∆Φ0 , (III.23)

where the operator ∆ has no time dependence, in consequence of our being
at a fixed point with trivial diffeomorphism ∇P = 0. Then if we choose that
Φ0 is constant in time, it also will be harmonic and thus spatially constant
at all times, and we obtain, as claimed, that

β̃ = βΦ = A− α′

4
λ . (III.24)

III.3 A Gradient Flow with Arbitrary Diffeomorphism
Term

The RG flow (II.9, II.13) with arbitrary diffeomorphism not necessarily de-
termined by (III.5) is nonetheless a gradient flow as well. To see this, return

13



to (III.7) but do not require now that ψ = P = −2 log u at each s. Instead,
to eliminate the middle line, choose any fiducial measure dm := e−ψdV and
hold it fixed pointwise along the variation. That is,

Proposition 3.4. The RG flow (II.9, II.13) is the gradient flow of F [g, B, ψ]
along the surface in G determined by the fixed fiducial measure dm := e−ψdV
on M .

Proof. If dm is fixed then gij ∂gij

∂s
− ∂ψ

∂s
= 0 and the middle line on the right-

hand side of (III.7) again vanishes. We obtain (III.9), from which the gradient
can be read off. Since dm can be chosen arbitrarily, ψ is now arbitrary as
well. ¤

While the approach of Proposition 3.4 may seem more general and per-
haps simpler than the approach of Proposition 3.1, it is in fact far less pow-
erful, because F depends on the arbitrary diffeomorphism potential ψ. To
prove results such as Proposition 3.3, one must remove the ψ dependence by
passing to λ which, in contrast to F , is geometrically meaningful—and has
a clear physical interpretation.

IV The Second Variation of λ

In the case of Ricci flow (B = 0) the second variation formula for λs was
written down in [12]. We generalize the formula here for arbitrary B-field.
The next section applies this formula in a special case.

In an endeavour to minimize clutter, we establish a convention. If a
quantity below is to be considered as a function of s, we write s explicitly
as an argument or subscript. If s does not appear, the quantity is evaluated
at s = 0 (possibly after s differentiation; this should be clear from context).
We will use ∇k to denote the covariant derivative compatible with gij(s) and
Dk for the covariant derivative compatible with gij ≡ gij(0).

The second variation formula about an arbitrary point is complicated.
Fortunately, for most purposes, we only need the second variation about a
stationary point of λs. Thus we require the s = 0 fields (g, H) to obey

Rij + DiDjP − 1

4
HiklHj

kl = 0 , (IV.1)

DkHkij −HkijD
kP = 0 . (IV.2)
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Thus from (III.9) the second variation formula about a stationary point is

d2λs

ds2

∣∣∣
s=0

=

∫

M

[
hij ∂

∂s

(
−Rij −∇i∇jP +

1

4
HiklHj

kl

)

+
1

2
βij ∂

∂s

(∇kHkij −Hkij∇kP
)]

e−P dV , (IV.3)

where we define

hkl :=
∂gkl

∂s
, hij := gikgjlhkl , (IV.4)

βkl :=
∂Bkl

∂s
, βij := gikgjlβkl , (IV.5)

and for use below

Q :=
∂P

∂s
. (IV.6)

The standard formulas

∂

∂s
Rij = ∇k

∂

∂s
Γk

ij −∇i
∂

∂s
Γk

jk (IV.7)

∂

∂s
Γk

ij =
1

2
gkl (∇ihjl +∇jhil −∇lhij) (IV.8)

yield the easy identity (writing D for ∇|s=0 whenever we can and using a
standard result for the variation of a Christoffel symbol)

∂

∂s
(−Rij −DiDjP )

= −eP Dk

(
e−P ∂

∂s
Γk

ij

)
−

(
DiDj

∂P

∂s
−Di

∂

∂s
Γk

jk

)

= −eP Dk

(
e−P ∂

∂s
Γk

ij

)
+ DiDj

(
1

2
gklhkl −Q

)

= −1

2
eP gklDk

[
e−P (Dihjl + Djhil −Dlhij)

]

+DiDj

(
1

2
gklhkl −Q

)

= −1

2

(
DiD

khjk + DjD
khik −Rkiljh

kl −Rkjlih
kl

+Rk
i hjk + Rk

j hik −∆hij

)
+ DiDj

(
1

2
gklhkl −Q

)
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= −1

2

(
DiD

khjk + DjD
khik −∆Lhij

)

+DiDj

(
1

2
gklhkl −Q

)
, (IV.9)

where ∆L denotes the Lichnerowicz Laplacian

∆Lhij := ∆hij + Rkiljh
kl + Rkjlih

kl −Rk
i hjk −Rk

j hik . (IV.10)

Thus we obtain (round brackets around indices indicate symmetrization):

The Second Variation Formula:

d2λs

ds2

∣∣∣
s=0

=
1

2

∫

M

e−P hij
(
∆Lhij −HikmHjl

mhkl
)
dV

+

∫

M

e−P hij

[
−D(iD

khj)k + DiDj

(
1

2
gklhkl −Q

)]
dV

+
1

2

∫

M

e−P βij ∂

∂s

(∇kHkij −Hkij∇kP
)
dV , (IV.11)

for variations about a general stationary point.

As a check on our results, we restrict to variations (h, 0) in which B is
fixed. We determine Q in the second variation formula by noting that (III.5)
must hold all along the variation (i.e., for all s). Differentiate it and evaluate
the derivative at s = 0. On the left-hand side, d

ds
λs|s=0 = 0 since s = 0 is a

stationary point, while the right-hand side can be simplified by using (IV.7),
etc, to obtain

Di
[
e−P Di

(
gijhij − 2Q

)]
= DiDj

(
e−P hij

)
. (IV.12)

We write the solution of this equation (one always exists and is unique modulo
an inconsequential additive constant, since M is closed) as

vh := gijhij − 2Q , (IV.13)

This determines Q, given hij. Now we further restrict to the case where |H|2
is constant on the manifold. Then by (III.19), we can set P = 0. Under
these circumstances, the second variation formula becomes

d2λs

ds2

∣∣∣
s=0

=
1

2

∫

M

hij
(
∆Lhij −HikmHjl

mhkl
)
dV , (IV.14)

+

∫

M

(
|div (h)|2 − 1

2
|Dvh|2

)
dV ,
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where (div h)i := Dkhik, and this yields agreement with the Ricci flow result
of [12] when Hijk = 0. For hij transverse (i.e., if Dihij = 0), both terms in
the second integrand vanish.

V H = 0 Fixed Points

Consider a family of solutions of the RG flow with t the parameter along
each flow and s the family parameter. In the sequel, we always choose s
such that s = 0 is a stationary point of λs and thus a fixed point of the
flow. If the second variation of λs about s = 0 is positive at t = 0, then
C := λs(0) > λ0(0) for some s > 0. Since λs(t) is monotonic in t and λ0(t)
is constant, then λs(t) ≥ C > λ0(0) for all t. Since λs is continuous on G,
the coupling constants cannot approach the fixed point couplings along the
flow. Thus, d2

ds2 λs|s=0 > 0 indicates an instability of the fixed point.
Now Ricci-flat fixed points have λ = 0, which is the least possible value of

λ at a fixed point. A particularly worrisome scenario would occur if certain
Ricci-flat manifolds, such as flat tori and K3 manifolds, were unstable against
small perturbations and could flow to other, non-Ricci-flat fixed points. To
preclude this possibility, we must study the eigenvalues of the Hessian of λs

about s = 0. This notion of stability is called linear stability.
It is difficult to study general variations (h, β) in both g and B about

an arbitrary fixed point, owing to the difficulty in diagonalizing the Hessian.
However, Ricci-flat fixed points necessarily have H = 0, and for a fixed point
with H = 0 things simplify considerably, making it possible. As well as the
direct simplification of setting H = 0, the argument surrounding (III.19)
then gives that P can be set to zero as well, and so the fixed point condition
gives that Rij = 0. We use (IV.11) to write

d2λs

ds2

∣∣∣
s=0

=
1

2

∫

M

(
hij∆Lhij + 2|div (h)|2 − |Dvh|2 − 1

3
|dβ|2

)
dV , (V.1)

where now vh solves

DkDkvh ≡ DkDk

(
gijhij − 2Q

)
= DiDjhij . (V.2)

Equation (V.1) has the form

d2λs

ds2

∣∣∣
s=0

=

∫

M

(
〈h,Lh〉 − 1

6
|dβ|2

)
dV
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=

∫

M

(
〈h,Lh〉 − 1

6
〈β, d∗dβ〉

)
dV (V.3)

Lh :=
1

2
∆Lh + div∗div h + DDvh , (V.4)

where we have suppressed the indices, written (div h)i := Dkhik, and let
div∗ denote the adjoint of the divergence and d∗ denote the adjoint of d with
respect to the inner product (III.10). It is known [21, 20] that eigenvectors of
L belonging to positive eigenvalues, if any exist, are transverse and traceless,
and moreover for hij transverse traceless then

L|N =
1

2
∆L|N , (V.5)

N := {hij | (divh)i := Dkhik = 0, trgh := gijhij = 0} . (V.6)

Furthermore, on the complement of N , L < 0 unless hij arises from the action
of a diffeomorphism or homothetic rescaling on gij, in which case L = 0.

The |dβ|2 term in (V.3) is obviously negative semi-definite, and negative
if β is not closed. With that and the above comments concerning L in mind,
we define a fixed point (g, dβ) with Rij = 0, Hijk = 0 to be linearly stable if
∆L|N ≤ 0. If the tangent directions at (g, dβ) for which ∆L|N = 0 can be
exponentiated to give a smooth submanifold U of Ricci-flat fixed points in
the space of coupling constants, then we say that the fixed point (g, dβ) is
integrable. We will call this an integral submanifold of Ricci-flat fixed points.
Since by construction ∆L < 0 in the complement in N of TU at each point
along U , we call U strongly linearly stable. If U is strongly linearly stable and
if neither the spectrum of ∆L nor that of δd : Λ2(M) → Λ2(M) accumulates
at zero, we will call U strictly linearly stable.

Lemma 5.1. If a strictly linearly stable integral submanifold U consists
entirely of a disjoint set of one or more Ricci-flat fixed points, then those
points are rigid (isolated): there are no neighbouring fixed points, Ricci-flat
or not, except those obtained by diffeomorphism and/or homothety.

Proof: At p ∈ U , consider any submanifold S whose tangent space at p is
contained in N . Because λ is zero and stationary at p and ∆L is bounded
below zero on TS, and δd is bounded below zero on Λ2(M) modulo closed
forms, then λ < 0 on some neighbourhood of p in S. But fixed points have
λ ≥ 0 by (III.15). ¤
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We have no examples of rigid fixed points. However, the proof generalizes
to the case of submanifolds U of nonzero dimension provided what is meant
by “isolated” is interpreted to mean that neighbouring fixed points must also
belong to U are allowed. This brings us to the cases of greatest interest here:

Flat Tori:
For flat manifolds, it helps to write (V.3) as

d2λs

ds2

∣∣∣
s=0

= −1

2

∫

M

(
3|D(ihjk)|2 +

1

3
|dβ|2

)
dV , (V.7)

for hij ∈ N . This is strictly negative unless β is closed and D(ihjk) = 0, and
then hij is called a Killing tensor. For tori, the Killing tensors are always
linear combinations of outer products of translation Killing vectors. These
modes correspond to the relative rescaling of distinct cycles, holding the torus
volume fixed. These relative rescalings give rise to the moduli space of flat
structures on the torus, which is clearly a strongly linearly stable integral
submanifold of Ricci-flat fixed points in the space of coupling constants.
Moreover, it is evident from the triviality of the eigenvalue problem in this
case that the moduli space is in fact strictly linearly stable.

K3 Manifolds:
The infinitesimal deformations (meaning in this situation the hij ∈ N such
that ∆Lhij = 0) of Kähler Ricci-flat metrics on K3 manifolds are known to
actually correspond to Ricci-flat metrics [22, 20]. Once again, these metrics
form a submanifold E of Ricci-flat fixed points. It was shown in [21] that
∆L < 0 on the complement of TE in N . Thus E is a strongly linearly stable
integral submanifold of Ricci-flat fixed points.

Although these results on linear stability are strongly suggestive, they
do not demonstrate dynamical stability without further technical argument.
In the case of Ricci flow (i.e., no B-field), Sesum [20] has found linear and
dynamical stability to be equivalent when the fixed point satisfies the inte-
grability condition. Thus flat tori and K3 manifolds are dynamically sta-
ble under Ricci flow. We expect similar results will hold when a B-field is
present. The issue is presently under investigation. Nonetheless, the picture
that emerges is one where flat tori and K3s are final and not initial endpoints
of the flow (except of course for the trivial case of a flow that remains always
at the fixed point). If flows that end at these points begin at unstable fixed
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points, then monotonicity of λ and the fact that λ = 0 at the final endpoint
would imply that those initial fixed points would have λ < 0, contradicting
(III.15). The resolution of this apparent paradox is simply that higher order
terms α′ are significant for such flows and cannot be neglected.

Finally, consider the stability of the subset of fixed points of the first-
order flow that remain fixed points of the flow to all orders in α′. That
is, they receive no ‘stringy corrections’ at any order in perturbation theory.
These are called perturbative string vacua, and are described by conformal
field theories. Questions concerning the topology of the space of such vacua,
the dimension of the moduli space, etc., have been discussed in the string
theory literature primarily in the language of CFTs and their operator con-
tent. Because our results for general order α′ fixed points certainly obviously
descend to perturbative string vacua, we have a complementary picture in
which these questions can be phrased in the language of target manifold
geometry. The clearest case would be that of a zero-dimensional integral
submanifold of Ricci-flat perturbative string vacua. Then Lemma 5.1 would
apply directly.10 Checking stability would then be a matter of checking the
eigenvalues of ∆L. If this could be done and if stability were confirmed,
we could infer that the related CFT should have no relevant or marginal
operators. Now while we presently know of no specific example of such a
zero-dimensional manifold of vacua, we have seen for flat tori that it need
not be difficult to draw conclusions about relevant operators in the CFT even
when the vacuum belongs to a nontrivial integral submanifold.

In [10], Vafa addresses the question of whether the C-function can serve as
a Morse function for the configuration space of string theory, the hope being
that this would shed light on the topology of this configuration space. In
particular, he points out that the possible existence of nontrivial fixed points
with no relevant or marginal directions—rigid perturbative string vacua in
the language above—raises the question of whether the configuration space
of string theory is connected.

10Kahler-Ricci-flat K3 manifolds are perturbative string vacua. A version of Lemma 5
could be proved for the larger integral submanifolds that occur there. However, we do not
know if these manifolds are strictly linearly stable, even though they are strongly linearly
stable.
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VI Concluding Remarks

Throughout, we have limited attention to the most elementary of the monotone
quantities for Ricci flow in [8] and to order α′ β-functions. To do more would
have made this article unwieldy. It is, however, interesting to ponder whether
Perelman’s W -entropy, reduced length, and reduced volume have useful ana-
logues for the flows we have considered. An analogue of the scale invariant
W -entropy would allow one to address and probably rule out the possibility
that there may be solutions of the RG flow which are periodic except for an
overall homothetic rescaling [23].

It is also natural to ask whether these techniques might show the RG
flow to be gradient at higher order in α′. Higher-order RG flow equations
have a significant difficulty, which is that nonlinear combinations of leading-
order spatial derivative terms appear in the flow PDEs. Then the question
may be vacuous, in that these PDEs might not admit any solutions at all.
Physics does not require that they do, since the exact RG flow, by which
we mean that the β-functions are not approximated using a truncated loop
expansion, can still exist nonetheless. However, if a gradient flow could be
found for, say, the order α′2 RG flow, then this would be an important step
in showing existence of solutions of the PDEs (as streamlines of the gradient
flow). Thus, in the absence of a separate existence proof for solutions there
is no reason to expect to find a gradient flow, but it is the very absence of
such a proof that makes the question more interesting.

Thinking beyond the loop expansion, we return to the C-theorem. In the
present work, we utilized recent mathematical breakthroughs to say some-
thing about order α′ physics. These advances first occurred in the context of
Ricci flow and attempts to prove conjectures concerning 3-manifold topology,
but seem to echo the C-theorem (cf Section III.2). It is intriguing to ask what
may come from a reverse strategy. For example, might the C-theorem lead to
a tower of geometric flows with monotonicity properties and interesting fixed
points, order-by-order in α′?11 Can the Ricci flow with surgery be given a
physics interpretation and might the C-theorem have something to say about
topology of manifolds? To realize this potential, it seems very important to
understand more deeply the relationship between the C-function and λ, or
perhaps the other monotonic quantities known for Ricci flow [8] but which
we have not discussed herein.

11This intriguing idea was suggested to us by Gerhard Huisken.
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A Appendix

Here we compute the first variation in the functional F [g,B, ψ] that results
from a 1-parameter variation of g, B, and ψ. We denote the parameter by s
and compute the first variation term-by-term, starting from the formula

dF

ds
=

∫

M

(
∂R

∂s
+

∂

∂s
|∇ψ|2 − 1

12

∂

∂s
|H|2

)
eψdV

+

∫

M

(
R + |∇ψ|2 − 1

12
|H|2

)
∂

∂s

(
e−ψdV

)
. (A.1)
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Lemma A.1. For M compact, then∫

M

∂R

∂s
e−ψdV = −

∫

M

[
Rij +∇i∇jψ −∇iψ∇jψ

−gij
(
∆ψ − |∇ψ|2)

]∂gij

∂s
e−ψdV , (A.2)

Proof. Use the standard formula

∂R

∂s
= −Rij ∂gij

∂s
+∇i

[
∇j ∂gij

∂s
−∇i

(
gkl ∂gkl

∂s

)]
(A.3)

and integrate by parts twice. ¤

Lemma A.2. Assume that (III.1) holds. Then
∫

M

(
∂

∂s
|∇ψ|2

)
e−ψdV

=

∫

M

[
2
(|∇ψ|2 −∆ψ

) ∂ψ

∂s
− ∂gij

∂s
∇iψ∇jψ

]
e−ψdV . (A.4)

Proof.∫

M

(
∂

∂s
|∇ψ|2

)
e−ψdV =

∫

M

[
2∇iψ∇i

∂ψ

∂s
− ∂gij

∂s
∇iψ∇jψ

]
e−ψdV (A.5)

and integrate by parts. ¤

Lemma A.3.

− 1

12

∫

M

(
∂

∂s
|H|2

)
e−ψdV

=

∫

M

[1

4
H i

klH
jkl ∂gij

∂s
+

(∇kH
kij −Hkij∇kψ

) ∂Bij

∂s

]
e−ψdV . (A.6)

Proof. The first term on the right-hand side is obvious. The second term
follows from the fact that ∂

∂s
∂[iBjk] = ∂[i

∂
∂s

Bjk] = ∇[i
∂
∂s

Bjk]. Then
∫

M

[
−1

6
H ijk ∂

∂s
Hijk

]
e−ψdV

=

∫

M

[
−1

2
Hijkg

ipgjqgkl∇p
∂Bql

∂s

]
e−ψdV

=
1

2

∫

M

[(∇kHkij −Hkij∇kψ
)
gipgjq ∂Bpq

∂s

]
e−ψdV (A.7)
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Lemma A.4.
∫

M

(
R + |∇ψ|2 − 1

12
|H|2

)
∂

∂s

(
e−ψdV

)

=

∫

M

(
R + |∇ψ|2 − 1

12
|H|2

)(
1

2
gij ∂gij

∂s
− ∂ψ

∂s

)
e−ψdV .(A.8)

Proof. Follows from the formula 1√
g

∂
√

g

∂s
= 1

2
gij ∂gij

∂s
for the derivative of a

determinant. ¤

Proposition A.5. For any arbitrary smooth 1-parameter variation of g, B,
and ψ, then

dF

ds
=

∫

M

[(
−Rij −∇i∇jψ +

1

4
H i

klH
jkl

)
∂gij

∂s

+

(
R− 1

12
|H|2 + 2∆ψ − |∇ψ|2

)(
1

2
gij ∂gij

∂s
− ∂ψ

∂s

)

+
1

2

(∇kH
kij −Hkij∇kψ

) ∂Bij

∂s

]
e−ψdV . (A.9)

Proof: Follows immediately from Lemmata A.1–4. ¤
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