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Rayleigh-Bénard convection in the presence of a

radial ramp of the Rayleigh number

Kapil M. S. Bajaj, Nathalie Mukolobwiez, Jaechul Oh, and

Guenter Ahlers

Department of Physics and iQCD, University of California, Santa Barbara, California

93106, USA

Abstract. We present experimental results for pattern formation in a thin horizontal

fluid layer heated from below. The fluid was SF6 at a pressure of 20.0 bars with a

Prandtl number of 0.87. The cylindrical sample had an interior section of uniform

spacing d = d0 for radii r < r0 and a ramp d(r) for r > r0. For Rayleigh numbers

R0 > Rc in the interior, straight or slightly curved rolls with an average wave number

〈ks〉 = k̃c + k1ε0 (ε0 ≡ R0/Rc − 1) with k1 ' 0.8 were selected. The critical wave

number k̃c depended sensitively on the cell spacing. For the largest k̃c the patterns

were skewed-varicose unstable and dislocation pairs were generated repeatedly in the

interior and for all ε. For slightly smaller k̃c time-independent rolls were stable for

ε <∼ 0.15, but for larger ε the skewed-varicose instability was encountered near the

sample center and dislocation pairs were formed repeatedly for all samples. When

stationary rolls were stable, their slight curvature and the width of their wave-number

distribution slowly increased with ε. This led to a complicated shape and overall

broadening of the structure factor S(k). For ε <∼ 0.05 the inverse width ξ2 of S(k) was

roughly constant and presumably limited by the finite sample size, but for larger ε we

found ξ2 ∝ ε−0.5.

Key words: Hydrodynamic instabilities, Patterns
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1. Introduction

Convection of a thin horizontal layer of fluid heated from below (Rayleigh-Bénard

convection, RBC) occurs when the temperature difference ∆T exceeds a critical value

∆Tc. [1] It offers opportunities for the experimental study of numerous pattern-

formation phenomena. [2, 3] In the absence of significant thermal-noise-induced

fluctuations [4, 5, 6] the bifurcation is predicted to be supercritical, i.e. the amplitude of

the convection is expected to increases continuously from zero as ∆T increases beyond

∆Tc. [7] For a layer of infinite lateral extent the pattern above but close to onset

is predicted to consist of straight rolls. [7] In the finite samples used in laboratory

experiments the bifurcation remains supercritical, but usually the side wall of the

sample induces deviations from the anticipated perfect parallel-roll pattern in the form

of domain walls, roll curvature, wall foci, dislocations, and concave disclinations as

illustrated in Fig. 1. [8, 9, 10]

In the present work we made an effort to reduce, change, or eliminate the influence

of the side wall on the pattern. We did this by using a sample cell with a central

uniform section of aspect ratio Γ0 ' 40 and a radial ramp in the cell spacing [11] for

larger radii. In this geometry convection started in the uniform section, and the pattern

spread radially towards the side wall only as ε ≡ ∆T/∆Tc − 1 increased beyond zero.

Thus, for ε <∼ 0.25 the convection amplitude decreased gradually and finally vanished

with increasing radius while there was only quiescent fluid adjacent to the wall. Under

these conditions no defects or roll curvature could be generated at the wall.

It turns out that the ramp in the cell spacing exerts other subtle influences

on the pattern. [11, 12] The effect of a spatial ramp of the control parameter on

the pattern-formation process was a topic of great interest a couple of decades ago

[2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. It was studied primarily for one-

dimensional systems such as Taylor-vortex flow [14, 17, 20, 23, 24], Rayleigh-Bénard

convection in narrow channels [22], and certain mathematical models [15]. The reason

for the interest was that one of the major issues in pattern formation is how a given

system selects a particular wave number out of a continuous band of stable states. This

selection problem had been studied only for a small number of specific cases [2]. The

spatial ramp can provide such a mechanism. For the idealized case where the ramp

has a vanishing slope but nonetheless extends from below to above onset, one expects

that the selected wave number ks at the point where ε = 0 is equal to the critical wave

number kc. This is predicted to be sufficient to fix ks everywhere along the ramp and

in the homogeneous interior. It is expected to lead to a time independent pattern near

onset. For small ε, ks in the interior should then be given by

ks = k̃c + k1ε (1)

with k̃c = kc and k1 dependent on the nature of the ramp and, in the case of RBC, on the

Prandtl number σ ≡ ν/κ (ν is the kinematic viscosity and κ is the thermal diffusivity).

In the physical system the ramp angle is finite. Even below onset this usually leads

to a large-scale flow (LSF) [25, 26] with a characteristic length scale much larger than a



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
S
T
A
T
_
0
0
4
P
_
1
1
0
5

3

Figure 1. Shadow-graph images of convection patterns in a sample of aspect ratio

Γ = 30 with a rigid side wall. The sample was Argon at a mean temperature of 23.45
◦C and a pressure of 29.7 bars where the Prandtl number is σ = 0.69. Left: ε = 0.07.

Right: ε = 0.20. Adapted from Ref. [10].

roll wavelength which interacts with and modifies the roll structure in the interior and

above Rc. For our geometry (see Sect. 2.1) one would expect this flow to be in the

radial direction, and to be directed outward near the bottom and inward near the top

of the cell, so that the vertical average of the horizontal velocity vanishes. Recently this

was confirmed by direct numerical simulations (DNS) using the Boussinesq equations

of motion for a RBC system with a radial ramp similar to ours but with smaller aspect

ratios Γ0 ≤ 20. [12] The DNS also revealed that, in addition to the LSF, there is a

mean flow (MF) which has a non-vanishing vertical average of the horizontal velocity

field and which is induced by the roll-amplitude variation in the ramped region. [12]

The MF had a quadrupolar structure and induced weak roll curvature. Interesting but

complicated structures of the roll wave-number were observed experimentally [11] in

this system which presumably were due to interactions between the LSF and MF and

the convection rolls. In the one-dimensional cases which were studied in the past this

interaction is somewhat simpler and understood in more detail. In that case there is

a LSF but no MF. For a finite ramp angle one then obtains a wave number which

is selected out of a narrow band and which depends periodically on the aspect ratio

[20, 21, 24, 27]. This is so because the finite ramp angle tends to pin the phase of the

structure and thus tends to select wavelengths which are commensurate with the length

of the uniform section. In this case the bifurcation is rendered imperfect and the wave

number may differ from kc even in the vicinity of onset for the perfect system.

The major features of results for the pattern selection due to the radial ramp for

one particular sample (sample 2 in Table 1) were presented before [11]. In the present

paper we provide more detailed experimental results for measurements using several

different samples. We found that the ramp did indeed select a wave number that varied

linearly with ε, with a slope k1 ' 0.8. This feature agrees well with the DNS. [12]

However, the wave number at onset k̃c, although well defined for a given experimental

sample, was not reproducible when the sample spacing was changed by only a small
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Table 1. Parameters for the experimental samples. The uncertainty of ∆Tc is

approximately 0.002◦C. Entries marked by ∗ correspond to unstable states.

Sample ∆Tc (◦C) d0 (cm) Γ0 k̃c k1

1 1.774 0.0585 54.3 3.086 0.81

2 0.8287 0.0752 42.3 2.952 0.94

3 0.8215 0.0755 42.1 3.007 0.79

4 0.8382 0.0750 42.4 2.985 0.83

5 0.5495 0.0864 36.8 >∼3.1∗ '0.8∗

amount. Generally it did not coincide with kc. This aspect of the experiment does

not agree with the results obtained from DNS, and we do not have an explanation

for it. In all but one of the experimental samples the pattern near onset was time

independent. However, in those cases time dependence occurred when ε exceeded about

0.15. In that parameter range the wave number near the sample center had exceeded

the skewed-varicose instability boundary of the laterally infinite straight-roll pattern,

and dislocation pairs formed repeatedly near the sample center. In one case (sample

5), the value of k̃c was exceptionally large and the pattern above onset was found to be

skewed-varicose unstable at all ε.

In Sect. 2.1 we describe our apparatus, sample cell, and experimental procedure

in detail. We discuss our image-analysis methods in Sect. 2.2. In Sect. 3 we present our

results, and a brief summary is given in Sect. 4.

2. Apparatus, Experimental Procedure, and Image Analysis

2.1. The apparatus and procedure

Measurements were made in apparatus similar to that described in detail elsewhere

[28]. The fluid was sulfur hexafluoride (SF6) at a pressure of 20.04 bar and a fixed

mean temperature of 38.00◦C. Two distinct cells were used. Their top plates were

optically flat sapphires. The bottoms were diamond-machined aluminum plates. The

top surfaces of the bottom plates had plane central sections of radii r0 = 3.18 cm. In

these sections the uniform cell spacings were determined interferometrically [28] at the

beginning of the experiments with sample 1 and 2 to be d̃0 = 590± 2µm and 760± 2µm

respectively. At various times, the bottom-plate alignment was re-adjusted with three

externally-accessible setscrews [28] so as to minimize the spatial variation of d0. This

adjustment had the potential to change the average value of d0 by a few µm. At other

times we deliberately used these setscrews to change d0 to examine the effect on the

wave-number selection. Starting with sample 2, this led to the remaining samples. In

order to have consistent values of d0 throughout these measurements, we used the onset

of convection together with the fluid properties [29] to determine d0 after each such

adjustment. Those values of d0 are listed in Table 1. Also given in that table are the
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aspect ratios Γ0 = r0/d0 of the uniform central section of the cell. We refer to each of

the cell spacings as different samples. Sample 2 was used to obtain the data of Ref. [11].

Over the radius range r0 < r < r1 = 4.44 cm the bottom plate had a profile which

yielded

d

d0
= 1− δ

[
1− cos

(
(r − r0)π

r1 − r0

)]
. (2)

The values of δ differed slightly for different samples because d0 differed. They

correspond to a total rise of the ramp between r0 and r1 of 53 µm. Since R ∝ d3,

R/R0 ∝ (d/d0)
3. A paper side wall was located immediately beyond r1 but played at

most a minor role since the pattern never reached it.

We used shadowgraph visualization [28] for 0 < r <∼ r0. For larger r the bottom-

plate profile deflected the shadowgraph beam and no image was formed. The distance

∆x between pixels was 233± 1µm. Overall systematic errors of ∆x/d0, and thus of q,

were no larger than 1.5% corresponding to δq ' ±0.045.

The radial-ramp geometries assured that convection started first in the central

sections when ∆T reached a critical value ∆Tc. At modest values of ε ≡ ∆T/∆Tc−1 > 0

the convection rolls extended some distance into the ramped regions, but instead of

reaching a side wall, their amplitude smoothly vanished with increasing radius. We

estimate that the location of vanishing convection-amplitude remained in the ramped

region for ε up to 0.41 for sample 1 and up to 0.22 for the other samples. Thus, over this

ε-range the conventional effect of a side wall on the pattern was eliminated, although

the ramp induced its own interesting effects on the pattern formation [11].

For radii r < r0 we determined the variation of the cell spacings with an expanded

He-Ne laser beam. Since the bottom plates were not quite optically flat, there remained

about three nearly-circular approximately-concentric interference rings when the cell

was illuminated from above. For sample 3 for instance this implied a radial variation

of the cell spacing by about one µm or 0.13 %. Since the Rayleigh number depends

on d3
0, this implies that the onset of convection in the central section of cell II should

occur over an ε-interval of about 0.004. Thus we cannot expect to make meaningfull

measurements at even smaller ε.

The top- and bottom-plate temperatures were held constant. Their typical standard

deviations from a fixed temperature were about 0.2 mK. The pressure was regulated

using a “hot volume” technique. This method consisted of regulating the temperature

of a gas volume external to but connected with the main apparatus in a feedback loop

under control of a pressure gage. The standard deviation of the pressure from its set

point typically was 2× 10−4 bars. The shift of ∆Tc due to such a pressure fluctuation

is only about 3× 10−5◦C, i.e. negligible.

Based on the fluid properties [29] and the spacing, the vertical thermal diffusion

time was τv ≡ d2/κ ' 2.5 sec for sample 1 and 4.2 sec for samples 2 to 4. The Prandtl

number was σ ≡ ν/κ = 0.867. The samples conformed extremely well to the Boussinesq

approximation. At onset, the parameter Q introduced by Busse [30] which describes
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the deviations from this approximation had the value 0.30 for sample 1 and 0.135 for

the others. The parameters for all the runs are given in Table 1.

The convection patterns were determined with the shadowgraph method [28]. The

shadowgraph contrast was used also to determine ∆Tc.

2.2. Image Analysis

At each ∆T , a sequence of typically 64 or 128 shadowgraph images was acquired. The

time interval δt between them was typically 15 s. For a suitable ∆T close to but below

∆Tc a sequence was averaged to provide a background image Ĩo(x). Here x is the

horizontal position vector. Averaging was used only for the background; all images for

positive ε were analyzed individually. The images were corrected to the true black level

by a constant additive correction of the framegrabber output, and then all images Ĩi(x)

of the experimental run were divided by Ĩo(x) to yield the signal images

Ii(x) ≡ [Ĩi(x)− Ĩo(x)]/Ĩo(x) . (3)

The mean of Ii(x) typically was within ±0.01, indicating adequate stability of the light

intensity and image-acquisition system. The deviation from the mean is the desired

signal plus the experimental noise. At our largest ε its mean-square value (equal to the

total power of the Fourier transform) approached 0.04. Fourier analysis did not reveal

any second-harmanic contribution to the patterns, suggesting that the shadowgraph

operated in the weak-diffraction limit [31, 32]. For pattern visualization Ii(x) was

usually re-scaled using its own variance to determine the grey levels. However, for

further image analysis, the unscaled signal images were used. The Fourier transform

(FT) was obtained, and the structure factor (the square S(k) of the modulus F (k) of

the FT) was used for further analysis. In the second and third row of Fig. 2 F (k)

corresponding to the images in the first row are shown. We usually applied a radial

band-pass filter, centered around the peak of S(k), in order to reduce experimental

noise. Often this filtered FT was back-transformed to yield a real-space image less

encumbered by experimental noise.

We sometimes used the azimuthal average S(k) = 〈S(k, θ)〉θ for further analysis.

The total power

P = 2π
∫ ∞

0
kS(k)dk (4)

is equal to the variance of Ii(x) by Parseval’s theorem. We used it to determine the

onset of convection at ∆Tc. We calculated mean wave numbers

〈ks〉 ≡
∫∞
0 k2S(k)dk
∫∞
0 kS(k)dk

. (5)

A two-point correlation length was obtained from

ξ−1
2 ≡

[∫∞
0 (k − 〈k〉)2kS(k)dk

∫∞
0 kS(k)dk

]1/2

. (6)

Because of the complicated shape of S(k) these integrals were determined numerically

by summing over points in Fourier space.
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ky

kx

ky
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Figure 2. Images and Fourier-transform moduli from sample 3. Left column:

ε = 0.05. Right column: ε = 0.15. First row: real-space images. Here the entire

uniform section of the cell is shown. An mpeg movie for ε = 0.15 can be found at

Fig2-right.mpeg. At 30 frames/sec it is running at 112.5 times real speed. It covers a

real-time interval of about 16 minutes and shows that the pattern is stationary. Second

row: Moduli of the Fourier transforms. The kx− and ky−axes extend from -4.73 to

+4.73. Third row: closeup view of part of the lower-right quadrant of the middle row.

Now the origin is in the upper left corner, and 0 < kx < 3.55 and 0 > ky > −3.55.

3. Results

Early results were obtained with sample 2 and were reported before [11]. Here we

provide some additional information, and results for some other runs.

The top row of Fig. 2 shows typical patterns for ε = 0.05 and 0.15. A movie from

this run, at 450 times physical speed, can be found at Fig2-right.mpeg. It shows that

the pattern is stationary. It turns out that the wave-number distributions in physical

space of these seemingly perfect parallel straight rolls contain significant structure. This

was discussed in detail before [11]. Here we show the modulus of the Fourier transform

F (k) in the middle row of the figure, with a closeup of one of the peaks in the bottom

row. One sees that the structure in real space manifests itself in the form of side bands
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Figure 3. The temperature structure-factor ST (k) as a function of k for ε = 0.05

(squares) and ε = 0.15 (circles) for Ω = 0 and from sample 3.

2.9 3 3.1 3.2 3.3 3.4 3.5
< k >  ( 1/d0 )

0

0.05

0.1

0.15

ε

Figure 4. The mean wave number 〈k〉 at various ε and for several samples. Solid

squares: sample 1. Solid triangles: sample 2. Solid circles: sample 3. Open circles:

sample 4. Solid horizontal bars: the range of 〈k〉 covered during the repeated formation

of dislocations pairs in the interior of sample 5. The solid curve is the theoretical

stability boundary of infinitely extended straight rolls. The dashed lines are straight-

line fits to the data. Their parameters are given in Table 1.

in Fourier space.

Figure 3 shows ST (k), i.e. the azimuthal average of ST (k). The structure revealed

in Fig. 2 yields an asymmetric shape for ST (k) which is not readily fitted by any simple

function. Thus the moments were computed using discrete sums over the actual data

points. This process was relatively unencumbered by experimental noise because the

noise could be filtered out over much of Fourier space. The results were not very sensitive

to the range of k used for this summation.

In Fig. 4 we show the mean wave numbers at various ε which were obtained from

several samples. As expected, the data fall on straight lines and can be described by

Eq. 1. The slopes k1 of the lines are nearly the same for all samples, but the wave

number k̃c at onset varies from sample to sample. Both k̃c and k1 are listed in Table 1.
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Figure 5. The mean wave number 〈ks〉 for sample 5 as a function of the time t for

(from top to bottom) ε = 0.015, 0.054, and 0.099. The open circles in the middle

section correspond to the images shown in Fig. 6

One possible explanation for the variation of k̃c with small changes in d0 is that there

may be pinning of the phase of the roll structure by the ramp, as mentioned in the

Introduction [20, 21, 24, 27] and as was observed in Taylor-vortex flow with a ramp of

the outer cylinder radius. However, DNS of a sample with an aspect ratio considerably

smaller than that of ours [12] did not reveal a pinning effect and yielded k̃c = kc.

Another possibility is that the large-scale and/or mean-flow fields, which couple to the

wave director field, are very sensitive to minor differences in alignment of the top and

bottom plates relative to each other and/or to gravity; but basically the deviation from

kc and the variation from sample to sample remains an unsolved issue.

As noted before [11], for some of the samples a local wave number outside the

stability range of infinitely extended parallel straight rolls is selected at small ε. In

those cases dislocations usually formed in the structure. They could move the spatially

averaged wave number to the right, i.e. towards or into the stable regime. An example

is the lowest point for sample 4 at ε = 0.012. It contained a dislocation similar to those

already shown in Fig. 5 of Ref. [11].

Samples 1 to 4 selected patterns that were unstable to skewed-varicose (SV)

perturbations for ε >∼ 0.15. This instability led to a sustained periodic formation of

dislocation pairs. Each pair formation moved the spatially averaged wave number 〈ks〉
to smaller values and the local wave number near the sample center back into the stable

range. In contrast to samples 1 to 4, the patterns of sample 5 were SV unstable at

all ε. In that case 〈ks〉 oscillated in time with a period that was close to 500tv and

essentially independent of ε. Three examples are shown in Fig. 5. The range of 〈ks〉
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Figure 6. Images for sample 5 and ε = 0.054 for (from left to right and then top to

bottom) t = 993.4, 961.1, 977.4, and 1031.7. These times correspond to the open circles

in the middle panel of Fig. 5. An mpeg movie for this ε can be found at Fig6.mpeg.

At 30 frames/sec it is running at 450 times real speed. It covers a real-time interval of

128 minutes and shows that the pattern is time dependent.

covered by the oscillations is indicated for each ε by a small horizontal bar in Fig. 4.

One can assume that an even larger wave number would have been selected by this

sample if the SV instability had not intervened. Examples of patterns from this sample

and for ε = 0.054 are shown in Fig. 6. The mean wave numbers of the four images

are given as open circles in the middle panel of Fig. 5. The images in Fig. 6 show the

formation of a dislocation pair in the interior close to t = 961 which at later times

separates as the dislocations move to the side wall via a combination of climb and glide.

This is seen more clearly in the movie Fig6.mpeg. The ε-independent period of the

oscillations and dislocation-pair generation can be understood qualitatively on the basis

of a diffusive wave-number adjustment. After a dislocation pair is formed, the local k

near the center is in the stable regime, but diffusive phase adjustment re-compresses

the rolls and moves the local k back into the SV unstable regime. Such phase diffusion

would be approximately ε-independent and would take place on a time scale given by

some fraction of the horizontal diffusion time τh = Γ2
0τv.

Another noteworthy feature of Fig. 6 is that the rolls have significantly more

curvature in the right part of the images than they have in the left. A comparison

with Fig. 2 (the left part of which is also for the same ε ' 0.05) shows that this

asymmetry was not present for sample 3. It is not possible to tell whether the breaking

of the reflection symmetry about a sample diagonal for sample 5 is the cause of the

shift of 〈k〉 to larger values, or whether this shift is a consequence of the repeated
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Figure 7. The logarithm of the correlation length ξ2 as a function of the logarithm

of ε. Squares: sample 1. Triangles: sample 2. Circles: sample 3. The dashed line has

a slope of 1/2. The horizontal dotted lines indicate the range to be expected if our

images consisted of perfect straight rolls.

dislocation generation which is associated with this shift. In any case, one would expect

this symmetry breaking to lead to a MF that in turn would couple to the roll structure.

Indeed, the asymmetric pattern consists of rolls that are drifting slowly from right to

left, as can be see clearly in the movie Fig6.mpeg. This drift was not present for the

symmetric pattern of sample 3, as shown in the movie Fig2-right.mpeg.

In Fig. 7 we show the results for the correlation length ξ2 as defined by Eqs. 5 and

6 on logarithmic scales for samples 1 to 3. The dashed line in the figure has a slope

equal to 1/2. One sees that for ε >∼ 0.05 (log(ε) >∼ −1.3) the data can be described

by the powerlaw ξ2 = ξ0ε
−ν with ν = 1/2. For smaller ε the data for ξ2 saturate.

This saturation could be a consequence of the finite size of the images. The minimum

width of the structure factor for a finite image of perfect straight rolls depends on the

relationship between the roll wave director and the pixel grid. An analysis of synthetic

perfect straight-roll patterns of the same size as the experimental patterns and with

the same software yielded values of ξ2 that depended on the roll orientation. They fell

between the two dashed lines in Fig. 7, which is somewhat higher than the experimental

values.
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4. Summary

In this paper we presented experimental shadowgraph images and their analysis for

Rayleigh-Bénard convection of a sample with a radially-ramped section of the cell

spacing near the sample periphery. The ramp was introduced to eliminate, reduce, or

significantly modify the influence of the side wall on the pattern in the sample interior.

We found nearly-straight roll patterns with mean wave numbers ks that could be

described by ks = k̃c + k1ε. Surprisingly, k̃c was not consistent with the theoretical

value kc = 3.117 for RBC in a uniform sample of infinite lateral extent [1] and changed

significantly as the sample spacing was modified by small amounts. We do not have

an explanation for this behavior, and note that it was not found in direct numerical

simulations [12] of the Boussinesq equations of a ramped cell with a smaller aspect ratio.

Values obtained for k1 were close to 0.8 and were consistent with the numerical work

of Ref. [12]. As ε increased, the rolls acquired slight curvature and the wave-number

distribution became broader. For all samples and at large k, this distribution extended

beyond the skewed-varicose instability boundary of the infinite system of straight rolls

when ε was sufficiently large (typically greater tham 0.15). For one of our samples, k̃c was

exceptionally large and the samples were skewed-varicose unstable at all ε > 0. In the

unstable regime, the samples were time dependent and periodically formed a dislocation

pair near their center. The time interval between dislocation-pair formations was about

500 vertical thermal diffucion times and roughly independent of ε. The two dislocations

moved, through a combination of climb and glide, radially in opposite directions and

disapeared at the sample periphery, thereby making room for the next pair nucleation.

When k̃c was exceptionally small, dislocations were also observed near onset (but not a

slightly larger ε) and were attributed to the Eckhaus instability.[11]
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