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Abstract

We study spherically symmetric dynamical horizons (SSDH) in
spherically symmetric Einstein/matter spacetimes. We first deter-
mine sufficient and necessary conditions for an initial data set for
the gravitational and matter fields to satisfy the dynamical horizon
condition in the spacetime development. The constraint equations re-
duce to a single second order linear “master” equation, which leads
to a systematic construction of all SSDH initial data sets with certain
boundedness conditions. Turning from construction to existence, we
find necessary and sufficient conditions for a given spherically sym-
metric spacetime to contain a SSDH.
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1 Introduction

Since their introduction four years ago by Ashtekar and his collaborators [3]
[4], dynamical horizons have been found to be very useful for the study of
the dynamical formation of black holes. Among other things, they have been
used to study gravitational wave fluxes and their influence on the areas of
black holes as they develop, and they have been used in building analogues
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of black hole thermodynamics for astrophysical systems evolving into black
holes [4].

How extensively do dynamical horizons occur in solutions of Einstein’s
equations? While there have been studies, both numerical and analytical, of
certain families of explicit examples [6], no attempt has yet been made to
determine the parameter space of solutions which admit them. We do this
here for the special case of spherically symmetric solutions.

We obtain two types of results, on the construction of spacetimes with
dynamical horizons (by constructing dynamical horizon initial data), and on
locating dynamical horizons in given spacetimes.

We first consider the problem of constructing initial data satisfying both
the dynamical horizon condition, and the Einstein constraint equations. Propo-
sition 2 parametrizes those initial data on I × S2 which are spherically sym-
metric, which solve the Einstein constraint equations, and which serve as a
dynamical horizon for their spacetime development. We find that the col-
lection D of such initial data is parametrized by two free functions (ξ, τ) on
an interval and a pair of real constants (y0, y1). That is, for every choice of
these two functions, we can generate an explicit initial data set of this sort;
conversely, every data set in D can be generated in this way. For simplicity
we consider only bounded potentials, but there are many examples of dy-
namical horizons with unbounded potentials [3, 6], whose global properties
can be studied using similar techniques.

Note that since spherically symmetric solutions of the vacuum Einstein
equations contain no dynamical horizons1, we consider here the Einstein
constraint equations with generic matter, represented by an energy density
field ρ and a radial momentum density field ξ.

Second, we consider the problem of finding dynamical horizon(s) in a
given (smooth, globally hyperbolic) spacetime. Lemma 7 and Proposition 8
give conditions on the stress-energy tensor which lead naturally to a general
existence result for dynamical horizons in the spacetime.

Our arguments depend crucially on two quite interesting and novel iden-
tities: a constraint (8) on two components of the stress-energy tensor, and
a reformulation of the spherically symmetric constraint equations as a lin-
ear second order ordinary differential equation (9) for the volume function
y = r3. We expect these expressions will play an important role in extending

1By Birkhoff’s theorem the vacuum region is locally Schwarzschild, which has vanishing
outer expansion only on the horizons, which are not spacelike.
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our results to non-spherical spacetimes.

2 Preliminaries

We work here with four dimensional spacetimes (M, g, T ) satisfying the Ein-
stein gravitational field equations Gµν = 8πg Tµν , where M is a spacetime
manifold, g is a Lorentz signature metric invariant under an SO(3) action
and with Einstein curvature tensor Gµν = Rµν− 1

2
Rgµν , Tµν is a stress-energy

tensor field which may or may not be a functional of a specific set of field
variables, and g is the Newton gravitational constant. In our spacetime
results (Section 4) we require that (M, g, T ) satisfy an energy condition; in
our initial data results (Section 3), such a condition is not needed.

Definition 1 An embedded hypersurface Σ3 in a spacetime (M, g, T ), is a
dynamical horizon for the spacetime if the following conditions are met:

(DH1) Σ3 is spacelike;

(DH2) Σ3 is foliated by marginally outer-trapped 2-surfaces, i.e., surfaces such
that the expansion of the outer future null vector field ` = `+ vanishes,
θ` = θ+ = 0;

(DH3) the marginally outer trapped 2-surfaces are inner trapped, θn = θ− < 0,
where n = `− is the inward future null vector field normal2 to the 2-
surfaces.

A 2-surface with null normal expansions satisfying (DH2) and (DH3) is said
to be marginally trapped. A hypersurface satisfying just (DH2) and (DH3)
is called a marginally trapped tube [2]; however here we are concerned only
with the dynamical horizon case. Under spherical symmetry we may assume
the 2-surfaces are isometric 2-spheres of positive radius.

A spacetime may generally contain a number of dynamical horizons. How-
ever, as shown in [2], the foliation of a given dynamical horizon by marginally
trapped surfaces is unique. It also follows from the results in [2] that if a
given spacetime satisfies the null energy condition (i.e., T (`, `) ≥ 0 for every
null vector `), then no spacetime region admits a local foliation by dynamical
horizons.

2normalised by g(n, `) = −2.
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3 Constructing Initial Data

In this section, we derive an algorithm for the construction of spherically
symmetric initial data sets which satisfy both the constraint equations and
the dynamical horizon condition. In doing so we determine the freely speci-
fiable parts of such initial data, showing that there is a bijective correspon-
dence between this free data on the one hand, and spherically symmetric
dynamical horizon solutions of the constraints on the other hand. We then
describe some example solutions, and we discuss some physically motivated
restrictions one might impose on these solutions.

3.1 Construction Algorithm and the Free Data

An initial data set for the Einstein equations consists of (Σ3, γ, K, ρ, J), where
Σ3 is a three dimensional manifold (the initial slice), γ is a Riemannian metric
(the initial metric), K is a symmetric tensor (the initial extrinsic curvature), ρ
is a non-negative function (8πg times the initial matter energy density), and
J is a one form field (8πg times the initial momentum density). Assuming
this data satisfies the Einstein constraint equations,

2ρ = Rγ −KabK
ab + (trγK)2, (1)

Ja = ∇bKab −∇a(trγK), (2)

where Rγ is the scalar curvature of γ, it follows (assuming appropriate matter
evolution equations) [10] [11] [7] that there is a unique spacetime (Σ3×I, g, T )
which i) satisfies the Einstein gravitational and matter field equations, ii)
induces the initial data (Σ3, γ, K, ρ, J) on the embedded hypersurface3 Σ3 ×
{0}, iii) is globally hyperbolic, and iv) contains (up to diffeomorphism) all
other spacetimes which satisfy conditions i)-iii). This spacetime is called the
maximal spacetime development of (Σ3, γ, K, ρ, J). These results allow us
to focus on the simpler initial data constraint system, rather than confront
the challenges of the full evolution equations. Note, however, that if we are
given a pair of solutions of the constraint equations, it is generally not easy
to determine whether or not their spacetime developments are diffeomorphic.

3in the sense that γ is the pullback of g to Σ3×{0}, K is the second fundamental form
corresponding to Σ3 × {0}, ρ = 8πg T (e⊥, e⊥) for e⊥ the future-pointing timelike normal
to Σ3 × {0}, and J = 8πg T (e⊥, ·)
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If we restrict our attention to initial data sets which are spherically sym-
metric, with Σ3 diffeomorphic to the three dimensional annulus I ×S2, then
we may write

γ = dR2 + r2(R)(dθ2 + sin2 θ dφ2), (3)

K = 1
2
µ(R)γ + (τ(R)− 3

2
µ(R)) dR2, (4)

and J = ξ(R) dR, where R ∈ (R0, R1), θ ∈ (0, π) and φ ∈ (0, 2π)). (Note that
the coordinate R measures radial geodesic distance, and r(R) is the spherical
radius function.) Hence the full set of (spherically symmetric) initial data is
parametrized by five real valued functions: r(R), µ(R), τ(R), ρ(R) and ξ(R).
Note that τ = trγK is the mean curvature of the spacetime hypersurface Σ,
whilst µ is the mean curvature in Σ of the 2-spheres S2

r of constant radius r.
The constraint equations (1,2) for spherical data take the form

2r
d2r

dR2
= −

(
dr

dR

)2

+ 1− r2(3
4
µ2 − µτ + ρ) , (5)

r
dµ

dR
= (2τ − 3µ)

dr

dR
− rξ . (6)

We wish to study spherically symmetric solutions of the constraint equations
which serve as dynamical horizons for their spacetime developments. The
dynamical horizon condition θ+ = 0 takes the form

θ` = θ+ = µ +
2

r

dr

dR
= 0, (7)

where µ is the trace of the extrinsic curvature K over the S2 tangent 2-planes.
Substituting for µ in (5) and (6) gives two equations for d2r

dR2 , and eliminating
this common term gives

ρ + ξ =
1

r2
. (8)

We thus obtain a somewhat peculiar, quite explicit, condition on the matter
field part of the initial data which must be satisfied if the data set is to
correspond to a dynamical horizon.

Before stating the main result on the existence and parameterization of
initial data, we note another curious property: substituting (8) and (7) in
(5) leads to a linear “master” equation for y := r(R)3:

d2y

dR2
+ τ

dy

dR
− 3

2
ξy = 0 . (9)
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Proposition 2 Suppose we are given functions τ, ξ ∈ C0(R) and a solution
y = y(R) of (9) on an interval I = (R1, R2) on which y is everywhere positive.
Defining r = y1/3, µ by (7) and ρ by (8) gives a solution of the spherical con-
straint equations (3–6). Conversely, (8,9) hold if the given data (r, µ, τ, ρ, ξ)
satisfy (3–6) and (7) on an interval where r is everywhere positive.

Furthermore, let y = y(R) be the solution of (9) with initial conditions

y(R0) = y0 > 0,
d

dR
y(R0) = y1 > 0, (10)

and denote by I = (R1, R2), R0 ∈ I, the maximal interval on which the
condition r > 0 holds. Let (y, r, µ, τ, ρ, ξ) be the corresponding solution of (3–
9). If R1 > −∞ then we may normalise R so R1 = 0 and then limR↓0 r(R) =
0 and γ is singular at R1; likewise if R2 < ∞ then limR↑R2 r(R) = 0 and γ
is singular at R2.

The solution (y, r, µ, τ, ρ, ξ) on the interval (R1, R2) specifies a dynamical
horizon if additionally d

dR
y > 0 on (R1, R2).

Proof: Direct computation verifies the equivalence of the spherically sym-
metric constraint equations (3–6) to the linear equation (9), augmented by
formulas (7) for µ, and (8) for ρ. This proves the first part of the proposition.

The continuity assumptions τ, ξ ∈ C0(R) ensure that the initial value
problem for the linear ODE (9) together with the the initial conditions (10)
has a unique global solution y ∈ C2(R) which is positive in a neighborhood of
R0; hence limR↓R1 y(R) exists and the solution y(R) extends to R < R1. By
maximality of I it follows that either R1 = −∞ or R1 > −∞ and y(R1) = 0.
Assuming now that R1 > −∞, we may without loss of generality set R1 = 0.
Uniqueness of solutions of linear ODEs shows that y1 = d

dR
y(0) > 0, since we

require that r is nowhere vanishing on I. Expanding in a Taylor series about
R = 0 gives y(R) = r3(R) = y1R+O(R2), where the error term is controlled

by ||τ ||∞ + ||ξ||∞. Thus γ = dR2 + (R2/3y
2/3
1 + O(R4/3)) (dθ2 + sin2 θ dφ2)

= ((3/y1)
2r4 + O(r7))dr2 + r2(dθ2 + sin2 θ dφ2), so the metric is singular at

the symmetry centre r = 0. Thus although the radial equation (9) is satisfied
globally, the physical solution does not extend to points where r = 0. This
holds for R2 as well as R1.

Finally, since

θ− = µ− 2

r

d

dR
r = −4

r

d

dR
r = −4

3

d

dR
log y (11)
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when θ+ = 0, the dynamical horizon condition (DH3) is equivalent to d
dR

r > 0
and d

dR
y > 0. Observe that (DH3) serves only to restrict the solution to the

sub-interval (R1, R3) ⊂ (R1, R2) on which d
dR

y > 0; without it the above
solution could be extended beyond R2, to regions where θ− ≥ 0.

Remark: The dynamical horizon metric behaviour γ ∼ c2r4dr2 + r2dΩ2

is similar to that of a constant mean curvature hypersurface near a point
singularity [5]. However, (8) shows the spacetime curvature has components
(ie. G(e⊥, `)) which are unbounded as r → 0 and we show in Corollary 6 that
r = 0 is a true spacetime curvature singularity.

3.2 Examples

As outlined above, the process of producing spherically symmetric initial
data sets which satisfy the constraints and the dynamical horizon conditions
from a given pair of freely chosen functions is very straightforward. We now
illustrate this process with some examples.

Maximal Data with Co-Moving Matter: Setting ξ = 0 corresponds to
choosing the matter to be co-moving with the surface orthogonal observers,
while setting τ = 0 results in the mean curvature of the initial data set
vanishing, so the data is maximal. With these choices, equation (9) becomes
simply y′′ = 0, which has the general solution y(R) = y1(R − R0) + y0. In
this case, we may without loss of generality choose R0 = 0, y0 = 0, and
y1 = α3 (for α > 0) so y(R) = α3R. It then follows that r(R) = αR

1
3 , and

consequently the metric takes the form

γ = dR2 + α2R
2
3 dΩ2, (12)

where dΩ2 indicates the round sphere metric. Calculating µ from (7) and
substituting into the formula for K, we have

K =
2

3α3R
dR2 − 1

3αR
1
3

dΩ2. (13)

Calculating ρ from (8), we have ρ(R) = 1

α2R
2
3
. We note that for this example,

the interval on which the solution is regular is I = (0, +∞). The solution is
singular at R = 0, where r = 0. We also note that since dy

dR
= α3 > 0, the

entire solution satisfies condition (DH3).
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CMC Data with Co-Moving Matter: We again set ξ = 0, but set τ
equal to a non zero constant. The general solution4 to the equation for y is
y(R) = y1

τ
(1− e−Rτ ) + y0, which results in

γ = dR2 + (
y1

τ
(1− e−τR) + y0)

2
3 dΩ2. (14)

The expression for K is a bit messy, but straightforward to obtain. The
behavior of the function y(R) for these examples depends on the sign of τ .
Recalling that y0 and y1 are both positive, we find that if τ is positive, then
y(R) has a zero for some negative value of R, and for large R it approaches a
constant. If τ is negative, then for negative R the function y either hits zero
for some finite value R1 or it approaches zero as R → −∞, while for large
positive values of R the function y(R) is convex increasing and unbounded.
Thus in these cases, either I = (−∞, +∞) or I = (R1, +∞).

Since R is a radial coordinate, which measures distance from the sym-
metry axis, to obtain a spherically symmetric dynamical horizon from this
example, we need to restrict the interval I to (0, +∞). When we do this,
we find that while the metric is not degenerate as R → 0, the curvature is
unbounded as one approaches the axis.

Note that since dy
dR

= y1e
−Rτ > 0 for any constant τ , the (DH3) condition

is satisfied for the full range of I.

Flat 3-metric: If we set r(R) = R, then (Σ, γ) ' (R3, δ). To see which
expressions for K and ρ and ξ are compatible with a flat metric γ = δ, we
substitute y(R) = R3 into (9), giving

6R + 3τR2 − 3
2
ξR3 = 0. (15)

Assuming co-moving matter ξ = 0 leads to τ = − 2
R
. From (7) we find

that µ = − 2
R
, so K = −RdΩ2 and the matter density is ρ = 1

R2 . The
data is clearly singular at R = 0, and nowhere else. Without the co-moving
assumption, we find that equation (9) implies that

3R(2 + τR− 1
2
ξR2) = 0. (16)

Choosing, say, ξ = 1
3R2 , gives ρ = 2

3R2 , τ = − 11
6R

and µ = −2/R as before.
One then readily constructs K, noting its singular behavior at the symmetry
axis.

4In this case, since the solution is not linear in R, setting y0 = 0 is a restriction. So we
let y0 and y1 be any pair of positive constants.

8



For all cases of this example, since dy
dR

= 1 > 0, condition (DH3) for a
SSDH is satisfied everywhere.

3.3 Physical Restrictions

In the examples just discussed, we have made restrictions on the choice of
the free data ξ and τ based on mathematical convenience. In this section, we
consider physically motivated restrictions, and some of their consequences.

Our first physical condition on a dynamical horizon Σ is that there is at
least one point on the symmetry axis, which we may normalise to R = 0,

r(R = 0) = 0. (17)

Second, we recall that the definition of dynamical horizon requires that the
foliation 2-surfaces S2

R should be contracting in the inward null direction
n = `−, but that this condition plays no direct role in the solution of the
dynamical horizon equations (3–9). Thus we consider explicitly the inner
trapped condition

θ− < 0. (18)

As shown by [9, 8], the inner trapped condition in spherical symmetry is
non-evolutionary, meaning that if it is satisfied on a Cauchy surface then it
holds throughout the globally hyperbolic development. We can also show
that (18) follows from the outgoing momentum condition

ξ ≥ 0. (19)

Finally, we recall that the conceptual picture of a dynamical horizon has
it inside an event horizon, with the area function r having a finite bound
r ≤ 2m(∞) where m(∞) is the final Bondi mass. The examples above show
that this condition is not satisfied by all solutions of the dynamical horizon
constraint equations (5),(6). This motivates the black hole condition, that
there is a constant r∗ > 0 with

r∗ := sup
(0,R∗)

r, (20)

where R∗ is maximal, in the following sense:

Definition 3 Given the data (τ, ξ, y1, R
∗) ∈ C0(I)×C0(I)× (0,∞)× (0,∞]

specified on the interval I = (0, R∗), let the corresponding solution (y, r, µ, τ, ρ, ξ) =:
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Σ(τ, ξ, y1, R
∗) be constructed as prescribed in Proposition 2 with R0 = 0,

y0 = 0. If this solution satisfies y > 0 and θ− < 0 on I, then (τ, ξ, y1, R
∗)

is called a DH data set. Such a DH data set is DH-extendible if there is a
DH data set (τ̂ , ξ̂, ŷ1, R̂) such that R̂ > R∗ and τ̂ |(0,R) = τ , ξ̂|(0,R) = ξ and
ŷ1 = y1. A DH data set (τ, ξ, y1, R

∗) is maximal if it is not DH-extendible.
If the inner trapped condition is not assumed then we have a generalised DH
data set, and a DH data set is weakly DH-extendible if it is extendible in
the class of generalised DH data.

Proposition 4 Suppose Σ(τ, ξ, y1, R
∗) = (y, r, µ, τ, ρ, ξ) is a dynamical hori-

zon constructed by Proposition 2 on I = (0, R∗), so in particular, Σ satisfies
the axis condition (17).

(i) Suppose (τ, ξ, y1, R
∗) is a generalised DH data set, so the inner trapped

condition (18) is not assumed a priori. If the outgoing momentum
condition (19) is satisfied on a sub-interval (0, R̃) then the dynamical
horizon is inner trapped on the same sub-interval, and limR↑R̃ θ− < 0.

(ii) Suppose the black hole (20) and inner trapped (18) conditions hold on
(0, R∗), where R∗ is maximal. Then r(R) is increasing on (0, R∗),
limR↑R∗

d
dR

r = 0, and either R∗ < ∞ and θ−(R∗) = 0, or R∗ = ∞.

Proof: (i) It follows from θ+ = 0 and n = ` − 2eR that θ− = −4 d
dR

log r =
−4

3
d

dR
log y. Proposition 2 shows that if y(0) = 0 then for small positive R

we have θ− ' −4
3
y′(0)/R < 0. The master equation (9) and θ+ = 0 show

that on Σ we have

d

dR
θ− = 3

4
θ2
− − τθ− − 2ξ ≤ 3

4
θ2
− − τθ− , (21)

since ξ ≥ 0 by assumption. Introducing h = −1/θ− and integrating gives

h(R) ≤ eT (R)

(
h(ε) +

3

4

∫ R

ε

e−T (s) ds

)
,

where T (R) =
∫ R

ε
τ(s) ds and ε > 0 is chosen small enough that h(ε) ≤

1. Now τ ∈ C0(R) so h(R) is bounded above uniformly for finite R and
thus θ− = −1/h is negative as required; even more, θ− is locally uniformly

negative, since
∫ R+1

R
τ(s) ds is bounded, for all R.

10



(ii) The inner trapped condition θ− < 0 and θ− = −4 d
dR

log r shows that
d

dR
r > 0. The master equation (9) and τ, ξ ∈ C0(R) show d

dR
y = 3r2 d

dR
r

is bounded locally uniformly on R, so limR↑R∗
d

dR
r < ∞ while r is bounded

away from 0. Choosing any C0 extension (τ̃ , ξ̃) of (τ, ξ) gives an R̃ > R∗ and
a generalised DH data set (τ̃ , ξ̃, y1, R̃) extending Σ, by continuity of y at R∗.
Continuity of d

dR
y implies that Σ is DH-extendible, contradicting maximality

of R∗, unless limR↑R∗
d

dR
r = 0. Finally, if R∗ < ∞ then continuity of d

dR
y

shows that θ−(R∗) = 0.

Remark: Proposition 4 provides a natural picture of a dynamical horizon
inside an event horizon, starting at the central axis and extending radial-
outward and geodesically complete, with future endpoint at i+. However,
this picture relies on the assumptions we have made, in particular the inner
trapped condition (18) and the continuity of the free fields τ, ξ. Examples of
marginally trapped tubes (cf. [2, 6]) show that the condition θ+ = 0 defines
a hypersurface which may become null and timelike. In these examples, the
dynamical horizon metric is inextendible as a spacelike hypersurface but not
complete. The next results examine the solutions near the singular points 0,
R∗.

Lemma 5 Suppose Σ = Σ(τ, ξ, y1, R
∗) is a spherically symmetric dynamical

horizon with R∗ < ∞. Let (ER, E⊥) be a frame along Σ which is parallel
transported by the spacetime connection. Then there is a finite boost (with
parameter a) to the Σ-adapted frame (eR, e⊥) at R = R∗,

eR = 1
2
(a− a−1)E⊥ + 1

2
(a + a−1)ER,

e⊥ = 1
2
(a + a−1)E⊥ + 1

2
(a− a−1)ER.

Furthermore, Σ has spacelike radial unit tangent vector eR at R = R∗ and if
limR↑R∗ θ− < 0 then Σ is DH-extendible.

Remark: The spacetime parallel transport provides a reference frame, uni-
formly equivalent to any other construction of spacetime frame, and therefore
suitable for verifying whether or not eR goes null at R∗.

Proof: The extrinsic curvature Kab is defined by K(X, Y ) = g(X,∇Y e⊥),
so ∇eR

eR = K(eR, eR)e⊥ and ∇eR
e⊥ = K(eR, eR)eR. The parallel frame

(ER, E⊥) satisfies ∇eR
ER = ∇eR

E⊥ = 0. The corresponding null frames
`± = e⊥ ± eR and L± = E⊥ ± ER are related by a boost with parameter
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a = a(R), ie. `± = a±1L±, and we find d
dR

log a = K(eR, eR) = τ − µ =
τ + 2 d

dR
log r. Integrating gives

a(R)

r(R)2
=

a(R1)

r(R1)2
exp

(∫ R

R1

τ(s) ds
)
, (22)

so the boost a(R) is bounded while r > 0 and
∫

τ < ∞. Now θ−(R∗) < 0 and
θ− = −4 d

dR
log r show that d

dR
r(R∗) > 0, so the dynamical horizon solution

extends as before.

A similar argument can be used to show that the Einstein tensor is un-
bounded at the axis.

Corollary 6 Suppose Σ is a spherically symmetric dynamical horizon in a
spacetime M , which satisfies the axis condition (17) and

∫ 1

0
τ(s) ds < ∞.

Then the central axis point R = 0, r = r(R = 0) = 0 of Σ lies on the
singular set of the spacetime M .

Proof: Equation (8) shows that the component G(e⊥, `) is unbounded, and we
must show this holds in all frames near R = 0. It suffices to consider frames
L, N which are spacetime parallel along Σ. As in Lemma 5 the tangent
frames n, ` and parallel frame N, L are related by a boost with parameter
a = a(R); i.e., ` = aL and n = a−1N , where a = r2O(1) as R → 0 by (22).
It follows from r−2 = 1

2
(G(`, n) + G(`, `)) = 1

2
(G(L, N) + a2G(L, L)) that

G(L, L) = O(r−6) is the required unbounded coefficient. Note also that the
boost n = O(r−2)N so Σ is tangent to the past null cone at the central axis
point; see ([6],Figure 3.).

4 Spacetime Picture

Let (M, g, T ) be a spherically symmetric spacetime which satisfies the Ein-
stein equations Gµν = 8πg Tµν with stress-energy Tµν , and consider the ques-
tion of finding a dynamical horizon in M . If one were to exist in (M, g, T ),
then the initial data on this dynamical horizon would necessarily satisfy the
conditions discussed in Section 3, including (8). Since (8) depends on the
adapted frame (e⊥, eR), it is not easy to check directly from the spacetime
fields. One can however state an equivalent slice-independent condition:

12



Lemma 7 Let W ⊆ M be a spacetime region with stress-energy tensor T
satisfying the strict null energy condition (SNEC)

T (L, L) > 0 for all radial null vectors L in W. (23)

Then the following are equivalent:

(i) There is a future null frame (`, n) with g(`, n) = − 2 satisfying the
condition

1
2
r2G(n, `) = 4πg r2T (n, `) < 1. (24)

(ii) There is a spacetime frame (E⊥, ER) satisfying (8).

Remark: The Lorentz-invariant condition (24) arises frequently: for exam-
ple, in [6] the sign of the C-function ([6] equation (2.3))

C =
1
2
r2G(`, `)

1− 1
2
r2G(`, n)

(25)

(or more accurately, the sign of C−1) determines the causal character (space-
like/null/timelike) of the marginally trapped tube (MTT). Another example
is the evolution equation [9]

∂2(r2)

∂u∂v
= −Ω2(1− 1

2
G(`, n)r2) (26)

for the areal function r2(u, v) in double null coordinates ds2 = −Ω2(u, v) du dv+
r2(dθ2 sin2(θ) dφ2).

Proof: To show that (i) ⇒ (ii), we check the effect of a Lorentz boost
on T (e⊥, `). The boosted frame L = a`, N = a−1n, E⊥ = 1

2
(L + N) =

1
2
(a` + a−1n) satisfies

2T (E⊥, L) = T (N, L) + a2T (L, L) ;

hence it follows from the SNEC (23) and the Lorentz invariance of (24) that
there is a unique a > 0 such that T (E⊥, L) = 1

2
(4πg r2)−1, which is equivalent

to the condition (8). The converse (ii) ⇒ (i) follows from the above boost
relation, together with the definitions of ρ and ξ in terms of T .

It follows from this Lemma that, if we are given a spacetime which satisfies
the SNEC, then inequality (24) is a necessary condition for it to contain a
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dynamical horizon. We now look to find sufficient conditions for existence.
Suppose that in our given spacetime (M, g, T ) there is a non-empty region
W ⊆ M in which the SNEC condition and (24) both hold. From the lemma,
it follows that through every point in W there is a spacelike vector eR such
that the adapted frame (e⊥, eR) satisfies (8). The integral curves of the
vector field eR give a foliation of W by spacelike hypersurfaces which satisfy
(8). It follows from the results of Section 3 that if the spacetime contains a
dynamical horizon, it must coincide with a leaf of this foliation.

To see that condition (8), whilst necessary for a given leaf to be a dy-
namical horizon, is not sufficient5, we use the constraint equations with (8)
and the expression θ+ = µ+ 2

r
d

dR
r for the future outer expansion θ+ to derive

a differential equation for θ+. Specifically, writing (6) in terms of θ+ and
eliminating d2r

dR2 with (5), we obtain

d

dR
θ+ + (3

4
θ+ − τ)θ+ =

1

r2
− ρ− ξ . (27)

Clearly if we choose a spacelike hypersurface with adapted frame {e⊥, eR}
relative to which ρ + ξ = 1

r2 (which Lemma 2 guarantees that we always can
do) then the right hand side of (27) vanishes, and we see that (27) admits
the solution θ+ = 0. It then follows from ODE uniqueness that the sign of
θ+ is fixed on each leaf. Hence if p ∈ W and θ+(p) = 0 then the leaf through
p is a dynamical horizon. Finally, it follows from the Raychaudhuri equation

D`θ+ = −1
2
θ2
+ − 8πg T (`, `)

and from the strict null energy condition that D`θ+ < 0. Presuming the
spacetime to be smooth, we find that there are four possibilities:

(a) The region W has θ+ > 0 everywhere, so that it is entirely untrapped,
and there is no dynamical horizon.

(b) The region W has θ+ < 0 everywhere, so that it is entirely trapped,
and there is no dynamical horizon.

5We have shown in Section 3 that while (8) holds, for any choice of a pair of free
functions, we can construct initial data so that the hypersurface with that data is a
dynamical horizon for the spacetime development of that data. It does not, however,
follow that any initial data set satisfying (8) is a dynamical horizon: we show here that
the additional condition θ+(p) = 0 for at least one point is necessary.
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(c) The region W contains a single leaf with θ+ = 0 , but θ− ≥ 0 everywhere
on this leaf. So there is no dynamical horizon.

(d) The region W contains a single leaf with θ+ = 0, and on some (possibly
proper) subset of this leaf, θ− < 0. This subset is a dynamical horizon.

In summary, we have shown the following:

Proposition 8 Let (M, g, T ) be a smooth spacetime which satisfies the strict
null energy condition (23).

1. If condition (24) is satisfied nowhere in M , then the spacetime contains
no dynamical horizons.

2. If there exists a non-empty connected region W ⊆ M in which condition
(24) holds, and if the outward null expansion function θ+ has constant
sign (with no zeroes) then W contains no dynamical horizon and is
everywhere trapping or non-trapping.

3. If there exists a non-empty connected region W ⊆ M in which condition
(24) holds, and if the expansion θ+ takes on both positive and negative
values in W , then W contains a unique spacelike hypersurface with
θ+ = 0. The data on this hypersurface satisfy (8), and it is (entirely or
partly) a dynamical horizon if and only if θ− < 0 on all of it or part of
it. In addition, this hypersurface divides W into a trapping region to
the future and a non-trapping region to the past.

Remark: It is worth noting that, unlike the situation for dynamical horizons
in non-spherical spacetimes, the spherically symmetric construction given
here does not depend on any choice of (spherically symmetric) time slicing.
This leads to a much stronger uniqueness statement (Proposition 8) than is
available in the general case.

5 Conclusion

While the set of spacetimes which are spherically symmetric is very special,
it is clear from physical considerations that, so long as matter is present,
dynamical horizons can form in them. We determine here the necessary con-
ditions for spherically symmetric spacetime to contain a dynamical horizon,
and sufficient conditions as well. We also demonstrate their uniqueness, and
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show how to systematically construct initial data sets which serve as dy-
namical horizons for their spacetime developments (with two free functions
parametrizing the collection of all such data sets).

The situation regarding dynamical horizons in non-spherically symmetric
spacetimes, is of course considerably more complicated. Still, a full under-
standing of the spherically symmetric case provides a good first step toward
uncovering the properties of dynamical horizons more generally.
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