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Abstract

We prove local well-posedness of the Schrodinger flow from R"™ into a compact Kéahler
manifold N with initial data in H¥™(R", N) for s > [2] + 4.

1 Introduction

We consider maps
u:R" - N

where N is a k-dimensional compact Kahler manifold with complex structure J and Kéhler
form w (so that w is a nondegenerate, skew-symmetric two-form). Thus N is a complex
manifold and J is an endomorphism of the tangent bundle whose square, at each point, is
minus the identity. N has a Riemannian metric g defined by

g('a ) = w('>J')'

The condition that N is Kéahler is equivalent to assuming that VJ = 0 where V is the
Levi-Civita covariant derivative with respect to g. The energy of a map u is defined by

1
E(u) = Q/R \du|?dx

*Partially supported by the NSF under Grant DMS-9988711

TPartially supported by the NSF under Grant DMS-0305048

tPartially supported by the NSF under Grant DMS-0330731

§Partially supported by the NSF under Grant DMS-0244834 and an ADVANCE TSP grant at the University
of Washington



where the energy density |du|? is simply the trace with respect to the Euclidean metric of
the pullback of the metric g under u, |du|? = Tru*(g). In local coordinates we have

" out o’
2 y el
|du|*(x) = ;1 9ij (u(x))axa s

(We use the Einstein summation convention and sum over repeated indices.)
The L?-gradient of F(u) is given by minus the tension of the map, —7(u), 7(u) is a

vector field on N which can be expressed in local coordinates as 7(u) = (7(u)', ..., 7(u)¥)
with

where I‘zk(u) are the Christoffel symbols of the metric g at u(z). Critical points of the
energy are Harmonic maps and are characterized by the equation 7(u) = 0. The founda-
tional result on the existence of harmonic maps is due to Eells and Sampson [10] and is
achieved by studying the harmonic map flow.

ou
T T(u)

which is simply the gradient flow for the energy functional on the space of maps. Eells and
Sampson proved the existence of harmonic maps as stationary points of this flow when
the domain is a compact manifold and the target is a compact manifold of non-positive
curvature. In our setting, the symplectic structure on N induces a symplectic structure on
the space of maps. Let Xg = H*(R™, N) be the Sobolev space of maps between R"™ and N
as defined below. For s > § + 1, X, is a Banach manifold with a symplectic structure
induced form that of (IV,w) as follows. The tangent space to X at a map w is identified with
sections of the pull-back tangent bundle over R™. We let I'(V') denote the space of sections
of the bundle V, for example du € I'(T*(R") @ u~(TN)). For o, u € T(u"Y(TN)) = T, X
we define

Qo, p) = /n w(o, p)dz.

In this setting we are interested in the Hamiltonian flow for the energy functional E(-) on
(Xs,€Q). This is the Schrédinger flow which takes the form

(1.2) gz: = J(u)7(u).
This natural geometric motivation for the flow (1.2) was elucidated in [8].

A key aspect of our approach to understanding the flow (1.2) is to isometrically embed
N in some Euclidean space RP and study “ambient” flows of maps from R"™ to R? which
are related to (1.2). This is also central to the Eells-Sampson treatment of the harmonic
map flow. Toward this end we use the Nash embedding theorem to assume that we have
an isometric embedding

w: (N,g) — (RP,9).



Using this we can now define H*(R"; N), the L?-based Sobolev spaces of maps from R"
to N as follows. Note that since the domain is noncompact some care must be taken even
when s = 0.

Definition 1.1 For s > 0 let

(1.3) H*R"N)={u:R"—=RP : wu(x)€ N a.e. and 3y, € N such that
v—w(yy) € H*(R™";RP) where v = w o u}.

With this definition in mind we can state our main result.

Theorem 1.1 Given 8 > 0, the initial value problem

% = Jr() + fr()
(1.4) {u(?)) —

for the generalized Schrédinger flow has a solution whenever the initial data ug € HTH(R™, N)
fors > [2]+4. Moreover if 3 =0 (1.4) is locally well posed in H¥T1(R™, N) fors > [%]+4.

The question of the local and global well-posedness of equation (1.4) with data in
Sobolev spaces has been previously studied by many authors (see [8, 9, 7, 30, 29, 35, 6,
27, 28, 36, 37, 25, 26, 14, 17, 15]). A common feature in all existence results for smooth
solutions of Schrédinger maps is that they are obtained by using the energy method.
This method consists in finding an appropriate regularizing equation which approximates
the Schrodinger flow, and for which smooth solutions exist. One then proves that the
regularizing equations satisfy a priori bounds in certain Sobolev norms, independent of
the approximation, and that they converge to a solution of the original equation. The
differences in the distinct results and proofs lie in the type of regularization used.

Ding and Wang [9] established a similar result to Theorem 1.1 for s > [%] + 3. Their
work proceeds by direct study of equation (1.4) with § > 0, with a passage to the limit
for B = 0. Thus the regularizing equation they use is obtained by adding the second order
dissipative term (7(u). In this paper we analyze equation (1.4) by adding a fourth order
dissipative term (note that we allow the case § = 0 from the start). This term arises
naturally in the geometric setting as the first variation of the L?-norm of the tension.
We believe that our regularization of (1.4) by a fourth order equation, which is geometric
in nature, is of intrinsic and independent interest. Recently, H. McGahagan [25, 26] in
her doctoral dissertation also proved a version of Theorem 1.1. Her work proceeds by a
different regularization, this time hyperbolic, implemented by adding a term of the form
—e% which transforms the equation into one whose solutions are wave maps.

Equations of the type (1.4), but with N being Euclidean space are generally known as
derivative Schrodinger equations and have been the object of extensive study recently (see
[20, 12, 5, 11, 21, 22, 18, 19]. The results in these investigations however do not apply
directly to (1.4) for two reasons. The first one is the constraint imposed by the target
being the manifold N. The second one is that in these works one needs to have data ug in
weighted Sobolev space, a condition that we would like to avoid in the study of (1.4).

It turns out that for special choices of the target N, the equations (1.4) are related
to various theories in mechanics and physics. They are examples of gauge theories which
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are abelian in the case of Riemann surfaces (Kéhler manifolds of dimension 1 such as the
2-sphere S? or hyperbolic 2-space H?). In the case of the 2-sphere S?, Schrédinger maps
arise naturally from the Landau-Lifschitz equations (a U(1)-gauge theory) governing the
static as well as dynamical properties of magnetization [24, 32]. More precisely, for maps
s:RxR" — 5% — R3, equation (1.4) takes the form

(1.5) Ors = s X As, ls| =1

which is the Landau-Lifschitz equation at zero dissipation, when only the exchange field is
retained [23, 32]. When n = 2 this equation is also known as the two-dimensional classical
continuous isotropic Heisenberg spin model (2d-CCIHS); i.e. the long wave length limit
of the isotropic Heisenberg ferromagnet ([23, 32, 35]). It also occurs as a continuous limit
of a cubic lattice of classical spins evolving in the magnetic field created by their close
neighbours [35]. The paper [35] contains, in fact, for the cases n = 1,2, N = S? the
first local well-posedness results for equation (1.4) or (1.5) that we are aware of. In [6],
Chang-Shatah-Uhlenbeck showed that, when n = 1, (1.5) is globally (in time) well-posed
for data in the energy space H'(R';S%). When n = 2, for either radially symmetric or
Sl-equivarient maps, they show that small energy implies global existence. In [27, 28], the
authors show that, when n = 2, the problem is locally well-posed in the space H?*¢(R?; 52),
while the existence was extended to the space H3/2t¢(R2;52) in [14] and [17], and the
uniqueness to the space H/4t¢(R?; 52) in [17].

Remark Our proof of Theorem 1.1 actually only shows that the mapping ug — u €
C([O,T],HSIH(R",N)), with s/ < s, is continuous. However, one can show, by means
of the standard Bond-Smith regularization procedure (][4, 13, 16]) that the statement in
Theorem 1.1 also holds.

ACKNOWLEDGEMENTS: A significant portion of this work was carried out in Spring, 2002 in
Cambridge, MA. At that time DP was visiting Massachusetts Institute of Technology, GS
was visiting Harvard University and TT was visiting Harvard University and the Radcliffe
Institute for Advanced Study. This final version was completed in Autumn, 2005 while DP
and TT were visiting the Newton Institute of Mathematical Sciences in Cambridge, U.K.
and T'T was also visiting the University College London in London. The authors would
like to thank all of these institutions for their hospitality.

2 A fourth order parabolic regularization

The method we employ in order to establish short-time existence to (1.4) is in part inspired
by the work of Ding and Wang [8]. We seek to approximate equation (1.4) by a family
(parametrized by 0 < £ < 1) of parabolic equations. We establish short time existence for
these systems and use energy methods to show that the time of existence is independent
of ¢ and obtain ¢ independent bounds which allow us to pass to the limit as ¢ — 0 and
thus obtain a solution to (1.4). The regularization we use differs substantially from that of
Ding and Wang because we wish to view the right hand side of (1.4) as a lower order term
(in the regularization) so that we can use Duhamel’s principle and a contraction mapping
argument to establish and study the existence of our derived parabolic system.



The energy method we employ ultimately depends on establishing ¢ independent L>2-
estimates for the tension, 7(u) and its derivatives. This suggests that we regularize (1.2)
by € times the gradient flow for the functional

Glu) = ;/ 7 (u)dz.

2.1 Geometric Preliminaries

We perform many of our computations in the appropriate pull-back tensor bundles over
R™. We begin by recalling alternative formulations of the tension 7(u) in this setting (see
[10]). First note that du is a closed 1-form with values in u=!(T'N). The tension is simply
minus the divergence of the differential of u

7(u) = —ddu € T(u"YTN))

where 0 denotes the divergence operator with respect to the metric ¢g. In particular, this
shows that a map wu is harmonic if and only if its differential is a harmonic 1-form. Let
V denote the covariant derivative on T%(R") ® u~!(T'N) defined with respect to the Levi-
Civita connection of the Euclidean metric on R" (i.e. the ordinary directional derivative)
and the Riemannian metric g on N. For a = 1,...,n we let Vou € T'(u™'(TN)) be the
vector field given by

out 9
2.1 =29
2.1) Vot = 0o Oz O’
where (u', ..., u*) are coordinates about u(z) € N. In particular
out ., 0 i o O
du = e dz® ® Bl (Vou)'dz® ® R

The second fundamental form of the map wu is defined to be the covariant derivative of
du, Vdu € T((T?R") @ u=}(TN)). In local coordinates we have for i = 1,...,k and
a,B€1,...n,

(2.2) (Vdu)iy = VaVgu!
0! LT )8uj ou”

e —1 L (U) — —.

Ox*0xP TR Dz O

Note that here the subscript a actually denotes covariant differentiation with respect to

the vector field V,u as defined in (2.1) and we have V,Vgu = VgV,u. The tension is

simply the trace of Vdu with respect to the Euclidean metric, § = 0,3

(2.3) (u)" = VaVau'
o0%u’ i ou? ou®
ooz LY g ggn

from which we recover (1.1).



2.2 The gradient flow for G(u)

For a given vector field ¢ € T'(u~!(TN)), we construct a variation of u : R® — N with
initial velocity £ as follows. Define the map

U:R"xR— N
by setting
U(ﬂ?, S) = €XPy(z) Sf(ZL‘)

where expy ;) : Ty(z)N — N denotes the exponential map. Set us(x) = U(x, s) and now
let V denote the natural covariant derivative on T*(R" x R) @ U~Y(T'N). Then

d C1d ,
gG(us) o 35 Jan |7 (us)|*dz .
L[ ) r(ua)de
= = 7 \T\Us ), T(Us
2 Rn 88 s=0
_ / (Vo7 (1), 7(us) )
" s=0

where the inner products are taken with respect to g and we have used the metric com-
patibility of V. Let R = R(-,-)- denote the Riemann curvature endomorphism of V. Using
(2.3) and the definition of R we see that

Vst(us) = VsVaVaus
= VaViVats — R(Vaits, Vstis)Vais
= VaVaVsus — R(Vaus, Vsug)Vaus.

Therefore

= / (VaVaVsus — R(Vaus, Vsus)Vaus, 7(ug))dx
n s=0

_ / (V¥ r(w)dr - / (R (V) Vau, 7(w)ds.

By the symmetries of the curvature we have

n

[ R Vo r(w)d = [ (BT, 7(w) Vo, da

and provided that 7(u) and V,7(u), for & = 1,...,n, are in L? (and likewise for v) we
may integrate by parts to obtain
d
(2.4) %G(us) :/ <§avava7(u)>dx_/ (R(Vau,7(u))Vau, §)dz.
5=0 " "

Proposition 2.1 The Euler-Lagrange equation for G(-) acting on Ht1(R" N), fors >3
18

(2.5) F(u) =VaVar(u) — R(Vau, 7(u))Vau = 0.



The parabolic regularization of (1.4) which we now proceed to study is

(2.6) { u%? = —eF(u) + J(u)r(u) + fr(u)

(0) = wuo

2.3 The ambient flow equations

Rather than attempting to study the parabolic equations (2.6) directly we will focus on
the induced “ambient flow equations” for v = w o u where w : (N,g) — RP is a fixed
isometric embedding. We fix a § > 0, chosen sufficiently small so that on the d-tubular
neighborhood w(N)s C RP, the nearest point projection map

IT: w(N)s — w(N)
is a smooth map (cf. [33] §2.12.3). For a point @ € w(N); set
p(Q) =Q—1I(Q) eR?

so that |p(Q)| = dist (Q,w(N)), and viewing p and 7 as maps from w(N); into itself we
have

(2.7) II+p= Id|w(N)5 .

Note that then the differentials of the maps satisfy

(2.8) dll + dp = 1d

as a linear map from RP? to itself. For any map v : R” — w(N)s we set
T(v) = Av — Hgp(v)v20?

where II;5(v), 1 < a,b < p are the components of the Hessian of II at v(-). At a point
1y € N the Hessian of II is minus the second fundamental form of NV at y. So if v = wou,
with u : R — N, then T'(v) is simply the tangential component of the Laplacian of v which
corresponds to the tension of the map wu, i.e.

dw(t(u)) = (Av)T = dII(Av) = T(v).

Therefore, in direct analogy with the functional G(-), we now consider

6) = 5 [ 1T(@)Pds

1
= 2/ |Av — T (v) 020l |2dz

Our point here (and hence the seemingly odd notation) is that we wish to consider T'(v)
for arbitrary maps into w(NN)s whose image does not necessarily lie on N.



Definition 2.1 For v : R™ — w(N)s, let F(v) denote the vector field on R" whose com-
ponents are given by

n

(F(v)* = (AT(v))" = Y (T(v)e abe(V)vgvs — (T(0)Tg (v)vg)s — (T(v)° ib(v)v%)a> :
a,f=1

Note that the subscripts here refer to coordinate differentiation in R™ (Greek indices) or
RP (Roman indices).

For v = w o u, we wish to consider compactly supported tangential variations of G(v).
Such variations correspond to (compactly supported) vector fields ¢ on w(N)s which satisfy

dp(¢) = 0.

Proposition 2.2 For all ¢ € I'(Tw(N)s) with compact support such that dp(¢) = 0 we
have

d
%g(v + s0)

- / (F(), o)

s=0
Therefore if

for all such ¢ then v satisfies

Definition 2.2 If v = w o u, then the ambient form of the Schrédinger vector field
J(u)T(u), is given by the vector field f, with

(2.9) fo=4d [J (w™ TI(v)) (dw)

(dll},, ., (Av))].

w —1
lw—111(0(2)) I1 (v ()

Note that f, is defined for maps v : R™ — w(N)s whose image does not necessarily lie on
N.

The regularized ambient equations are given by

(2.10)

5 = —e(Fv) = dp(F@)+ fo+ fdwy_, - (Tv)
v(0) = wo

The basic relationship between the regularized geometric flows (2.6) and the regularized
ambient flows (2.10) is provided by the following two Lemmas (cf. §7 of [10]).

Lemma 2.3 Fire € [0,1]. Givenug € H*T1(R™, N) with s > 3, w : N — RP an isometric

embedding, and T, > 0, a flow u : R" x [0,T.] — N satisfies (2.6) if and only if the flow
v=wou:R"x[0,T;] — RP satisfies (2.10) with vo = w o ug.

Proof. First note that since w is an isometry we have

(2.11) T()* = |r(w)?



and therefore G(v) = G(u). Given ¢ € T'(u™'(TN)) a smooth compactly supported vector
field set ¢ = dw(¢) € T'(u"!(TRP)). As before we consider the variation of u given by
us(T) = expy(y) s§. We then have

wou, =v+ sp+ O(s?)

so that
G(us) = G(v+ s¢) + O(s%).

Therefore

/H<F(u),§>daz = /n<]:(v)7¢>dx.

Observe that

e [ <?:,g> do= [ <dw @:) ,dw(£)> do= [ <g:,¢> dz.
Since dp(¢) = 0 we also have
213) [ (Fw.9do= - /R (FE) e = ¢ [ (F0) — dp(F (), 9)da,
Note that
| vwrw.ga = [
= /R<dw[J(wl(H(U)))(dw)1(T(U))]adw(§)>d90

n

SR

(dw(J (u)T(u)), dw(§))dx

n

and

| rw.ode = [ (du(r).du©)is

= /n<dww1H(v(m))(TU>,dw(§)>d$
= /n<dww_1n(v(x))(TU)a¢>d$

where here, since v = wowu, we have II(v) = v. This together with (2.12) and (2.13) implies
that the flows correspond as claimed. O

We end this section by exhibiting in a more practical form the structure of the parabolic
operator appearing in the regularized ambient flow equations (2.10).

Definition 2.3 For v : R® — RP, and j € N we let &v denote an arbitrary j'h-order
partial derivative of v
; v
iy — Y ; e — i
dv = T P with ap+ =3



and let
vk x Pl

denote terms which are a sum of products of terms of the form 091w, . .. 0%,

Proposition 2.4 Let v: R™ — w(N)s C RP, then

—e(F(v) — dp(F())) + fo + Bdw (Tv)
w1 I(v(z))

4
=—eA%—¢ Z Z A(jl...jl)(v)ﬁjlv s -+ % 0w + By(v)0*v + By (v)dv * Ov
=2 j1+-+5=4

where each js > 1 and each of Aj,...;,)(v), Bo(v) and By(v) are bounded smooth functions

of v.

Lemma 2.5 Fize > 0. Let v : R™ X [to, t1] — w(N)s satisfy

(2.14)

{ % = —e(F() = dp(F () + fo + Bdwy _,  (Tv)
’U(l‘,to) = Uo(ZL‘)ElU(N),

where vg € HTHR™, w(N)) with s > [%] +4. Then v(z,t) € w(N) for all z € R™ and all
te [thtl]'

Note that in this case Lemma 2.3 u(z,t) = w™! o v(z,t) satisfies

{ S = —eF(u)+ J(u)r(u) + f7(u)
u(r,tg) = wup(x) =wtowv(z).

Proof. First note that
F(v) =dp(F(v)) — dILF(v) € Tw(N).

Moreover dH’U(x)(Av) € Tiiy(z)w (), J(w‘l(ﬂv@))dw_l‘nv(x) (dH’U(x)A(v) € Tiy1(mo(2)) V>
and fy € Tiry(z)w(N). Thus v € Tiyy(zyw(N). Furthermore 0;(Il 0 v) € Tigy(pyw(NN) thus
Or(pov) = 0w — (Il o v) € Tigy(z)w(N). Therefore

1d
5P pov) = (pou,dilpou) =0

since p o v is orthogonal to Tiy,(y)w(V), which implies that [p o v|? is constant on [to,t1].
Since v o (x) € w(N), |p o vyl = 0 which implies that |p o v(z,t)] = 0 Vo € R™ and
YVt € [to, t1]), i.e. v(z,t) € w(N). O
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3 The Duhamel solution to the ambient flow equa-
tions

In this section we introduce a fixed point method that solves the initial value problem
(2.10) in the Sobolev space H*T1(R" RP), for s > 5 +4. To simplify the notation, using
Proposition 2.4, we rewrite (2.10) as

{ ( & = —eA%u+ N(v)

(31) v :an) = o,

where
4 . .
(3.2) N(v)=-—¢ Z Z Ay (V) 0% -k o + By (v)0%v + By (v)0v * dv.
=2 j1+-+j5=4
We now state the well-posedness theorem for (3.1). For any fixed vy, define the spaces
L} ={v:R" = R?/|lv —wollp2 < 6}.

and
Ly ={v:R" > RP/||lv — voll 2, [[v — voll > < 5}

We then have the following theorem:
Theorem 3.1 Assume 6 > 0, ¢ > 0, and v € RP are fized. Then for any (vo — ) €

H*T L (R™ RP), s > n/2 + 4 there exist T. = T(e, 4, s lvo — vll2) and a unique
solution v = v. for (3.1) such that v € C([0,T:], HS*1 N Lg’oo).

To prove the theorem we rewrite (3.1) as an integral equation using the Duhamel
principle:

(3.3) o(z,t) = S (6)(vo — 4 /5 (t — )N (v) (2, )t + 7,

where for f € H*T1(R", RP)

n

(3.4) S.(t)f(z) = / 18 ~<IE0 76 g

is the solution of the linear and homogeneous initial value problem associated to (3.1). The
main idea is to consider the operator

(3.5) Loz, t) = S-(t)(vo — /S (b — )N (o) (. £} 1~

and prove that for a certain 7. the operator L is a contraction from a ball of C([0,7%], H*N
L%) into itself.

To estimate L we need to study the smoothing properties of the linear solution S, (t)vg
Because the order of derivatives that appears in N (v) is 3, in order to be able to estimate the
nonlinear part of L in H**!, we should prove that the operator S.(t) provides a smoothing
effect also of order 3. We have in fact the following lemma:

11



—

Lemma 3.2 Define the operator D°, s € R as the multiplier operator such that D f(§) =
|€|°f. Then for anyt >0 andi=1,2,3,

(3.6) 1S-(8) fllz2 < I1F Iz
(3.7) ID*Sc(t) fll 2 S ¢35 DS £ o

Proof. The proof follows from Plancherel theorem and the two estimates

ecléltt < 1

—eleldt =i 1
e ekl N A

€1°

g

The next lemma shows how for small intervals of time the evolution S (t)(vgp — ) stays
close to vg — 7.

Lemma 3.3 Let o € (0,1) and assume f € H* N H*, and s > 5 +40. Then

(3.8)  Se(t)f = flleee < e[ fll g + 1f 1 grac], and [|Sc(@)f = fllrz < et f]] grao-

Proof. By the mean value theorem

e~elel*t _ 1‘ < lefte,
which combined with the trivial bound

‘e_€5|4t - 1‘ <2
gives, for any o € [0, 1]
39 e 1] 5 (et
We now write

(3.10)  |(Se(t) — 1) f (=)

IN

[ e g
Rn
< (e [ 1A©le"
(3.11) < () /If _ e+ /Ig N \ﬂ@)ww{%,

12



and Cauchy-Schwarz concludes the argument. Note also that

(3.12) 1(Se(t) = V) f e < |l(e &< — 1) f]| 2

< (o) ( / <|5|4”>2|ﬂ2)2
< (@S g < ()7 105 oms.

Here the space H® denotes the homogeneous Sobolev space defined as the set of all functions
f such that D*f € L2

O

We are now ready to prove Theorem 3.1.

Proof. For T,,r > 0 and s > n/2 + 4 consider the ball
B, ={0v e H* : ||0(v — vo)l| g s <7} N LY.

We want to prove that for the appropriate 7, and f, the operator L maps B, to itself and
is a contraction. We start with the estimate of the linear part of L. By (3.6) we have

(3.13) [|9(S:(t)(vo — ) = (vo = Y)llms S (L + D*)S(t)dvol| 2 + [|[Ovoll s < 2/[0vol| s

To estimate the nonlinear term we use (3.6) (3.7), and interpolation :

(3.14) Ha(/ot S.(t —t')N(v)(z, t’)dt’>

’HS
+
L2

t
< /0 JON ()]l 2 (¢ dt’ + / ()43 DS 30N (0)| 2 (¢) dt

_ / 8.t — VON () ()t / DSt — )ON () ()l
0 0

L2
t
0
t
5/ (1+ 734734 |0v|| s (t') dt'.
0

Note that to control 9N (v) and D*39N(v) in the previous inequality we are never in the
position of estimating v in L2, By (3.5), (3.7), (3.14) and (3.13), we obtain the estimate

t

(3.15) |0(Lv — vo)| | ms(t) < Col|Ovo|| s + Cl/ (1+ 15’3/45’3/4)Havﬂgg (') at'.
0 .

Thus

(3.16) [0(Lv — vo)llzge mg < CollOvollms + 01573/4T§/4|!<90||’L”5-3Hg‘

We still need to check that Lv is continuous in time and that Lv € Lgo’z. The continuity
follows directly from the continuity of the operator S.(¢). To prove the L and L? estimates
one uses (3.8) with o = 1/4 applied to f = vy — =, the Sobolev inequality and estimates
similar to the ones used to obtain (3.15). One gets

_3
(3.17) Lo = wollpge 2 + | Lo — wollrge 1o < C1e AT 4 0vg || s + Cle 4T;/4||au||’;%iH§.
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We now take r = 3C||vg|| s and

_1 _1
(3.18) T. < min(5*C 4364 Cy 4™ |ug || 77, 67277 Cy 7 e |uol| 42)

so that (3.15) and (3.17) guarantees that L maps B, into itself. Note that (3.14) yields for
v,w € B,

t

(3.19) | [ Selt = )0 @) = Nw)wt)de | S e ITINON () = Nw) . -5
0 Hs €

Therefore

(3.20) [0(Lv — Lw)| s 1

< e TGN (0) = N ()l e -
S eTMTCE) 10V 5 s + 10w ) 100 = 0) 1 1
< e ¥MTVAC(S, ||0vo| 1) |9 (v — w)llLgs ag-
Similarly one shows that
|1Lv — Luwl|rge 11y S €= THAC(6, 0voll ) 10(v — w)l| 25 -

By shrinking T; further by an absolute constant if necessary, from (3.20) and (3.21) we
obtain

1
(3.21) HLU—LwHL%;H;+1 < iﬂv—wHLoTZH;H.

The contraction mapping theorem ensures that there exists a unique function v = v, in
LZn{ov € H* : ||0(v— UO)HL%‘;,HS < r} which solves the integral equation (3.3) in the time
interval [0, T;] defined in (3.18). Moreover v € B, by our choice of T,. The uniqueness in
the whole space H5T!1n L?’Oo follows by similar and by now classical arguments. O

4 Analytic preliminaries

In this section we state and present the detailed proof of an interpolation inequality for
Sobolev sections on vector bundles which appears in [9] (see Theorem 2.1). This inequality
was first proved for functions on R™ by Gagliardo and Nirenberg, and for functions on
Riemannian manifolds by Aubin [1]. The justification for presenting a complete proof is
that this estimate plays a crucial role in the energy estimates and therefore in the proof of
the results this paper. The precise dependence of the constants involved in this inequality
is vital to our argument and we feel compelled to emphasize it.

Let IT : E — R™ be a Riemannian vector bundle over R". We have the bundle AP T*R"®
E — R"™ over R" which is a tensor product of the bundle E and the induced P-form bundle
over R", with p = 1,2,...,n. We define T(APT*R"” ® E) as the set of all smooth sections

14



of APT*R™ @ E — R™. There exists an induced metric on A’T*R” @ E — R™ from the
metric on T*R™ and F such that for any s1,s9 € F(APT*R" ®FE)

(4.1) (s1,82) = > (s1(eq,...ei,),52(e1,. .. ¢€i))

11 <+ <ip

where {e;} is an orthonormal local frame for TR"”. We define the inner product on
I'(APT*R" ® E) as follows

(4.2) (s1,82) = /n<51,52>(x)dx.

The Sobolev space L?(R", APT*R"® E) is the completion of I'(APT*R"® E) with respect to
the above inner product. To define the bundle-valued Sobolev space H*"(R", APT*R"®Q E)
consider V the covariant derivative induced by the metric on F, then take the completion
of smooth sections of E in the norm

1
k T
(43) Isller = Dl = (2 /. \V@s\fdx>
1=0

where

(4.4) |Vis|?=(V---Vs,V---Vs).
N—— I N——

i—times i—times

If r =2, H" = H*.

Proposition 4.1 Let s € C°(E) where E is a finite dimensional C* vector bundle over
R™. Then given q,r € [1,00] and integers 0 < j < k we have that

(4.5) IV7sllzr < CIVEsl|allsl

with p € [2,00), a € (%, 1} and satisfying

4s) Li g (Bth)

Ifr =n/k—1%# 1 then (4.5) does not hold for a = 1. The constant C' that appears in
(4.5) only depends on n,k,j,q,r and a.

Proof. If f is a real valued smooth function with compact support on F then Theorem
3.70 in [2] ensures that (4.5) holds.

Case 1: Let j =0 and k = 1. Then for f = |s| we have by (4.5) that
(4.7) Isllze < CUIVIsllIEallsll 7
Kato’s inequality ensures that |V|s|| < |Vs| which using (4.7) yields

(4.8) Isllze < ClIVslEallsllz*,
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which proves (4.5) for j = 0 and k = 1. In general if f = |V/s| Kato’s inequality ensures
that |V|V7s|| < |Vitls| which yields using (4.8)

(4.9) IVslle < CIVIVs| |7 Vs 1
< IV s gl Vsl
where a € (0,1) and
1 1 1 1 1
(4.10) =+a< ————— )
p r qg r© n

Note that so far the condition p > 2 has not played a role.
Case 2: Let j=1,k=2and 1 <a <1 Ifa=1(4.9) yields

(4.11) IVs|lrr < C’||V28|]Lq
with

1 1 1
4.12 =
(4.12) "9 n

Ifa= %, assume p > 2 then

(4.13) div (|Vs|P72Vs, s) = |[Vs|P + |Vs|[P2(VoVas, s)+
+(p —2)|Vs[P~(Vgs, VaVss) (Vas, s).

Since
(4.14) / div (|Vs[P~2Vs, s) = 0
then (4.13) gives

(4.15) / yvspg(n+p—2)/ VP2V |
n Rn

Givenourchoiceoszl,szanda:%wehave%—i—%:f i.e. l—i—%%—ﬁzl.
Thus Hélder’s inequality yields

(4.16) V|7, < (n+p —2)V2s||Lalls| - | V557,
thus

1 1
(4.17) IVslle < v/n+p—2[Vs| 253
with

1 1/1 1

4.18 N e
(4.18) p 2 (7" " n>



For a € (%, 1) we consider two cases: ¢ < n, and ¢ > n. For ¢ < n using the convexity
of log || f|}, as a function of p we have

-1 -1
_ . p -0
(4.19) IVs]lr < |[Vs||% Vs 1o with a = T T € (0,1)
where ¢t < p < ¢ are such that
2 1 1 11 1
(420) —=—4+—and — = - — —.
t q T o q n
Using (4.17) and (4.17) we have that
(421) HVSHL" S CHV2SHLq
and
5 1 1
(4.22) IVslle < CIV7sl LallsllZ--
Combining (4.19), (4.21) and (4.22) we obtain
1—a a
(4.23) IVslize < CIV2sll L * sl 2
where
1 1 1 1 1 2
(4.24) :++(1—O‘)< 77777 >
p n T 2 q r n

which proves the case a € (%, 1) and g < n.
For g >mnt>0and b€ (0,1) such that

1 1 1 1 1
4.2 N
(4:25) p i " <q t n)
we have by (4.9)
(4.26) IVsllze < CIIV2sl|7a Vsl

Choosing t > 0 so that

2 1 1
4.27 —=—-4=
( ) t q T
we have by (4.17)
5 1 1
(4.28) IVsllLe < ClIVZs] LallsllZr-

Combining (4.26) and (4.28) we obtain
, bl 1=b
(4.29) IVslr < CIV7slLg lIsll 7
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with

1 1 1 b+1 1 1 2
" Sl () (a1
p n T 2 q T n
by (4.25) and (4.27). This concludes the proof of Case 2.
Case 3: Let j =0 and k = 2. From (4.8) we have
(4.31) Isllze < CIIVsllza llslz=

with a1 € (0,1) and

1 1 11 1
(4.32) —+a1<——>.
p r G r n
Choosing ¢; so that
1 1 1 11 2
(4.33) :—|—+a2( ————— )
q1 r n q T n

then a9 € (%, 1) and
(4.34) 1Vs]lLar < CIV2s]1 515172

Combining (4.31) and (4.34) we have that

(4.35) Isllze < CIIV2s1 g5 il
with
1 1 1 1 2
(4.36) - = —+aia ( ***** )
p T qg r n

from (4.32) and (4.33).

Case 4: We now proceed by induction on k. Assume that for K > 2 and j < k we have
proved (4.5). Let j < k < k+ 1. By (4.9) we have

(4.37) IVEsllza < CIVFH 8|7 1VE s )
with
1 1 1 1 1
. L1y
qa T2 Q@ T2 n
By the induction hypothesis, applied to V¥~ s, we also have
(4.39) IVEsllra < ClIV*s]| 7 IV s
with
1 1 1 1 1 2
o SRR Y A
rpo r3 on g T3 n



and

(4.41) IVF sl o < CIVF 8|54 I8l
with
1 1 k-1 1 1 k
(4.42) :++(14<——>-
T3 T4 n qy T4 0N

Letting q4 = r2, g3 = q, r4 = r, ro = p we obtain

k
4.43 Fsllmo < CIVF s 4y]|s]| 1% with a = a5 1
(@43 Vsl < CITR sl sl witha = e R
and
1 1 k 1 1 k+1
(4.44) :++a(——l— >
p r n q r n
By hypothesis for j < k and using (4.43) we have
(4.45) IVslle < ClIVs|| T sl
< CIVF s g s o
with aga; € [ﬁ, 1} and
1 1 ] 1 1 k+1
(4.46) =+‘7+a1a0(—— - >
p r n q r n
which finishes the proof of the proposition. O

Corollary 4.2 Let u € C*°(R", N) be constant outside a compact set. Then for k > 1,
q,r €[1,00) and 0 < j <k — 1 we have

(4.47) IV ) Lo < ClIV*ul| 4 || Vul| -
with
11 1 1 k-1
(4.48) :‘7++a(+— >
D n T q T mn

If r = k%lﬂ # 1 then (4.47) does not hold for a = 1. The constant C' that appears in
(4.48) only depends on n,k,j,q,r and a.

Proof. Apply (4.5) to s = Vu a section of the bundle v*(T'N) ® T*R". Since Vu is not
necessarily compactly supported a standard approximation argument might be needed to
complete the proof. O

In the second part of this section we establish the equivalence of the Sobolev norms
defined in either the intrinsic, geometric setting or in the ambient, Euclidean setting. These
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results hold when we are above the range in which these spaces have suitable multiplication
properties. Since we are working with the gradients of the maps we must consider the H*
spaces with s > 5 + 1.

We begin by assuming that we have chosen coordinate systems on (N, g) so that the
eigenvalues of g are bounded above and below by a fixed constant C' > 1, i.e. we assume
that

CTHEP < gi&y < ClEPP forall £ eRE

We denote these coordinates by either (y',...,y*) or (u',...,u*). As before (z!,...,z")
denotes Euclidean coordinates on R™.
For v : R™ — RP we let

ov®
- Oz@ Ca

where {e1,...,e,} is an orthonormal basis for R?. Recall that if X € I'(u=%(TN)) then

On¥

- ouf
J
T G

. 9XI
aX )=
(VaX)! =53
and Vau = Oqu € T'(u™'(TN)) denotes the vector field along v defined in (4). We use the
following notation for higher order derivatives.

Definition 4.1 Let o = (a1, ..., 1) denote a multi-index of length Il +1 (|of =1+ 1)
with each as € {1,...,n}. We let V*lu € T(u=Y(TN)) denote any covariant derivative of
U of order I +1 e.g.

vitly, — Z Vi Vg, u
a=(a1,...,q141)
Similarly
al-{—lva
I+1,
IMo= > ot
o=(a1,...,141)
and l+1
o'y 0
+1, _
O u= Z Oxo ... Qpi+1 aya ’

a=(a1,...,141)
Remark 1 Note that our use of the multi-index notation differs from the usual one.

Recall that for

R" — RP
v : R"—= N

<
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the Sobolev norms of v and Vu for k € N are defined by
k
0vlls = Y 10" vl L2ny
1=0

k
IVullge = DIV Ul p2@n)
=0

k 1

= > ([ v i)

=0

where here

HVZHU”B(RW) _ Z Hval e vaH_luHLQ(Rn)
laf=t+1

and the sum is taken over all distinct multi-indices of length 141 (see (4.5)). The L? norm
of each of these is computed with respect to the metric g as indicated. We use the obvious
analogous definition for [|9'*v|| L2(RM)-

Note that by definition u € H*(R", N) if 3y, € N such that for v =wou
[0 = w(yu)l[L2 + |0 g1 < 00
Our immediate goal is to show that for k¥ > § + 1 if v = w o u then
|0v|| gr < oo if and only if  ||Vul||gr < oo.

Lemma 4.3 For each k > 0 we have

k41

(4.49) Vi = 9% + Z Z G(jhm’jl)(u)ajlu ook My

1=2 j1+-+j=k+1

k+1
(4.50) M lu=vlu+>" N By @)V sk Vi

1=2 jy -t =kt 1

ow® ~ i - .

(4.51) oF+ly = —— okt 1yde, + Z Z Fjp gy ()0 s - % 7l

oyl . ,
=2 ji+-+ji=k+1

where each subscript js > 1 and

, 0
Gy (W) = G{h,..-,ﬂ)(u)ai?ﬂ
, 0
EGrgn () = Egjl,m,jz)(u)@

F(j1,~~,jl)(u) = F(aj1 ----- jl)(u)ea

and each G, E and F are smooth, bounded functions of u.

The notation aj, * - --* aj;, corresponds to a product of the aj)’s.
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Remark 2 Throughout this section whenever expressions similar to the right hand side
of (4-49), (4.50) or (4.51) occur, a key point is to note that all the subscripts js > 1, for
s€{l,...,l}. This is always to be understood even if it is not explicitly stated.

Proof. We establish each of these by induction, beginning with (4.49). Note that for
k=0, Vu=0u. For k=1

oul 9
VeV = Voo (i )
B 9%l 0 j out oukF 9

029z Jyi i Oz dx2 dyi
Assume now that (4.49) holds for some k& > 1. Then

vk+2u = V vk-l—lu
= vak+2 (vak+1 Vo, u)

Okl 0
= Vg <M8yﬂ')
k1 : j 1y 2
—{-Vak% Z Z G%jl,...,jl)(u)ajlu %% 8JZU@
1=2 j1+-+j=k+1
Ly out 0

_ k+2 J L A0 _—
= "u+ F“ Hrk+1 Oz Ox%k+2 OyJ

Q42

k+1 . ;o '
DY (szl,.‘.,jz)(“» OMux - x 8”“%

1=2 ji+-+j=k+1 Y
k+2 9

D D Gl s Flug s

=2 j14+-~+j=k+2

k+2 . | aUl )
+ Gt ) Ok -5 Oyl 9
12;11+'"Z+;zk2 oy (O Uil g e oy’

Therefore

k+2
k+2, k42 j j
Vi = 0% u + E g G,y (WO u k- %
=2 j14+-~+j=k+2

which completes the proof of (4.49). The proof of (4.50) proceeds in a similar fashion and
is left to the reader.
To prove (4.51) we recall that v = w o u and thus

o ow® ou’
Ozt Oyl gz«

(4.52)
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(which is the case k = 0). When k = 1 we differentiate this to obtain

9 v® B ow*  9%ul *w?® ou' Oul

0ze20z Oyl Qx2Qx + OytoyI Oxo2 Or”
Assume now that (4.51) holds for some k& > 1. Then

ak+2v — aak+2 (ak—f—l )
k+2 | |
> D Fup@dtus o«
1=2 ji+-4j1=k+2
This implies (4.51) and completes the proof of the Lemma. o

Combining (4.50) and (4.51) in Lemma 4.3 we obtain the following.

Lemma 4.4 Forv=wou and k > 0 we have

k+1
“ ow “ . .
(4.53) 8k+1 = a J Vk+1 + E E H(j1,...,jl)(u)vj1u * .- % Vi
=2 j1+-+j=k+1

where, as before, each subscript js > 1 and each H® is a smooth, bounded function of u.

We now proceed to bound the pointwise norms in terms of each other.

Lemma 4.5 Forv=wowu and k > 0 there is a constant C' > 1 depending only on n and
k such that

k+1
(4.54) P < CVFH Py YD [V [V
=2 j1+--+ji=k+1
and
k+1 4 .
(4.55) VE WP < oMo+ 0y YD [0 o)

1=2 ji+--+j=k+1
Proof. Using (4.53) we have

p p
Z ’8k+1’l)a’2 _ Z Z ‘aak_H .. '8a17)a‘2
a=1

a=1|a|=k+1

8 a -
_ Tk, k41, i
— Z 8y9 8yi (V)

k+1

HY Y @ v

=2 j1+-+j=k+1
k+1
ow

+2 VkH Z Z ngh_.m)(u)vhu - % Vi,
=2 j1+-+j=k+1
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Since w : N — RP is an isometric embedding we note that
ow® dw®

4.56

(4.56) Z W o

Therefore, using the fact that for any [ > 1

k k
CTH Y (VI < IVl = gy (Vi) (Vi < €37 |(9'u)P
= i=1
we have

k+1
Z’ak—&-l a|2 < 2\Vk+1u\2+202 Z |Vj1u|2~-|leu|2
=2 ji+-+5=k+1

which establishes (4.54). To prove (4.55) we proceed by induction. For k = 0 we have

ou' 0
Ox® Oyt

Vou =

Using (4.52) and (4.56) this implies

ou' dul  Ov® Bua

2 _ —
Vaul™ = gij 0z® 0z Oz Oz’

Therefore
(4.57) |Vul? = |0v]?.

Note that for k = 1, by (4.53) we have

Ou” (V2u)! = 0%v® — H*(u)Vu * Vu.
oyl
So that
|V2u|? = 2|10%0|? + C|Vul*
or
(4.58) |V2u|? = 2|0%v|?|0v|?.

Assume now that (4.55) holds for any k& > 1. Again using (4.53) we then have

k+2
VEPRu2 < 20R PP+ 0> 0 Y (VI V)
1=2 ji+-+j=k+2
k+2
200 20P +CY " Y |0 |0
=2 ji+--+i=k+2

IN

which completes the proof of Lemma 4.5.
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Lemma 4.6 Assume that k > 5 + 1. There exists a constant C' = C(N,k,n) such that
for w € C*(R™, N) constant outside a compact set of R™ if v = w ou then

k

(4.59) IV e < O ov]i
=1
k

(4.60) 105 ol < CY | Vully.
=1

Proof. By (4.55) we have

=

k+1

(4.61) V5|2 SC’][@kJrlvHLz—i—CZ Z (/ ,agl,z._.\aﬂvP)Q.
]Rn

1=2 j1+-+ji=h+1

Let 2 <p; <o0,i=1,...1 be such that

1 1 1
4.62 =
(4.62) P1 2
Then by Holder’s inequality
(4.63) [[0720] - -~ |87 2 < el ol o - - - 0710 | pou.
Since k > 5 + 1 then

Ji—1 Ji—1 n o1
(6) L < a; L +2k‘2< ]z+l)<
and
1 1 -1 1 k

(4.65) > =4 N

Note that to ensure that a; < 1 in (4.64) we either need n < 3 or (% — 1) (k —J+ %) <

— % Since 2 < I < k+1and 1 < j < k the previous inequality holds provided

(% — 1) (k‘ — %) < % which requires k& > ntynin=d) Vz(n_4). Thus to accommodate all values of
n simultaneously, it is enough to choose £ > § + 1 and k& € N. Thus (4.5) in Proposition
4.1 yields

(4.66) |09 0]| i 0" |3 0wl
C|0w]| -

Therefore combining (4.61), (4.63) and (4.66) we have

<
<

k
(4.67) IV a2 < C Y 100l
p=1
0

A similar argument to the one above where Proposition 4.1 is now applied to Vu rather
than dv yields (4.60).
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Lemma 4.7 There exists a constant C = C(N,n) such that if u € C*°(R"™, N) constant
outside a compact set of R" and v =wowu then for 1 <k <35 +1

k

(4.68) IVl e < C Y100l g4
=1
k

(4.69) 10" ol < CY IVl -
=1

Proof. The proof is very similar to that of Lemma 4.6, where the a;’s and p;’s in the
interpolation are taken as follows

i —1 i—1
Ji <ai:‘h—+L(k—ji+l‘1)<1,

4.70
( ) S0 S0 2]{780

where sg = [%] + 2, and

1 1 ;i —1 1
Lol gl 1 s, oy
27 p; n non

(4.71)

g

Remark Proposition 4.1 holds s € C"(E) where E is a finite dimensional C™ vector
bundle over R™ provided k£ < m. Similarly Lemma 4.6 holds for v € C™(R", N) and
u constant outside a compact set of R™, provided once again that m > k. A simple
approximation theorem ensures that Lemma 4.6 holds for v € C™(R", N) N H*(R" N)
with m > k.

Corollary 4.8 Assume that k > 5 +4. There exists a constant C = C(N, k,n) such that
for w € CFFL(R™, N) N H*(R", N)

g2

C IVl g
Jj=1
2(3]+4

C Y IVl g
=1

3[%]+12
C Z ”VUH;[%H-
=1

(4.72) |Vu| e

IN

(4.73) |V ul| oo

IN

(4.74) V30| o

IN

Proof. Recall that ||Vul|| = |0v] if v = w o u, and by Sobolev embedding theorem

(4.75) D0l < ellov]] 510
(4.76) 10%0]1 2% < 9l 510
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and
(4.77) 1%z < 9] ;1.4

Therefore combining (4.60), (4.69) and (4.75) we have

Bl
(4.78) [Vullpe < C D (107 0] e
§=0
[5]+2 ,
o
[5]+2

< C 231 HVUH;I[%HT
j:

Note that (4.35) ensures that
(4.79) IV2u| < C|0%v| + ¢|dv|?.

Combining (4.75), (4.76), (4.60) and (4.69) we have

(4.80) IV2ullpe < Cll0%0] Lo + C| 00|72
< C\|3U\|H[g]+3+CH3UH§I[%]+2
[3l+s [Bl+2
< CY NPTl +C ) 0|7
=0 =0
[5]+3
<

C Z ||Vu”iq[g]+z
=1

Note that (4.55) also ensures that
(4.81) |V3u| < C(|0%v| + |0%v| |0v] + |0v?).
Combining (4.75), (4.76), (4.77), (4.60) and (4.69) we have

sz
3 J
(4.82) IVl <€ 30 19l gy
]:



5 e-independent energy estimates
Theorem 3.1 ensures that the initial value problem

{ & = —eA%+ N(v)
v(0) = o

has a unique solution v. € C([0, 7], H**' N L3°) provided vy € H*T(R™, RP) for s > [1].
To prove that (1.4) has a solution we need to show that (2.10) has a solution for ¢ = 0.
To do this we need to show that each v. extends to a solution in C([0,T], H*T* N L2™)
where T" > 0 is independent of . This is accomplished by proving e-independent energy
estimates for the function v.. It turns out that thanks to the geometric nature of this
flow, if one assumes enough regularity (i.e. s > [§]+4), it is easier to prove e-independent
energy estimates for the corresponding u.. Lemma 4.6 and Lemma 4.7 then allows us to
translate these into estimates for v..

Let u. = u € C([0,T:], H*T1(R", N)) with s large enough! be a solution of

ou = —eAtr(u)+eR(Vu,7(u))Vu + J(u)1(u) + B7(u)
(5.1) { S —

where € € (0,1], 8 > 0, A = > ", VoV,. Our goal is to understand how ||Vul| gx(¢)
varies with time.

Let [ € N. We denote by a the multi-index of length | @ = (a1 -+~ y), and Vqu =
Va,-.Vgu. The following lemma and corollaries establish some computational identities
which are very useful.

Lemma 5.1 Let u € C*([0,T],H*(R",N)), s€N, s> 2+4+2. Let X € TN for1<1<s
and |a| = 1. We have

-2

(5.2) Voo Vatl = VaVagti + > Ve, Vo, [R(Vagt, Vo, 1) Vo - Vayul
j=0
-2
(5.3) ViVat = VoVt + Y Vo, -+ Vo, [R(Vitt, Vo, 1) Ve, - - Vayu]
7=0

-1
(5.4) VaoVaX = VaVaeX + Y Va, -+ Vo, [R(Vagtt, Vo, u) Va1 -+ Vo, X].
7=0

Proof. The proof is done by induction on the length of the multi-index «, i.e., on . We
prove (5.4) and leave (5.2) and (5.3) to the reader, as the two proofs are very similar. If
=1

(5.5) Voo Var X = Vo, Vao X + R(Vaytt, Va,u) X.

'We will see later that s > [5] + 4 will be enough. In this paper we do not attempt to obtain the lowest
possible exponent s.
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Suppose (5.4) holds for I > 1 and consider

(5.6)  VaoVar - Var, X

Vo [Vao Vs -+ Vs X] + R(Vagti, Va u)V .V
= val T va-{—lvaoX + R(VQOU, Valu)V -V

X

Qp41

X

aj41

Va, Zvazm [R(Vagt, Vo, 1w Vayis - Virr X]

= Vgu VVX

Q41

+> Va, Vo, [R(Vagt, Vo, )V, o+ Vo, X]

g
Corollary 5.2 Letu € C'([0,T], H*(R",N)) s € N, s > 2+2, then for 1 <1 < s, |a| =1

we have

-1

(5.7) AVatu = Var(u)+ Y Va, -+ Vo, [R(Vaytt, Vo, 1) Ve, Va, Vagt]
j=0
-2
+> Voo Var Vo, [R(Vagts Va1, 1) Va, .y - Vayul
j=1

(5.8) ViVaVau = V Vaovtu
va-- [R(Vett, Vo, ;0 Va, 5 Vo, Vagl]
(5.9) Vg, VaVau = V VQOVgO
Z Val o (Vﬁou vagﬂ )vaj+2 e Vazvaou]
Proof. The proof of (5.7) is an application of (5.2) and (5.4). To prove (5.8) and (5.9)

apply (5.4) to Voou = X and note that V; and Vg, behave the same way. Moreover recall
that Vaovtu = VtVaou. O

Corollary 5.3 Let u € C*([0,T], H*(R",N)), s € N s > 2 + 2. Let X € TN then for
[ >1 and |a| =1 we have

-1
(5.10) AVaX = VaAX +3 Va, Vo, [R(Vaet Va4 )Vays Vo, Voo X]
j=0

-1
+> VaoVar Vo, [R(Vagts Va1, 1)Va,,, Vo, X].
=0
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Proof. To prove (5.10) we apply (5.4) twice, first to = then V,,X.

(511)AVaX = VauVa,VaX
-1
= VaolVaVaeX + Vao[Y Vay -+ Vo, (R(Vagu, V
7=0
-1
= VaVaVaeX + Y Va, -+ Vo, (R(Vagtt, Vo, 1) Va5 Ve, Vag X)

041 )VOljJr? o 'vOélX]

j=0

-1

D VaoVar Vo, [R(Vagtt, Vo 1)V, - - Vo, X].

j=0

g

Remark Note that in particular (5.10) applied to X = 7(u) yields
(5.12) AVqar(u) = V AT( )

+ Z val o (vaou vaj+1 )vaj+2 T VQIVQOT(U)]

-1

+ Z Vozovoq vaj [R(vaou VOéJ+1 )vaj+2 e vaz (u)]
=0

Lemma 5.4 Let u € C'([0,T], H*(R",N)) with s € N and s > [2] + 4 be a solution of
(5.1). Then for [5] +4 <1< s andl € N we have

d n
(5.13) ZIVullZe < ClIVulf (1 + [ Vul FE )

Proof. We first compute the evolution

1d
(5.14) Zdt/Rn|Vu|2dx = Z / ViVaytt, Vagtt)

ap=1

- / Vo (i, Vayut)) — / (Vo () — / Vo, 7(w))
~ / (Ar(u), 7(u)) — & / (R(Vu, 7(u))Va, ()

- [, @) -5 [ 1w
= = [[vrwiE- [P

/ (R(Vu, () Vi, 7)),
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where we have used the fact that for f € L(R" R") fR" div f = 0 as well as integration
by parts. Note that using integration by parts and Cauchy-Schwarz we have

IN

(5.15) ‘/<R(vu,7(u))vu,f(u) > C||Vu||%oo/|7'(u)|2

IN

IN

Combining (5.14) and (5.15) we have

1d

(5.16) 5o Vul < CIValb |Vl

For 1 <[ < s applying (5.3) we have

1d
GUELTLMTAEEDS / VoV att, Vet
|ax|=l
= Z /(Vavtu;vau>
|ex|=t
-2

+> ) / (Vay - Vo, [R(Vet, Vo w) Vs

|ax|=l 7=0

Consider each term separately

(5.18) /(Vavtu, Vou) = —5/<VaAr(u),Vau)

te / (Ve R(Vu, 7(1))V: Vo)

ClIVullie [ Vull 12 V7 (w)]] 2
1
SIVT @7z + ClVullp< [ VullL:.

-V, ul; Vau).

+ / (Vo] ()7 (), V) + / (Var(), Vau).
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Using (5.12) and (5.7) and integrating by parts we have that
(5.19) /(VQAT(U), Vo)
- / (Var (1), AV 41)

-1

-> / (Var Vo, [R(Vagtt; Vo, ) Va, s - Ve Vao T(w)], Vau)
=0
-1

-> / (VaoVay Vo, [R(Vagtt, Vaj1u)Va, -+ Ve, 7(w)]; V)
j=0

-1

+> / (Var Ve, [R(Vagtt, Vo, ) Va1 Voay Vag ] Var (u))
=0
-1

- Z /<va1 o 'vaj [R(vao)u,vj+1u)vtlj+2 e VO!LVQOT(U)]; vau>
=0

-2
-> / (VaoVar - Vo, [R(Vagtt, Vo, )V, -+ Vo, 7(w)]; Vau)
j=0

-2
+ Z<va0va1 e vaj [R(vaouv vaj+1u>vaj+2 e Valu]; VQT(U)>
J=1
(5.19) yields

(5200 —¢ Y (Valr(w), Vau) < = [ V()P

lex|=l
I+2

ey Y /|vlr(u)|\vﬁu\..-\vjmu\
m=3

it =42
Js>1

I+2

+Ce Z Z /\leT(u)] (V72| - |VIma] |V

m=3  jitrtjm=l+2
Js=1

Similarly

(5.21) > [ (ValR(Vu.7(0) Vi, Vo) <
|ax|=l
1+2 ' ' '
<cy X [V ]Vl v

=3 Jittim=l+2
js>1if s>2
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We now look at the third term in (5.18) and recall that V.J = 0 and (JX, X) = 0 for
X € TN. Integrating by parts and applying (5.7) we obtain for j = (a2 - )

(5.22) / (Voo ()7 (1), V et

_ / (Vo (w)7 (1), Vi, V.ts)
= —(VaJ(u)T(u), AVyu)

. / (J (W) Vo7 (1); Vg7 (1))

> / (J(W) VAT (1), Vay -+ Vo, [R(Vayt, Vo, W) Va, - Vo, Vayul)

+> / (J(u)VayT(1), Vay Vay -+ Vo, [R(Vay s Va1 w) Vs -+ Vegu])

vC¥2vct2v043 T vaj [R(valuv vaj+1u)vaj+2 e VCvzvoé1u]>

-2
- Z /<J(u)va3 T VQZT(U), vazvmvaz T VOlj [R(voqua vaj+2 T vaz“])-
=2

Thus (5.22) yields

42

623 3 [(Cad@r. Vo <Y ¥ [0V [Pl
la|=l M=3 j1 4t jm=l+2
Jjs2>1
A very similar computation yields
(5.24)
+2

/<v°‘7(u)’ Vau) < — / Vo7 (uw)]? +C Z Z /|VZQT(U)| VIt |Vl

M=3 ji 4t jm=l+2
Jjs>1
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Combining (5.18), (5.20), (5.21), (5.23) and (5.24) we obtain

(5.25)

IN

142
—g/\vlT(u)\2+ch 3 /\VZT(u)thu\---\vfmu\
m=3 j1+-+jm=14+2
1+2
D /leT(u)||Vj2u|---|iju| IVl
m=3 j1+ - +jim=1+2
1+2
DY /Vlu||Vj17'(u)||vj2u|~~|vjmu|

m=3 j1+-+jm=1+2
Gs>1if s>2

+2

5 [ 19 @E e Y IV

M=3 j1+-+jm=l+2

We now look at the second term in (5.17). Using equation (5.1) we obtain

(5.26)

-2
>y / (Vo Vo, [R(Vitr, Vo, 0 Va5 - Vayul, Vau)

|e|=1 j=0
I+1
<cy 3 /|Vlu||Vj1Vtu||Vj2u|~-|leu|
m=3 j1+t jim =l
je>1 if s>2
I+1
<Yy Y /|vlu||vﬁm(u)\|vj2u|.--|vjmu|

e>1 if s>2

+3

m=6 j14-+jm=1+2
js>1 if s>2

l
+Ced Y /]Vlu|\leT(u)||Vj2u|-~|iju|.

m=3 jl“l‘""‘l‘jrn:l
je>1 if s>2
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Combining (5.17), (5.25) and (5.26) we obtain

1d
2dt

< e / T (u)?

+CE/|VZT(U)’ V| Vu|2—|—Cs/VllT(u)\ V| ((Vul® + |Va] [V2ul)

(5.27) [V |2,

+2

YD /|Vl7'(u)]|vj1u|---|vjmu|

M=3 ji+ttjm=1+2
1<js<l-1

+2

=y Y /|Vlu||vjl7'(u)]---\vjmu]

m=3 ji+-+jm=I+2
Gs>1 if s>2

+2

YD /yv’uuvﬁuy.--\vimuy

mM=3 ji+tjm=1+2
Jjs=>1

+3

D /|VluHVj1u|-~]iju|

M=5 ji++jm=l+4
Jjs>1

I+2

1D S SR N\ BN A

m=3 ji+-+jm=I+2

—s/|vlr(u)|2+ca/\vlT(umvlquuy?

IN

+C€/|Vl_17'(u)| V| (|Vul* + V24| [Vul) +C’5/|Vlu ()] [V ] [Vl

+Ce / 94uf? (jr ()] [Vul? + [ ()| [V2u]) + Ce / Tl (Vult + |V ()] |Vul)

+2

15 SUED SRR A\ L O[T RNAE

m=3 ji++im=1+2
1<js<l—1

+3

D /yvluuvﬁu.--\vmu

m=>5 ji+--+im=l+4
1<js<l-1

+2
Yy ¥ /\vlu||vﬁu|---|vjmu|
M=3 1+t jm=I+2
+2

ey Y /\Vlu||Vj17'(u)]---]vjmu].
l

m=3 ji1+-+jm=14+2
1<js<l—1,5>2
Jj1<i-2
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We now look at each term of (5.27) separately. Apply Cauchy-Schwarz we have
(.28 Ce [ IV'r(u) [Vl [Vul® < CeVulfe [ 19D 1V'uP)

€
< 64/|Vlr(u)|2+C||Vu]%oo/|Vlu2.

Using Cauchy-Schwarz and integration by parts we have

(5.29)
Ce [19 1) IVl [Vul® < e[ Tulfa( [ (97 r@P) ([ 191f?)}
= 64/|vlIT(“)|2+CHVUHLOO/VIU|2
< &/\VW(U)HV“QT(U)\+CHVUH(£M/yvluP
: 664(/‘Vl7 5/|VZUI 2+C||VU|LOO/|VZUQ
<

o IV e vl [ 19

(5:30) C= [ 19" 17(0)| V] |¥2ul [Vl

Ce |V g |Vl (/ v |2> (/ \vluF)

1
< 2
< 61 / \Vir(u)* +C (1+ VS + \V2uH%m) (/ \Vlu]2>

IN
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Using Cauchy-Schwarz integration by parts and (5.17) we have
(5.31) C’e/|Vlu| ()| [V | [Vl
1 1
< Cellr(wlae [Vuli=( [ V') 3( [ 197 uf?)

£
< 64/|vl+1u2+CH7—(U)H%°°HVUH%<>0/‘VZUP

g
< ;[ AV V) + Cllr @)l VulF / Vlf?
g
< 51/ IVl Clr @l Vale [ 19"
142 | |
+C€/|vlu‘ Z Z |v.71u||v]mu|
m=3 j1+"'|jm:l+2
<

9
o [ IVl + U@l Valfs + 1) [ 9

+2

ey} /yv’uuvjlu\-.-|vjmu\.

M=3 i+ tjm=l+2

Combining (5.27), (5.28), (5.29), (5.30) and (5.31) and using the fact that ab < %p + %

el 1
1f1;+a—1wehave

1d l 2 —3e 1 2
. -= < ==
632 IVl < 2F 9w

LO( 1 [Vl + [V2uld) / IVl ?

+2

YD /|vlr(u)||vjlu\-.-|vjmu\

m=3ji1++im=I+2
1<js<i-1

I+1

YD /|Vlu]|vj1u|---|vjmu|

M=5 j1++im=l+4
1<js<l—1

+2

DS /\Vlu||vj17'(u)|---vjmu|

m=3 ji+-+im=1+2
1Z1>5s>1 if s>2
J1<i—2
+2
12D SEND DU U\ 1\ cR TR cEh

M=3 1+t =142
1<js<l—1

To finish the estimate we need to use the interpolation result that appears in Proposition
4.1. Consider 3 < m <1+4+2,1 < j; <l—1and j1+- - -+Jm = [+2 then by Cauchy-Schwarz
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we have

(5.33) /|Vl7(u)|\vj1u---\vjmu < </|vlf(u)|2>é </|Vj1u\2---|vjmu|2>é.

Let p; € [2,00] for i = 1,...,m be such that

1 1 1
5.34 — 4 — =
( ) b1 Pm 2
by Hoélder’s inequality
3
(5.35) (/ |Vityl?. .. iju|2) < ||V ul|per - - VI ]| pom .
Since [ > [%] + 1 for
Ji—1 Ji—1 n .3

. i = —1—g4i+— 1

(5.36) l_1<a l—1+2(l—1)2<l j+m><

and when m > 3 or m = 3 and j; > 2

N s G G |

1
(5.37) 32, =T g

Thus (4.5) yields
(5.38) V7| i < C’||VluH“Li2HVu||;“i < C||Vul| gi-1.
Combining (5.33), (5.35) and (5.38) we have in the case m > 3 that
%
(5.30) [ IV vl v < ( / rv’r<u>12) [Vl
In the case when m = 3, j1 > jo > j3, and j3 = 1 we have j; + jo =+ 1 and

1 1
(5.40) </|Vj1u!2|vj2u|2|Vu|2>2 < ||Vl z (/]Vj1u|2|vj2u|2>2.

If jo = 1 then (5.33) becomes

(5.41) [ [Tl 9 19 < i ( | \v%(un?)é (/ \W?)é .

If jo > 1 then for i = 1,2 since | > [2] + 3 if

-1 -1
(5.42) Ny =2 n

I—j) <1
-1 = =1 Tago et IS
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and

Sl _gim1 1l -1

5.43
(5.43) Pl

| =

Hoélder’s inequality and Proposition 4.1 yield

1
. X 2 . .
(5.44) ( / rwlumv”u\?) < IVl VPl e,

C|[ V|95 [Vl 12 ™ [V |93 [ V]| 52

S L2
< C’||Vlu\|12ql,1.

Thus in this case (5.33) becomes combining (5.40) and (5.44)

1
. i 2
G450 [ I [V [l <Vl Vel ( / |vlf<u>|2) .
Combining (5.39), (5.41) and (5.45) we can estimate the third term on the right hand
side of (5.32)

1+2

(5.46) oY /|Vl7'(u)||vj1u]-~~|vjmu]

m=3 ji++im=I0+2
1<js<l—1

I+2

1
2
<c ( / rvlmor?) (14 IVulBe) S 1Vl
m=1

To estimate the fourth term in (5.32) consider 5 < m < [+ 3, 1 < js < [ —1 and
j1+ -+ jm =1+ 4 then by Cauchy-Schwarz we have

1 1
(5.47) / (V| |Vt - - |Vimy| < (/ \Vlu]2> ’ (/ |VItyf?- . ]iju]2> °

Let 2 <p; <oofori=1,...,m be such that

1 1 1
5.48 — b=
( ) b1 Pm 2

by Holder’s inequality (5.47) becomes

1
A ) 2 R .
(5.49) [ 9 a9 < ( / rv%) IVl oy - [V

since [ > [%] + 1 for

Ji—1 Ji—1 n .5
5.50 <a= o1+ 2) <1
(5:50) -1 = 1—1+2(1—1)2( J+m><
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and when m > 5 or m =5 and j; > 2

1 1 7i—1 1 [—-1
5.51 - > — = - — ; > 0.
( ) 27 pi n +2 n @i =

Thus (4.5) yields

1
(5.52) /]VluHleu] V| < C (/ yvluP) IVl

Itm =5 j1 >2j2 2 2>Js 21 and js = 1 then j1 +jo+js +ja =1+ 3, by
Cauchy-Schwarz and Holder’s inequality

(5.53) /|Vlu| V|- [V |V

1 1
2 . . 2
< ||Vul|p~ (/ |vlu|2> </ Vj1u|2...|vj4u|2> 2
;
< IVull= ([ 192 ) 19 uln - [P0l

. 1 1 1 1
Wlth171+]T2+;73+1T4—1‘ For

(5.54)
if j4 > 1 we have

(5.55)

and (5.53) becomes by Proposition 4.1
1
. . 2
650 19 9l [Vl < OVl ([ 992) 190l
If j4 =1 and j3 > 1 a similar argument yields
1
. . 2
650 [ 9l 9 90 < Ol ([ 9R) 9l
If j3 =1 then j; + jo =1+ 1 since j; <[ — 1 then j3 > 1 and we have

1
. . 2
638 [ 9l 9 90 < Ol ([ 92) 19l
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Combining (5.52), (5.54), (5.57) and (5.58) we can estimate the fourth term on the
right hand side of (5.32) as follows

I+3

(5.59) S Y /|Vlu||vj1u|---|vjmu|

m=5 ji+ +im=l+4

1<js<i-=1
i I+3
< o [19F)" @ ITulte) 3 Ivule
m=2
I+4
< C1+I9ulte) Y IVulios
m=3

To estimate the fifth term in (5.32) consider 3 < m <[ +2, j1 + -+ jm =1 + 2,
1 <1—-2,1<js <l—1if s > 2. Cauchy-Schwarz and Holder’s inequality ensure that for
1

..y 1
pl+ +pm 2

1
. i i 2 A i
(5:60) [ 19 (9] [ V7] (9] < ( / \vluF) 199 (@)l oy - [V .

sincel>[%]+3>1forz’22

ji—l ji—l n . 3
61 ;= I—1-ji+2) <1
(5:61) -1 ¢ l1+2(l1)2< ]+m><
and
(5.62) ] <a; = g + n l—1—'+i <1
' -1 M T T2 1) N

when m >3 or m =3 and j; > 2 for ¢ > 2
1 1 ji—1+1 (-1

5.63 > = Z_ S0
( ) 27 p; n 2 G >
and m >3 orm =3 and j; > 2

1 1 j 1 [1-1
(5.64) > T 50

27 m n 2
In these cases (5.60) can be estimated by (4.5) as follows

1
. . 2 u m—
(5.65) /IVZUI [V (u)]-- - [VImu| < </|VZUI2) IV 7 () |15 [l ()| 2 Vel

If m =3 and j; <1 then jo > 2 and j3 > 2. Cauchy-Schwarz and Hélder’s inequality yield
for L+ L =1

p2 ' p3 T 2

1
. . 2 . )
(5.66) /IVZU\ |7 (W) [V2ul [V u] < |7 (u)|| Lo </|VZUI2) V72| L2 [[ V73| Lrs .
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and

(5.67)

Proposition 4.1 ensures that

1
. i 2
6689 [ 9l )] (9% (954 < et~ ( / |vlur2) IVl
Similarly
:
669 [ 9[9[V [V < V) ( / |vlu12) IVulZys.

Ifm=3, j1 >2and jo» =1, j5 > 1 we have by Cauchy-Schwarz and Hoélder’s inequality

1,1 1
forp1+p3 2

1
. . 7 ,
(5.70) /\Vlu] |V (uw)| [Vul |V3u| < C||Vul| e (/ \Vlu|2> IV (w) || Loy || V72| s -

For
it n , 1.1 4 1 1-1
71 - - land > — =24 2
(5.71) ap l—1+2(l—1)2( J1) < 1lan 5% o n+2 a; >0
and
J3—1 n . 11 43—-1 1 1-1
72 = — 1 > - = - _
(5.72) a3 1 +2(l—1)2(l J3) < andz_p?) - 5 az >0

Proposition 4.1 ensures

(5.73) /\vlu| V9 ()| V| [Vl

1
2
< CIVulli ( / m,z) 1957|245 | el .
In the case j1 =1, jo = j3 = 1 see (5.28).
Combining (5.65), (5.68), (5.67) and (5.73) we estimate the 5" term of (5.32) as follows

1+2

ey Y% /\Vlu||Vj17(u)]---\vj’”u]

m=3 ji1+-+im=I+2
1<js<l—1 if s>2
Jj1<i-2

3 I+1
2
< 0 ([19R) 0 19ulin) 3 1Tl 9 ) o)

m=1

L)l + V()] ) ( / |vlu2)2 19l
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Finally we look at the last term of (5.32). Let 3 <m < I1+2,j1+ -+ jm =1+ 2.
Applying the same argument as the one used to obtain (5.45) we conclude that
(5.75)

142 1 l+2
>y /|Vlu||V“u| AVImu] < C(1+ || Vull3 ) (/|vlu\2> \|vu||ZH.

m=3 ji+--+j=+2

Combining (5.32), (5.46), (5.59), (5.74) and (5.75), using (4.78), (4.80), (4.82) and the
fact that I > [%] 4+ 1 as well as ¢ € (0,1) and the fact that for a € (0,1) < r%s'* <
ar + (1 — a)s we obtain

1d

(5.76) 5 —|[V'ullZ:

3¢
< -7 / Vi (u)]? + C(1+ [ Vul$ + I7(VZ0) [2) V0l 7

1 1+2
+Ce </|vl |2> (14 ||Vul|2) Z | Vullf-
m=1
L+3
+Ce(1 + | Vul) </|vlu|2> > IVl
m=2

I+1

Ce ( / |vlu|2) (14 IVl ¥ I D 9l

Oz~ + [ V7()] ) ( / rv’u\2)2 -

l 1+2

roIvalge) ([ 9e) 3 I¥ul

+4
6[2]+12 m
< % [+ o (98 1) X ivale
m=2
£+ 1+2
+CelVuln (1+ 1vullEh, ) > 9l 9770
<

3e € -
=5 9P + IV

2l+4
+c( + [ VulPr? )Zuwnm y

Using the same trick as in (5.29) we obtain from (5.76) for I > [2] +1

20+4
d .
(617 ZIVulE < -3 / V7 (u 12+c(1+||w\3#i)ZHVu||HL2

IN

C (14 IVul512, ) IVul (1+ Hvuiﬁi)
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Thus for [ > [%] +4, (5.77) concludes the proof of Lemma 5.4. O

Note that from the proof of Lemma 5.4 we also have the following statement.

Proposition 5.5 Let u € C([0,T], H¥(R™, N)) with s € N and s < [5] +4 be a solution
of (5.2) then for s > 1> [2] +1 and | € N we have

d n
(5.78) V'l <O (14 IVulPE ) IVl (14 Va3 ).

2

-1 for [ > 1, we still need to analyze

Since our ultimate goal is to estimate %HVuH
4 Viu|2, for 1 <1< [2] +1.

Lemma 5.6 Letu € C([O}T],H[%H‘l(R”,N)) be a solution of (5.2). Let 1 <1< [%] +1
then if so = [%] + 2 we have

d
(5.79) 2V l2a < el Vuldo (14 1Vullly )
where M; = 3n + 21 + 12.
Proof. Note that (5.16) yields
d 2 4 2n+-8
(5.80) SIVula < CITult g (1 IVl )

Note that for | > 2 computation (5.32) remains valid. In fact we only used I > [%]+1 when
we started to interpolate as in Proposition 4.1. Let sg = [%] + 2. Consider 3<m <[+2

1 <js<l—1and j; + -+ jm = I + 2 then by Cauchy-Schwarz, Holder’s inequality
applied with p% 4+ 4 pim = % where

5.81 — & - _ %0
( ) Di n +2 naZ
and
jl—l jz‘—l n . 3
( ) so “ S0 + 2(1—1)so ( Jit m)

and (4.5) in the case m > 3 or m = 3 and j; > 2 we obtain as in (5.39)

1
(5.83) /|Vl7'(u)|2|vjlu\ e |iju\ <C </ \VIT(U)|2> : |Vl %s0 -

In the case m = 3 we proceed as in the proof of (5.45) and obtain

1
. . 2
(5.84) /|VZT(u)|2‘VJlu.--‘VJmu < 0|V p= (/\V%@)P) | V| %0 -
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Thus for 2 <1 < [%] +1 (5.46) becomes

+2

G5 Y S /|Vl7'(u)|vj1u|~-|vjmu|

m=3 ji1+-+im=1+2

1<js<l—-1
% 1+2
e ( / |vlf<u>|2> (U4 [Vul2) 3 (9l B0
m=1

The same type of argument as the one used to prove (5.59), (5.74) and (5.75) yields

+3

(5.86) > Y /\vlu||vjlu|-..|vjmu|

M=5 j1+-+im=l+4
1<js<I—1

1
2
< C </|VIU\2> (1 + IVullize + V7 (@) o) VullFso

I+2

sy % /VluHleT(u)]---]iju]

m=3 ji+-+im=1+2
1<js<I=1 822

F<i-2
3 I+1
< C </ |Vl'u,‘2> (1 + HVUHLoo) Z HquHnSO HVSOT(U)H%12HT(U)H};al
m=1 .
+C (7wl + 197 (w) ] =) < / |Vzu|2>2 [Vl
3 1+2
= C </ !VW) L+ Vullze) D 11Vl

m=2
1
2

L)) + 97 () ( / |vlu\2) V] g0

1+2
535S 3 /|Vlu|2|Vj1u|~-|iju|
m=3 ji1+-+j=l+2
1742

2
< C(L+[Vule) ( / \vluF) S IVulfo.
m—1

Combining (5.32), (5.85), (5.86), (5.87) and (5.88); using (4.75), (4.76) and (4.77) we
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have for € € (0,1), [ < [%] +1,8 = [%] +2

3
(6:89) 5 IV'ulEs < =5 (1977 @P + € L+ [Vl + Ir@lE=) [ 9P

20+4
+C (14 [Vaullie) Y IVulfso

m=2

4
dt

N

1+3
+C (14 [Vl zee + 7)o + VT (@)][22) D Vet Fegin
m=2

IN

CIIVullfre (1+ [ Vullfat2512)

Hso+2

O

Corollary 5.7 Let u € C([0,T], H**}(R",N)) with s € N and s > [2] + 4 be a solution
of (5.2) then for [g] +4<]—1<s andl € N we have

d n
(5-90) IVullfs < Coll Vull s (14 [ Vul 33

Proof. Combine (5.2), (5.77), (5.80) and (5.89). O

Corollary 5.8 (Uniform energy estimate) Let u.(t) € HS™1(R", N), with s € N and
s > [5] +4 be a solution of (5.2). There exists To = To(||Vuol|ms) such that for 0 <t < Tp

(5.91) IVue (@) s < 3[[Vuol|ars-

Proof. Let E(t) = [[Vul|3,_,(t). Then (5.90) implies [3] +4<1—-1<s

d
(5.92) %E < CoE(l + E2n+l+7)’
which leads to, after integrating from 0 to ¢ to
E(t 1 E(t 2n+I+7 1 E(t 2n+1+7 1
(5.93)  log 20 _ log 20 - log LW AL o
E0) 2n+1+7 E(0) In+1+7 °E(0)20HAT 41

which implies

E(t)2n+l+7
1+ E(t)2n+l+7

E(0)2n+l+7

(2n-+1+7)
< Cote 1+ E(0)2n+l+y'

(5.94)

We now consider two cases: either E(0)2"H+7 < 1 or E(0)>"+7 > 1 If E(0)>"H+7 <

Al
%thenfor()<t§T0:Ciolog[ﬁ(%)fﬂr}

0 we have

(5.95) BT < 4eCOt(2n+[+7)M
| B 1+ B(0)2n+1+7
E(t) < AT e E(0)
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1
In particular for 0 < ¢ < CLO log (2)?"7%7 (5.95) ensures that
(5.96) E(t) < 6E(0)

In the case when E(0)?"H+7 > 1 we note that (5.92) implies

d

(5.97) S+ E) <Co(1+ E)2nHAs,
which by integration between 0 and ¢ leads to
(5.98) ! > (20414 7)Cof + =

. —(2n .

(1+ E(t))2nHH7 = T (1 + E(0))2ntiAT

Ifo<t<Ty= 2003%“;&0)%“”, (5.98) implies
(5.99) 1+ E(t) < 27157 (E(0) + 1),
since E(0)2"H+7 > 1 (5.99) yields
(5.100) E(t) <6E(0).

Thus we have showed combining (5.96) and (5.100) that for s > [5] + 4

(5.101) 0 <t <Tph=min
Hl-1

1 3 1
log
Con+T7+1) °2' 2Cy32nH+7 max {[IVauo |tz +14, 13 }

(5.102) Ve (8)] g1 < 3] Vo] s

O

Lemma 5.9 Let u.(t) € H¥™'(R",N) with s € N and s > [2] + 4 be a solution of (5.1).
Let v =v. =wou.. For Ty =To(||Vuo|lms) as in (5.101) we have

ﬂ
2

(5.103) sup [[o(t) = wollr2 < C|[Vuol| i3] <1+||vuoy N )TO

0<t<Th (3]

Proof. Our goal is to study how ||v(t) — vgl|z2 evolves. Using (3.1) and (3.2)) we have

1
2
(5.104) 2dt/v—v0| = /((%v v—219) < |lv—uolp2 </(8tv)2)
< C(I1a%lzz + 0% g2 + [[9v]] L2]|0v]| oo
0] £21|0%0]| Lo + [|00]| 2|0V ]| 00
0]l L2 l|0v[|Fo0 ) o — voll 2.
Recall that
(5.105) 10%v| < |V2u| + C|Vul? and |0v| = |Vul.
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Moreover by (4.54) we have

4
(5.106) ] < CIVR[+CY DY V- ViR
=2 jit-+i=4
< C|VHu| + CIV2ul? + C|Vul* + C|V3u| |Vul.

Using (4.72), (4.73) and (5.106), (5.103) yields

d
(5.107)dt/|v—v0]2 < C{|IV*'ullr2 + |Vl oo | V2| 2

IV ullZoe [Vl 2 + [ Vull 2o | VEull g2 + [ VPul] 2
HIVull g2 | Vul oo + V20l 2l VullZoe } llo = voll 2

< CIFuligpes (14 1T ) o= wle

Hlzl+s

For t € [0,Tp] as in (5.100), (5.101)) combined with (5.106) yields

d 3[2]+6
(5.108) v = o[22 < ClIVuoll 3140 (1 + [ 1) ) v = voll2-

Integrating from 0 to Tp (as defined in (5.100)) we deduce from (5.108) that

nl46
(5.109) o(t) - volls < CTol[Vuoll, (1—|—HVU,0H [5]+ )

2] [3]+

Theorem 5.10 Lets > [2]+4. Givenug € H*™(R", N) there exists Ty = To(||Vuo| zs, N) >
0 and a solution u. € C ([0, Tp], HT(R™, N)) of (5.2). Furthermore

(5.110) sup || Vue(t)||gs < 3||Vuol| s

0<t<Tp

Proof. Lemma 2.3, Lemma 4.6, Theorem 3.1 and Lemma 4.7 imply that there exist
T. = T(e, ||Vuol gs, |[vo — v||r2, N) for some v € RP and u. € C([0, 1], H*T1(R*, N)) a
solution of (5.2). Either T, > Tp as defined in (5.101) and we are done or T, < Tp. Using
the fact that [[o(T%) — voll 2 < CTol[ Vol g4 (1 + [ Vag” [n]+4) the same argument as

above ensures that there exists 7/ = T'(e, ||[Vug||gs) and u. € C([T:, T + T7], H*(R™, N))
a solution of (5.2). The uniqueness statement in Theorem 3.1 ensures that we can extend
us € C([0,T; + T7], H*(R™, N)) to be a solution of (5.2).

After a finite number of steps (namely | where T, + 1T, < Ty < T. + (I + 1)T7) we
manage to extend Ve € (0,1), u. to be a solution of (5.2) in C([0,Tp], H*(R™, N)). Note
that (5.110) is simply a restatement of (5.102). O

Proof of Theorem 1.1. For s > [2] + 4, let u. € C([0,Tp), H*T'(R", N)) be a so-
lution of (5.1). Choosing a sequence ; — 0 we conclude, by means of Theorem 5.10,
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Lemma 4.7 and Lemma 2.3 that there exist functions u € C([0,Tp], H**1(R™, N)) and
v € C([0, Ty], HSTH(R™, R™)) with v = w o u satisfying the initial value problems (3.1) and
(2.10) with € = 0 and vy = w o uy.

To prove the well-posedness of the Schrodinger flow (i.e. when 3 =0 in (3.1)) we refer
to work of Ding and Wang [8] and McGahagan [26]. By adapting the argument of Ding and
Wang [8] one can show that if a solution, u € C([0, Ty}, H*™(R", N)) with s > [2] +4, to
the initial value problem (1.4) (with 8 = 0) exists then it is unique. This argument makes
explicit use of the fact that the target is compact and isometrically embedded in Euclidean
space. We present here part of an argument that appears in the proof of Theorem 4.1 in
[26]. These inequalities yield uniqueness and continuous dependence on the initial data.
Let uy,us € C([0,Tp], HH(R", N)) be solutions of (1.4) (with 8 = 0) with initial data
uf,ud € H*TH(R"™, N) with s > [%] + 4. Following the notation in [26] let V = Vu; and
W = Vusy. Let 17(56) represent the parallel transport of V' to the point ug(x) along the
unique geodesic joining the points. McGahagan proves (see end of the proof of Theorem
4.1 in [26]) that whenever ||uf —uJ]| s[3]+4 is small enough (depending only on the geometry
of N) then

d - -
) (I T o -l ) < (I = P+ ),

where C depends on the H [5]+4 norms of w1 and us. In the case that u(f = ug McGahagan
concludes (using Gronwall’s) that ||[W — XN/H%Q = |lur — u2||?, = 0, and that therefore
u1 = u9 a.e.. Since the unique solution is constructed as a limit of solutions of equation
(5.2) letting e — 0, the estimate in Theorem 5.10 yields that

(5.112) sup ||Vu(t)||gs < 3||Vuol gs-
0<t<Tp

To prove the continuous dependence on the initial data note that, in general, (5.111)
yields

(5.113) W = V[F2(t) + ur — uaf7a(t) < (\Wo —VOUZe + Jluf — ug\%2>,

where W0 = Vu§ and VO(x) is the parallel transport of V0 = Vud to ud(z). Since

(5.114) W = V||22(t) $ 10w — Qua||22(t) + [lus — uz|22(t),
and
(5.115) 10w — Dua||32(1) S IW = V[22(8) + [lug — ual2:(2),

(5.113) yields
(5.116)  [[9ur — BualZa(t) + llur — ualPa(t) < ect(nau? o + [l u8|r%2>.

Note that (5.116) ensures that C ([0, Tp], H**1(R™, N)) solutions to (1.4) (with 8 = 0) with
s> [g] +4 depend continuously in H' on the initial data. To show continuous dependence
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in H¥ for &' < s we need to use a classic interpolation inequality in R”. If v; = w o u; for
i = 1,2, where w denotes the embedding of N into RP then combining (4.52) and (5.116)
we have

(5.117)  [|9vy = Qual|F2(8) + o — w272 (1) < e (Hav? — 0yl + v — vSH%z)-

Interpolation, Lemma 4.6, Lemma 4.7, (5.112) and (5.117) yield for s’ < s

/ /

(5.118) 001 = vsl| o (8) S 11001 — Dvall o (B)]|O01 — Dvall 2 * (2)

s’ s’ 1<
< (namn S () + 90 gsa)) w1 — Busll’ * (8

1—s
< (Hu?ms ; Hums) s — auallS * (1)
< (nu?uzs . ||u8uzs)e0t(||av? O + I} v8||%2>

Inequalities (5.117) and (5.118) prove that if uj,us € C([0,Tp], H*t1(R™, N)) to (1.4)
(with 8 = 0) and ||ul — ugHH[%]H is small enough then the functions v; = w o u; and
vy = w o ug, which are solutions to the ambient equation, depend continuously in the
H**1(R", RP)-norm on the initial data for s’ < s. As mentioned in the introduction by
means of the standard Bond-Smith regularization procedure ([4, 13, 16]) one can prove
that the dependence on the initial data is continuous in H¥T1(R™ RP). It is in this sense
that we express the well-posedness of (1.4) for 5 = 0. This concludes the proof Theorem
1.1. d

References

[1] H. Amann, Quasilinear parabolic systems under nonlinear boundary condi-
tions, Arch. Rat. Mech. Anal., 92 (1986) no. 2, 153-192.

[2] T. Aubin, Nonlinear Analysis on Manifolds, Monge Ampére equations,
Springer-Verlag, 1982.

[3] O. Blasco, Interpolation between H]130 and L%l, Studia Math., 92 (1989),
205-210.

[4] J. Bora and R. Smith, The initial value problem for the Kerteweg de Vries
equation, Phil. Trans. R. Soc. Lond. Ser A 278, 555-601, 1975.

[5] H. Chihara, Schridinger Local existence for semilinear Schrédinger equations,
Math. Japonica 42 (1995) 35-42.

[6] N. Chang, J. Shatah & K. Uhlenbeck, Schridinger maps, Comm. Pure Appl.
Math., 53 (2000) no. 5, 590-602.

[7] W. Ding, On the Schridinger Flows, Proc. ICM Beijing 2002, 283-292.

8] W. Y. Ding & Y. D. Wang, Schrddinger flow of maps into symplectic mani-
folds, Sci. China Ser. A 41 (1998) no. 7, 746-755.

90



[9]

[10]

14]
15)
16]
17)
18]
19)
20]

[21]

[25]

W. Y. Ding & Y. D. Wang, Local Schridinger flow into Kdhler manifolds,
Sci. China Ser. A 44 (2001) no. 11, 1446-1464.

J. Eels & J. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
J. Math. 86 (1964) 109-160.

N. Hayashi & H. Hirata, Global ezistence of small solutions to nonlinear
Schrédinger equations, Nonlinear Anal. 31 (1998) no. 5-6, 671-685.

N. Hayashi and T. Ozawa, Remarks on nonlinear Schrodinger equations in
one space dimension, Diff. Int. Eqs. 2 , 453-461 (1994).

R. Torio and V. Magalhaes de lorio, Fourier Analysis and Partial Differential
Equations, Cambridge Studies in Advanced Math. 70, Cambridge U. Press,
2001.

J. Kato, Existence and uniquess of the solution to the modified Schrédinger
map, Math. Res. Lett., to appear, 2005.

J. Kato and H. Koch, Uniqueness of the modified Schridinger map in
H3/7te(R?), Preprint.

C. Kenig, The Cauchy problem for the quasilinear Schridinger equation, to
appear, Proc. PCMI Park City, Utah, 2003.

C. Kenig and A. Nahmod, The Cauchy problem for the hyperbolic-elliptic
Ishimori system and Schrédinger maps, Nonlinearity 18 (2005), 1-23.

C. Kenig, G. Ponce, C. Rolvent and L. Vega, Variable coefficient Schrédinger
flows for ultrahyperbolic operators, to appear Advances in Math.

C. Kenig, G. Ponce, C. Rolvent and L. Vega, The genreal quasilinear un-
trahyperbolic Schrédinger equation, to appear Advances in Math.

C. Kenig, G. Ponce & L. Vega, Schridinger small solutions to non linear
Schrédinger equations , Ann. H.H.P. Anal. Non Lin.10 (1993) no. 3, 255-288.

C. Kenig, G. Ponce & L. Vega, Smoothing effects and local existence theory for
the generalized non-linear Schrédinger equations, Invent. Math. 134 (1998),
489-545.

C. Kenig, G. Ponce & L. Vega, The Cauchy problem for quasi-linear
Schrddinger equations, Invent. Math. 158 (2004), 343-388.

S. Kominees and N. Papanicolou, Topology and dynamics of ferro-aquatic
media, Physica D99, 81-107, 1996.

L. D. Landau and E. M. Lifschitz, On the theory of the dispersion of magnetic
permeability in ferro-aquatic bodies (1935) Physica A (Soviet Union) 153,
reproduced in collected papers of L. D. Landau (New York: Gordon and
Breech, (1965, 1967)).

H. McGahagan, Some existence and uniqueness results for Schrédinger maps
and Landen-Lifshitz-Mazwell equations, PhD thesis Courant Institue for
Mathematical Sciences, 2004.

51



[26]
[27]

28]

H. McGahagan, An approximation scheme for Schrédinger maps, Preprint.

A. Nahmod, A. Stefanov & K. Uhlenbeck, On Schridinger maps, Comm.
Pure Appl. Math. 56 (2003), no. 1. 114-151.

A. Nahmod, A. Stefanov & K. Uhlenbeck, Erratum [On Schrédinger maps,
Comm. Pure Appl. Math. 56 (2003), no. 1. 114-151.] Comm. Pure Appl.
Math. 57 (2004), no. 6. 833-839.

P. Y. H. Pang, H. Y. Wang & Y. D. Wang, Schridinger flow for maps into
Kdhler manifolds, Asian J. Math. 5 (2001) no. 3, 509-534.

P. Y. H. Pang, H. Y. Wang & Y. D. Wang, Local existence for inhomogeneous
Schradinger flow into Kdhler manifolds, Acta Math. Siica, Eng. Ser. 16 (2000)
no. 3, 487-504.

P. Y. Y. Pang, H. Y. Wang & Y. D. Wang, Schrdodinger flow on Hermitian
locally symmetric spaces, Comm. Anal. Geom., 10 (2002), no. 4, 653-681.

N. Papanicolou and T. N. Toureros, Dynamics of magnetic vortices, Nucl.
Phys. B360, 425-62, 1991.

L. Simon, Theorems on the reqularity and singularity of energy minimizing
maps, Lectures in Math. ETH Ziirich, (1996) Birkh&user.

E. Stein, Harmonic Analysis, (1993) Princeton University Press.

P. L. Sulem, C. Sulem & C. Bardos, On the continuous limit for a system of
classical spins, Comm. Math. Phys., 107 (1986), 431-454.

C. L. Terng & K. Uhlenbeck, Schrddinger flows on Grassmannians, Preprint:
http://arXiv.org/~math.DG /9901086

H. Y. Wang & Y. D. Yang, Global inhomogeneous Schrodinger flow, Int. J.
Math. 11 (2000) no. 8, 1079-1114.

52



