Codimension-two points in annular electroconvection as a function of aspect ratio
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We rigorously derive from first principles the generic Landau amplitude equation that describes

the primary bifurcation in electrically driven convection.

Our model accurately represents the

experimental system: a weakly conducting, submicron thick liquid crystal film suspended between
concentric circular electrodes and driven by an applied voltage between its inner and outer edges.
We explicitly calculate the coefficient g of the leading cubic nonlinearity and systematically study
its dependence on the system’s geometrical and material parameters. The radius ratio o quantifies
the film’s geometry while a dimensionless number P, similar to the Prandtl number, fixes the ratio
of the fluid’s electrical and viscous relaxation times. Our calculations show that for fixed «, g is a
decreasing function of P, as P becomes smaller, and is nearly constant for P 2> 1. As P — 0, g — co.
We find that g is a nontrivial and discontinuous function of a. We show that the discontinuities
occur at codimension-two points that are accessed by varying a.

I. INTRODUCTION

With the substantial progress realized in the field of
pattern formation over the last 15 years has come an
increased need to make stricter comparisons between
experiments and their theoretical descriptions [1]. It
has become increasingly important for first principles
theories and numerical models to closely mirror exper-
imental systems in order to make unambiguous compar-
isons. A broad range of phenomena is exhibited by lab-
oratory pattern-forming systems, for example, station-
ary and traveling patterns, spiral defect chaos, localized
structures, and so on. An experimental system is typi-
cally specified by several dimensionless control parame-
ters which span regions where different patterns are ob-
served. These regions are bounded by lines or planes in
parameter space. Codimension-two (CoD2) points oc-
cur at special values of the control parameters, and are
the nonequilibrium analogs of multicritical points. Near
such points, especially interesting and complex pattern
interactions may be expected [2-5].

One of the most successful approaches used to study
patterns is the Landau amplitude equation for pattern
amplitudes near a bifurcation. Since the equation can be
deduced from symmetry, it has found broad applicabil-
ity in several experimental systems including Rayleigh-
Bénard convection (RBC), Taylor vortex flow (TVF),
and electrohydrodynamic convection in nematic liquid
crystals (EHC) [6]. In this paper, we apply the Lan-
dau amplitude formalism to thin film electroconvection
in an annular geometry, a system that has previously
been studied both experimentally[7—11] and theoretically
at the linear stability level[12]. This system has a rich bi-
furcation behavior, with numerous CoD2 points[10, 13].

The Landau amplitude equation can be rigorously
derived from the complete set of underlying dynami-
cal equations by perturbative expansions about the bi-
furcation point. Very different physical systems with
a common symmetry-breaking bifurcation have, up to

FIG. 1: The coordinate system and film geometry.

parameter-dependent coefficients, identical amplitude
equations. Whereas this universal description has been
tremendously successful in describing the pattern near
the bifurcation, its quantitative verification relies heavily
on comparing absolutely the parameter-dependencies of
the measured and calculated coefficients. This strategy
has seldom been executed and to our knowledge only in
RBC, TVF, and EHC has it been generally successful
[6]. Whereas these systems are three-dimensional (3D),
electroconvection in an annular fluid film, the system dis-
cussed here, is two-dimensional (2D). RBC, TVF, and
to a lesser extent EHC, in large part owe their spatio-
temporal richness to the extra spatial dimension. The
comparatively simpler spatio-temporal structure of 2D
thin film electroconvection is accentuated by its special
geometry. The annular film results in a naturally pe-
riodic experimental system. This azimuthal periodicity,
and thus the absence of lateral boundaries, simplifies the
theoretical treatment and invites interesting experimen-
tal scenarios such as interposing convection with shear in
a closed channel [8, 10, 12].

In this paper, we present a detailed study of the pri-
mary bifurcation to electroconvection in an annular film.
The film geometry is shown in Fig. 1. We have previ-
ously shown experimentally that the system is adequately



modeled by a Landau amplitude equation with a cubic
nonlinearity [9]. Our aim here is to rigorously derive the
parameter-dependence of the coefficient g of the cubic
nonlinearity and compare it with existing measurements
from experimental data. In Section I A, we introduce
the experimental system, its systematically variable di-
mensionless parameters, and summarize the protocol by
which g was measured. The theoretical model comprising
the underlying physics is briefly introduced in Section II.
We proceed to set up the mathematical formalism to re-
duce the more complicated basic equations to the Landau
amplitude equation truncated at cubic order in the per-
turbation expansion. We relegate details of the multiple-
scales expansion to the Appendix. We study how g varies
with the two dimensionless parameters and compare the
trends with experiments in Section III. We discuss the
implications of our work and present a brief conclusion
in Section IV.

A. Previous experimental results

Electroconvection in an annular film has been the sub-
ject of several experimental and theoretical studies which
have examined convection patterns near onset, interac-
tion with shear flows, linear stability, bifurcations near
CoD2 points, and more recently turbulent convection [8—
12].

The electroconvection cell is shown schematically in
Fig. 1. It consists of an annulus bordered by two
concentric stainless steel electrodes with inner (outer)
radii r; (ro) ~ 1 cm. A film of smectic A octyl-
cyanobiphenyl (8CB) liquid crystal doped with tetra-
cyanoquinodimethane (TCNQ) spans the annulus. The
resulting film is a weakly conducting 2D annular disk of
width d = r, — r;, radius ratio « = r;/r,, and thick-
ness s ~ 0.2 um. Thickness inhomogeneities relax in the
freely suspended film which retains its thickness unifor-
mity even when convecting. The fluid response is New-
tonian and the material parameters of the liquid crystal
are well characterized by its 2D mass density p, molecu-
lar viscosity 7, and electrical conductivity o. The cell is
housed in a vacuum chamber which doubles as a Faraday
cage. An experiment consists of drawing a uniform film,
placing it under a vacuum, and applying a dc voltage V'
to the inner electrode while holding the outer electrode
at ground potential. The current I through the film is
measured. By varying V' a current-voltage characteristic
is obtained. More details regarding the experimental ap-
paratus and the data acquisition procedure are given in
Ref. [9].

A representative I — V' curve is shown in Fig. 2a.
A convection threshold at a critical voltage V = V. is
clearly observed. The current is transported by ohmic
conduction for V' < V. while convection contributes for
V' > V.. An experimental realization is categorized by
the dimensionless parameters «, already introduced, and
P = eon/pod, where € is the dielectric permitivity of free
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FIG. 2: (Color online) (a) A representative current-voltage
characteristic. The dashed line is a linear fit to the current-
voltage data for V < V., indicating the region of ohmic re-
sponse. At the onset of electroconvection, the data depart
from the ohmic response. Part (b) shows the amplitude-e
curve (O) for the same data as part (a), as well as the fit to
the Landau amplitude equation (solid line). In this case, we
have o = 0.47, P = 20.4, and best-fit parameters g = 1.940.1,
h =5.1+£0.2, and f = 0.008 £ 0.002.

space. The parameter P is the ratio of time scales of elec-
trical and viscous processes of the film and is analogous
to the familiar Prandtl number of RBC. The experiments
explored various « by using different combinations of in-
ner and outer electrodes. At each «, several films of dif-
ferent s and consequently different P were investigated.

The I—V data can be expressed in terms of the reduced
amplitude A and the forcing parameter ¢,

! —1ande—<K>2—1, (1)

A? =
Icond ‘/c

where I.,,q4 is the contribution to the total current I that
is due to ohmic conduction. Below the onset of convec-
tion, I = I.ongand A = 0. When V' > V,, then I > I.on4.
This results in ¢ > 0 and A > 0. The amplitude A
and control parameter € are then effectively an order pa-
rameter and a reduced temperature for electroconvection.



Having transformed the I —V data using Eq. 1, the A—e¢
data is then modeled with the phenomenological steady
state Landau amplitude equation
€A —gA®> —hAS + f=0. (2)

In the modeling, g, h, and f are fit parameters with f
restricted to be positive. Since g can be negative, the
quintic term in the amplitude equation is necessary. De-
tails regarding the data modeling have been reported in
Ref. [9]. An example of such a fit is shown in Fig. 2b.

Our interest in this paper is to investigate the varia-
tion of g with @ and P. Previous experiments [9] have
explored the regimes 0.33 < a < 0.80 and 1 < P < 150.
Measurements of g were found to be roughly independent
of P except at & = 0.33 and 2 < P < 8, where g was
seen to increase with increasing P. As a function of «,
g was found to be generally increasing with increasing
« in overall trend. In the next section we recount fea-
tures of the physical model and set up the mathematical
formalism for perturbatively solving the equations.

II. MATHEMATICAL FORMALISM

A linear instability mechanism gives rise to electro-
convection in a freely suspended fluid film [7, 12]. The
film, an annular disk on the z = 0 plane, is subjected
to electric potential boundary conditions of V' volts at
its inner edge (r = r;) and zero volts at its outer edge
(r =r,). The inner electrode r < r; is at V' volts and the
outer electrode r > r, is at zero volts. The potential is
zero at infinity. The electrostatic boundary value prob-
lem prescribed by these conditions, with the film being a
conducting liquid, implies that a surface charge density
develops on the film’s upper and lower free surfaces. Pos-
itive charge preferentially accumulates close to the inner
positive electrode and negative charge at the grounded
outer electrode. Consequently, an electric force is ex-
erted on the fluid by the action of the radially outward
component of the electric field on the surface charge den-
sity. Note the striking analogy with RBC where thermal
boundary conditions on a thermally conducting liquid
lead to hotter, less dense fluid near the hot boundary and
colder, more dense fluid near the cold boundary. The ac-
tion of the gravitational field on the mass density exerts
a force on the fluid. In both cases when the forcing over-
comes dissipation, the fluid becomes linearly unstable to
perturbations, resulting in convection.

The relationship between the electric potential and the
surface charge density at any spatial position on the film
is nonlocal in electroconvection, unlike thermal convec-
tion where the temperature and mass density are locally
related. The surface charge density is directly related to
the discontinuity in the component of the electric field
perpendicular to the film at z = 0. As a result, electric
fields in the full 3D space determine the charge density
of the film at z = 0.

We use the cylindrical coordinate system (r, 6, z). The
film is in the z = 0 plane with radial coordinates between
r; < r < r, and has the areal material parameters de-
scribed in Sec. T A. Tt is assumed that the fluid is uniform
in temperature and there is no significant ohmic heating.
Since the velocity field is 2D as the film flows in the z =0
plane, we choose to describe it implicitly with the stream-
function t(r,0). The surface charge density is g(r,0)
and the electric potential is denoted by ¥5(r, 8, z). The
electric potential in the film is for convenience denoted
U(r,0) = ¥3(r,0,z = 0). The fluid is described by the
incompressible Navier-Stokes equation with an electrical
body force. The surface charge is advected by the flow
and transported by ohmic conduction. Laplace’s equa-
tion is obeyed by the electric potential for z # 0. Nondi-
mensionalizing lengths by the film width d = r, — r;,
electric potential by V, and time by €yd/c in the mo-
mentum, charge conservation, and Laplace equations we
get the set of governing equations

9 10
ve — 56_ (VxVx¢)+R(V\I/><Vq>

= (anﬁ )(vwxa?), (3)

dq 2
——I—(ngf)) Vq—- VU =0, (4)

ot
ViU = 0, (5)
oy

q = _2W :0+7 (6)

where the dimensionless parameters are

2v2
£ and P = on

R
on pod

(7)

Details regarding the assumptions and the derivation can
be found in Refs. [7, 12].

In the standard manner [6], we write the streamfunc-
tion, charge density, and electric potential as the sum of
the base state solution and a perturbation. See Ref. [14]
for details. The resulting equations can be succinctly
expressed as

LC=8. (8)

Here we have the operator

v —R9, 109y 29,400, 0
r— | —79:490 0 V2 0

0 1 0 20, ()] =0+

0 0 0 \%:;

9)



We have denoted functions of the base state by super-
script (0). Note that V2 = 9, + %& + T%aee while
V% = V2 4+ 0,,. The functions C and B are

and

(5 V20,0 — =5[(0,0) (89 V2) — (890) (8, V)]
+ R1(969) (0, %) — (9,) (06 V)]

B = Orq + %[(aTQ)(aﬁgb) — (999)(0-9)]

0

0

(11)

The multiple-scales perturbation theory employed in

our treatment is the same as that given in Ref. [14] for

electroconvection in a rectangular geometry. We expand

Eq. 9 using the slow time scale T' = et, where e = R/R.—

1 is the reduced control parameter defined earlier in Eq. 1.

Collecting terms of the same expansion order in e we
write

LoCo = By,
LoC1+ L1Cy = By,
LoCo + L1C1 + L2Cy = Bo, (12)

for orders €'/2, ¢, and €3/2. A systematic sequential solu-
tion of the above equations results in the necessary con-
dition

Flor A+ R A+ FLAJA]? =0. (13)

The amplitude equation in the fast variables is of the
Landau form

TO, A = €A — gA|A]?, (14)
where
R _F
=% and g= i (15)

The functions Fy, F5, and Fy are further discussed in the
Appendix. Other details regarding the numerical evalu-
ation of g and 7 are also given in the Appendix.

IIT. DISCUSSION

In this section we present the results of our calculations
of the functional dependencies of g = g(a,P). We find
that all primary bifurcations are stationary and to a sin-
gle mode m, except at special codimension-two points at

which two modes are simultaneously unstable. Our cal-
culation shows that the nonlinear coefficient ¢ is always
positive, and therefore that the primary bifurcation is
always supercritical.

Since the experiments on electroconvection are, due
to the values of the physical and dimensional parame-
ters, constrained to large P > 1, we start by discussing
g = g(«) for large and essentially infinite P. In figure 3
is plotted the calculated values of g for 0.6 < a < 0.8.
In overall trend, the Landau cubic coefficient ¢ increases
with « and approaches a limiting value as @ — 1. At
a = 0.8, g = 2.570 is within 10% of the limiting value
g = 2.842 calculated earlier [14] in a Cartesian or rect-
angular geometry. The coefficient g(«) decreases with
a for intervals over which the critical mode m = m? is
constant. This trend is punctuated by discontinuities in
g at values of o where both m and m + 1 are equally
unstable; these are the codimension-two (CoD2) points.
At these jumps, the value of g increases and more than
compensates for the region of decrease at each m. The
result is an overall increasing trend.

Table I compares experimental measurements of g from
Ref. [9] at six radius ratios with the results of the present
calculations. First note that in spite of the large scatter
in the experimental measurements, they still show the
overall increasing trend of g with a. Further, the exper-
iments have widely separated values of o and so are not
able to resolve the discontinuities in g for which further
experimental work in a restricted but densely sampled
range of a would be needed. And finally, in comparing
measurements to the calculations, there is a significant
disparity on the order of 10 — 30%. Interestingly, the ex-
perimental measurements show that as the radius ratio
is decreased, the Landau cubic coeflicient becomes neg-
ative. This implies that there is at least one tricritical
point (g = 0) that demarcates the super- and subcriti-
cal branches. The current calculations are cumbersome
to extend to smaller o because this requires additional
orders in the expansion of the stream function[15].

The CoD2 discontinuities in g are larger at smaller
a as is evident from Fig. 3. To further quantify this
observation, we have graphed the fractional discontinuity
in g, 2(gm+1 — 9m)/(gm+1 + gm), versus the fractional
change in the mode number, 2(m + 1 —m)/(m + 1 +
m), at several CoD2 points, as shown in Fig. 4. In the
above, g, is the value of g for a particular critical mode
m = mQ. For the CoD2 point at m = 8,9, the jump
in g is about 3% suggesting that experiments looking
at the behavior near CoD2 points will have typically to
measure g with 1% resolution. The current resolution of
experimental measurements is about 10% and will have
to be significantly improved if any meaningful study is
to be made. On the other hand, since the fractional
discontinuity in g increases strongly with the fractional
discontinuity in mode number, it is conceivable that at
small mode CoD2 points, say m = 3,4, the discontinuity
in g will be very large and measurements with 5 — 10%
accuracy may suffice. This will involve working at small
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0.33 -0.74 £ 0.23 21<P <44
0.47 1.64 £ 0.06 | 13.5 <P <20.7
0.56 0.73 £0.15 [59.4 <P < 100.8
0.60 2.72 £ 034 |31.3 <P <389 2.372
0.64 1.87 £ 0.10 | 25.2 <P <63.0 2.417
0.80 2.21 £0.29 |15.3 <P < 142.8| 2.570
1.00 (‘plate’) P =00 2.842

TABLE I: Experimental measurements of the coefficient of
the cubic nonlinearity, g. The theoretical g at a = 0.60, 0.64,
and 0.80 are for P = 123.

« which is a challenge experimentally since broad films
will have to be drawn.

We now discuss the P-dependence of g with constant
«. The calculated values of g for 0.001 < P < 10 for

= 0.674 and 0.676 are plotted in Fig. 5. These «
straddle the CoD2 point for m = 10, 11. The cubic Lan-
dau coefficient is practically constant for P > 0.1. How-
ever, for small P, g diverges as P — 0. The inset in
Fig. 5 shows the absolute value of dg/dP as a function
of P. As P decreases, the discontinuity in g at the CoD2
point m = 10, 11 increases as is seen by the two diverging
curves in Fig. 5. For P > 1, the fractional discontinu-
ity is about 2% growing to 10% for P = 0.01 and 30%
for P = 0.001. This suggests that experimental measure-
ments near CoD2 points are better performed at small P.
The combination of small @ and P are required for large
changes in g through CoD2 points. Unfortunately, exper-
iments can seldom access this regime of parameter space.
Most experiments have been performed for o > 0.30 and
P > 1. The latter restriction is primarily because the
material parameters are only slightly adjustable.

Langford and Rusu have considered several qualitative
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FIG. 5: (Color online) The coefficient g versus P at o = 0.674
(solid line) and o = 0.676 (dashed line). The inset shows
|dg/dP| versus P for the same «.

bifurcation scenarios for this system [13]. They focused
on the possible transitions at CoD2 points. Our work
indicates that the bifurcations at CoD2 points are su-
percritical for most radius ratios. Subcritical transitions
may be possible at small « [15].

IV. CONCLUSION

In summary, we have examined the variation of g, the
coefficient of the nonlinear term in the amplitude equa-
tion Eq. 14, with radius ratio o and Prandtl number P
for electroconvection in a two-dimensional annular fluid.



We have observed that the steady-state amplitude of
the bifurcation from a conducting to a convecting fluid
can change discontinuously as a passes through CoD2
points. The dependence of g on P is not strong, except
for P < 0.1.

In the experiments considered here, the variation of g
is a consequence of changing the geometry of the system
via the radius ratio «. It is also possible to pass through

CoD2 points by applying a Couette shear to the fluid
at fixed « [10]. Experiments revealed that g was found
generally to decrease with increasing shear and disconti-
nuities in g were observed at CoD2 points [10]. Apply-
ing the methods employed in this paper to the case of
nonzero shear, it should be possible to establish whether
codimension-three (CoD3) points exist at special values
of the parameters [15].
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APPENDIX: MULTIPLE-SCALES EXPANSION

We used a multiple-scales formalism analogous to that
developed for RBC in Ref. [6], in which a compatabil-
ity condition is derived for the amplitude of the slowly
varying envelope of the convection rolls. We generally
adhere to the notational conventions of Ref. [6] and our
treatment is similar to that of Ref. [14], adapted to the
annular geometry and including the effects of finite P.
The multiple-scales expansion of Eq. 8 gives Eq. 14 where

e=(R—-Re)/Re, 7= —F1/F3, g= —F,/F>,

By = (oo + P 1950V 00) (A1)
Fy = iR 5,000 0,400y, (A2)
- T R(c) s € _ € % Ty €

Fy, = Zm(c)(quT[—quT\I/l + G0 V5 — 20,4, V5
2¢50, 95 4+ 0,¢ST; — 0,q5V —%26 eV 5
+2¢:0-¥Yy + Orq1 ¥y g5 Vo) TP[ - do V701

630, V265 — 0,6 V?6; — 2670, V5] + 10|
20,4581 + 450,45 — Orgi 9 + Ora5 o

() = /:Drdr(...).

k3

Complex conjugation is represented by a superscript *.
The functions that appear in Egs. A.1-A.3 are as follows.
The solutions of the linear stability problem at m = m
are

- .0 .0 - . 0
do = goe'™? g = qoe’™? Wy = Wgelme?

QZ_)O = Zp A;DQ/_)OP qo = Zp Ap(iOp \TJO = Zp Ap\i/Op

(A.5)

bop = Crosyp (A.6)

QOP = Z.Z’UO;z)lqmg;lu (A7)
l

@Op = Z'Z’UO;DZ/‘#WL‘C’;Z . (AS)
l

The expansion functions Cy,.p(r) and ¥, (r, z) satisfy
the boundary conditions in polar coordinates[12] and
am:1 (1) = —2[0:¥m.1 (7, 2)]|s=0+. The functions

Qbi = ’sz Epc2m2;p qi = Zl arqam9;1 \IJE = Zl al1/}2m2;l

5 =0 a5 = >, bigoy U5 =3 bitboy
(A.9)



ar = Y Epsamipr — (Nothamoa)]/X3,m0; {A-10)
p

m
Smpl = <7arq(0)cm;p"/}m;l> ) (All)
b = —(Nsbou)/ x5 - (A.12)
ORO B _
Ny = Hee (q00r¥o — 0rGo¥o)
me oo oo 7 27
—ﬁ(ar(bov ¢O - (bOarv ¢0) ) (A13)
Na = =(d:dodo — dodrdo) (A.14)
0
m - -
NB = TC [(87“(?8(250 - 87“@0@%)
_((joaréa - (jgaréO)] ) (A15)

satisfy the order e multiple-scales equations. The coeffi-
cients E, are specified by

Z TypEp, = <N102m2;k>
P

_2ngg Z<N2w2mg;l>22mgkl/xgm2l ’
l
(A.16)

4
Tkp = 52m2p5k17

_2m(c)R(c) Z S?mgplZngkl/Xgmgl a(A17)
l

Cm;k

Lkl = < (8T\I/(O)Qm;l - arq(0)1/}m;l)> (A18)

The solutions of the adjoint equations evaluated at m =
0

m? are
- .9 .0 - .0
Poo = fbboeme a0 = Geoe’™<? Wy = ‘I/boe“"ie
¢b0 = Zp de)bOp (?bO = Zp Bp(jbOp \IjbO = Ep Bp\I/bOp
(A.19)

qup = ¢m2;p7 (A?O)

ébOp = izvboplcmg;l, (A.21)
l

Vbopl = _Smglp/ﬂfnfc)l; (A22)

Tpop = _znggar\I’(o)ngop. (A.23)
T

The coefficients B), are derived from

) _ _
Z BP[_;nggaTq(o)¢b0p+v2(jb0p+2(az\1}b0p)|z:0+] =0.
p

(A.24)
The amplitude A is normalized by setting

({qur))

T leE)

(A.25)

where

2m 0o
((..)) = id/ do rdr(...), (A.26)
Uy = %89@5 is the radial comp%nent of the velocity field,
o is the conductivity, and Eﬁo) is the radial component
of the base state electric field. The Nusselt number Nu
is the ratio of the total current density to the conducted
current density, spatially averaged [14].

To find the coefficients of the normalized amplitude
equation, Eq. 14, we evaluate Eqs. A.1-A.3 for a given «
and P. The charge density expansion functions ¢, are
computed via an approximation of the electrostatic equa-
tions in which ¥ and ¢ are linearly related [12]. The series
solutions of the linear (Eq. A.5) and adjoint (Eq. A.19)
problems are terminated at p = 1. The number of ex-
pansion functions employed in the linear (Egs. A.6-A.8),
first-order (Eq. A.9), and adjoint (Eqgs. A.20-A.23) solu-
tions is twenty.



