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Abstract. We consider the timelike minimal surface problem in Minkowski

spacetimes and show local and global existence of such surfaces having arbi-
trary dimension ≥ 2 and arbitrary co-dimension, provided they are initially

close to a flat plane.

1. Introduction

In this work we consider timelike minimal submanifolds of dimension 1 + n,
n ≥ 2, of Minkowski spacetimes of dimension 1 + n + q, q ≥ 1. A submanifold
is called minimal if it is stationary with respect to variations of the induced area,
which thus provides an action for the system. Timelike minimal submanifolds may
be viewed as simple but nontrivial examples of D-branes, which play an important
role in string-theory, and the system under consideration here thus has natural
generalizations motivated by string theory. In this work we prove a small data,
global existence result for timelike minimal submanifolds of arbitrary codimension
q. The solutions which are constructed are close to flat timelike planes.

The Euler-Lagrange equations arising from variation of the area form a quasi-
linear system of PDE’s, which under suitable conditions on the data is hyperbolic.
This system is closely related to the scalar quasilinear hyperbolic PDE govern-
ing timelike minimal hypersurfaces. The small data, global existence problem for
timelike minimal hypersurfaces has been considered by Brendle [B] and Lindblad
[L1]. The work of Lindblad makes use of the null structure of the system, and our
approach is closely related to the work in [L1].

Consider an embedding of R1+n into Minkowski spacetime R1+n+q given by the
graph of a map f : R1+n → Rq. Let greek indices α, β, . . . take values in 0, 1, . . . , n
and let uppercase latin indices I, J, . . . take values in 1, . . . , q. We introduce carte-
sian coordinates xα on R1+n and xI on Rq. The induced metric R1+n is

hαβ = ηαβ + f I
αf

J
β δIJ , (1.1)

where f I = xI ◦ f , f I
α = ∂αf

I and η = diag (−1, 1 . . . , 1) is the Minkowski metric.
Varying the action

S =
∫ √

−dethµν d
1+nx,

yields the Euler-Lagrange equations

0 = ∂µ

[√
−dethhµνf I

ν

]
I = 1, . . . , q, (1.2)
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which we consider for small data

f I(0, ·) = εgI ∂tf
I(0, ·) = εkI , (1.3)

with gI , kI smooth and decaying sufficiently fast for large |x|; for simplicity we
restrict to ε ≤ 1. Here hµν is the inverse of hαβ .

For future use, we note that equation (1.2) can be written in divergence form

�f I = ∂µ

[
Fµνf I

ν

]
, (1.4)

where � = ηµν∂µ∂ν is the Minkowski wave operator and Fµν(∂f) = ηµν−
√
−dethhµν ,

as well as in the form

Hµν
JL(∂f)∂µ∂νf

J = 0, I = 1, . . . , q (1.5)

where

Hµν
JL =

√
−deth

[
δJLh

µν − δIJδKL

(
hµνhαβfK

α f I
β + hµαhνβf I

αf
K
β + hµαhνβfK

α f I
β

)]
.

(1.6)
We raise and lower Greek (intrinsic) indices using hµν and its inverse, while Latin
(extrinsic) indices are raised and lowered using the identity δIJ and its inverse.
From equation (1.6) it follows that Hµν

JL has the symmetries

Hµν
JL = Hµν

LJ = Hνµ
JL. (1.7)

Due to the symmetries, an energy estimate and local well posedness holds for the
system (1.5).

The local existence argument follows [H1] (see also [S]) and uses an energy in-
equality which takes advantage of symmetries in the system; see [KSS] for a treat-
ment of well-posedness and lifespan results for symmetric systems. The global ex-
istence result also requires estimates applicable to divergence equations (see [L2])
and an L∞ − L1 estimate. Furthermore, the global existence result in n = 2 di-
mension exploits the fact that the equation satisfies the null condition; see Section
4 for details.

2. Local Existence

The local well-posedness for systems of the form (1.5) is well established. There-
fore we do not give a complete proof here but rather provide a simple proof of the
basic energy estimate. The proof of local well-posedness then follows along the
same lines as the proofs given in [H1] or [S]. Note that the energy estimate we
state here also plays a key role in the global existence results discussed in the next
section.

Write |∂f |2 = ηµνδIJf
I
µf

J
ν ; the function space norms used below are defined in

terms of this and analogous expressions. Using the identity

(f I
0 )(Hµν

IJf
J
µν) = ∂µ

[
Hµν

IJf
I
ν f

J
0 − 1

2
Hαβ

IJf
I
αf

J
β δ

µ
0

]
− ∂µ [Hµν

IJ ] f I
ν f

J
0 +

1
2
∂0 [Hµν

IJ ] f I
µf

J
ν ,

a standard argument yields the following energy estimate.
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Lemma 1. Let f ∈ C2([0, T )× Rn; Rq) for T > 0 and assume that Hµν
IJ has the

symmetries (1.7). Further, assume that Hµν
IJ satisfies∑

|Hµν
IJ − ηµνδIJ | <

1
2

on [0, T ]. (2.1)

Then for t ∈ [0, T ) we have

‖∂f(t, ·)‖L2 ≤ 2

(
‖∂f(0, ·)‖L2 +

∫ t

0

∑
I

‖Hµν
IJ∂µ∂νf

J(τ, ·)‖L2dτ

)

× exp
(∫ t

0

2‖∂H(s, ·)‖L∞ds

)
. (2.2)

With this energy estimate, the proof of local well-posedness can now be com-
pleted by an iteration procedure following exactly the outline in [S] or [H1]. The
approach in [H1] makes use of some extra structural assumptions which are easily re-
moved, and gives local well-posedness in Sobolev spaces Hs, for integer s > n/2+2.
The argument in Sogge gives the result for s > n+ 3. Since we are concerned with
small data, global existence here, the exact regularity needed for the local well-
posedness is not important. We can now state the following result.

Theorem 1. Let s > n/2 + 2 and consider equation

Hµν
JL(x, f, ∂f)∂µ∂νf

J = GL(x, f, ∂f), I = 1, . . . , q (2.3a)

with initial data

f(0, ·) = g, ∂0f(0, ·) = k (2.3b)

Here Hµν
JL and GL are assumed to be smooth functions of their arguments and

Hµν
JL is assumed to satisfy the symmetries (1.7). Suppose the initial data (g, k)

is such that equation (2.1) is valid for Hµν
JL evaluated on (g, k). Then there is a

T > 0, which depends only on the norm of (g, k) in Hs × Hs−1, and a function
f ∈ C2([0, T ] × Rn; Rq) which solves (2.3), with |∂αf | bounded for |α| ≤ 2. The
maximal time of existence is bounded from below by the supremum of all T such
that (2.3) has a C2 solution such that for 0 ≤ t ≤ T , equation (2.1) is valid and
∂αf is bounded for |α| ≤ 2.

3. Global existence in dimensions n ≥ 3

Global existence follows from a procedure similar to that discussed in [L1]. The
estimates needed rely on a collection of weighted norms defined using the set of
Lorentz vector fields Zµ, which include the generators of the Lorentz group, along
with the generator of dilations:

{∂µ,Ωab := xb∂a − xa∂b,Ω0a := t∂a + xa∂t, L := t∂t + r∂r}.

These form a Lie algebra, which satisfies the following commutation relations

[Zµ, ∂ν ] =
∑

a α
µν ∂α, a α

µν = 0,±1, and [Zµ,�] =

{
−2� if Zµ = L,

0 otherwise.

It follows that the equation �ψ = 0 is preserved by these operators. We now define
the following norms in terms of products Zα (for multi-index α) of the Lorentz
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vector fields applied to f :

M1(t) ≡
∑
|α|≤m

‖∂Zαf(t, ·)‖L2 , (3.1a)

M2(t) ≡
∑
|α|≤m

‖Zαf(t, ·)‖L2 , (3.1b)

N1(t) ≡
∑
|α|≤l

‖∂Zαf(t, ·)‖L∞ , (3.1c)

N2(t) ≡
∑

|α|≤l+1

‖Zαf(t, ·)‖L∞ , (3.1d)

Here m is an integer such that m > 2n + 1 and l = (m + 1)/2. Since ∂µ ∈ {Zν},
these norms control the L2 and L∞ Sobolev norms (of order k and l, respectively)
of f and ∂f . It follows that controlling these norms is sufficient to overcome the
obstruction to local existence discussed at the end of the previous section. In par-
ticular, if we control these norms, then f is bounded in C2. Furthermore, we use
the norms N1, N2 to show stability in the sense that they decay as t grows. Note
that any estimate for N2 implies an estimate for N1 as well.

The following three propositions also play a role in our proof of global existence.
(See [L2], and also [L1],[H2],[K1], for some of the proofs of these results.)

Proposition 1. If g is a solution to{
�g = ∂µF

µ

g(0, ·) = εg, ∂0g(0, ·) = εk

then

‖g(t, ·)‖L2 ≤ Cdataεm(t) +
∑

µ

∫ t

0

‖Fµ(τ, ·)‖L2 dτ,

where

m(t) =

{
log (2 + t) if n = 2,
1 otherwise,

and Cdata depends on g, k, and F 0(0, ·).

Proposition 2. The solution to{
�g = G

g(0, ·) = εg0, ∂0g(0, ·) = εg1

satisfies

|g(t, x)| ≤ C

(1 + t+ |x|)(n−1)/2

Cdataε+
∫ t

0

∑
|α|≤n−1

∥∥∥ ZαG

(1 + s+ | · |)(n−1)/2
(s, ·)

∥∥∥
L1
ds

 .
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To make use of the above propositions in controlling the norms (3.1), we apply
Zα to both sides of the equation (1.5) for f I , and obtain

Hµν
IJ∂µ∂ν(ZαfJ) =

∑
k≥3,

P
|αi|≤|α|+1

HI,I1···Ik,γ1···γk,α1···αk
(∂γ1Z

α1f I1) · · · (∂γk
Zαkf Ik).

(3.2)
Since hµν = ηµν +O(|∂f |2), this may also be written as

�
(
Zαf I

)
=

∑
k≥3,

P
|αi|≤|α|+1

ĤI
I1···Ik,γ1···γk,α1···αk

(∂γ1Z
α1f I1) · · · (∂γk

Zαkf Ik).

(3.3)
with some modified coefficient functions Ĥ, satisfying Ĥ = O(|∂f |2). Note that at
most one of the αi can satisfy |αi| > (|α| + 1)/2. The global existence proof also
depends on the form of the divergence equation (1.4). In particular, we note that√

det [h]hµν = ηµν +O(|∂f |2) as |∂f | → 0, and thus Fµν := ηµν −
√
−dethhµν =

O(|∂f |2). Hence applying Zα to (1.4) we obtain

�
(
Zαf I

)
= ∂µ

 ∑
k≥3,

P
|αi|≤|α|

Fµ,I
I1···Ik,γ1···γk,α1···αk

(∂γ1Z
α1f I1) · · · (∂γk

Zαkf Ik)

 .
(3.4)

where again at most one of the αi can satisfy |αi| > |α|/2.
We are now prepared to show global existence in dimensions n ≥ 3. The proof

uses a continuous induction, or bootstrap argument.
To set up the bootstrap argument, we assume that there is a constant K so that

on [0, T ) we have the following estimates for the norms defined in (3.1):

M1(t) ≤ Kε, (3.5a)

M2(t) ≤ Kε, (3.5b)

N1(t) ≤
Kε

(1 + t)
n−1

2

, (3.5c)

N2(t) ≤
Kε

(1 + t)
n−1

2

. (3.5d)

To close the bootstrap, we show that we can in fact choose K sufficiently large and
ε sufficiently small so that the above inequalities hold independently of T with Kε
replaced by Kε/2. This implies that for small data, solutions can be extended for
all T > 0.

Applying the energy estimate of Lemma 1 to (3.2) and summing over |α| ≤ k,
we have

M1(t) ≤ C

(
Cdataε+

∫ t

0

CN1N1(s)2M1(s) ds
)
· exp

(
C

∫ t

0

N1(τ)2 dτ
)
,

where CN1 is a constant absorbing possible “extra” factors of N1(s) and only
reflects the finiteness of N1(s). Likewise, applying Proposition 1 to (3.4) and Propo-
sition 2 to (3.3) gives us

M2(t) ≤ Cε+
∫ t

0

CN1 N1(s)2M1(s) ds
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and

N2(t) ≤
C

(1 + t)(n−1)/2

(
Cdataε+

∫ t

0

(N1(s) +N2(s))
(1 + s)(n−1)/2

(M1(s) +M2(s))
2
ds

)
where we have made use of the Cauchy-Schwartz inequality. Under the assumed
bounds, we have that for some C,

M1(t) ≤ eC(Kε)2
(
Cdataε+ C(Kε)2Kε

)
≤ Kε

2
,

M2(t) ≤ Cdataε+ C(Kε)2Kε ≤ Kε

2
,

N2(t) ≤
1

(1 + t)(n−1)/2

(
C Cdataε+ C(Kε)4

)
≤ Kε

2(1 + t)(n−1)/2
,

where the second inequality in each line holds for all t if K is chosen sufficiently
large and ε is chosen sufficiently small. Recall that an estimate for N1(t) follows
from the estimate for N2(t). Obtaining these tighter bounds on the norms, we have
closed the bootstrap. In view of the continuation property stated in Theorem 1,
we have proved small data global existence for n ≥ 3.

4. Global existence in dimension n = 2

In the case of n = 2, we require more detailed information concerning the struc-
ture of the system. In particular, we exploit the fact that the system satisfies the
so-called “null-condition” of Klainerman [K2], [K3], which is a condition on the
quadratic part of the nonlinearity. We consider null forms, quadradic forms of first
derivatives, which are given by

Q00(f, g) = ηµν(∂µf)(∂νg), Qαβ(f, g) = (∂αf)(∂βg)− (∂βf)(∂αg), α 6= β
(4.1)

and satisfy time decay closer to that of cubic terms. In particular, if Q is any null
form, then

|Q(f, g)(t, x)| ≤ C

1 + t+ |x|
∑
|α|=1

|Zαf(t, x)|
∑
|β|=1

|Zβg(t, x)|. (4.2)

Furthermore, for any Lorentz vector field Z and null form Q there exists constants
aµν so that

ZQ(f, g) = Q(Zf, g) +Q(f, Zg) + aµνQµν(f, g). (4.3)

Returning to the system (1.2), we note that the Lagrangian associated to the
volume element of the induced metric is L =

√
−deth. For small |∂f |, we have

−deth = 1 + ηµνδIJf
I
µf

J
ν +O(|∂f |4)

= 1 + δIJQ00(f I , fJ) +O(|∂f |4)

and thus the Euler-Lagrange equations take the form

(1 + δKLQ00(fK , fL))�fJ =
1
2
ηµνfJ

µ ∂ν

[
δABQ00(fA, fB)

]
+O

(
|∂2f | · |∂f |4

)
.

(4.4)
For small |∂f | we have that(

1 + δKLQ00(fK , fL)
)−1

= 1 +O
(
|∂f |2

)
; (4.5)



TIMELIKE MINIMAL SURFACES 7

thus we obtain

�fJ =
1
2
Q00

(
fJ , δABQ00(fA, fB)

)
+O

(
|∂2f | · |∂f |4

)
. (4.6)

Applying Zα yields

�(ZαfJ) =
∑

P
|αi|≤|α|

Q00(Zα1fJ , δABQ00(Zα2fA, Zα3fB))+O
(
|Zβ1∂2f | · |Zβ2(∂f)4|

)
,

(4.7)
where |α1|+ |β2| ≤ |α|.

The proof of global existence when n = 2 follows closely the proof for higher
dimensions, with three differences. First, the null equation (4.7) is used in place of
(3.3). Second, we use the following variation of the energy estimate of Lemma 1.

Lemma 2. Under the hypotheses of Lemma 1 we have

‖∂f(t, ·)‖L2 ≤C‖∂f(0, ·)‖L2 · exp
(
−
∫ t

0

C‖∂H(τ, ·)‖L∞ dτ

)
+ C

∫ t

0

∑
I

‖BI(s, ·)‖L2 · exp
(
−
∫ t

s

C‖∂H(τ, ·)‖L∞ dτ

)
ds.

The third difference is that the bootstrap assumptions of (3.5) are replaced by
the following:

M1(t) ≤ Kε(1 + t)δ, (4.8a)

M2(t) ≤ Kε(1 + t)δ, (4.8b)

N1(t) ≤
Kε

(1 + t)1/2
, (4.8c)

N2(t) ≤
Kε

(1 + t)1/2
, (4.8d)

where 0 < δ < 1
2 is a fixed, arbitrary constant. We apply Lemma 2 to (3.2) and

obtain the estimate

M1(t) ≤ Cdataε · exp
(∫ t

0

C (Kε)2

(1 + τ)
dτ

)
+
∫ t

0

C (Kε)3

(1 + s)1−δ
· exp

(∫ t

s

C (Kε)2

(1 + τ)
dτ

)
ds.

Computing

exp
(∫ t

s

C (Kε)2

(1 + τ)
dτ

)
= exp

(
C (Kε)2 log

(
1 + t

1 + s

))
=
(

1 + t

1 + s

)C(Kε)2

,

one sees that

M1(t) ≤ Cdataε(1 + t)C(Kε)2 + C(Kε)3(1 + t)C(Kε)2
∫ t

0

(1 + s)δ−1−C(Kε)2 ds

= Cdataε(1 + t)C(Kε)2 + C(Kε)3(1 + t)C(Kε)2
[
(1 + t)δ−C(Kε)2 − 1

]
≤ Kε(1 + t)δ/2
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for large K and small ε. Similarly, application of Proposition 1 to (3.4) implies that
for suitable large K and small ε we have that

M2(t) ≤ Cdataε log (2 + t) +
∫ t

0

C (Kε)3

(1 + s)1−δ
ds

≤ Cdataε log (2 + t) + C̃(Kε)3(1 + t)δ ≤ (1 + t)δKε/2.

Lastly, via application of Proposition 2 to (4.7) and use of the null estimate (4.2)
we obtain

N2(t) ≤
C

(1 + t)1/2

(
Cdataε+

∫ t

0

C (Kε)3

(1 + s)3/2−2δ
ds

)
≤ 1

(1 + t)1/2

(
C Cdataε+ Č(Kε)3

)
≤ Kε

2(1 + t)1/2
,

provided K is large and ε is small. As the estimate for N2(t) implies the desired
estimate for N1(t), we have that for all finite intervals [0, T ), the estimates (4.8)
imply that better estimates hold, thus concluding the proof.

5. Concluding remarks

The analysis of timelike minimal surfaces and submanifolds introduces a family
of geometrically-motivated quasilinear PDE systems which are both intriguing and
relatively unstudied. The work done by Brendle and Lindblad and continued here
constitutes merely a first step in this analysis.

Among other things, one would hope to see progress on the characterization of
local well-posedness for the timelike minimal submanifold PDEs in general Lorentz
spaces, as well as discovery of nontrivial stable solutions other than the flat planes
one finds in Minkowski space. Exploring the nature and formation of singularities
in these submanifolds should lead to interesting new phenomena.

Further, it is interesting to explore the relation between the timelike minimal sur-
face PDE’s and the classical minimal surface problem, see e.g. [LW] and references
therein.

In addition to the case considered in this paper, the more general D-brane equa-
tions which arise when various matter fields are incorporated into the action occur
in string theory and are of current interest in theoretical physics. It is clear that
timelike minimal submanifolds will provide a rich source of new mathematical prob-
lems for some time to come.
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