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Abstract

We show that solutions E of the Ernst equation with a smooth,
non-degenerate zero-level-set of <E lead to smooth ergosurfaces. Some
partial results on critical zeros are obtained.

1 Introduction

A standard procedure for constructing stationary axi-symmetric solutions of
the Einstein equations proceeds by a reduction of the Einstein equations to a
1+1 nonlinear equation — the Ernst equation [2] — using the asymptotically
timelike Killing vector field X as the starting point of the reduction. One
then finds a complex valued field E = f + ib, by e.g. solving a boundary-
value problem [10]. The space-time metric is then obtained by solving ODEs
for the metric functions. Those ODE’s are singular at the zero-level-set

Ef := {f = 0}
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of f := <E ; we will refer to Ef as the E -ergosurface. It is the object of this
note to show that the singularities of the solutions of those ODEs conspire
to produce a smooth space-time metric, provided that the gradient D(<E )
is nowhere vanishing on the E –ergosurface.

We expect that the above non-degeneracy condition is not necessary, but
we have not been able to find a general argument for that. In Section 4 we
report some preliminary results on critical zeros of <E , with non-vanishing
Hessian, based on computer algebra.

The results presented here originated in numerical experiments by PCh
and SSz, together with previous unpublished analytical results by RM.

2 The field equations and ergosurfaces

We consider a vacuum gravitational field in Weyl-Lewis-Papapetrou coordi-
nates

ds2 = f−1
[
e2k
(
dρ2 + dζ2

)
+ ρ2dφ2

]
− f (dt+ adφ)2 (2.1)

with all functions depending only upon ρ and ζ. The vacuum Einstein
equations for the metric functions k, f , and a are equivalent to the Ernst
equation

(<E )
(

E,ρρ + E,ζζ +
1
ρ
E,ρ

)
= E 2

,ρ + E 2
,ζ (2.2)

for the complex function E (ρ, ζ)

E = f + ib, (2.3)

where b replaces a via

a,ρ = ρf−2b,ζ , a,ζ = −ρf−2b,ρ (2.4)

and k can be calculated from

k,ρ =
ρ

4f2

[
f2
,ρ − f2

,ζ + b2,ρ − b2,ζ
]
, k,ζ =

ρ

2f2
[f,ρf,ζ + b,ρb,ζ ] . (2.5)

We will think of ρ and ζ as being cylindrical coordinates in R3 equipped
with the flat metric

g̊ = dρ2 + ρ2dϕ2 + dζ2 ,

with all the above functions being ϕ–independent functions on R3. Then
(2.2) can be rewritten as

f∆f = |Df |2 − |Db|2 , (2.6)
f∆b = 2(Df,Db) . (2.7)
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where ∆ is the flat Laplace operator of the metric g̊, and (·, ·) denotes the
g̊-scalar product, similarly the norm | · | is the one associated with g̊.

The equations (2.6)-(2.7) degenerate at {f = 0}, and it is not clear that
f or b will smoothly extend across {f = 0}, if at all. However, there are large
classes of solutions which do have this property. Examples can be obtained
as follows: First, every space-time obtained from an Ernst map E ′ associ-
ated to the reduction that uses the axial Killing vector ∂ϕ (see, e.g., [1, 11])
will lead to a solution E as considered here that extends smoothly across
the space-time ergosurfaces (if any; recall that an ergosurface is defined to
be a timelike hypersurface where the Killing vector X, which asymptotes
a time translation in the asymptotic region, becomes null. Those ergosur-
faces correspond then to E -ergosurfaces across which f does indeed extend
smoothly. However, we emphasise that we are interested in the construction
of a space-time starting from E , and we have no a priori reason to expect
that an E –ergosurface, defined as smooth zero-level set of <E , will lead to
a smooth space-time ergosurface; it could lead e.g. to space-time curvature
singularities.

Next, large classes of further examples are given in [3, 6–10, 12]1. Some
of the solutions in those references have non-trivial zero-level sets of <E ,
with gρρ = gzz and gtϕ smooth across Ef (see, e.g., [6]), but the smoothness
of gϕϕ is not manifest.

3 Non-degenerate zeros of f

We claim the following:

Theorem 3.1 For ρ > 0 consider a smooth solution f + ib of (2.6)-(2.7)
such that |Df | has no zeros at the E –ergosurface Ef := {f = 0}. Then the
metric (2.1) constructed by solving (2.4)-(2.5) is smooth and has Lorentzian
signature.

Proof: We need to show that the functions

α := gϕt = af , β := ln gζζ = ln gρρ = 2k − ln f−1 ,

as well as

gϕϕ =
ρ2 − (af)2

f
1The solutions we are referring to here are not necessarily vacuum everywhere, and

some of them have a function E which is singular somewhere in the (ρ, ζ) plane. Our
analysis applies to the vacuum region, away from the rotation axis, and away from the
singularities of the Ernst map f + ib.
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are smooth across {f = 0}, and that gϕt does not vanish whenever gtt = f
does.

We start by Taylor-expanding f and b to order two near any point (ρ0, ζ0)
such that f(ρ0, ζ0) = 0:

f(ρ, ζ) = f̊,ρ(ρ− ρ0) + f̊,ζ(ζ − ζ0)

+
1
2
f̊,ρρ(ρ− ρ0)2 +

1
2
f̊,ζζ(ζ − ζ0)2 + f̊,ρζ(ρ− ρ0)(ζ − ζ0) + . . . ,

b(ρ, ζ) = b̊+ b̊,ρ(ρ− ρ0) + b̊,ζ(ζ − ζ0)

+
1
2
b̊,ρρ(ρ− ρ0)2 +

1
2
b̊,ζζ(ζ − ζ0)2 + b̊,ρζ(ρ− ρ0)(ζ − ζ0) + . . . ,

where a circle over a function indicates that the value at ρ0 and ζ0 is taken.
Inserting these expansions into (2.6)-(2.7), after tedious but elementary al-
gebra one obtains either

b̊ρ = ∓f̊ζ , b̊ζ = ±f̊ρ,
f̊,ρρ + f̊,ζζ = f̊,ρ

ρ0
, b̊,ρρ + b̊,ζζ = f̊,ζ

ρ0
, b̊,ρζ = f̊,ζζ , f̊,ρζ = b̊,ρρ,

(3.1)

or
b̊ρ = f̊ζ = b̊ζ = f̊ρ = 0 . (3.2)

The second possibility is excluded by our hypothesis that Df 6= 0 on Ef .
Suppose, first, that the lower signs arise in the first line of (3.1). From

(2.4) we obtain

α,ρ =
f,ρ
f
α+

ρ

f
b,ζ , (3.3)

α,ζ =
f,ζ
f
α− ρ

f
b,ρ , (3.4)

so that (
α− ρ
f

)
,ρ

= [ρ(b,ζ + f,ρ)− f ]︸ ︷︷ ︸
=:σρ

f−2 , (3.5)

(
α− ρ
f

)
,ζ

= ρ(f,ζ − b,ρ)︸ ︷︷ ︸
=:σζ

f−2 . (3.6)

Inserting (3.1) into the definitions of σρ and σζ we find

σρ = σζ = 0 = dσρ = dσζ
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at every point (ρ0, ζ0) lying on the E -ergosurface. Here, as elsewhere, dh
denotes the differential of a function h.

Recall that Df does not vanish on Ef = {f = 0}. We can thus introduce
coordinates (x, y) near each connected component of Ef so that f = x. Since
the σa’s are smooth we have the Taylor expansions

σa = σa|Ef + (∂xσa)|Efx+ rax
2 ,

for some remainder terms ra which are smooth functions on space-time. But
we have shown that σa|Ef = (∂xσa)|Ef = 0. Hence

σa = rax
2 = raf

2 ,

It follows that the right-hand-sides of (3.5)-(3.6) extend by continuity across
Ef to smooth functions. Hence the derivatives of (α − ρ)/f extend by
continuity to smooth functions, and by integration

α− ρ = fα̂ , (3.7)

for some smooth function α̂(ρ, ζ). This proves smoothness both of gtϕ and of
gϕϕ. We also obtain that gtϕ = ρ when f = 0, and since ρ > 0 by assumption
we obtain non-vanishing of gtϕ on that part of the E –ergosurface which does
not intersect the rotation axis {ρ = 0}.

In the case where the upper choice of sign in (3.1) occurs, instead of
(3.5)-(3.6) we write equations for (α + ρ)/f , and an identical argument
applies.

We pass now to the analysis of gρρ = gzz. From (2.5),

(k − 1
2

ln f),ρ =
1
4
[
ρ(f2

,ρ − f2
,ζ + b2,ρ − b2,ζ)− 2ff,ρ

]
︸ ︷︷ ︸

=:κρ

f−2, (3.8)

(k − 1
2

ln f),ζ =
1
2

[ρ(f,ρf,ζ + b,ρb,ζ)− ff,ζ ]︸ ︷︷ ︸
=:κζ

f−2. (3.9)

Evaluating κa and its derivatives on Ef and using (3.1) one obtains again

κa = dκa = 0

on Ef . As before we conclude that gρρ and gζζ are smooth across Ef .
2
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4 Non-degenerate critical zeros of f

In this section we wish to examine zeros of f at points p such that f(p) =
Df(p) = 0, with non-vanishing Hessian DDf(p) 6= 0 of f . Points with this
property are necessarily isolated. The analysis proceeds as in the previous
section: we Taylor expand f and b to order n,

f(ρ, ζ) =
∑

0≤i+j≤n

f̊i,j
i!j!

(ρ− ρ0)i(ζ − ζ0)j + rn , (4.1)

where

f̊i,j :=
∂i+jf

∂iρ∂jζ
(ρ0, ζ0) .

Similarly we denote the Taylor coefficients of b by b̊i,j . We insert the resulting
expansions in the Ernst equations, obtaining relations between the Taylor
coefficients. The algebra has been done using Maple, and crosschecked
with Mathematica, the interested reader can download the worksheets
from http://cornus.if.uj.edu.pl/~szybka/CMS. The results in this sec-
tion have a preliminary character, as we have not carefully crosschecked all
special cases which might have remained unnoticed by the computer algebra
systems.

By inspection of the equations involved one finds that the knowledge of
the Taylor coefficients up to n = 4 is necessary for the analysis of gρρ, while
n = 5 is needed for that of gϕϕ.

Perhaps the most significant result of this calculation is the following:

Proposition 4.1 There exist no points such that f = Df = 0, and with
DDf – either positive definite, or negative definite.

In other words, every critical point of f on Ef with non-vanishing Hessian
is necessarily a saddle point. This implies immediately that {f = 0}∩{Df =
0} has no isolated points at which DDf 6≡ 0. Unfortunately, this does not
exclude isolated points of Ef at which some high order derivative would
produce a Taylor polynomial with a definite sign; similarly isolated zeros of
infinite order are not excluded; but we find both those possibilities rather
unlikely. It should be kept in mind that solutions of the Ernst equation are
necessarily real analytic functions away from Ef , but analyticity could fail
at Ef .

In any case, the result of Proposition 4.1 is not welcome for the analysis
of the metric functions at critical zeros of f . Indeed, quotients involving f
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are easy to analyse near points at which the Hessian DDf is either strictly
positive or strictly negative. On the other hand, the analysis near saddle
points is more delicate. It is conceivable that the results in [4, 5] can be used
to settle this, but this does not seem to be staightforward. The results that
follow show that there are no obvious obstructions to smoothness of gµν near
saddle points, but they do not establish smoothness.

The results of our calculations are summarised as follows: consider the
polynomials Wa, a = 1, 2, obtained by inserting the Taylor expansion of f
and b, with f̊ = Df̊ = 0, into (2.6) and (2.7). The requirement that those
polynomials vanish up-to-and-including order two imposes the following al-
ternative sets of conditions:

I. b̊2,0 = b̊1,1 = b̊0,2 = f̊1,2 = 0 , f̊1,1 = f̊2,2 ∈ R , (4.2)

II. f̊2,0 = −f̊0,2 = −̊b1,1 ∈ R , b̊0,2 = −f̊1,1 = −̊b2,0 ∈ R , (4.3)

as well as a set which is related to II. above by exchanging b with −b. The
first set leads to f̊1,1 = 0 when requiring that the polynomials Wa just
defined vanish to one order higher, which proves Proposition 4.1. On the
other hand, the set II. and the requirement of vanishing of the third-order
coefficients of W leads to the conditions

f̊3,0 + 2
ρ0
b̊1,1 = 1

ρ0
b̊1,1 − b̊2,1 = b̊0,3 ∈ R , f̊1,2 = b̊2,1 , (4.4)

b̊3,0 − 1
ρ0
f̊1,1 = −̊b1,2 = −f̊0,3 ∈ R , f̊2,1 = b̊3,0 . (4.5)

Inserting (4.3)-(4.5) into the definitions (3.8)-(3.9) of κ, and (3.5)-(3.6) of
σ, gives

κ = ∂iκ = ∂i∂jκ = ∂i∂j∂kκσ = ∂iσ = ∂i∂jσ = ∂i∂j∂kσ = 0

at (ρ0, ζ0). In fact,

κρ = − 1
4ρ0
f2 +O(|~x− ~xo|5) , where ~x = (ρ, ζ) , (4.6)

κζ = O(|~x− ~xo|5) . (4.7)

This is obtained by the requirement of vanishing of the fourth-order coeffi-
cients of W , which leads to the equations

f̊2,2 = −̊b1,3 − 1
ρ0
b̊0,3 = b̊3,1 ∈ R , f̊3,1 = b̊4,0 ∈ R , (4.8)

b̊2,2 = f̊1,3 = − 1
ρ2

0
f̊1,1 − b̊4,0 − 1

ρ0
b̊1,2 , f̊0,4 = b̊1,3 ∈ R , (4.9)

f̊4,0 = b̊1,3 + 1
ρ2

0
b̊1,1 + 2

ρ0
b̊0,3 , b̊2,2 + b̊0,4 = 1

ρ0
b̊1,2 . (4.10)
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One also has, assuming that neither b̊1,1 nor f̊1,1 vanish,

σρ =
1

6̊b21,1

(
−̊b1,3 + (̊b0,5 + f̊1,4)ρ0

)
f2 +O(|~x− ~xo|5) , (4.11)

σζ =
ρ0(−f̊3,2 + b̊4,1)

6f̊1,1̊b1,1
f2 +O(|~x− ~xo|5) . (4.12)
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