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Abstract

We present a simple proof of the non-existence of degenerate com-
ponents of the event horizon in static, vacuum, regular, four-dimensional
black hole spacetimes. We discuss the generalization to higher dimen-
sions and the inclusion of a cosmological constant.

The classical proof of uniqueness of static vacuum black holes [3] assumes
that all components of the event horizon are non-degenerate. The argument
has been extended1 to include degenerate components [5] by studying the
orbit-space geometry near the event horizon, and applying an appropriate
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1A static configuration with all components degenerate is easy to exclude using Ko-

mar integrals and the positive energy theorem, see [5, Section 4] for precise statements.
However, one also wants to exclude solutions with both degenerate and non-degenerate
components.
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version of the positive energy theorem [2]. The object of this note is to
give an alternative proof of non-existence of degenerate components in four
dimensional space-times. Our approach is inspired by the analysis of super-
symmetric black holes in [14].

Consider, thus, a four-dimensional static vacuum black hole space-time
(M , g). We shall assume that the regularity hypotheses needed in the black
hole topology theorem hold, the reader is referred to points (1) and (2) of
[7, Theorem 3] for details. It follows that each connected component of the
horizon has spherical topology.

We assume, for contradiction, that (M , g) contains a degenerate compo-
nent N of the event horizon. By [4] or [16] the static Killing vector field X
is tangent to the generators of N . Following [11], we introduce Gaussian
null coordinates near N , in which the metric takes the form

g = rϕdv2 + 2dvdr + 2rhadxadv + habdx
adxb . (1)

(These coordinates can be introduced for any Killing horizon, not necessarily
static, in any number of dimensions). The horizon is given by the equation
{r = 0}. The Killing vector X equals ∂v, with norm

g(X,X) = rϕ ,

so that the surface gravity equals κ = −∂r(rϕ). The degeneracy condition
is κ = 0, hence ∂rϕ vanishes on N . It follows that

ϕ = Ar

for some function A = A(r, xa).
To simplify the calculations it is convenient to consider the near horizon

geometry g̊, defined as follows [14]. Let ε > 0 and consider the family of
metrics gε defined by replacing r by εr and v by v/ε in (1):

gε = r2Aεdv2 + 2dvdr + 2rhεadx
adv + hεabdx

adxb . (2)

with
Aε = A(εr, xa) , etc .

Clearly the gε’s converge, as ε tends to zero, to a metric g̊ of the form

g̊ = r2Ådv2 + 2dvdr + 2r̊hadxadv + h̊abdx
adxb , (3)

∂rÅ = ∂rh̊a = ∂rh̊ab = ∂vÅ = ∂vh̊a = ∂vh̊ab = 0 . (4)

We have h̊ab = hab|r=0, h̊a = ha|r=0, Å = A|r=0, so that g̊ encodes informa-
tion about the values of hab, ha and A at N .
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The vacuum Einstein equations imply (see [11, eq. (2.9)] in dimension
four and [12, eq. (5.9)] in higher dimensions)

R̊ab =
1
2
h̊åhb − D̊(åhb) , (5)

where R̊ab is the Ricci tensor of h̊ab, and D̊ is the covariant derivative thereof.
They also determine Å uniquely in terms of h̊ and h̊ab (this equations follows
again e.g. from [11, eq. (2.9)] in dimension four, and can be checked by a
calculation in all higher dimensions):

Å =
1
2
h̊ab
(̊
håhb − D̊åhb

)
. (6)

We should note that, so far, our analysis applies to any degenerate Killing
horizon (not necessarily static) in four or more dimensions. Equation (5)
also arises in the study of vacuum degenerate isolated horizons [1, 10, 12, 13].

In the static case of interest here, note that staticity of g implies staticity
of g̊. If we let

X[ := g̊µνX
νdxµ = g̊µvdx

µ = r2Ådv + dr + r̊hadx
a ,

then the staticity condition X[ ∧ dX[ = 0 leads to

0 = (r2Ådv + dr + r̊hadx
a) ∧ (d(r2Ådv) + dr ∧ (̊hadxa) + rd(̊hadxa))

= rdr ∧ d(̊hadxa) +O(r2) ,

implying d(̊hadxa) = 0. We now return to four dimensions. Simple connect-
edness of S2 guarantees the existence of a function λ such that

h̊adx
a = dλ . (7)

Equation (5) can thus be rewritten as

R̊ab =
1
2
D̊aλD̊bλ− D̊aD̊bλ . (8)

Set ψ = e−λ/2, then
ψR̊ab = 2D̊aD̊bψ , (9)

and taking a trace gives
2∆h̊ψ = R̊ψ . (10)
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In dimension two we have R̊ab = R̊h̊ab/2; inserting this into (9), applying
D̊a to the resulting equation, and commuting derivatives one obtains2

D̊b(R̊ψ3) = 0 . (11)

It follows that R̊ψ3 has constant sign or vanishes, so that R̊ has constant
sign or vanishes since ψ is strictly positive by definition. On a compact
manifold this is compatible with (10) only if R̊ψ = 0 and ψ is a constant,
thus λ is constant and (8) shows that h̊ is flat. This gives a contradiction,
as there are no flat metrics on S2 by the Gauss-Bonnet theorem. Hence, no
degenerate components are possible, as claimed.

Recall that the Curzon-Scott-Szekeres [15] black holes provide examples
of vacuum static black holes with flat degenerate horizons. However, those
space-times are nakedly singular, so that the topology theorem does not
apply. We also note that while the near horizon geometry of those black
holes is compatible with our result, this fact can not be deduced from our
analysis, as the horizon there does not have compact cross-sections.

Some comments about higher dimensions are in order. First, the proof
in [5] generalises immediately to any space-time dimension greater than or
equal to four. On the other hand, the hypothesis of space-time dimension
four was essential in several steps of the current argument so in higher
dimensions we must proceed differently. Without the approach in [5], there
is no reason to expect the horizon to be simply connected, so that a globally
defined potential λ might fail to exist. Assuming, first, that λ in (7) exists,
one finds again (8). Taking a divergence of (9) and using the contracted
Bianchi identity D̊aR̊

a
b = D̊bR̊/2 one obtains

D̊a(|D̊ψ|2 +
1
2
R̊ψ2) = 0 . (12)

Hence there exists a constant C such that

R̊ = ψ−2(C − 2|D̊ψ|2) .

Inserting this into (10) one is led to

∆h̊ψ
2 = C , (13)

which is possible on a compact manifold if and only if C vanishes, ψ is
constant, and then h̊ab is Ricci flat by (9).

2This is a special case of a result for stationary degenerate horizons obtained in [10].
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In general, let {Oi}i∈I be an open cover by simply connected sets, with
associated potentials λi and ψi. Equation (12) shows that there exist con-
stants Ci such that on each Oi we can write

R̊ = Ciψ
−2
i − 2|D̊ ln(ψi)|2 = Ciψ

−2
i −

1
2
h̊ab̊håhb . (14)

It follows that on each intersection Oi ∩ Oj we have

Ciψ
−2
i = Cjψ

−2
j , (15)

which implies that all the Ci’s have the same sign.
Suppose that there exists i0 such that Ci0 6= 0, then Ci 6= 0 for all i by

(15). The λi’s are defined up to the addition of a constant, which implies
that the ψi’s are defined up to a multiplicative constant, and by rescaling
we can obtain either Ci = 1 for all i, or Ci = −1 for all i. It then follows
from (15) that ψi = ψj on each intersection, i.e., ψ is globally defined after
all. But then the previous argument shows C = 0, hence Ci = 0 for all i, a
contradiction.

So in fact all the Ci’s vanish and, by (14),

R̊ = −1
2
h̊ab̊håhb . (16)

But the trace of (5) gives R̊ = h̊ab̊håhb/2 + D̊åha, which upon integration
on a cross-section of the horizon gives∫

R̊ =
1
2

∫
h̊ab̊håhb ≥ 0 .

This is compatible with (16) if and only if h̊a = 0.
Thus, we have shown, in all space-time dimensions, that static, degener-

ate, vacuum Killing horizons with compact spacelike sections have vanishing
scalar Å and rotation form h̊adx

a and are spatially Ricci flat3. The near-
horizon geometry is the product of flat space with a compact Ricci flat
space. This is not known to lead to a contradiction with asymptotic flatness
except in space-time dimension four (compare [8]), unless one invokes the
arguments in [5], which we wanted to sidestep to start with.

It turns out that one can derive the local form of the metric h̊ab in space-
time dimension four, when compactness of the space-sections of the horizon

3Space-time dimension three is covered by applying the four dimensional result to
M × S1 with the product metric.
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is not assumed. In four dimensions, equations (11) and (12) establish that,
regardless of compactness, there exist constants α and β such that

|D̊ψ|2 = α+
β

ψ
, ∆h̊ψ = − β

ψ2
.

Assume dψ 6≡ 0, then on any open set on which dψ has no zeros the metric
can be written in the form

h̊abdx
adxb =

dψ2

|D̊ψ|2
+H(ϕ,ψ)dϕ2 .

Calculating ∆h̊ψ one finds H = γ(ϕ)|D̊ψ|2 for some function γ. Redefining
ϕ one obtains, locally

h̊abdx
adxb =

dψ2

α+ β
ψ

+ (α+
β

ψ
)dϕ2 . (17)

It is straightforward now to check that (9) holds for all α2 + β2 6= 0.
Now, the full near-horizon metric g̊ is closely related to a generalised

Schwarzschild solution. To see this, note that we can use the freedom to
rescale ψ and φ to arrange α = k ∈ {1, 0,−1}. We shall also introduce the
suggestive notation β = −2M , and consider the following metric:

ds2 = −U(R)dt2 + U(R)−1dR2 +R2dΣ2
k, (18)

where U(R) = k− 2M/R and dΣ2
k is a two-dimensional Riemannian metric

with Ricci scalar 2k. Setting R = ψ and t = iϕ, the first two terms in the
metric reproduce the local solution for h̊ab obtained above. The full near-
horizon geometry g̊ is obtained by a further analytic continuation in which
dΣ2

k becomes a Lorentzian metric of Ricci scalar 2k, i.e., two-dimensional
de Sitter, Minkowski or anti-de Sitter space-time for k = 1, 0,−1 respec-
tively. The degenerate horizon corresponds to a Killing horizon in this
two-dimensional space-time. Note that h̊ab is singular except in the triv-
ial (flat4) case k = 1,M = 0 and the case k = 1,M > 0 in which it describes
the familiar “cigar” geometry of the “Euclideanized” Schwarzschild solution.

Our analysis can be extended to include a cosmological constant Λ. This
produces additional terms Λ̊hab and Λ on the right-hand-sides of (5) and (6)
respectively. Then

4The corresponding space-time metric (1) is also flat, with a singularity at ψ = 0 which
can be gotten rid of by a coordinate transformation.
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• For spatially compact horizons, in all space-time dimensions greater
than or equal to four, for negative Λ we again obtain the existence
of a globally defined potential ψ. Applying a maximum principle to
the Λ-analogue of (13) one finds that ψ is constant and R̊ab = Λ̊hab.
The near-horizon geometry g̊ is the product of two-dimensional anti-de
Sitter space with a compact Einstein space of negative curvature.

• In space-time dimension four, whatever Λ,

– if ψ is not constant, we obtain

|D̊ψ|2 = α+
β

ψ
− Λ

3
ψ2 =: F (ψ) (19)

and, locally,

h̊abdx
adxb =

dψ2

α+ β
ψ −

Λ
3ψ

2
+
(
α+

β

ψ
− Λ

3
ψ2
)
dϕ2 . (20)

The near-horizon geometry g̊ is an analytically continued version
of the Λ-generalized Schwarzschild solution (equation (18) with
U(R) = k − 2M/R− ΛR2/3).
Assuming compactness of the cross-section, the strictly positive
function ψ has at least one maximum and at least one distinct
minimum so there exist 0 < a < b such that F (a) = F (b) = 0; for
Λ > 0 this enforces β < 0. Regularity at the zeros of F (see [6,
end of Section 2] for a careful treatment of a similar problem, or
the arguments around (3.6) in [9]) imposes

F ′(a) + F ′(b) = 0 .

Elementary algebra leads to a = b, a contradiction. Therefore,
in the case of positive Λ as well, horizons with non-trivial ψ and
with compact cross-sections do not exist.

– if instead h̊a ≡ 0, then g̊µν is locally a product of two-dimensional
de Sitter space with S2 (if Λ > 0) or two-dimensional anti-de
Sitter space with hyperbolic space (if Λ < 0).

We conclude that, whatever Λ ∈ R, static, vacuum, four dimensional
solutions with a degenerate Killing horizon with compact cross-sections have
vanishing rotation one-form h̊adx

a, and Å = Λ, with h̊abdxadxb of constant
scalar curvature 2Λ.
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