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Abstract

We show that the borderline cases in the proof of the positive energy
theorem for initial data sets, on spin manifolds, in dimensions n ≥ 3,
are only possible for initial data arising from embeddings in Minkowski
space-time.

1 Introduction

Witten's proof of the positive energy theorem [10] shows that, under appropri-
ate conditions, the time-component of the energy-momentum vector p is non-
negative. For various reasons it is of interest to understand precisely the bor-
derline cases, with a vanishing, or perhaps light-like, p. In the context of initial
data sets this has been done in detail in an accompanying paper [5] in space-
dimension three. It is the purpose of this note to generalise the results proved
there to all spin initial data manifolds of dimension n ≥ 3.

The argument presented in [5] proceeds as follows: in the borderline cases,
Witten's proof provides one or more covariantly constant �KIDs� (by de�nition,
those are the initial data counterparts of space-time Killing vectors). A careful

∗Partially supported by a Polish Research Committee grant 2 P03B 073 24. E-mail Piotr.
Chrusciel@lmpt.univ-tours.fr, URL www.phys.univ-tours.fr/∼piotr
† E�mail: maerten@math.univ-montp2.fr

1



study of such KIDs shows that their existence implies the vanishing of mass,
and then �atness of space-time along the initial data. One then concludes by
showing that the Killing development of the initial data set is �at.

Not unexpectedly, all those arguments can be extended to higher dimensions,
after adjustment of the rates of decay of the �elds. The only part of the proof
where essential work is needed is the algebra proving existence of KIDs. This
is based on [8], and presented in Section 3. On the other hand, the analysis of
the KIDs is essentially identical to that in [5], so we will (mainly) only present
the statements of the results needed for the positive energy theorem here.

The notation and conventions of [5] are used throughout. We assume that
the space-dimension n is larger than or equal to three.

Our main results can be summarised as follows:

Theorem 1.1 Let (M , gµν) be an (n+1)�dimensional space�time, n ≥ 3, with a
Killing vector �eld which is asymptotically null along an (appropriately regular,

see Section 2 below) asymptotically �at spacelike hypersurface S . Then the

ADM energy�momentum vector of S vanishes.

The precise hypotheses needed for Theorem 1.1 are the conditions on the
asymptotic behavior of (g,K) in (2.18)-(2.19) below, together with the matter
decay conditions (2.20) and (2.22). Theorem 1.1 is a special case of Theorem 2.5
below.

Theorem 1.2 (�Timelike �future�pointing� energy�momentum theorem�) Under

natural regularity and matter�energy conditions (see the conditions of Theorem

3.2 below), the ADM energy�momentum vector pµ of a spin initial-data manifold

S satis�es

p0 >

√√√√ n∑
i=1

(pi)2 ,

unless (S , gij ,Kij) are initial data for Minkowski space�time.

Theorem 1.1 is a loose rephrasing of Theorem 3.2 below.
There are well known counterparts of this with trapped boundaries, which

are of no concern to us here because they always lead to a strict inequality.
It would be natural to extend the result to cover the Bondi mass, both in

three and higher dimensions. The starting point of the calculations of the proof
of Theorem 3.2 is the existence of a parallel spinor, the existence of which fol-
lows from the analysis in [7] when the Bondi mass is null in space-dimension
three. The calculations that follow apply without modi�cations, yielding a par-
allel isotropic KID. One expects that this is incompatible with a non-vanishing
Trautman-Bondi mass, but a complete analysis of this has not been carried out
so far.
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2 KIDs in n-dimensional asymptotically �at initial

data sets, n ≥ 3

We have the following string of propositions, which are the building stones of
the proof of Theorem 2.5 below:

Proposition 2.1 Let R > 0 and let (gij ,Kij) be initial data on SR ≡ Rn\B(R)
satisfying

gij − δij = Ok(r−α), Kij = Ok−1(r−1−α), (2.1)

with some k > 1 and some α > 0. Let N be a C2 scalar �eld and Y i a C2 vector

�eld on SR such that

2NKij + LY gij = 0 . (2.2)

De�ne ρ, J i and τij by the equations

2ρ = nR+ (Ki
i)2 −KijKij , (2.3)

J i = Dj(Kij −Kk
kg
ij) , (2.4)

τij − 1
2g
k`τk`gij = nRij +Kk

kKij − 2KikK
k
j

−N−1(LYKij +DiDjN)− ρ
2 gij , (2.5)

and assume that ρ and τij satisfy

ρ = Ok−2(r−2−α) , τij = Ok−2(r−2−α) . (2.6)

Then there exists numbers Λµν = Λ[µν] such that we have, for r large,

DiYj − Λij = Ok−1(r−α) , Y i − Λijxj =
{
O(r1−α), α 6= 1;
O(ln r), α = 1,

(2.7)

DiN − Λi0 = Ok−1(r−α) , N − Λi0xi =
{
O(r1−α), α 6= 1;
O(ln r), α = 1.

(2.8)

If Λµν = 0, then there exist numbers Aµ such that we have

Y i −Ai = Ok(r−α), N −A0 = Ok(r−α) . (2.9)

If Λµν = Aµ = 0, then Y i ≡ N ≡ 0.

Proof: See Section 2 and Appendix C of [5]. 2

Proposition 2.2 Let R > 0 and let (gij ,Kij) be initial data on SR satisfying

gij − δij = O2(r−α), Kij = O1(r−1−α), α > (n− 2)/2, (2.10)

J i = O(r−n−ε), ρ = O(r−n−ε), ε > 0 . (2.11)

Let N be a C1 scalar �eld and Y i a C1 vector �eld on SR such that

N −A0 = O1(r−α), Y i →r→∞ Ai , (2.12)

for some set of constants (Aµ) 6≡ 0, satisfying

2NKij + LY gij = O1(r−(n−1)−ε). (2.13)

Let pµ be the ADM energy�momentum of SR. Then:
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1. If A0 = 0, then p0 = 0.

2. If A0 6= 0, then pµ is proportional to Aµ.

Proof: See the proof of Proposition 3.1 in [5]. 2

Proposition 2.3 Under the hypotheses of Proposition 2.2, suppose further that

N is C2 and that

τij = O(r−n−ε) . (2.14)

If

(A0)2 <
∑
i

AiAi , (2.15)

then pµ vanishes.

Proof: See the proof of Proposition 3.2 in [5]. 2

Proposition 2.4 Under the hypotheses of Proposition 2.2, assume moreover

that N is C2, that (2.14) holds and that

NKij +DiYj = O1(r−(n−1)−ε) , (2.16)

KijY
j +DiN = O1(r−(n−1)−ε) , (2.17)

AµAµ 6= 0.

Then the ADM energy�momentum pµ vanishes.

Proof: See the proof of Proposition 3.3 in [5]. Note that the proof in [5] uses the
equality of the Komar and the ADM masses for translational, asymptotically
timelike Killing vectors, while Proposition 2.3 shows that one only needs to
consider timelike Aµ's to complete the proof. The equality of those masses,
which is well known in space-dimension three [3], can also be established in
higher dimensions by an asymptotic analysis of the stationary Einstein equations
when the sources decay su�ciently fast. 2

The notation used in the next theorem is explained in Appendix A:

Theorem 2.5 Let R > 0 and let (gij ,Kij) be initial data on SR = R
n\B(R)

satisfying

gij − δij = O3+λ(r−α), Kij = O2+λ(r−1−α), (2.18)

α >

{
1/2, n = 3;
n− 3, n ≥ 4,

ε > 0, 0 < λ < 1. (2.19)

J i = O1+λ(r−n−ε), ρ = O1+λ(r−n−ε) . (2.20)

Let N be a scalar �eld and Y i a vector �eld on SR such that

N →r→∞ A0, Y i →r→∞ Ai, AµAµ = 0 ,

for some constants Aµ 6≡ 0. Suppose further that

2NKij + LY gij = O3+λ(r−(n−1)−ε) , (2.21)

τij = O1+λ(r−n−ε) , (2.22)

Then the ADM energy�momentum of SR vanishes.
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Proof: See the proof of Theorem 3.4 in [5]. We note that in our context [5,
Equation (3.40)] reads

gnA =

{
CAB(xn)∂B ln ρ+O(1)(ρ−1−ε ln ρ), n = 3;
CAB(xn)∂B 1

ρn−3 +O(1)(ρ−(n−2)−ε), n ≥ 4. (2.23)

Similarly instead of [5, Equation (3.47)] we have

∂gAB
∂xn

=

{
DABCD∂C∂D ln ρ+O(1)(ρ−2−ε ln ρ) , n = 3;
DABCD∂C∂D

1
ρn−3 +O(1)(ρ−(n−1)−ε) , n ≥ 4. (2.24)

Finally, there are misprints in the de�nitions of the quantities Ω and Ω′ in the
proof there; the correct de�nitions, in all dimensions, are1

Ω = lim
ρ→∞

∑
C

∫
Sn−2(ρ,xn)

(xA∂CgnA − gnC)dSC .

Ω′ = lim
ρ→∞

∫
Sn−2(ρ,xn)

(
(n−1)(xAxB∂C∂ngAB−2xB∂ngCB)−xAxA∂C∂ngBB+2xC∂ngAB

)
dSC ,

where summation over every repeated occurrence of indices is implicitly un-
derstood, regardless of their positions. Here ρ2 = (x1)2 + . . . + (xn−1)2, while
Sn−2(ρ, a) is a sphere (or circle, when n = 3) of radius ρ centred at x1 = . . . =
xn−1 = 0 lying in the plane xn = a. Finally the dSC 's are the usual surface
forms dSC = ∂Cc(dx1 ∧ · · · ∧ dxn−1), and c denotes contraction. 2

3 The rigid positive energy theorem

The following strengthens somewhat Theorem 4.1 of [5] in the case n = 3, and
generalises that theorem to higher dimensions; the calculations here are closely
related to those in [8]:

Theorem 3.1 ((Rigid) positive energy theorem) Consider a data set (S , gij ,Kij),
with (S , gij) a complete Riemannian spin manifold of dimension n ≥ 3, and
with gij ∈ C2, Kij ∈ C1. Suppose that S contains an asymptotically �at end

SR di�eomorphic to Rn \B(R) for some R > 0, with B(R) � a coordinate ball

of radius R, where the �elds (g,K) satisfy

|gij − δij |+ |r∂kgij |+ |rKij | ≤ Cr−α , (3.1)

for some constants C > 0 and α > min(1/2, n − 3), with r =
√∑n

i=1(xi)2.

Suppose moreover that the quantities ρ and J

2ρ := 3R+ (Kk
k)2 −KijKij , (3.2)

Jk := Dl(Kkl −Kk
kg
kl) , (3.3)

1We take this opportunity to point out that equation (2.20) of [5] (which is equation (2.27)
of the gr-qc version of that paper) should be replaced by ρ = Ok−2(r−2−α), τij = Ok−2(r−2−α).
Furthermore, Equations (2.15) and (3.34) of [5] are mutually incompatible; the correct one is
(2.15).
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satisfy √
gijJ iJ j ≤ ρ ≤ C(1 + r)−n−ε, ε > 0. (3.4)

Then the ADM energy�momentum (m, pi) of any of the asymptotic ends of S
satis�es

m ≥
√
pipi . (3.5)

If m = 0, then ρ ≡ J i ≡ 0, and there exists an isometric embedding i of S
into Minkowski space�time (Rn+1, ηµν) such that Kij represents the extrinsic

curvature tensor of i(S ) in (M,ηµν). Moreover i(S ) is an asymptotically �at

Cauchy surface in (Rn+1, ηµν).

Theorem 3.2 has been formulated under di�erentiability requirements which
are stronger than necessary, compare [2, 9]. Unfortunately our proof that ADM
energy�momentum cannot be null requires even more di�erentiability and asymp-
totic decay conditions:

Theorem 3.2 Under the hypotheses of Theorem 3.1, suppose moreover that

gij − δij = O3+λ(r−α), Kij = O2+λ(r−1−α), (3.6)

ρ = O1+λ(r−n−ε), (3.7)

with some 0 < λ < 1. Then the ADM energy�momentum cannot be null.

Proofs of Theorems 3.1 and 3.2: We use a Witten-type argument, as
follows. Let (S, 〈·, ·〉) be any Riemannian bundle of real spinors over (M, g)
with scalar product 〈·, ·〉, such that Cli�ord multiplication (which we denote
by X·) is anti-symmetric. We suppose that there exists a bundle isomorphism
γ0 : S→ S with the following properties:

γ2
0 = 1 , (3.8a)

∀X ∈ TM γ0X · = −X · γ0 , (3.8b)
tγ0 = γ0 , (3.8c)

Dγ0 = γ0D , (3.8d)

where tγ0 denotes the transpose of γ0 with respect to 〈·, ·〉, and D is the usual
Riemannian spinorial connection associated with the metric g.

(Such a map always exists if S is obtained by pulling-back a space-time
spinor bundle, using an externally oriented isometric embedding of (M, g) in a
Lorentzian space-time. Then the Cli�ord product n ·, where n is the �eld of
Lorentzian unit normals to the image of M , has the required properties. If,
however, such a map does not exist, we proceed as follows: let S′ = S⊕S be
the direct sum of two copies of S, equipped with the direct sum metric 〈·, ·〉⊕:

〈(ψ1, ψ2), (ϕ1, ϕ2)〉⊕ := 〈ψ1, ϕ1〉+ 〈ψ2, ϕ2〉 . (3.9)

We set, for X ∈ TM ,

γ0(ψ1, ψ2) := (ψ2, ψ1) , (3.10a)
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X · (ψ1, ψ2) := (X · ψ1,−X · ψ2) , (3.10b)

DX(ψ1, ψ2) := (DXψ1, DXψ2) . (3.10c)

One readily veri�es that (3.10b) de�nes a representation of the Cli�ord algebra
on S′, and that (3.8) holds.)

Given an initial data set (M, g,K), a vector �eld X, and a spinor �eld ξ we
set

K(X) := Ki
jXiej · , (3.11)

∇Xξ := DXξ +
1
2
K(X)γ0ξ . (3.12)

Here ei is a local orthonormal basis of TM ; it is straightforward to check that
(3.11) does not depend upon the choice of this basis. (To make things clear,
(3.12) de�nes ∇ in terms of the Riemmanian spin connection D. If the spin
bundle arises from a space-time bundle, then ∇ coincides with the canonical
space-time spinorial derivative, when restricted to space directions.)

We will need an explicit expression for the curvature of ∇:

Proposition 3.3 For every X,Y ∈ Γ(TS ) we have

RX,Y = nRX,Y +
1
2

dDK(X,Y )γ0 −
1
4

(
K(X)K(Y )−K(Y )K(X)

)
, (3.13)

where R is the curvature of ∇, nR is that of D, and

dDK(ei, ej) = (Kk
j;i −Kk

i;j)ek · .

Proof: We have

∇X∇Y ψ =
(
DX +

1
2
K(X)γ0

)(
DY ψ +

1
2
K(Y )γ0ψ

)
= DXDY ψ +

1
2
K(X)γ0DY ψ

+
1
2

(
(DXK)(Y )γ0ψ +K(DXY )γ0ψ +K(Y )γ0DXψ

)
+

1
4
K(X)γ0K(Y )γ0ψ

= DXDY ψ +
1
2

(
K(X)γ0DY ψ +K(Y )γ0DXψ

)
+

1
2

(
(DXK)(Y )γ0ψ +K(DXY )γ0ψ

)
−1

4
K(X)K(Y )ψ ,

so that

RX,Y ψ = ∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ

= DXDY ψ −DYDXψ −D[X,Y ]ψ −
1
2
K([X,Y ])γ0ψ

+
1
2

(
((DXK)(Y )− (DYK)(X))γ0ψ +K(DXY −DYX)γ0ψ

)
−1

4

(
K(X)K(Y )−K(Y )K(X)

)
ψ ,
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and the vanishing of the torsion of the Levi-Civita connection gives the result.
2

We now run the usual Witten argument (see, e.g., [2]) using the connection ∇
and the associated Dirac operator D = ei ·∇i. Under the current conditions the
ADM energy�momentum of S is �nite and well de�ned [1, 6], and the Witten
boundary integral reproduces the ADM energy�momentum. The arguments in
[2] show that, again under the current conditions, for every spinor �eld ψ̊, with
constant entries in the natural spin frame in the asymptotic region, one can �nd
a solution ψ to the Witten equation which asymptotes to ψ̊. Witten's identity
subsequently implies that

〈ψ̊, p · ψ̊〉 ≥ 0 , (3.14)

where
p · := mγ0 + piei · ,

and p = (m, pi) is the ADM momentum. This gives (3.5).
The equality case, which is of main interest here, is only possible if p is

lightlike or vanishes. In either case one obtains a spinor �eld ψ ∈ Γ(S) which
is asymptotic to ψ̊, and satis�es

∇ψ = 0 , (3.15)

〈ψ,Rψ〉 = 0 . (3.16)

Here

R :=
1
2
(
ρ+ J iei · γ0

)
is the (non-negative) spinorial endomorphism which appears in the identity:

D∗D = ∇∗∇+ R .

The idea of the calculations that follow is to show, roughly speaking, that the
space-time is a pp-wave space-time, perhaps with matter decaying at ini�nity,
with a null Killing vector, which by the results in the previous section is only
possible if we are in Minkowski space-time. We start with an analysis of the
curvature tensor.

As ψ is ∇-parallel we have RXY ψ = 0, and from Proposition 3.3 one �nds,
for all X,Y ∈ TS ,

〈 nRX,Y ψ,ψ〉−
1
2
〈dDK(X,Y )·γ0ψ,ψ〉−

1
4
〈(K(X)K(Y )−K(Y )K(X))ψ,ψ〉 = 0.

Both the �rst and third term vanish since the spinorial curvature can be written
as

nRXY ψ = −1
2

∑
i<j

nR(X,Y, ei, ej)ei · ej · ψ ,

and since the Cli�ord product of two distinct elements of an ON basis is anti-
symmetric. (We use the conventions

nR(ei, ej)ek = DeiDejek−DejDeiek−D[ei,ej ]ek = nRskijes = nR(em, ek, ei, ej)gsmes ,
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nRij = nRkikj ,

where nRij is the Ricci tensor of g.) Thus we obtain

〈dDK(X,Y )γ0ψ,ψ〉 = 0 . (3.17)

Let us denote by N the function

N = 〈ψ,ψ〉 , (3.18)

and by Y the real 1-form de�ned as

Y (X) = −〈γ0X · ψ,ψ〉 . (3.19)

Using this notation, (3.17) can be rewritten as

Kki;jY
k = Kkj;iY

k . (3.20)

We continue with the following calculation:

n∑
k=1

ek ·Res,ek =
n∑
k=1

ek ·
(
nRes,ek −

1
4

(
K(es)K(ek)−K(ek)K(es)

)
+

1
2

dDK(es, ek)γ0

)
= −1

4

(
nRs

kij +Ks
iKkj −KkiKs

j
)
ek · ei · ej ·

+
1
2

(Kmk
;s −Km

s
;k)ek · em · γ0 . (3.21)

In order to analyse the curvature terms in the before-last line of (3.21), recall
the convenient identity2

ek · ei · ej · = e[k · ei · ej] · −gkiej ·+gijek · −gkjei · . (3.22)

(Square brackets around indices denote anti-symmetrisation, and round brack-
ets denote symmetrisation.) The Bianchi identity nRs

[kij] = 0 immmediately
implies

nRs
kijek · ei · ej · = 2 nRs

iei · .

Next, the undi�erentiated extrinsic curvature terms in next-to-last line of (3.21)
can be manipulated as

Ks
iKkj ek · ei ·︸ ︷︷ ︸

−2gki−ei·ek ·

ej · −Ks
jKkiek · ei ·︸ ︷︷ ︸
−Kkigki

ej ·

= −2Ks
iKkjgkiej · −Ks

iei ·Kkjek · ej ·︸ ︷︷ ︸
−Kkjgkj

+Ks
jKkigkiej ·

= 2
(
−KkjKsk +Kk

kKs
j
)
ej · ,

2To prove (3.22), note �rst that the result is clearly true if all indices are distinct or equal;
the �nal formula follows by inspection of the remaining possibilities.

9



which results in(
nRs

kij +Ks
iKkj −KkiKs

j
)
ek · ei · ej ·

= 2
(
nRs

i +Kk
kKs

i −KkiKsk

)
ei · =: 2Esiei · =: 2E(es) . (3.23)

Using again that ψ is∇�parallel we have
∑n

k=1 ek ·Res,ekψ = 0. Equations (3.21)
and (3.23) show that(

E(es)− (Kmk
;s −Km

s
;k)ek · em · γ0

)
ψ = 0 .

Multiplying by er· and taking a scalar product with ψ we obtain

−NErs = (Kmk
;s −Km

s
;k)〈ψ, er · ek · em·︸ ︷︷ ︸

=e[r·ek·em]·−grkem·+grmek·−gkmer·

γ0ψ〉

= (Kmk
;s −Km

s
;k)〈ψ, (−grkem ·+grmek · −gkmer·)γ0ψ〉

= (Kmk
;s −Km

s
;k)(−grkYm + grmYk − gkmYr)

= −(Krs;k −Kks;r)Y k + JsYr , (3.24)

where we have used the fact that the products er · em and er · ek · em · γ0 are
anti-symmetric when all indices are distinct, and therefore give no contribution
in (3.24). Hence

N
(
nRij +Kk

kKij −KikK
k
j

)
= (Kij;k −Kkj;i)Y k − JjYi . (3.25)

Taking a trace implies
Nρ = −J iYi . (3.26)

Anti-symmetrising (3.25) in i and j and using (3.20) one �nds

Ji = σYi (3.27)

for some function σ.
We wish, now, to show that the pair (N,Y i) de�ned by (3.18)-(3.19) satis�es

(2.2). It is convenient to choose an ON basis {ei}ni=1 which satis�es ei = ∂i and
Deiej = 0 at the point under consideration, then

−DiYj = ∂i〈γ0ej · ψ,ψ〉 = 〈γ0ej ·Diψ,ψ〉+ 〈γ0ej · ψ,Diψ〉
= 2〈γ0ej · Diψ︸︷︷︸

− 1
2
Kikek·γ0ψ

, ψ〉 = −Ki
k〈ej · ek · ψ,ψ〉

= −Ki
k 〈e[j · ek] · ψ,ψ〉︸ ︷︷ ︸

0

−Ki
k〈e(j · ek)·︸ ︷︷ ︸

−gjk

ψ,ψ〉

= NKij ,

as desired.
Next,

DiN = ∂i〈ψ,ψ〉 = 2〈ψ,Diψ〉 = −〈ψ,Ki
kekγ0ψ〉

= −KikY
k
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(compare (2.17)). For further use we note that d(N2 − |Y |2) = 0, and as
N2 − |Y |2 →r→∞ 0 (since equality is attained in (3.14)) we conclude that

N2 = |Y |2 .

Further di�erentiation yields

DiDjN = N(K ◦K)ij −DiKjkY
k .

Inserting this into (2.5) and using the relations above leads to our key formula

N2τij = ρYiYj . (3.28)

Note that N →r→∞ 0 implies Y →r→∞ 0. The last part of Proposition 2.1
gives then N ≡ 0, hence ψ = 0, contradicting the fact that we have a non-
trivial solution of the Witten equation. Thus N approaches a non-zero constant
at in�nity by (2.9), and our hypothesis on the decay of ρ provides decay of τij .
We can therefore apply Proposition 2.4 and Theorem 2.5 to conclude that the
ADM momentum vanishes. But then for any ψ̊ there exists an associated ∇-
parallel ψ. Let ψ̊a, a = 1, . . . ,m, form a basis and let ψa be the parallel spinor
that asymptotes to ψ̊a. Now,

∇〈ψa, ψb〉 = 0 ,

which implies that the ψa's form a basis of Sp at every p ∈ S . It follows that
RXY ψa = 0 for a collection of spinors forming a basis at each point, hence

RXY = 0 . (3.29)

Choose ψ̊ so that N → 1 and Y → 0. (If no such ψ̊ exists, we pass to
S′ with the structures de�ned by (3.9)-(3.10), choose any χ̊ with norm one-
half, then ψ̊ = (χ̊, χ̊) will have the desired property.) Let S̃ be the universal

covering space of S with corresponding data
(
S̃ , g̃ij , K̃ij , Ñ , Ỹ

j
)
, and consider

the Killing development thereof: by de�nition, this is M̃ = R × S̃ endowed
with the metric

g̃µν = −Ñ2du2 + g̃ij

(
dxi + Ỹ idu

)(
dxj + Ỹ jdu

)
,

where Ñ(u, x) = Ñ(x), g̃ij(u, x) = g̃ij(x), Ỹ j(u, x) = Ỹ j(x). Similarly let
(M , gµν) be the Killing development of

(
S , gij ,Kij , N, Y

j
)
. It should be clear

that (M̃ , g̃µν) is the universal pseudo-Riemannian covering of (M , gµν).
Equations (3.26)-(3.29) and the Codazzi-Mainardi embedding equations (com-

pare (3.13)) show then that both (M̃ , g̃µν) and (M , gµν) are �at. The remain-

ing arguments of the proof of [5, Theorem 4.1] apply to show that (M̃ , g̃µν) =
(M , gµν) = (Rn+1, ηµν), as desired. 2
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A Weighted Hölder spaces

Consider a function f de�ned on SR ≡ Rn \B(R), where B(R) is a closed ball
of radius R > 0. We shall write f = Ok(rβ) if there exists a constant C such
that we have

0 ≤ i ≤ k |∂if | ≤ Crβ−i.

For σ ∈ (0, 1) we shall write f = Ok+σ(rβ) if f = Ok(rβ) and if there exists a
constant C such that we have

|y − x| ≤ r(x)/2 ⇒ |∂kf(x)− ∂kf(y)| ≤ C|x− y|σrβ−k−σ.

Let us note that f = Ok+1(rβ) implies f = Ok+σ(rβ) for all σ ∈ (0, 1), so that
the reader unfamiliar with Hölder type spaces might wish to simply replace, in
the hypotheses of our theorems, the k + σ by k + 1 wherever convenient.
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