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Abstract

In the analysis of stability in bifurcation problems it is often assumed that the
(appropriate reduced) equations are in normal form. In the presence of symmetry, the
truncated normal form is an equivariant polynomial map. Therefore, the determina-
tion of invariants and equivariants of the group of symmetries of the problem is an
important step. In general, these are hard problems of invariant theory, and in most
cases, they are tractable only through symbolic computer programs. Nevertheless, it is
desirable to obtain some of the information about invariants and equivariants without
actually computing them, for example, the number of linearly independent homoge-
neous invariants or equivariants of a certain degree. Generating functions for these
dimensions are generally known as “Molien functions”.

In this work we obtain formulas for the number of linearly independent homogeneous
invariants or equivariants for Hopf bifurcation in terms of characters and we show that
they are effectively computable in several concrete examples. This information allows
to draw some predictions about the structure of the bifurcations. For example, by
comparing the number of equivariants with the number of invariants of one higher
degree, it can be checked immediately whether the dynamics is variational (gradient-
like).
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1 Introduction

Symmetry appears naturally in several important physical models, and in many cases the

collection of all the symmetries of the problem forms a compact Lie group. Moreover, there

is a fully symmetric solution that loses stability as a parameter is varied, and this loss of

stability is due to the crossing of eigenvalues through the imaginary axis. When the eigen-

values are zero a steady-state bifurcation is expected to happen – that is, a bifurcation from

the group-invariant equilibrium to equilibria with less symmetry. When the eigenvalues are

imaginary, the bifurcation expected is a Hopf bifurcation to periodic solutions. A Liapunov-

Schmidt or center-manifold reduction reduces the bifurcation problem to equations on the

sum of the generalized eigenspaces of these eigenvalues. See for example Golubitsky and

Schaeffer [10] and Carr [2].

In a generic parametrized family of equations for a given symmetry group, there are re-

strictions on the multiplicity of the eigenvalues passing through the imaginary axis for some

critical value of the parameter. For steady-state bifurcation, the group of symmetries leaves

the kernel V of the linearization at the group-invariant solution invariant. Moreover, generi-

cally the action of that symmetry group on V is absolutely irreducible. See [12, Proposition

XIII 3.2]. For Hopf bifurcation, the group of symmetries leaves the imaginary eigenspace

of the linearization at the group-invariant solution for the critical value invariant. Gener-

ically, the action of the symmetry group is simple – the sum of two absolutely irreducible

representations, or irreducible but not absolutely irreducible. See [12, Proposition XVI 1.4].

In this paper we focus on the two situations: symmetric steady-state bifurcation problems

posed on absolutely irreducible spaces, and symmetric Hopf bifurcation problems posed on

simple spaces.

Because of the multiplicity of the eigenvalues, the linearized problem is highly degenerate

– there is no preferred direction within the eigenspace. This degeneracy is partially resolved

by the nonlinear terms, which are constrained by the symmetry; terms which respect the

symmetry are said to be equivariant. In a particular problem, one can specify the action of

the group on the eigenspace and construct equivariant polynomials of a given degree.

Our aim in this paper is to obtain formulas for the number of possible equivariant terms,

using only the character (trace) of the irreducible representations. This has a number of

advantages over working with the matrices of the representation. The characters of a rep-

resentation are unique, but the matrices themselves are not. Secondly, the characters of

the irreducible representations of many finite groups are tabulated, and are much easier to

work with than the matrices. Formulas for the number of equivariants are useful, because
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in a specific problem they can be used to confirm that all possible equivariants have been

found. Furthermore, by comparing the number of equivariants with the number of invari-

ants of one higher degree, it can be checked immediately whether the dynamics is variational

(gradient-like).

In Section 2 below we introduce the properties of representations and characters. Our

main new results are formulas for the numbers of invariants and equivariants for Hopf bi-

furcation in Section 4; we also show how to generalize the Molien formula to the case of

Hopf bifurcation in Section 6. Finally we present results of the application of our formulas,

obtaining new results for the numbers of invariants and equivariants for finite groups and

for the symmetry group of the sphere.

2 Background

In this section we review some important concepts concerning the representation theory of

compact Lie groups. For details, see for example Fulton et al. [8] and James et al. [16].

2.1 Representations

Let G be a compact Lie group acting linearly on a finite-dimensional real or complex vector

space V . Thus this action corresponds to a representation T of the group G on the vector

space V through a linear homomorphism from G to the group GL(V ) of invertible linear

transformations on V . The space V itself can be regarded as a G-module.

A subspace W of V is invariant under G if gW ⊆ W for all g ∈ G; in this case, we say

that W is a G-submodule of the G-module V . The action is said to be reducible if V possesses

a proper invariant subspace. Otherwise it is said to be irreducible. A representation T of

G is absolutely irreducible if the only linear maps on V commuting with G are the scalar

multiples of the identity.

Two representations T1 and T2 of a group G are equivalent if there exists a nonsingular

linear transformation S such that

T1(g) = ST2(g)S−1

for all g ∈ G.
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2.2 Haar Measure and Haar Integral

Since G is a compact group there exists an invariant measure µG on G such that∫
G

f(hg) dµ(g) =

∫
G

f(gh) dµ(g) =

∫
G

f(g) dµ(g) =

∫
G

f(g−1) dµ(g) (2.1)

for any continuous function f on G and for any h ∈ G. We assume that the measure is

normalised so that
∫
G

dµ(g) = 1 and
∫
G
f(g)dµ(g) is called the normalised Haar integral of

f . See Hochschild [14, page 9] for the proof and existence of the Haar integral. For finite

groups the Haar integral reduces to the “averaging over the group” formula∫
G

f(g) dµ(g) =
1

|G|
∑
g∈G

f(g) .

Using the Haar integral it is possible to construct a G-invariant inner product on V , that

is

(T (g)u, T (g)v) = (u, v) ,

for all u, v ∈ V and g ∈ G. See for example [12, Proposition XII 1.3]. Moreover, we can

choose an orthogonal basis with respect to such a G-invariant inner product where if Mg

denotes the matrix representing T (g) at this basis, then Mg is unitary for all g ∈ G, that is,

Mg−1 = M∗
g = M

t

g ,

Here, M t
g denotes the transpose matrix of Mg. In particular, if V is real then Mg is orthogonal

for all g ∈ G.

2.3 Real and Complex Representations

There are two ways to understand the relation between real and complex representations,

depending on which class of representations we choose as the most fundamental one. In

all texts on representation theory, the complex representations are considered as most fun-

damental – mainly to take advantage of the algebraic completeness of the complex field –

and then the real representations are defined as a special class of those representations. On

the other hand, in bifurcation theory, all the representations are real with the complex ones

arising due to extra structure, as for example, in Hopf bifurcation where the circle action

induces a complex structure on V . In this paper we assume the second point of view.

Let V be a real vector space. The complexification of V is the complex vector space V C

given by the following tensor product over R,

V C = V ⊗R C.
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The map v 7→ v⊗1 allows us to identify V canonically with a subset of V C. If {ei} is a basis

of V over R, then {ei ⊗ 1} (which we often write simply as {ei}) is a basis of V C over C. If

W is a complex vector space, we can restrict the definition of scalar multiplication to scalars

in R, thereby obtaining a vector space over R. This vector space we denote by WR. The

operations (·)C and (·)R are not inverse to each other: (V C)R has twice the real dimension

of V , and (WR)C has twice the complex dimension of W . More precisely,

(V C)R = V ⊕ iV (2.2)

as real vector spaces, where V means V ⊗1 in V ⊗R C and i refers to the real linear mapping

“multiplication-by-i”.

When a complex vector space W and a real vector space V are related by

WR = V ⊕ iV

we say that V is a real form of the complex vector space W . The formula (2.2) says that

any real space is a real form of its complexification.

It is convenient – especially when V or W is a G-module – to express these structures by

certain maps on V and W .

A real structure or conjugation on a complex vector space W is an involutive anti-linear

map σ : W → W , that is,

σ(αv) = αv , σ2 = id .

The real subspace of W defined by

V = Fix(σ) = {w ∈ WR : σ(w) = w} (2.3)

is a real form of W . Obviously, real structures in W are in bijective correspondence with

real forms V ⊂ WR. For example, let V C be the complexification of a real vector space V .

The map σ : (V C)R → (V C)R given by σ(u + iv) = u− iv, u, v ∈ V is called the canonical

conjugation of the complex vector space V C and the real form V of (V C)R is given by (2.3).

A complex structure on a real vector space V is a linear map J : V → V satisfying

J2 = −1, which is simply the “multiplication-by-i” map. A complex vector space W can

be regarded as the real vector space WR endowed with the complex structure w 7→ iw,

w ∈ WR. Conversely, if a complex structure J in a real vector space V is given, then we

may regard (V, J) as a complex vector space with the realification V with multiplication by

scalar given by (a+ bi)v = av + bJv, a, b ∈ R, v ∈ V .

For any complex vector space W , let us denote by W the complex vector space which

coincides with W as an additive group, but is endowed with the following multiplication by
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complex scalars: c · w = c̄w, c ∈ C, w ∈ W . In other words, if J is the given complex

structure in W , then W = (WR,−J). The vector space W is called the complex conjugate

of W .

Now suppose there is a group G acting on the real vector space V . Then the action of

g ∈ G on V can be extended to an action on V C by

g(v ⊗ z) = gv ⊗ z

for all z ∈ C and v ∈ V . This is equivalent to having gJ = Jg for all g ∈ G, where J is the

complex structure on V and we say that J is G-invariant in that case. On the other hand, if

W is a complex G-module with a G-invariant real structure σ, that is, gσ = σg for all g ∈ G
then the real form V = Fix(σ) of W is a real representation of G.

Finally, a G-module V is G-simple if either: V = U⊕U where U is absolutely irreducible

for G, or V is irreducible but not absolutely irreducible for G. In any case, there exists a

G-invariant complex structure J on V and in the first case we have (V, J) = U ⊗ C and

(V, J)R = U ⊕ iU .

2.4 Symmetric Tensor Power Representation

Let T1 and T2 be representations of a group G on the vector spaces V and W respectively.

The tensor product representation T1 ⊗ T2 on V ⊗W of G is defined by

(T1(g)⊗ T2(g)) (v ⊗ w) = T1(g)(v)⊗ T2(g)(w)

on elements of the type v ⊗ w and extending to the full space V ⊗W by linearity. Using

this rule, we can define the n-th tensor power representation T⊗n on the n-th tensor product

space V ⊗n.

The symmetric group Sn acts on the n-th tensor product space V ⊗n by permuting the

factors. This action commutes with the action of G on V ⊗n and therefore the n-th symmetric

tensor power

SnV = {x ∈ V ⊗n : σx = x for all σ ∈ Sn}

is a submodule of V ⊗n.

In the next proposition we collect some properties of the n-th symmetric tensor power.

Proposition 2.1 Let V and W be finite dimensional vector spaces over a field. Then there

are canonical isomorphisms:

Hom(SnV, V ) ∼= Lns (V, V ) , (2.4)
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Sn(V ⊕W ) ∼=
n⊕
i=0

SiV ⊗ Sk−iW . (2.5)

Here Lns (V, V ) denotes the vector space of V -valued symmetric n-multi-linear maps on

V × · · · × V and S0(V ) the ground field.

Proof: For (i) see [13, page 621] and for (ii) see [8, page 473]. 2

Let V ∗ be the dual space of V and denote the natural bilinear pairing between V and

V ∗ by 〈· , ·〉. The dual representation of G on V ∗ is defined by T ∗ : G → GL(V ∗) where

[T ∗(g)ψ](v) = ψ(T (g−1)v), or equivalently, 〈T (g)v, T ∗(g)ψ〉 = 〈v, ψ〉 for all g ∈ G, v ∈ V

and ψ ∈ V ∗. Of particular importance for representation theory is the isomorphism

V ∗ ⊗W ∼= Hom(V,W ) (2.6)

which maps v∗ ⊗ w to the homomorphism u 7→ v∗(u)w. If V is a complex representation of

a compact group G then one can choose a G-invariant hermitian inner product (· , ·) on V

which induces an equivalence of representations

V ∼= V ∗ . (2.7)

Finally, combining the isomorphisms (2.4) and (2.6) we have

Lns (V, V ) ∼= Hom(SnV, V ) ∼= (SnV )∗ ⊗ V . (2.8)

2.5 Characters

Recall that two elements g1, g2 ∈ G are conjugate if there is an element h ∈ G such that

g1 = hg2h
−1. Note that conjugacy is an equivalence relation on G and so partitions G into

separate classes, called conjugacy classes. A function f : G→ C is called a class function if

it is constant on the conjugacy classes. The character of a representation T of a group G is

the trace

χT (g) = trT (g) for all g ∈ G .

Note that characters are constant on conjugacy classes. In fact, the characters of the ir-

reducible representations form a basis for the vector space of class functions; therefore two

representations are equivalent if and only if they have the same character. The character of

a one-dimensional representation is said to be a linear character.
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Since all representations of a compact Lie group are equivalent to unitary representations

(by choosing an invariant inner product) we have tr(Mg−1) = tr
(
M g

)
. Then an inner product

can be defined on characters:

〈χ1, χ2〉 =

∫
G

χ1(g)χ2(g) dµG(g) =

∫
G

χ1(g)χ2(g−1) dµG(g) ,

or for finite groups,

〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ2(g) =
1

|G|
∑
g∈G

χ1(g)χ2(g−1) .

With respect to this inner product, the characters of irreducible inequivalent representations

are orthonormal and the relation

〈χ1, χ2〉 = 〈χ2, χ1〉 (2.9)

holds for any two characters χ1, χ2. See [16, Proposition 14.5].

Let V and W be two (real or complex) G-modules, with characters χV and χW , respec-

tively. Then

χV⊕W = χV + χW , χV⊗W = χV χW

χV ∗ = χV = χV , χS2V (g) =
1

2

(
χV (g)2 + χV (g2)

)
For the proof of these facts see for example Fulton et al. [8, Proposition 2.1]. More generally,

given a representation V with character χ we shall denote the character of the n-th symmetric

tensor power SnV by χ(n).

Usually the irreducible characters are defined for the complex representations and then

the characters of the irreducible real representations are computed from the complex ones.

In order to do this one should be able to decide when a complex representation has a real

form, that is, it is a complexification of an absolutely irreducible real representation. A

necessary condition is that the complex character χ must be real valued. However this is

not sufficient. The sufficient condition is supplied by the Frobenius-Schur indicator:

ιχ =

∫
G

χ(g2)dµ(g)

for an irreducible complex character χ according to the following:
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Theorem 2.2 For each irreducible complex character χ of G, we have

ιχ =


0, if χ is not real valued,

1, if χ can be realized over R,

−1, if χ is real but cannot be realized over R.

Proof: See for example [16, p. 274]. 2

Using this theorem one can list the real irreducible characters from the complex irre-

ducible characters:

(i) The complex characters χV with indicator 1 are exactly the real absolutely irreducible

characters, that is, V = UC where U is absolutely irreducible and χV (g) = χU(g) for

all g ∈ G.

(ii) For each non real valued character χV , its conjugate χV is also an irreducible complex

character and

χR
V = χV + χV (2.10)

is the real irreducible character of V R.

(iii) For each complex character χV with indicator -1, the character χR
V = 2χV is the real

irreducible character of V R.

2.6 Trace Formula

Recall that the fixed-point subspace of the action of G on V is defined by

Fix(G, V ) = {v ∈ V : T (g)v = v, ∀g ∈ G} .

Theorem 2.3 (Trace Formula) Let T be any representation of a compact group G over a

vector space V . Then

dim Fix(G, V ) =

∫
G

χV (g) = 〈χV , 1〉 (2.11)

where χV is the character of T , 1 is the character of the trivial representation of G and
∫
G

denotes the normalised Haar integral on G.

Proof: See for example [12, Theorem XIII 2.3]. 2
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3 Steady-State and Hopf Bifurcations

Let G act on a real vector space V and

dx

dt
= f(x, λ)

be a G-equivariant bifurcation problem on V , that is, f : V ×R → V is an one-parameter

family of smooth maps satisfying

f(T (g)v, λ) = T (g)f(v, λ)

for all g ∈ G,

f(0, 0) = 0 .

For steady-state bifurcation in the presence of a symmetry group G, generically we can

assume that G acts absolutely irreducibly on a real vector space V [12, Proposition XIII

3.2]. Moreover, if the action of G on V is non trivial it follows that Fix(G, V ) = {0} and

f(0, λ) ≡ 0.

When studying symmetric Hopf bifurcation, generically we can assume that V is a G-

simple real vector space and thus there is a complex structure J on V [12, Proposition XVI

1.4]. The complex structure J induces a natural action of the circle group S1 on V that

commutes with the action of G. Then one is naturally led to consider the representation

theory of G× S1.

More precisely, suppose that V is of the form V = U ⊕ U where U is an absolutely

irreducible representation of G. Then V = U ⊗C and G× S1 acts by

(g, θ)(w ⊗ z) = (gw)⊗ (eiθz)

for w ∈ W, z ∈ C, g ∈ G, θ ∈ S1. If we choose coordinates on U and identify it with Rm

then V = U ⊗C ∼= Cm. Now, G acts on Rm through m×m matrices with real entries hence

this action can be extended to an action of G on Cm; the circle S1 acts on Cm by

θ · (z1, . . . , zm) =
(
eiθz1, . . . , e

iθzm
)
.

See Golubitsky and Stewart [11] (see also Golubitsky et al. [12, Chapter XVI]). If V carries a

non-absolutely irreducible representation of G then there are two possibilities: V may be of

complex or quaternionic type according to whether the G-endomorphism algebra D = {A ∈
L(V ) : gA = Ag for all g ∈ G} of V is isomorphic to C or H. If V is of complex type there

are two possible actions of S1, one is identified with multiplication by eiθ and the other with
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e−iθ. If V is of quaternionic type then any circle subgroup of the unit quaternions will do

(all of them are conjugate). In other words, if V is a G-simple representation then V is also

a complex irreducible representation of G× S1.

We also consider the action of G× S1 on V ⊕ V where V is now regarded as a complex

vector space. Note that the action of S1 on V ⊕ V is given by

θ · (v1, v2) = (eiθv1, e
−iθv2)

for v1, v2 ∈ V and θ ∈ S1.

4 Counting Invariants and Equivariants

In this section we develop formulas for the dimensions of the vector spaces of polynomial

functions of degree k that are invariant or equivariant with respect to the action of G or

G× S1.

Let V be a finite dimensional vector space over the field K = R or K = C. A function

f : V → K is called a homogeneous polynomial of degree k on V if there exists a K-valued

symmetric k-multi-linear function

f̂ : V × · · · × V︸ ︷︷ ︸
k times

−→ K

such that f(v) = f̂(v, . . . , v) for all v ∈ V . Denote by Ls(V ) the space of all K-valued

symmetric multi-linear functions and PkV the vector space of all homogeneous polynomials

of degree k on V . Define

PV =
∞⊕
k=0

PkV .

Under the point-wise product PV becomes a graded commutative algebra over K. The

mapping f̂ 7→ f is a natural isomorphism of graded commutative algebras Ls(V )→ PV ; the

inverse mapping which associates to each polynomial a K-valued symmetric k-multi-linear

function is called polarisation. Using the isomorphism (2.8) we have

PkV ∼= (SkV )∗ . (4.1)

A map F : V → V is called a homogeneous polynomial map of degree k on V if there

exists a V -valued symmetric k-multi-linear map

F̂ : V × · · · × V︸ ︷︷ ︸
k times

−→ V
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such that F (v) = F̂ (v, . . . , v) for all v ∈ V . The vector space of all homogeneous polynomial

maps of degree k on V is denoted by ~PkV . Define

~PV =
∞⊕
k=0

~PkV .

Since the product of a polynomial map by a polynomial function is again a polynomial map it

follows that ~PV is a module over the ring of polynomial functions PV . The mapping F̂ 7→ F

is a natural isomorphism of K-vector spaces Ls(V, V ) → ~PV which is compatible with the

homomorphism Ls(V ) → PV . Here Ls(V, V ) denotes the space of all V -valued symmetric

multi-linear maps. Using the isomorphism (2.8) we have

~PkV ∼= (SkV )∗ ⊗ V . (4.2)

Example 4.1 There is a simple example to help understanding the three identifications

Lks(V ) ∼= PkV ∼= (SkV )∗ .

Let k = 2 and {ei : i = 1, . . . , n} be a basis of V . Then for x ∈ V we have

x =
∑
i

xiei .

The elements of L2
s(V ) are the symmetric bilinear forms on V , that is,

B(x, y) =
∑
i,j

aij x
iyj ,

where aij = aji. The elements of P2
V are the quadratic forms on V , that is,

Q(x) =
∑
i

aii (x
i)2 +

∑
i<j

2aij x
ixj .

The isomorphism between L2
s(V ) and P2

V is given by Q(x) = B(x, x) with inverse B(x, y) =
1
2
(Q(x+ y)−Q(x)−Q(y)).

The elements of (S2V )∗ = S2(V ∗) are the symmetric 2-tensors on V ∗, that is,

T =
∑
i,j

aij e
i⊗ ej ,

where aij = aji and {ei : i = 1, . . . , n} is the dual basis on V ∗. The isomorphism between

L2
s(V ) and S2(V ∗) is given by B(x, y) = 〈x⊗ y, T 〉. 3
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Now suppose that T is a unitary or orthogonal representation of a compact Lie group G

on V . A polynomial function f : V → K is invariant under G if f(T (g)v) = f(v) for all g ∈
G, v ∈ V . A polynomial mapping F : V → V is equivariant under G if F (T (g)v) = T (g)F (v)

for all g ∈ G, v ∈ V . The vector space PV (G) of G-invariant polynomials is a sub-algebra

of the algebra of all polynomial functions PV on V and PkV (G) = PV (G) ∩ PkV is the vector

space of homogeneous G-invariant polynomials of degree k. Under the isomorphism (4.1) we

have

PkV (G) ∼= Fix(G, (SkV )∗) . (4.3)

The space of G-equivariant polynomial mappings from V to V is a module over the ring

PV (G), and we denote it by ~PV (G). Similarly, the space of homogeneous G-equivariant

polynomial maps from V to V of degree k is ~PkV (G) = ~PV (G)∩ ~PkV . Under the isomorphism

(4.2) we have
~PkV (G) ∼= Fix(G, (SkV )∗ ⊗ V ) . (4.4)

Now, we recall the use of character theory to compute the dimension of PkV (G) and ~PkV (G)

for an arbitrary representation of a compact Lie group G.

Theorem 4.2 Let T be a unitary or orthogonal representation of a compact Lie group G

on a finite-dimensional vector space V , and denote by χ the corresponding character and by

χ(k) the character of the induced action of G on the k-th symmetric power SkV . Then:

(i)

dimPkV (G) =

∫
G

χ(k)(g) = 〈χ(k), 1〉 (4.5)

where 1 is the character of the trivial representation of G.

(ii)

dimR
~PkV (G) =

∫
G

χ(k)(g)χ(g) = 〈χ(k), χ〉 , (4.6)

if V is a real vector space and G acts orthogonally and

(iii)

dimC
~PkV (G) =

∫
G

χ(k)(g)χ(g) = 〈χ(k), χ〉 , (4.7)

if V is a complex vector space and G acts unitarilly.

Proof: See for example Sattinger [21, Theorem 5.10.]. The Trace Formula (2.11) applied

to the isomorphism (4.3) yields

dimPkV (G) = dim Fix(G, (SkV )∗) =

∫
G

χ(k)(g
−1) =

∫
G

χ(k)(g)
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where the last equality follows from one of the properties (2.1) of the Haar integral.

For the equivariants, we use the isomorphism (4.4) and apply the Trace Formula (2.11):

dim ~PkV (G) = dim Fix(G, (SkV )∗ ⊗ V ) =

∫
G

χ(k)(g
−1)χ(g) .

If V is real and the representation of G on V is orthogonal, it follows that χ(g−1) = χ(g)

and then

dimR
~PkV (G) =

∫
G

χ(k)(g)χ(g) .

On the other hand, if V is complex and the representation of G on V is unitary, it follows

that χ(g−1) = χ(g) and then

dimC
~PkV (G) =

∫
G

χ(k)(g)χ(g) =

∫
G

χ(k)(g)χ(g) ,

where the last equality follows from (2.9). 2

There is a recursive formula for the character χ(k) of G acting on SkV :

k χ(k)(g) =
k−1∑
i=0

χ(gk−i)χ(i)(g). (4.8)

To prove this, let G act unitarilly on a finite-dimensional complex vector space, say W ≡ Cn.

Denote by T the representation, χ the corresponding character and χ(k) the character of the

induced action of G on the kth symmetric power SkW . Fix g ∈ G. We have that T (g) is

diagonalisable. Suppose that λ1, . . . , λn are the eigenvalues of T (g). It follows then that

χ(k)(g) =
∑

λm1
1 . . . λmnn

where the sum is over all non-negative integers mj satisfying m1+· · ·+mn = k. We introduce

the generating function

f(t) =
1

(1− λ1t) · · · (1− λnt)
.

Observe that f is well defined for t in a sufficiently small neighbourhood of t = 0. Moreover,

all the kth derivatives at t = 0 exist, and

χ(k)(g) =
fk(0)

k!
.

By induction, it can be shown that

k
fk(0)

k!
=

k−1∑
j=0

(λk−j1 + · · ·+ λk−jn )
f j(0)

j!

14



where f 0(0) = 1 and observe that

χ(gj) = λj1 + · · ·+ λjn.

Therefore

kχ(k)(g) =
k−1∑
j=0

χ(gk−j)
f j(0)

j!
=

k−1∑
j=0

χ(gk−j)χ(j)(g).

For k = 2, 3 we obtain:

χ(2)(g) =
1

2

(
χ(g)2 + χ(g2)

)
,

χ(3)(g) =
1

6

(
χ(g)3 + 3χ(g)χ(g2) + 2χ(g3)

)
,

χ(4)(g) =
1

4!

(
χ(g)4 + 3χ(g2)2 + 6χ(g)2χ(g2) + 8χ(g)χ(g3) + 6χ(g4)

)
.

There is also an explicit but rather unwieldy expression for χ(k)(g):

χ(k)(g) =
∑ χi1(g)χi2(g2) · · ·χik(gk)

1i1i1! 2i2i2! · · · kikik!

where the sum is over all non-negative integers ij satisfying
∑k

j=1 jij = k. See [21, p. 110].

Remark 4.3 A number of well known results regarding the number of invariants and equiv-

ariants in the absolutely (and nontrivial) irreducible case follow from Theorem 4.2 and the

properties of characters in Section 2.5. There can be no invariant of degree 1, and there is

only one equivariant of first degree, which is simply the identity mapping. There is a unique

independent quadratic invariant, which in the orthogonal case is
∑m

k=1 x
2
k. This last result

follows from the fact that
∫
G
χ(2)(g) = 1, which in turn follows from Theorem 2.2. 3

The character formulas for the dimensions of invariants and equivariants are very con-

venient when G is a finite group, since they can be explicitly evaluated using GAP [9].

Examples of the application of these formulas are given in Section 7.

As a corollary of Theorem 4.2, we obtain:

15



Corollary 4.4 Let V be a G-simple real representation and denote by χ the character of the

complex representation of G× S1 on V . Then:

(i) Denoting by χ(k) the character of k-th symmetric tensor power of V , we have

dimCPkV (G× S1) =

∫
G×S1

χ(k)(g, θ), dimC
~PkV (G× S1) =

∫
G×S1

χ(k)(g, θ)χ(g, θ),

(ii) Denoting by χR the character of V R and by χR
(k) the character of k-th symmetric tensor

power of V R, we have

dimRPkV R(G× S1) =

∫
G×S1

χR
(k)(g, θ), dimR

~PkV R(G× S1) =

∫
G×S1

χR
(k)(g, θ)χ

R(g, θ)

When V = U ⊕ U for some absolutely irreducible representation U of G – which is the

most common case in applications – the following observation leads to a simplification in the

formulas. Let G act absolutely irreducibly on U and χ(g) be the corresponding character.

If we write χR(g, θ) for the real character of the action of G× S1 on V R = U ⊕U then from

(2.10) we have

χR(g, θ) = eiθχ(g) + e−iθχ(g) = 2 cos(θ)χ(g) . (4.9)

It follows that the formulas of Corollary 4.4 can be written as an integral over G of an

expression depending only on χ, the character of G.

Example 4.5 Applying the above formula for χ(2) and using (4.9) we obtain

dimRP2
V R(G× S1) = dim FixR

(
G× S1, S2(V R)

)
=

∫
G×S1

χ(2)(g, θ)

=
1

2

∫
S1

4 cos2(θ)

∫
G

χ(g)2 +
1

2

∫
S1

2 cos(2θ)

∫
G

χ(g2)

=

∫
G

χ(g)2.

The last equality follows from the fact that
∫

S1 cos(2θ) = 0 and
∫

S1 cos2(θ) = 1/2. 3

The above result was obtained by Montaldi et al. [19], together with formulas for the

cases k = 4 and k = 6. In Theorem 4.6 below, we generalise these results to the case of

arbitrary k, and also give the corresponding formula for equivariants.

The most convenient way to write invariants and equivariants for Hopf bifurcation is to

use coordinates adapted to the circle action. Let {v1, . . . , vm} be a basis of V (over C).

16



Then {v1, . . . , vm; iv1, . . . , ivm} is a basis of V over R. Denote by {x1, . . . , xm; y1, . . . , ym}
the coordinates of a vector v ∈ V relative to this basis and let zj = xj + iyj for j = 1, . . . ,m.

Then xj = (zj + zj)/2, yj = −i(zj − zj)/2 and

v =
m∑
j=1

(xj + iyj)vj =
m∑
j=1

zjvj .

Thus any polynomial f on V can be written either as a linear combination of monomials

which are products of powers of the real coordinates xj and yj, or as a linear combination

of monomials which are products of powers of the complex coordinates zj and zj. To be

more precise, let us write z = (z1, . . . , zm) and using multi-indices, any polynomial function

f : V R → C can be written as

f(z, z) =
∑
α,β

aαβz
αzβ (4.10)

where α, β ∈ (Z+
0 )m, zα = zα1

1 zα2
2 . . . zαmm and the coefficients aαβ may be required to be

complex.

Consider the action of S1 on V ⊕ V as before, given by

θ (v1, v2) =
(
eiθv1, e

−iθv2

)
.

Note that V R is the subspace of V ⊕V such that v1 = v2 and it is invariant under the action

of G × S1. Now it follows that if f is S1-invariant then for each α, β such that aαβ 6= 0 we

must have |α| = |β| (where |α| = α1 + α2 + · · · + αm). Therefore f has even degree in z, z.

Similarly, if g : V R → V R has components

gj(z, z) =
∑
α,β

bαβz
αzβ

then the S1-equivariance is equivalent to have |α| = |β| + 1 if bαβ 6= 0. This is [12, Lemma

XVI 9.3]. Therefore g has odd degree components in z, z.

Theorem 4.6 Let U be a finite-dimensional absolutely irreducible representation of G and

denote by χ the corresponding character. Let S1 act on C by

θ · z = eiθz (θ ∈ S1, z ∈ C).

and V = UC. Then

dimRP2k
V R(G× S1) =

∫
G

χ(k)(g)2, dimC
~P2k+1
V R (G× S1) =

∫
G

χ(k+1)(g)χ(k)(g)χ(g) .
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Proof: We know that the space PkV R(G×S1) can be identified with the real vector space

Fix
(
G× S1,

(
Sk
(
V R
))∗)

. Since V ⊕ V = UC ⊕ UC and V R = U ⊕ U we have

V ⊕ V = (U ⊕ U)C

as representations of G× S1. Therefore,

dimR Fix
(
G× S1,

(
Sk
(
V R
))∗)

= dimR Fix
(
G× S1,

(
Sk(U ⊕ U)

)∗)
= dimC Fix

(
G× S1,

(
Sk
(
V ⊕ V

))∗)
.

Recall that a polynomial on V is invariant under G× S1 if and only if it is invariant under

G and S1. Note that

S2k(V ⊕ V ) ∼=
2k⊕
a=0

SaV ⊗ S2k−aV

and from the S1 action, it follows that

Fix
(
S1,
(
S2k

(
V ⊕ V

))∗) ∼= (
SkV ⊗ SkV

)∗
.

Therefore

Fix
(
G× S1,

(
S2k

(
V ⊕ V

))∗) ∼= Fix
(
G,
(
SkV ⊗ SkV

)∗)
.

Using the Trace Formula (2.11) we have

dimC Fix
(
G,
(
SkV ⊗ SkV

)∗)
=

∫
G

χ(k)(g)χ(k)(g) . (4.11)

Now, χ is also the character of the representation of G on U and hence it is real valued.

Thus

dimR Fix
(
G× S1,

(
SkV R

)∗)
=

∫
G

χ(k)(g)2 . (4.12)

For the equivariants, we have

~P2k+1
V R (G× S1) ∼= Fix

(
G× S1,

(
S2k+1

(
V R
))∗ ⊗ V ) .

As before

dimC Fix
(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V

)
= dimC Fix

(
G× S1,

(
S2k+1(U ⊕ U)

)∗ ⊗R V
)

= dimC Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)

and

S2k+1
(
V ⊕ V

) ∼= 2k+1⊕
a=0

SaV ⊗C S2k+1−aV .
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Moreover, from the S1-equivariance it follows that

Fix
(
S1,
(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)
∼= (Sk+1V ∗ ⊗C SkV

∗
)⊗C V

and so by (2.7)

Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)
∼= Fix

(
G,Sk+1V ⊗C SkV ⊗C V

)
Again, by the Trace Formula we obtain

dimC Fix(G,Sk+1V ⊗C SkV ⊗C V ) =

∫
G

χ(k+1)(g)χ(k)(g)χ(g) . (4.13)

Since χ is also the character of the representation of G on U , it is real valued and we have

dimC Fix
(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V

)
=

∫
G

χ(k+1)(g)χ(k)(g)χ(g) (4.14)

since the polynomials are complex valued. 2

See Table 1 for the dimensions of the spaces of invariants and equivariants of lower degrees

for G× S1 on V R.

k dimRPkV R(G× S1) k dimC
~PkV R(G× S1)

2

∫
G

χ(g)2 1

∫
G

χ(g)2

4

∫
G

χ(2)(g)2 3

∫
G

χ(2)(g)χ(g)2

6

∫
G

χ(3)(g)2 5

∫
G

χ(3)(g)χ(2)(g)χ(g)

Table 1: Dimension of space of invariants and equivariants of degree k for G× S1 on V R.

Proposition 4.7 Let U be an absolutely irreducible representation of G with corresponding

character χ and V = U ⊗ C the irreducible representation of G × S1. Then for each non-

trivial linear character λ of G the dimensions of the spaces of invariants and equivariants

of the irreducible representation corresponding to λχ are equal to dimRPkV R(G × S1) and

dimC
~PkV R(G× S1), respectively.
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Proof: Let λ be a nontrivial linear character of G and let φ = λχ. Let k ≥ 1. Since λ is

a linear character, we have

φ(k)(g) = λ(g)kχ(k)(g).

Thus

φ2
(k) = λ2kχ2

(k) = χ2
(k), φ(k+1) φ(k) φ = λ2k+2χ(k+1) χ(k) χ = χ(k+1) χ(k) χ

since λ(g) = ±1 and so λ2k is the trivial character. Hence we have shown that∫
G

χ(k)(g)2 =

∫
G

φ(k)(g)2,

∫
G

χ(k+1)(g)χ(k)(g)χ(g) =

∫
G

φ(k+1)(g)φ(k)(g)φ(g) .

2

5 Hilbert-Poincaré Series

We review Hilbert-Poincaré series for the rings of invariants and modules of equivariants for

general compact Lie groups, before presenting new results for Hopf bifurcation in Section 6.

The original definition of Hilbert-Poincaré series is for complex representations. In this paper

we are interested in real representations. As we explain (see Remark 5.1 below) the ‘real’

and ‘complex’ Hilbert-Poincaré series are the same.

Let G be a compact Lie group acting on V = Rm. Without loss of generality, we can

assume that G acts orthogonally and linearly on V , so that any g ∈ G acts as an orthogonal

matrix Mg with real entries. Moreover, we can view it as a matrix acting on V C = Cm. If

(x1, . . . , xm) denote real coordinates on Rm, xj ∈ R, then we obtain complex coordinates on

Cm by permitting the xj to be complex. Note that there is a natural inclusion

R[x1, . . . , xm] ⊆ C[x1, . . . , xm]

where these are the rings of polynomials in the xj with coefficients in R, C respectively.

Remark 5.1 Every real-valued G-invariant in R[x1, . . . , xm] is also a complex-valued G-

invariant in C[x1, . . . , xm]. Conversely, the real and imaginary parts of a complex valued

invariant are real invariants (because the matrices Mg have real entries). Therefore a basis

over R for the real vector space of degree k real-valued invariants is also a basis over C

for the complex vector space of degree k C-valued invariants. Similar remarks apply to the

equivariants. 3
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We suppose now that V is a m-dimensional vector space over C, where x1, . . . , xm denote

coordinates relative to a basis for V , and G ⊆ GL(V ) is a compact Lie group acting on V .

Let PV (G) denote the sub-algebra of C[x1, . . . , xm] formed by the invariant polynomials

under G (over C). Note that C[x1, . . . , xm] is graded:

C[x1, . . . , xm] = R0 ⊕R1 ⊕R2 ⊕ · · ·

where Rk consists of all homogeneous polynomials of degree k. Now observe that if f(x) ∈ Rk

for some k then f(gx) ∈ Rk for all g ∈ G. Therefore the space PV (G) has the structure

PV (G) = P0
V (G)⊕ P1

V (G)⊕ P2
V (G)⊕ · · ·

of a graded C-algebra given by PkV (G) = Rk ∩ PV (G).

The Hilbert-Poincaré series of the graded algebra PV (G) is a generating function for the

dimension of the vector space of invariants at each degree defined by

ΦG(t) =
∞∑
d=0

(dimPdV (G))td.

Throughout we denote by g the linear transformation corresponding to the action of

g ∈ G on V .

Consider the normalised Haar measure µG defined on G and denote by
∫
G
f the integral

with respect to µG of a continuous function f defined on G. Molien’s Theorem gives an

explicit formula for ΦG:

Theorem 5.2 (Molien’s Theorem) Let G be a compact Lie group acting on V . Then the

Hilbert-Poincaré series of PV (G) is

ΦG(t) =

∫
G

1

det(1− gt)
Proof: See Molien [18] for the original proof of the finite case, and Sattinger [21] for the

extension to a compact group. 2

If G is finite, the Molien formula for the Hilbert-Poincaré series of PV (G) is

ΦG(t) =
1

|G|
∑
g∈G

1

det(1− gt)
.

Equivariants can be interpreted as invariants with respect to a different action of G on

a different space. See Section 4 for details. The Hilbert series for the graded module ~PV (G)

over the ring PV (G) is the generating function

ΨG(t) =
∞∑
d=0

dim( ~PdV (G))td
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and an explicit formula for ΨG is given by:

Theorem 5.3 (Equivariant Molien Theorem) Let G be a compact Lie group with an

action defined on V . Then the Hilbert-Poincaré series of the module ~PV (G) over PV (G) is

ΨG(t) =

∫
G

χ(g−1)

det(1− gt)

where χ is the character for the G action on V .

Proof: See Sattinger [21]. 2

Observe that if the action of G on V is orthogonal then g−1 = gt and χ(g−1) = χ(g).

6 Hilbert-Poincaré Series for Hopf Bifurcation

In Section 5 we reviewed Hilbert-Poincaré series that consist of a generating function for

counting the number of invariant real polynomials in a real representation or the number

of invariant complex polynomials in a complex representation, as a function of their degree.

For the equivariants, the situation is analogous.

We are now interested in counting G-invariant real polynomials in a complex representa-

tion V of a group G. Therefore, the application of the Molien Theorem of Section 5 supposes

the choice of a basis for V (as a real vector space) and to take the corresponding action of

G on this basis. The disadvantage of this approach is that one no longer have coordinates

adapted to the S1-action.

In order to avoid this problem, we modify the Poincaré series and the Molien function.

That is, we complexify the problem as described in Section 3. Taking z, z coordinates, we

obtain that any polynomial p on V can be written as a linear combination of monomials which

are products of powers of the complex coordinates zj and zj. For z = (z1, . . . , zm) ∈ Cm,

and z = (z1, . . . , zm), using multi-indices, any polynomial function p : Cm → R can be

written as

p(z, z) =
∑
α,β

aαβz
αzβ (6.1)

where the coefficients aαβ may be required to be complex. Here α, β ∈ (Z+
0 )m. Moreover,

p(z, z) =
∑
k≥0

pk(z, z)
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where
pk(z, z) =

∑
q+r=k pq,r(z, z)

pq,r(z, z) =
∑
|α|=q, |β|=r aαβ z

αzβ .

The polynomial pq,r(z, z) is homogeneous of degree k (if q + r = k) and of bidegree (q, r).

These decompositions preserve the invariance under the group: the polynomial function

p is invariant if and only if each pk is invariant. Moreover, pk is invariant if and only if

each pq,r with q + r = k is invariant. Denoting by cq,r the dimension of the space of real

G-invariants of bidegree (q, r), Forger [7] defines the generating function of two variables

ΦG (z, z) =
∞∑

q,r=0

cq,rz
qzr

and obtains the following integral form:

Theorem 6.1 ( [7]) Let G be a compact Lie group acting on a complex vector space V .

Then the bigraded Hilbert-Poincaré series of PV (G) is

ΦG (z, z) =

∫
G

1

det(1− gz) det(1− gz)

where
∫
G

is the normalised Haar integral on G.

Proof: See Forger [7]. 2

Denoting by eq,r the complex dimension of the space of G-equivariants with homogeneous

polynomial components of bidegree (q, r), we define the generating function of two variables

ΨG (z, z) =
∞∑

q,r=0

eq,rz
qzr

and we obtain the following integral form:

Theorem 6.2 Let G be a compact Lie group acting on a complex vector space V . Then the

bigraded Hilbert-Poincaré series of ~PV (G) is

ΨG (z, z) =

∫
G

χ
(
g−1
)

det(1− gz) det
(
1− gz

)
where

∫
G

is the normalised Haar integral on G and χ is the character of the (complex)

representation of G on V .
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Proof: The proof is similar to that for the usual Molien function [21, pages 109-111].

Consider the space V ⊕ V and since

dimC V ⊕ V = dimR V
R

we have

dimC

(
SqV ⊗ SrV

)∗ ⊗ V = dimC
~Pq,rV .

that is, the complex valued mappings from V to V with polynomial components homogeneous

of bidegree (q, r) are in one-to-one correspondence with
(
SqV ⊗ SrV

)∗ ⊗ V . Moreover, the

action of the group G on V induces an action of G on
(
SqV ⊗ SrV

)∗ ⊗ V and therefore the

G-equivariant mappings from V to V with polynomial components homogeneous of bidegree

(q, r) are in one-to-one correspondence with the G-invariant elements of
(
SqV ⊗ SrV

)∗ ⊗ V
under this induced action.

By the Trace Formula we have

dimC Fix
(
G,
(
SqV ⊗ SrV

)∗ ⊗ V ) =

∫
G

χ(q,r)(g)χ(g) =

∫
G

χ(q,r)(g)χ(g)

where χ(q,r) is the character of the induced action of G on SqV ⊗ SrV .

The rest of the proof consists in calculating the character χ(q,r) and we follow [7]. Fix

g ∈ G and as before let g denote the linear transformation corresponding to the action

of g ∈ G on V . Since g is an unitary matrix it can be diagonalized. Suppose that V has

complex dimension m, and let w1, . . . , wm be a basis of V consisting of eigenvectors of g, with

eigenvalues λ1, . . . , λm. The monomials zαzβ where |α| = q and |β| = r form a basis of the

space of homogeneous polynomials on V ⊕ V of bidegree (q, r). Moreover, they correspond

to the eigenvectors associated with the eigenvalues λαλ
β

of the induced action of G. Here we

use multi-indice notation for λ and λ. Recall that χ(p,q) is the character of the representation

of G on the space of polynomials on V ⊕ V of bidegree (q, r). We obtain

χ(q,r)(g) =
∑

|α|=q, |β|=r

λαλ
β

In what follows, we use zλ to denote (zλ1, . . . , zλm) and z λ to denote
(
z λ1, . . . , z λm

)
.

Multiplying by zqzr and summing over q and r, we obtain the formal power series
∞∑

q,r=0

χq,r(g)zqzr =
∞∑

q,r=0

∑
|α|=q, |β|=r

(zλ)α
(
z λ
)β

=
m∏
j=1

1

(1− zλj)

m∏
j=1

1(
1− z λj

)
=

1

det(1− zg)

1

det
(
1− z g

) .
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Finally, multiplying by χ and using the Trace Formula we obtain the result. 2

Theorem 6.3 Let G act absolutely irreducibly on a finite-dimensional real vector space V ,

and let S1 act on C by

θ · z = eiθz (θ ∈ S1, z ∈ C)

Consider the tensor product representation of G×S1 on V ⊗R C. Then the bigraded Hilbert-

Poincaré series for PV⊗RC(G× S1) and for ~PV⊗C(G× S1) are given by

ΦG×S1 (z, z) =
1

2π

∫ 2π

0

ΦG

(
eiθz, e−iθz

)
dθ

and

ΨG×S1 (z, z) =
1

2π

∫ 2π

0

e−iθΨG

(
eiθz, e−iθz

)
dθ .

where ΦG and ΨG are the bigraded Hilbert-Poincaré series for PV⊗RC(G) and ~PV⊗RC(G),

respectively.

Proof: Given (g, θ) ∈ G× S1, we have

det(1− (g, θ)z) = det
(
1− g

(
eiθz

) )
and

χ
(
(g, θ)−1

)
= e−iθχ

(
g−1
)
.

Applying Theorems 6.1, 6.2 and using the fact that the normalised Haar measure on the

circle group S1 is 1
2π

dθ, we obtain the above formulas. 2

Example 6.4 Consider the symmetry group D4 of the square. The group is generated by

the permutations g = (1234) and κ = (12)(34) and the conjugacy classes are {e}, {g2},
{g, g3}, {κ, g2κ} and {gκ, g3κ}.

A two-dimensional representation of D4 is obtained by considering the standard action

of D4 as rotations and reflections in the plane: let T (g) denote the matrix for the rotation

through 2π/4 and T (κ) the matrix of the reflection in the y-axis. Thus

T (g) =

(
0 −1

1 0

)
, T (κ) =

(
−1 0

0 1

)
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Note that T acts on V = R2 irreducibly. The Hilbert-Poincaré series for PV (D4) and
~PV (D4), are:

ΦD4(t) =
1

8

(
1

(1− t)2
+

1

(1 + t)2
+

2

1 + t2
+

4

1− t2

)

ΨD4(t) =
1

8

(
2

(1− t)2
− 2

(1 + t)2

)
Consider now the action of D4×S1 on V = C where θ ∈ S1 acts on C by multiplication

by eiθ. The bigraded Hilbert-Poincaré series for PV⊗C(D4) and ~PV⊗C(D4) are:

ΦD4 (z, z) =
1

8

(
1

(1− z)2 (1− z)2 +
1

(1 + z)2 (1 + z)2

+
2

(1 + z2) (1 + z2)
+

4

(1− z2) (1− z2)

)

ΨD4 (z, z) =
1

8

(
2

(1− z)2 (1− z)2 −
2

(1 + z)2 (1 + z)2

)
Then the bigraded Hilbert-Poincaré series for D4 × S1 are:

ΦD4×S1 (z, z) =

∫
S1

ΦD4

(
eiθz, e−iθz

)
= 1 + zz + 3z2z2 + 4z3z3 + 7z4z4 + · · ·

ΨD4×S1 (z, z) =

∫
S1

e−iθΨD4

(
eiθz, e−iθz

)
= z + 3z2z + 6z3z2 + 10z4z3 + · · ·

3

Hence, the numbers of independent invariants of degree (2, 4, 6, 8) are (1, 3, 4, 7), and

the numbers of independent equivariants of degree (3, 5, 7) are (3, 6, 10). These are all in

agreement with the results obtained using the character formulas (4.12), (4.14) given in

Table 4 below.

7 Examples: Finite Groups

In this section we first go through an example of the calculation of the dimensions of the

spaces of invariants and equivariants using characters for a particular group action, and then

summarise the results obtained computationally for several other groups.
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Class 1 (12) (123) (12)(34) (1234)

|Class| 1 6 8 3 6

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 2 0 −1 2 0

χ4 3 1 0 −1 −1

χ5 3 −1 0 −1 1

Table 2: Character table of S4. The rows are indexed by the irreducible characters of S4 and

the columns are indexed by the conjugacy class representatives.

Class 1 (12) (123) (12)(34) (1234)

|Class| 1 6 8 3 6

χ(g) 3 1 0 −1 −1

χ(g2) 3 3 0 3 −1

χ(g3) 3 1 3 −1 −1

χ(g4) 3 3 0 3 3

χ(2)(g) 6 2 0 2 0

χ(3)(g) 10 2 1 −2 0

χ(4)(g) 15 3 0 3 1

Table 3: Irreducible character χ(g) and derived characters χ(gk) and χ(k)(g) for the group

S4, for the natural character labelled χ4 in Table 2.

Example 7.1 Consider the permutation group S4, which has five conjugacy classes contain-

ing elements of the same cycle type. The character table for S4 is given in Table 2. The group

acts on R3 via the ‘natural’ irreducible representation in which the character χ(g) for each

class is obtained by subtracting one from the number of elements fixed by each permutation;

this character is denoted by χ4 in Table 2. From this character we can find the characters

χ(gk) and χ(k)(g). These are listed in Table 3 for k ≤ 4. From the information in that table

it is then possible to calculate the dimensions of the spaces of invariants and equivariants for

stationary and Hopf bifurcation, by finding the appropriate sums using Theorems 4.2 and

4.6 respectively.

Since χ is irreducible of real type there is only one quadratic invariant (we refer to ‘number

of invariants’ as an abbreviation for the dimension of the space of invariants). From (4.5),
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the number of cubic invariants is

I(3) =
1

24

∑
g

χ(3)(g) =
1

24
(10− 6 + 12 + 8) = 1

and the number of quartic invariants is

I(4) =
1

24

∑
g

χ(4)(g) =
1

24
(15 + 6 + 9 + 18) = 2 .

The number of quadratic equivariants is, using (4.6),

E(2) =
1

24

∑
g

χ(2)(g)χ(g) =
1

24
(18− 6 + 12) = 1

and the numbers of cubic and quartic equivariants are

E(3) =
1

24

∑
g

χ(3)(g)χ(g) = 2, E(4) =
1

24

∑
g

χ(4)(g)χ(g) = 2 .

For the case of Hopf bifurcation, there is one quadratic invariant and the numbers of

invariants of degree 4, 6, 8 are found from (4.12) to be

IH(4) =
1

24

∑
g

χ(2)(g)2 = 3, IH(6) =
1

24

∑
g

χ(3)(g)2 = 6,

IH(8) =
1

24

∑
g

χ(4)(g)2 = 13 .

The numbers of equivariants of degree 3, 5, 7 are, using (4.14),

EH(3) =
1

24

∑
g

χ(2)(g)χ(g)2 = 3, EH(5) =
1

24

∑
g

χ(3)(g)χ(2)(g)χ(g) = 9,

EH(7) =
1

24

∑
g

χ(4)(g)χ(3)(g)χ(g) = 21 .

3

Note that the group S4 has another three-dimensional irreducible representation in which

the character χ5(g) is the same as χ(g) except for a sign change of the elements (1234) and

(12). See Table 2 where χ = χ4 and χ5 = χ2χ4. Hence by Proposition 4.7, the numbers of

invariants and equivariants for Hopf bifurcation in this representation are the same as those

given above. Hopf bifurcation in this representation, which arises from the symmetries of
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G D I(3) I(4) I(5) E(2) E(3) E(4) E(5) IH(4) IH(6) IH(8) EH(3) EH(5) EH(7)

S3 2 1 1 1 1 1 2 2 2 3 5 2 4 7

S4 3 1 2 1 1 2 2 4 3 6 13 3 9 21

S5 4 1 2 2 1 2 3 4 3 7 19 3 11 33

S6 5 1 2 2 1 2 3 5 3 8 24 3 12 41

A4 3 1 2 1 1 3 3 6 4 10 21 5 16 39

A5 3 0 1 0 0 1 0 2 2 3 6 2 4 9

A5 4 1 2 2 1 2 3 4 3 8 24 3 14 48

A5 5 2 2 4 2 3 8 12 6 24 92 7 46 210

D4 2 0 2 0 0 2 0 3 3 4 7 3 6 10

D5 2 0 1 1 0 1 1 1 2 2 3 2 3 4

D6 2 0 1 0 0 1 0 2 2 3 5 2 4 7

Table 4: Dimensions of vector spaces of invariants I(k) and equivariants E(k) of degree k for

stationary bifurcation, and invariants IH(k) and equivariants EH(k) for Hopf bifurcation,

for several symmetric, alternating and dihedral groups. D denotes the dimension of the

irreducible representation.

rotations of the cube, was investigated by Ashwin and Podvigina [1], who also pointed out

this equivalence.

In Table 4 we show the numbers of invariants and equivariants for stationary and Hopf

bifurcation for a number of finite groups. These results were obtained by adapting an

existing computer program originally written to obtain isotropy subgroups using characters

and trace formulae [17]. The program is written in the GAP [9] language, where χ(gk) can

be computed using the k-th power map of the conjugacy classes, and so χ(k) can be found

using the recursive formula (4.8). The formulas (4.5), (4.6), (4.12) and (4.14) can then be

implemented as inner products in GAP.

For the symmetric groups Sn we consider the natural irreducible representation of dimen-

sion n−1, as in the example above. In this case it is known that for the stationary bifurcation,

for n > 3 there is one equivariant quadratic and two equivariant cubic terms [5, 6]. Since

E(2) = I(3) and E(3) = I(4), the dynamics truncated to cubic order is variational. But

since E(4) > I(5) for n = 5, 6 the quartic equivariants are non-variational. For the case of

the Hopf bifurcation with Sn symmetry we see that there are three cubic equivariants for

n = 4, 5, 6.

29



For the alternating group A5, which is isomorphic to the group I of rotations of the

icosahedron, there are unique faithful irreducible representations of dimension 3, 4 and 5,

up to quasi-equivalence, that is, equivalence composed with an outer automorphism of A5.

From Table 4 we can see that for stationary bifurcation, the quadratic and cubic terms are

variational in the 3- and 4-dimensional representations but not in the 5-dimensional one.

This is consistent with the work of Hoyle [15] who found heteroclinic cycles in the cubic

truncation for the 5-dimensional representation.

For the dihedral groups Dn, for n = 4, 5, 6, we consider the standard irreducible repre-

sentation of dimension 2 where the n-cycle (12 . . . n) acts as rotation through 2π/n.

8 Examples: Continuous Groups

In this section we apply our results to the calculation of the dimensions of the spaces of

invariants and equivariants for the groups O(3) and SO(3).

We first recall some facts about these groups and their representations, see [12, XIII, §7]

for details. For each l > 0 there is only one (absolutely) irreducible representation of SO(3)

of dimension 2l + 1 denoted by Vl. Each of these spaces carry two representations of O(3)

called plus and minus representations: on the first one −I acts trivially and on the second

−I acts non-trivially. In applications, the usual way that O(3) acts is induced from the

natural action on R3. This leads to the representation plus for l even and minus for l odd

which is called natural representation of O(3) on Vl.

The character afforded by the irreducible representation of SO(3) on Vl is given by

χl(Rθ) =
l∑

m=−l

eimθ = 1 + 2
l∑

m=1

cos(mθ) =
cos(lθ)− cos((l + 1)θ)

1− cos(θ)
(8.1)

where θ ∈ [0, π] parametrises the conjugacy classes of SO(3) and represents the rotation Rθ.

The Haar integral of a class function f on SO(3) is (see [22, p. 156])

1

π

∫ π

0

f(Rθ)(1− cos θ) dθ . (8.2)

The conjugacy classes of O(3) are also parametrised by θ ∈ [0, π], however there are two

classes for each θ: one class is represented by the rotation Rθ and the other is represented

by −I ◦Rθ = −Rθ. In this case the Haar integral of a class function f on O(3) is

1

2π

∫ π

0

[f(Rθ) + f(−Rθ)](1− cos θ) dθ . (8.3)
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Observe that for any representation of O(3) on Vl we have that

dimRP2k
Vl⊗RC(O(3)× S1) = dimRP2k

Vl⊗RC(SO(3)× S1)

dimC
~P2k+1
Vl⊗RC(O(3)× S1) = dimC

~P2k+1
Vl⊗RC(SO(3)× S1)

(8.4)

To see this note the following. Let χl be the character of an irreducible representation Vl of

O(3). If −I acts trivially on Vl and k ≥ 1, we have

χl,(k)(Rθ) = χl,(k)(−Rθ)

and so ∫
O(3)

χ2
l,(k) =

∫
SO(3)

χ2
l,(k),

∫
O(3)

χl,(k+1) χl,(k) χl =

∫
SO(3)

χl,(k+1) χl,(k) χl.

By Theorem 4.6 we have the equalities (8.4).

Now, if −I acts non-trivially on Vl, then the function λ : O(3)→ R defined by

λ(g) =

{
1 if g ∈ SO(3),

−1 if g ∈ O(3) \ SO(3) ,

is a linear character of O(3). Moreover, we have that λχl is an irreducible character of O(3)

where −I acts trivially on Vl. Also, λχl(g) = χl(g) for g ∈ SO(3). By Proposition 4.7 and

the above observation we have the equalities (8.4).

Remark 8.1 Sattinger [20] proved that for SO(3)-symmetric steady-state bifurcations

posed on an absolutely irreducible space Vl, the quadratic terms vanish for odd l, and possess

a gradient structure for even l. The gradient structure for the cubic truncation for O(3)-

symmetric steady-state bifurcation on Vl, for any l ≥ 1 was proved by Michel (unpublished).

See Chossat et al. [3]. This can be proven in the following way. It is shown by Chossat and

Lauterbach [4] that for O(3)-symmetric steady-state bifurcation the number of cubic equiv-

ariants E(3) is equal to 1 + [l/3]. Using (8.1) and (8.2) we obtain the following expressions

for l ≥ 1:
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∫
SO(3)

χ4
l (Rθ) =

1

π

∫ π

0

[
l∑

m=−l

eimθ

]3

(cos(lθ)− cos((l + 1)θ))) dθ = 2l + 1,

∫
SO(3)

χ2
l (R2θ) =

1

π

∫ π

0

[
l∑

m=−l

ei2mθ

]2(
1− eiθ

2
− e−iθ

2

)
dθ = 2l + 1 ,

(8.5)∫
SO(3)

χ2
l (Rθ)χl(R2θ) =

1

π

∫ π

0

l∑
m=−l

eimθ
l∑

n=−l

ei2nθ (cos(lθ)− cos((l + 1)θ))) dθ = 1,

∫
SO(3)

χl(Rθ)χl(R3θ) =
1

π

∫ π

0

l∑
m=−l

ei3mθ (cos(lθ)− cos((l + 1)θ))) dθ = 1− l + 3

[
l

3

]
,

∫
SO(3)

χl(R4θ) =
1

π

∫ π

0

l∑
m=−l

ei4mθ
(

1− eiθ

2
− e−iθ

2

)
dθ = 1 .

Notice that the integral formulas involving χkl (Rθ) can be simplified by using the third

expression in (8.1) so that the factor 1− cos(θ) cancels. It follows then by Theorem 4.2 that

I(4) =

∫
O(3)

χl,(4) =

∫
SO(3)

χl,(4) = 1 +

[
l

3

]
.

Similarly, we can use (8.5) to verify that E(3) = 1 + [l/3]. That is, E(3) = I(4) = 1 + [l/3].

Thus cubic O(3)-equivariants also have a gradient structure. 3

Proposition 8.2 Let O(3) act irreducibly on Vl and denote by χl the corresponding char-

acter. Then:

(i) dimRP4
Vl⊗RC(O(3)× S1) = dimC

~P3
Vl⊗RC(O(3)× S1),

(ii) dimC
~P3
Vl⊗RC(O(3)× S1) = l + 1.

Proof: Direct computations using (8.5) give the results. We include an alternative proof

using orthogonality of the characters of O(3).

(i) Denote by EH(3) = dimC
~P3
Vl⊗RC(O(3)× S1) and IH(4) = dimRP4

Vl⊗RC(O(3)× S1). By

Theorem 4.6 we have

EH(3)− IH(4) =

∫
O(3)

(
χl,(2)χ

2
l − χ2

l,(2)

)
= 〈χl,(2), χl,[2]〉
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where χl,[2] denotes the character of O(3) on the antisymmetric tensor square A2(Vl) of Vl

(and as before χl,(2) is the character of O(3) on the symmetric tensor square S2(Vl) of Vl).

Recall that

χ2
l = χl,(2) + χl,[2] .

As

S2(Vl) =
l⊕

a=0

V2l−2a = V2l ⊕ V2l−2 ⊕ · · · ⊕ V0

(see for example, Fulton and Harris [8, page 159]), it follows then that

χl,(2) = χ2l + χ2l−2 + · · ·+ χ0 .

Also,

A2(Vl) = V2l−1 ⊕ V2l−3 ⊕ · · · ⊕ V1

(see for example, Fulton and Harris [8, page 160]), and so

χl,[2] = χ2l−1 + χ2l−3 + · · ·+ χ1 .

Therefore 〈χl,(2), χl,[2]〉 = 0.

(b) Observe that by Theorem 4.6 we have

EH(3) =

∫
O(3)

χl,(2)χ
2
l = 〈χl,(2), χ

2
l 〉

As χ2
l is the character of the O(3)-module Vl ⊗ Vl and

Vl ⊗ Vl = V0 ⊕ V1 ⊕ · · · ⊕ V2l

(see for example Sattinger [21, p. 138, Lemma 5.20]), we obtain

χ2
l = χ0 + χl + · · ·+ χ2l

and so

〈χl,(2), χ
2
l 〉 = l + 1 .

2
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l I(2) I+(3) E+(2) E(3) IH(2) IH(4) IH(6) EH(3) EH(5)

1 1 0 0 1 1 2 2 2 3

2 1 1 1 1 1 3 5 3 9

3 1 0 0 2 1 4 10 4 21

4 1 1 1 2 1 5 17 5 40

5 1 0 0 2 1 6 28 6 69

6 1 1 1 3 1 7 43 7 110

7 1 0 0 3 1 8 62 8 164

8 1 1 1 3 1 9 87 9 234

9 1 0 0 4 1 10 118 10 322

10 1 1 1 4 1 11 155 11 429

Table 5: Dimensions of vector spaces of invariants I(k) and equivariants E(k) of degree k for

stationary bifurcation, and invariants IH(k) and equivariants EH(k) for Hopf bifurcation, for

the group O(3). For the plus representation O(3) we denote those by by I+(k) and E+(k)

and omit the values for the minus representation if they are zero.

In Table 5 we show the numbers of invariants and equivariants for stationary and Hopf

bifurcation with O(3)-symmetry for l = 1, . . . , 10. For Hopf bifurcation the values are the

same for the plus and minus representations of O(3) on Vl. For steady-state bifurcation the

values for the two representations of O(3) on Vl differ for the number of cubic invariants and

quadratic equivariants. For the plus representation we have the values denoted by I+(3) and

E+(2). For the minus representation these are zero.

As shown above, EH(3) = IH(4) = l+1, so the cubic equivariants for Hopf bifurcation can

be written as gradients of the quartic invariants. However, in the case of Hopf bifurcation,

this does not constrain the dynamics in the way that it does for stationary bifurcation. Note

that EH(5) and IH(6) increase very rapidly with l; this increase appears to be of order l3 for

large l.
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