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Abstract

Regenerative phenomena were introduced some forty years ago to address
problems in the theory of continuous-time Markov processes. The early
work in the theory left a number of difficult unsolved problems, in the
classification of p-functions, oscillation and inequalities, the multiplicative
theory, and the theory of unbounded semi-p-functions. Recent years have
shown progress on all of these fronts, and this paper surveys these results,
while drawing attention to significant problems that remain open.
2000 Mathematics Subject Classification 60J25 (primary), 26A51 (sec-
ondary)

1 The context

The theory of regenerative phenomena, as expounded for instance in [29], is
a branch of the theory of continuous-time Markov processes. It depends on
isolating one particular point of the state space, and studying the set of time
instants at which the process is at that point. The most fruitful situation is
that in which that random set is of non-zero Lebesgue measure.

A continuous-time Markov process is a collection of random variables X(t),
indexed by a real parameter t which usually represents time, and taking values
in an arbitrary state space. The Markov property (see for instance [44]) is a
precise expression of the assumption that, given X(t1) for some t1, the ‘past’
(X(t), t < t1) and the ‘future’ (X(t), t > t1) are conditionally independent.

This assumption has rich consequences which have been explored at different
levels of generality by many authors, but a major milestone was the publication
in 1960 by K.L. Chung of a magisterial account [3] of the theory for the case
when the X(t) are discrete random variables taking values in a countable state
space. (His revised second edition [4] is also worth study.) For Chung the
fundamental quantities are the transition probabilities

pij(t) = P{X(t0 + t) = j|X(t0) = i} , (1.1)

where i and j belong to the countable state space, t > 0, and (1.1) is assumed
not to depend on t0.

The functions pij turn out to have very special properties. They are for in-
stance continuously differentiable but not necessarily twice differentiable. It was
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the attempt to understand the fundamental reason for these special properties
that led to the theory of regenerative phenomena.

Thus, let X(t)(t ≥ 0) be a Markov process on some arbitrary state space,
and let x0 be a point of that space. Suppose for definiteness that

X(0) = x0 , (1.2)

and define a process Z(t) taking values 0 and 1 by

Z(t) = 1 if X(t) = x0

= 0 if X(t) 6= x0 . (1.3)

In general Z is not a Markov process, but it satisfies the equation

P{Z(t1) = Z(t2) = . . . = Z(tn) = 1}
= p(t1)p(t2 − t1) . . . p(tn − tn−1) (1.4)

whenever 0 < t1 < t2 < . . . < tn, where

p(t1) = P {Z(t1) = 1} . (1.5)

A random process Z taking values in {0, 1} and satisfying (1.3) is called a
regenerative phenomenon with p-function (1.4).

It is a consequence of a theorem in [27] (see also Section 3.4 of [29]) that, if
Z is a measurable process, the function p is either almost everywhere zero, or
is strictly positive and satisfies

lim
t↓0

p(t) = 1 . (1.6)

Most of the theory is concerned with p-functions satisfying (1.5), but the other
case is also of great importance, including as it does processes derived from
models of Brownian motion (see Section 3).

The idea of studying the process (1.2) stems from the success of Feller’s
theory [14, 15] of recurrent events in the study of Markov processes in discrete
time. In particular, with Erdös and Pollard [13] he proved a theorem implying
the Kolmogorov limit theorem [3] for such processes on a countable state space.

It was natural in the 1960s to ask whether a similar technique could be used
with similar success in continuous time. The most obvious approach, that of
renewal theory [16], deals only with the simplest cases. The need was for a
tool effective at the level of generality of Markov processes with a countable
state space, and this was provided in [25] and [26]. Taking i = j = x0 in (1.1)
identifies the p-function p with the diagonal transition function pii.

Thus we have two natural questions. What functions p can be the p-functions
of regenerative phenomena? Among such functions which can arise as the diag-
onal case i = j of 1.6? The first was answered in 1963 [25], but the second was
unresolved until 1971 [28]. The theory and its applications were summarised in
1972 [29], but that account left many open questions. Some of these have been
resolved only recently, while others are still undecided.
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This paper does not claim to cover every related development since 1972,
but it does attempt to describe the most significant advances, and in particular
those that involve new techniques that might be used to attack the remaining
open questions. I am indebted to a referee for valuable comments, and especially
bibliographical suggestions.

2 The theory of p-functions

Equation (1.4) determines all the joint distributions of the process Z in terms
of the p-function p, by a simple inclusion-exclusion argument. In particular,

F (t1, t2, . . . , tn; p) = P {Z(t1) = . . . = Z(tn−1) = 0 , Z(tn) = 1} (2.1)

is a polynomial in the values of p(tα) and p(tβ − tα) (α, β = 1, 2, . . . , n;α < β).
(See equation (2.2.11) of [29] for explicit formulae.) Every p-function satisfies
the inequalities

F (t1, t2, . . . , tn; p) > 0 (2.2)

and
n

∑

r=1

F (t1, t2, . . . , tr; p) 6 1 . (2.3)

Standard arguments show conversely that any function p : (0,∞) −→ R which
satisfies (2.2) and (2.3) for all n > 1, 0 < t1 < t2 < . . . < tn is the p-function of
some regenerative phenomenon.

In fact, more is true. A function p satisfying (2.2) but not necessarily (2.3)
is called a semi-p-function There are many semi-p-functions that are not p-
functions, but they are all unbounded. Any bounded function satisfying (2.2)
necessarily satisfies (2.3) as well. This has long been known [30] under the
additional condition (1.6), but the general case is a recent result [38].

Thus the class ℘ of all p-functions is exactly the class of functions p :
(0,∞) −→ [0, 1] which satisfy all the inequalities (2.2). Within this can be
distinguished important subclasses [38]. A p-function is standard (the stan-
dard but unhappy terminology) if it satisfies (1.5), and the class of standard
p-functions is a proper subclass P of ℘. Standard p-functions are strictly pos-
itive, continuous with finite right and left derivatives on (0,∞), and (defining
p(0) = 1) have finite or infinite right derivatives at 0.

The basic characterisation of P was first published in [25], but in essence it
is due to D.G. Kendall, and in a primitive version to M.S. Bartlett ([1], section
3.3). A continuous function p : [0,∞) −→ [0, 1] belongs to P if and only if there
is a measure µ on (0,∞] such that, for all θ > 0,

∫ ∞

0

p(t)e−θtdt =

{

θ +

∫

(1 − e−θx)µ(dx)

}−1

. (2.4)

This identity sets up a bijection between P and the class M of measures µ on
(0,∞] with

∫

(1 − e−x)µ(dx) <∞ . (2.5)
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Every p ∈ P arises by (1.5) and (1.3) from some Markov process, but not
necessarily from one with a countable state space. Thus the class of diagonal
transition functions, (1.1) with i = j, is a proper subclass PM of P . The cor-
responding measures µ are exactly those which (apart from a possible atom at
infinity) are either identically zero or admit a strictly positive lower semicontin-
uous density h on (0,∞) which is not too small at infinity; more precisely

h(x) > 0(x > 0) , h(x) > e−βx(x > 1) (2.6)

for some β. This result [28] completely characterises the function (1.6) with
i = j. Similar results ([29], Section 6.6, [33]) deal with the case i 6= j by
characterising the matrix-valued function

(

pii(t) pij(t)
pji(t) pjj(t)

)

. (2.7)

It might therefore seem that P is familiar territory, but we shall see in
Sections 4, 6 and 7 that this is illusory. Outside P there are many puzzles.
First there are p-functions for which the limit (1.5) exists but is less than 1. For
any a ∈ [0, 1] and p ∈ P ,

p̄(t) = ap(t) (2.8)

defines a p-function p̄. If 0 < a < 1, p̄ is called substandard. The class P+ of p-
functions that are either standard or substandard is exactly the class of strictly
positive Lebesgue measurable p-functions. It is conjectured [38] that every
strictly positive p-function is measurable, no counterexample being known.

Although (2.8) defines a smooth function on (0,∞), the corresponding pro-
cess Z is anything but regular. If 0 < a < 1, Z has no measurable version
[27].

There are non-measurable p-functions with zero values, and there are mea-
surable p-functions which are not of the form (2.8). Little is known about either
class, except that a measurable p-function not in P+ is necessarily zero almost
everywhere [38]. A greater understanding of these functions would be of value
for the problems described in Section 4.

3 Sample function behaviour

The form of (2.4) strongly suggests a connection with the Itô theory of subor-
dinators, for which see for instance Chapter III of [2] and [45]. If the measure
µ on (0,∞] satisfies (2.5), there is a subordinator, a process Y (s)(s ≥ 0) with
stationary, independent, non-negative increments, such that

E{e−θY (s)} = exp

{

−sθ − s

∫

(1 − e−θx)µ(dx)

}

. (3.1)

The term sθ represents a deterministic drift, and the measure µ is, in a sense,
the ‘distribution’ of the heights of the jumps of Y . It was pointed out by Kendall
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[23] that the closure of the range of Y is a random set whose indicator function
is a regenerative phenomenon with p-function p determined by (2.4).

This means that the sample function behaviour of any standard regenerative
phenomenon can be deduced from the corresponding properties of subordina-
tors. The process Z always has a version in which

{t > 0;Z(t) = 0} (3.2)

is an open subset of (0,∞), and is therefore expressible in a unique way as a
union of disjoint open intervals, the excursions of Z (corresponding in (1.2) with
the excursions of X from x0). If we describe such an interval I = (a, b) by the
two parameters

σI = b− a , τI =

∫ a

0

Z(t)dt (3.3)

then the random points (σI , τI) form a Poisson process on the quadrant (0,∞)2

whose mean measure is the product of µ and Lebesgue measure.
We shall return to this picture in Section 7, but it is worth relating to the

theory when p is almost everywhere zero. As already noted, this arises for
example in models of Brownian motion. If X is the usual Wiener process and
x0 = 0, the process Z defined by (1.3) has trivial finite-dimensional distributions
given by (1.4) with p(t) = 0 for all t > 0. It is nevertheless important in
describing the excursions of X from 0. The set (3.2) is still open, but the
integral in (3.3) is zero, and a more subtle way of spreading out the points σI

is needed.
This is of course supplied by Lévy’s theory of local time (see for instance

[44] or more crudely [32]). A unified approach to both situations can be made
in terms of the forward and backward recurrence times

F(t) = inf{u ≥ 0 ; Z(t+ u) = 1} , (3.4)

B(t) = inf{u ≥ 0 ; Z(t− u) = 1} . (3.5)

This lies outside the scope of the present paper, and the reader is referred to
[15], [29], [32], [43].

4 Oscillations of p-functions

Many questions in the theory of continuous-time Markov processes, particularly
those with countable state space, can be expressed in terms of the p-function
pii or p-matrices like (2.7). For this reason there has been considerable interest
in the extent to which p-functions can oscillate. The best early results were due
to Rollo Davidson, and are recorded in the book [24] dedicated to his memory.
He drew attention in [12] to the p-function

pq,a(t) = e−qt +

[t/a]
∑

n=1

1

n!
{q(t− na)}ne−q(t−na) (4.1)
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which corresponds in (2.4) with the measure µ of mass q > 0 concentrated at
the point a > 0. This oscillates repeatedly before converging to a limit

pq,a(∞) = (1 + qa)−1 . (4.2)

If qa ≥ 1,
pq,a(a) = e−qa , pq,a(a+ q−1) = (1 + e−qa)e−1 , (4.3)

so that this p-function can be very small for some values of t and then rise above
e−1 for larger values of t.

Davidson conjectured that e−1 was the largest value for which this is possible;
a p-function which takes small values cannot for larger values of t rise much
above e−1. Successive authors proved successively stronger results, but it was
not until 1994 that Dai Yong Long established the full Davidson conjecture by
proving the remarkable inequality that, for p ∈ P , t1 < t2,

p(t2) − p(t1) ≤ e−1 . (4.4)

The original proof [8] is long, complex and hard to check, and a more ac-
cessible version is in [9], which also recounts the history of the result. It is still
not easy to see what makes it work, or how to use Dai’s techniques to prove
other inequalities. For instance, it is plausible to conjecture that (4.4) can be
strengthened to

F (t1, t2; p) = p(t2) − p(t1)p(t2 − t1) 6 e−1 , (4.5)

but this is still open.
What would be very useful would be a ‘calculus of variations’ to provide

a systematic way of proving inequalities like (4.5). An inconclusive attempt
to do this was made in [38]. This depends on the fact that all p-functions,
standard or not, are functions from (0,∞) to [0, 1], and so can be regarded as
points in the space [0, 1](0,∞) which by Tychonov’s theorem is compact in the
product topology. An element of this product space is a p-function if and only
if it satisfies all the inequalities (2.2), each of which defines a closed subspace.
Thus the set ℘ of all p-functions is a closed subspace, and therefore compact
Hausdorff (but not metrisable).

The inclusions
PM ⊂ P ⊂ P+ ⊂ ℘ (4.6)

are all strict. Taking their closures in ℘,

clPM ⊆ clP ⊆ clP+ ⊆ ℘ (4.7)

and it is easy to show that only the third of these closures is strict. Thus PM,P
and P+ have the same closure P−, and we have the chain of strict inclusions

PM ⊂ P ⊂ P+ ⊂ P− ⊂ ℘ . (4.8)
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The class P− consists of all p-functions of the form (2.8) for 0 6 a 6 1, together
with some but not all of the null (measurable and almost everywhere zero) p-
functions, and possibly (though this is not known) some of the non-measurable
p-functions.

Unfortunately, there is no known structure theorem for null p-functions, nor
any way of deciding if a given null p-function is in P−. An inequality like (4.4)
extends by continuity to P−. Thus a null member of P− necessarily has

p(t) 6 e−1 (4.9)

for all t > 0. There is a close link between extremal problems in P and the
characterisation of P−.

A calculus of variations needs to start from a compact space on which con-
tinuous functions attain their bounds. The space P− is compact but unknown,
and [36] takes the less ambitious line of using compact subsets of P , like

PQ = {p ∈ P ; µ(0,∞] 6 Q} . (4.10)

If for instance (4.5) could be proved in PQ for any Q > 0, it would be true for
all p ∈ P− because the union of the PQ is dense in P−.

More generally, let Φ : P −→ R be a continuous functional on P of the form

Φ(p) = φ{p(τ1), p(τ2), . . . , p(τk)} , (4.11)

where τ1, τ2, . . . , τk are fixed nodes and φ : R
k −→ R is differentiable. Define

Ψ(p, t) =

k
∑

j=1

φj{p(τ1), . . . , p(τk)}p(2)(τj − t) , (4.12)

where φj is the partial derivative of φ with respect to its jth argument and

p(2)(t) =

{

∫ t

0
p(s)p(t− s)ds (t > 0),

0 (t 6 0).
(4.13)

Then an easy perturbation argument shows that any p that maximises Φ(p) on
the compact PQ has a function Ψ(p, ·) that attains its maximum on [0,∞) and
is equal to that maximum except on a set of µ-measure zero. Here µ is the
measure corresponding to p in (2.4), augmented if necessary with an atom at 0
to bring its total mass up to Q.

This motivates the following definition. Fix Q and nodes τ1, τ2, . . . , τk. Then
p ∈ PQ is called a candidate if there are numbers β1, β2, . . . , βk such that the
function

ψ(t) =
k

∑

j=1

βjp
(2)(τj − t) (4.14)

on [0,∞) is equal to its maximum except on a set of µ-measure zero, p and µ
being linked by (2.4). Then any p that maximises any functional (4.9) with the
given nodes is a candidate.
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It can be shown that (4.1) defines a candidate p-function if q = Q and
τj 6 2a for all j, but there are no other candidates known. On the other hand,
there must be other candidates. The simple functional

Φ(p) = p(3) − p(1)3 (4.15)

satisfies Φ(p) 6 e−1 for all p of the form (4.1), but the p-function

p(t) = e−q min(t,1)

has Φ(p) = 2/3
√

3 > e−1 when

q = 1
2 log 3 ,

so that whatever p-function maximises (4.13) must be a candidate not of the
form (4.1).

5 The Jurkat programme

In the classical theory of continuous time Markov processes with a countable
state space S, the transition functions pij(·)(i, j ∈ S) defined by (1.1) are sup-
posed to satisfy

pij(t) > 0 , (5.1)

lim
t↓0

pij(t) = δij , (5.2)

∑

j∈S

pij(t) 6 1 , (5.3)

and the Chapman-Kolmogorov equation

pij(s+ t) =
∑

k∈S

pik(s)pkj(t) . (5.4)

Most of the techniques used to analyse the implications of these conditions
[3] make heavy use of (5.3), and it was therefore very surprising that in 1959
Jurkat [18][19] showed how virtually all the analytical properties of the pij(·)
could be proved without this condition. It was therefore natural to ask to
what extent later developments, such as the characterisation of PM, could be
generalised.

There is no real problem if (5.3) is weakened to the condition that there is
strict inequality in (5.1) and there exists β such that

pij(t) = O
(

eβt
)

(5.5)

for some, and then for all, i and j in S. The problem comes if (5.5) holds for
no finite β, a possibility shown to exist by Cornish [5]. Classical methods then
break down, in particular because the pij no longer have Laplace transforms.
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The theory of regenerative phenomena does however have a generalisation
adequate for this situation, as was shown in [30] and [6]. The function p = pii

satisfies (2.2), but not necessarily (2.3). It is therefore unbounded, and may be
more than exponentially large as t→ ∞, in which case (2.4) is meaningless.

The way to overcome this difficulty is to show that (2.4) is formally identical
to the Volterra equation

1 − p(t) =

∫ t

0

p(t− s)m(s)ds (5.6)

where the function m(t) = µ(t,∞] is non-negative, non-increasing and right-
continuous on (0,∞), and is integrable on (0,1).

The first result [30] is that any standard semi-p-function (a function satisfy-
ing (1.6) and (2.2)) satisfies (5.6) for a non-increasing, right-continuous function
on (0,∞) integrable over (0,1). The function p determines uniquely, and is de-
termined uniquely by, the function m, and the only difference from the theory
of P is that m can take negative values.

This result generalises to semi-p-matrices, which are the appropriate abstrac-
tion of submatrices

(pij(t) ; i, j ∈ I) (5.7)

for finite subsets I of S. With these results it is possible to establish a full
analogue of the characterisation of PM. Thus [33] a semi-p-function can arise
from some family satisfying (5.1), (5.2) and (5.4) if and only if the function m
in ( 5.6) is either constant or satisfies

m(s) −m(t) =

∫ t

s

h(u)du (5.8)

where h is lower semicontinuous with

0 < h(t) 6 ∞ , (5.9)

h(t) 6 e−βt(t > 1) for some β , (5.10)

and
∫ t

0

uh(u) <∞ for 0 < t <∞ . (5.11)

This characterises the diagonal functions pii, and the non-diagonal case is dealt
with as before, by a similar characterisation of the semi-p-matrix (2.7).

6 Multiplicative theory

If Z1 and Z2 are independent regenerative phenomena with p-functions p1 and
p2, then it is immediate from (1.4) that

Z(t) = Z1(t)Z2(t) (6.1)
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defines a regenerative phenomenon with p-function

p(t) = p1(t)p2(t) . (6.2)

Thus the product of two p-functions is a p-function, and in fact ℘, P+, P and
PM are all closed under pointwise multiplication. Note that it is apparently
impossible to prove this very simple fact from the structure theorem (2.4) for
P .

Since P is a commutative semigroup with identity under the operation (6.2),
one can ask about its algebraic properties. Kendall and Davidson were struck by
a similarity between this semigroup and the semigroup of probability measures
under convolution, and they used this as the basis for a theory of what they
called delphic semigroups. (See [39], especially Chapters 8 and 9, for the classical
4/10/11 theory.)

Their conclusions are contained in the collection [24] (especially [10], [11]
and [21]), and the theory has advanced little since Rollo Davidson’s tragically
early death. Most of the obvious questions are open, and probably lack useful
answers. An exception however is Kendall’s identification of the infinitely divis-
ible elements of P . He showed that any continuous function p : [0,∞) → (0, 1]
with p(0) = 1 and such that log p is convex belongs to P . Clearly any such p
has the property that

pα : t 7→ {p(t)}α (6.3)

is also in P for any α > 0, and he showed that only these functions have this
property.

This raises the question: which subsets of (0,∞) can be of the form

{α > 0 ; pα ∈ P} (6.4)

for some p ∈ P? Clearly this set is topologically closed, closed under addition
and contains every positive integer. It was conjectured that every set of the
form (6.4) must contain [1,∞), i.e. that p ∈ P implies pα ∈ P for every α > 1.

This conjecture was eventually proved in [36], and implies that P+ and P−

are also closed under the operation

p 7→ pα (α > 1) . (6.5)

It is more difficult to show that ℘ is similarly closed, but this was done in [37].
It is probable that PM has the same property, but the evidence though strong
is not conclusive [37].

What makes these problems difficult is that (6.5) has no probabilistic inter-
pretation when α is not an integer, so that one is thrown back on the analytic
characterisation (2.4) in terms of the canonical measure µ of p. There is no
simple form of the canonical measure of pα even when α is an integer, as will
be seen in the next section.

Before moving on, it is worth mentioning another open problem. A function
ϕ : (0, 1] → (0, 1] may be said to preserve P if

ϕ(p) : t 7→ ϕ{p(t)} (6.6)
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is in P whenever p ∈ P . Thus we know that

ϕ(x) = xα (6.7)

preserves P for α > 1 but not for 0 < α < 1. Are there any other functions
(apart from the trivial ϕ(x) = 1) which preserve P?

If ϕ is such a function, since e−t is in P ,

p(t) = ϕ(e−t) (6.8)

is in P , which shows that ϕ is continuous, and can be extended to a continuous
function from [0,1] to [0,1], with ϕ(0) = 1. It has right and left derivatives in
(0,1). The inequalities (2.2) translate into complicated functional inequalities
for ϕ, but whether these imply that ϕ is of the form (6.7) is not known. It is
not even known if a simple function like

ϕ(x) = 1
2x+ 1

2x
2 (6.9)

preserves P .

7 The canonical measure of a product of p-functions

Equation (2.4) sets up a bijection between P and the class M of measures on
(0,∞] satisfying (2.5). The semigroup operation (6.2) of pointwise multiplica-
tion in P induces a semigroup operation

(µ1, µ2) 7→ µ (7.1)

in M, where µ is the canonical measure of the product p-function. The problem
is to give a usable formula for this binary operation.

The corresponding problem in Feller’s discrete time theory warns of the
difficulties ahead. He defines a renewal sequence as a sequence u = (un;n > 0)
generated by a recurrence relation

u0 = 1 , un =

n
∑

r=1

frun−r(n > 1) (7.2)

from some sequence f = (fn;n > 1) with

fn > 0 ,

∞
∑

n=1

fn 6 1 . (7.3)

If u(1) and u(2) are renewal sequences, so is their product

un = u(1)
n u(2)

n . (7.4)
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For ease of notation write the corresponding f -sequences as (an) and (bn). Then
each element of the f -sequence of u can be expressed in terms of those of u(1)

and u(2). For example

f3 = a3b3 + 2a1a2b1b2 + 2a1a2b3 + 2a3b1b2 + a3
1b3 + a3b

3
1 , (7.5)

but the expressions for fn rapidly become more complicated as n increases. It
is true that they can be interpreted probabilistically, which is why all the terms
are positive, but it is difficult to see how to exploit them.

If we seek a similar analysis in continuous time, this should start from the
interpretation of the canonical measure in terms of the intervals that are the
connected components of the open set (3.2). If, for i = 1, 2, Zi is a version for
which

Gi = {t > 0 ; Zi(t) = 0} (7.6)

is an open subset of (0,∞), the product phenomenon Z has

G = {t > 0 ; Z(t) = 0} = G1 ∪G2 (7.7)

also open. For vividness we call the connected components of G1 red intervals

and those of G2 blue intervals. Notice that, by Fubini’s theorem, there is zero
probability that any red interval is also a blue interval.

The red and the blue intervals taken together form a covering of G, but a
covering with the very special property that it admits a unique minimal sub-
covering of G. Call a red interval essential if it is not wholly contained in some
blue interval, and a blue interval essential if not wholly contained in a red. It
is easy to see that the essential red and blue intervals cover G, and that every
covering of G by red and blue intervals must include every essential interval.

Now consider any bounded connected component J of G. Then J is a
bounded open interval that can be expressed in a unique way as the union
of the essential intervals that meet it. By compactness only finitely many of
these intervals meet any closed subinterval of J , but there may be infinitely
many intervals near each endpoint.

There are a number of possibilities. The interval J may itself be a red
interval, necessarily essential, and possibly containing blue intervals, none of
them essential; call this Case 1. Case 2 is similarly that in which J is a blue
interval. Or J may be the union of an essential red and an essential blue interval,
which we call Case 12 if the red is to the left of the blue and Case 21 if the
opposite. Proceeding in this way we can define Cases

1, 2, 12, 21, 121, 212, 1212, 2121, 12121, . . . (7.8)

describing finite alternations of essential red and blue intervals, each of which
may contain inessential intervals of the other colour. Each essential interval
overlaps its differently coloured neighbours, but no interval overlaps another of
the same colour.

If the minimal covering of J is not finite, we shall still have alternations of
red and blue essential intervals, but these will be unbounded at one or both
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ends, i.e.

121212 . . . , . . . 1212121

212121 . . . , . . . 2121212

or
. . . . . . 12121212 . . . . . . .

Can such ‘wild’ coverings occur with positive probability? We do not know, but
we do know that they occur in the analogous ‘local time’ situation.

Thus let X1 and X2 be independent Wiener processes, so that

X = (X1, X2) (7.9)

is the usual Brownian motion in R
2. An excursion of X from (0,0) encircles the

origin infinitely often, and in particular crosses the coordinate axes infinitely
often as it approaches (0,0). The same is true at the beginning of the excursion,
so that every excursion is, with probability 1, wild at both ends.

At the other extreme, consider the situation in which the canonical measures
of Z1 and Z2 are finite, so that

qi = −p′i(0) = µi(0,∞] <∞ (7.10)

and therefore
q = −p′(0) = q1 + q2 = µ(0,∞] <∞ . (7.11)

Then the function behaviour is very simple, each process being a step function
between the values 0 and 1. For instance, Z(t) has jump discontinuities at
random points 0 = T0 < T1 < T2 < . . ., with

Z(t) = 1 on (0, T1] ∪ [T2, T3] ∪ . . . . (7.12)

The random variables Tn−Tn−1 are independent, having a negative exponential
distribution with mean 1/q if n is odd, and the distribution µ/q if n is even.

In particular, µ/q is the distribution of the length of J = (T1, T2). Under
(7.10) there are only finitely many red and blue intervals in any finite interval,
and so (if T2 <∞) only the tame coverings (7.8) can occur. The joint distribu-
tion of T1 and T2, on the event that a particular case of (7.8) occurs, can then
be written down in terms of the distributions of the discontinuities of Z1 and
Z2. For instance, the event that Case 121 occurs is the event that there are
V1, V2, V3, V4 with

T1 < V1 < V2 < V3 < V4 < T2 , (7.13)

such that (T1, V2) and (V3, T2) are red intervals and (V1, V4) a blue interval. The
outcome is a decomposition formula for µ according to the type of the covering:

µ(dt) = p2(t)µ1(dt) + p1(t)µ2(dt)

+µ12(dt) + µ21(dt) + µ121(dt) + . . . . (7.14)
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The first two terms correspond to Case 1 and Case 2, and the others are com-
plicated multiple integrals which the interested reader can reconstruct.

The formula (7.14) makes sense even if (7.10) is violated, but is only valid
if, with probability 1, only tame coverings occur. It is conceivable that this
is true for all regenerative phenomena (in contradistinction to the Brownian
motion situation already mentioned). Certainly it is necessary only to assume
(7.10) for one of i = 1, 2, but it is not known if (7.14) has wider validity. If wild
coverings occur, equality must be replaced by inequality >.

Note also that (7.14) only gives information about µ on (0,∞), and the atom
at infinity needs to be dealt with separately, using the formula

∫ ∞

0

p(t)dt = µ{∞}−1 , (7.15)

which follows from (2.4) on letting θ → 0. It is perfectly possible to have
µ{∞} > 0 even if µ1{∞} = µ2{∞} = 0.

8 Kink analysis

Even if the formula (7.14) were shown to be valid for all p-functions, its form
is so complicated that it is of little use. There is therefore good reason to seek
techniques that, even if they give only partial information about the binary
operation (7.1), are simple enough to be useful. One such was introduced in
[37] under the title of kink analysis. If depends on the fact that, if µ has an
atom

µ{t} > 0 (0 < t <∞) (8.1)

it causes a kink in the graph of the p-function. In fact, p has right and left
derivatives with

p′(t+) − p′(t−) = µ{t} . (8.2)

This shows at once that, if p = p1p2, the corresponding measures have

µ{t} = p2(t)µ1(t) + p1(t)µ2{t} . (8.3)

If µ1 and µ2 are purely atomic, (8.3) determines the atoms of µ, but µ also
has a non-atomic component. However, (8.3) does show that

µ(dt) > p2(t)µ1(dt) + p1(t)µ2(dt) , (8.4)

and by continuity this inequality is valid for all p1, p2 in P . The analysis of
Section 7 explains the probabilistic meaning of (8.4).

The same technique is applied in [37] to powers of p-functions. If p ∈ P has
canonical measure µ, and (for α > 1) µα denotes the canonical measure of pα,
then the atoms of µα occur at exactly the same points as those of µ, and

µα{t} = αp(t)α−1µ{t} (0 < t <∞) . (8.5)

14



It follows that, if a measure να on (0,∞) is defined by

µα(dt) = αp(t)α−1να(dt) , (8.6)

then να increases with a:

µ 6 να 6 νβ (1 < α < β) . (8.7)

These results come tantalisingly close to proving that, if p ∈ PM and α > 1,
then pα ∈ PM. This would settle a question raised by David Williams [37].

9 Two conjectures of D.G. Kendall

In this final section, we draw attention to two problems, both raised by Kendall,
which are still open. Neither refers explicitly to regenerative phenomena, but it
is quite possible that their solution may draw on the theory.

The first of these is the Markov group conjecture [20]. A family of functions
pij satisfying the conditions (5.1)–(5.4) defines a semigroup of operators Pt(t >
0) on the space l1 by the recipe

(xPt)j =
∑

i∈S

xipij(t) (9.1)

when (xi ; i ∈ S) is a sequence with

‖x‖ =
∑

i∈S

|xi| <∞ . (9.2)

Equation (5.4) shows that

Ps+t = PsPt (s, t > 0) (9.3)

and (5.2) implies that the semigroup is strongly continuous in the sense that

lim
t↓0

‖xPt − x‖ = 0 (9.4)

for all x ∈ l1.
Equation (9.4) does not necessarily imply the stronger condition

lim
t↓0

‖Pt − I‖ = 0 , (9.5)

which is equivalent to (5.2) holding uniformly in i, j. This holds if and only if

Pt = exp(Qt) (9.6)

for some bounded operator Q on l1. Kendall noted that (9.6) implies that Pt

is defined for all t, positive or negative, although the pij for t < 0 will often be
negative.
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The semigroup (Pt) can be extended to a group of operators satisfying (9.3)
if and only if, for some and then for all t, Pt has an inverse as a bounded operator
on l1. The Markov group conjecture asserts that this can only happen when
(9.5) holds. Partial results have been obtained by Speakman [46], Williams
[47], Cuthbert [7] and Mountford [41], and these link the problem with the
oscillation of the p-functions pii. However, even the recent advances described
in Section 4 fail to resolve the conjecture. It has been argued [35] that the
problem is really one about finite positive matrices, in which case regenerative
phenomena may not play a part in any eventual solution.

The second conjecture has to do with what is sometimes called the germ

problem for Markov semigroups. However, the word ‘germ’ is used in quite
another way in Markov theory, and Reuter [42] talks instead of ‘0+-equivalence’.
Suppose that there are two different families pij = aij and pij = bij of solutions
to (5.1)–(5.4), and that for each i, j these exists γij > 0 such that

aij(t) = bij(t) (0 < t 6 γij) . (9.7)

Is it then the case that (9.7) holds for all t > 0?
Kendall ([22], Section 30) conjectured a positive answer, and some partial

results can be found in [42] and [48]. In particular, the answer is positive if γij

depends only on i [48] (or by a duality argument only on j). No counterexample
is known.

The link with regenerative phenomena is the p-matrix

(pij(t) ; i, j ∈ I) , (9.8)

where I is an arbitrary finite subset of S. A knowledge of pij(t) for t 6 γij

determines this matrix for t 6 γI , where

γI = min {γij ; i, j ∈ I} . (9.9)

Now there is a matrix analogue of the Volterra equation (5.6) for p-matrices, in
which p and m are replaced by I × I matrices pI and mI , and it can be shown
that mI(t) is determined by the values of pI on (0, t). Hence we know mI(t) for
t 6 γI .

The matrix-valued functions on mI for different I are related to one another
in a complicated way. It does seem possible that a sufficiently subtle use of
these relationships might show that the knowledge of mI can be extended to an
interval not depending on I, in which case the conjecture would be solved.

These arguments are very much of the flavour of the Lévy dichotomy, which
states [4] that, under (5.1)–(5.4), each function pij is either always or never
zero. Reuter’s analysis suggests a further conjecture that would strengthen the
Lévy dichotomy, that if (aij) and (bij) satisfy (5.1)–(5.4) and (for a particular
pair i, j),

aij(t) > bij(t) (9.10)

for all t > 0, then either aij(t) = bij(t) for all t, or aij(t) > bij(t) for all t.
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