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Abstract

The decay of stripe patterns in planarly aligned nematic liquid crystals has been studied exper-

imentally and theoretically. The initial patterns have been generated by the electrohydrodynamic

instability. Light diffraction technique has been used to monitor the relaxation process of the stripe

pattern. The theoretical analysis focuses on the one hand on the rigorous determination of the

contribution from the individual decay modes to the overall relaxation process of a given initial

pattern. On the other hand a refined physical optical description of the diffraction intensity is

also given. Controlled modifications of the initial conditions have allowed to assess different decay

modes.
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I. INTRODUCTION

The intriguing features of patterns in anisotropic fluids when driven out of equilibrium

by an external stress have motivated a wide range of experimental and theoretical studies

over the last decades [1]. The most common representatives of uniaxially symmetric fluids

are nematic liquid crystals (nematics) which have a locally preferred direction described by

the director field n(r, t).

One of the simplest examples of patterns in nematics is a regular sequence of parallel

dark and bright stripes of wavevector q, which reflect a periodic modulation of the director

and hence that of the optical axis in space. The pattern is often accompanied by material

flow in the form of convection rolls and can be induced by various types of excitations like

shear flow, temperature gradient or electric field.

The goal of this work is to investigate the decay of a suitably prepared uniform stripe

pattern after the driving force has been switched off, i.e. when the system is returning to

the equilibrium (usually homogeneous) ground state. The relaxation time τ characterizing

the decay process is a key parameter, which reflects the system dynamics. In the theoretical

analysis we concentrate on low-amplitude director modulations, either already realized in

the initial pattern or developing in the late stage of the decay process. In a recent paper

[2] a rigorous theoretical description of the low-amplitude decay process of stripes has been

presented, which is based on the standard equation set of nematohydrodynamics [3, 4]. One

arrives at a certain linear eigenvalue problem, which yields an infinite discrete spectrum of

decay rates, µi(q) associated with the corresponding eigen (decay) modes Ni(z, q). Since only

the pattern wavelength (Λ = 2π/q) and the elastic and viscous material parameters come into

play, the analysis of the decay process might also be useful for actually assessing parameter

values. Note that the mechanism of producing the patterns influences their subsequent decay

only via the initial conditions, which determine the selection of the relevant decay modes.

In our case electroconvection (EC) is used to trigger the initial patterns: an ac voltage is

applied to a thin (d ∼ 10− 100µm) layer of a planarly oriented, slightly conducting nematic

possessing negative dielectric and positive conductivity anisotropies [5]. Varying the easily

tunable control parameters (rms voltage U , circular frequency ω, etc.) we place the system

into a parameter regime, where periodic stripe (roll) patterns with wavevector q parallel

to the equilibrium director orientation n0 (normal rolls) bifurcate at onset (Uc). This state
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serves as the initial condition for the decay dynamics when the voltage is switched off. Our

previous light diffraction measurements of the decay rates for various |q| were consistent

with the theory and gave the first indications to the selection mechanism of the dominant

decay modes [2]. In the present work the analysis will be substantially refined: for a given

initial pattern we determine rigorously the individual contributions of the different decay

modes to the temporal evolution of the diffraction fringe intensities, which is exploited in

the experiment to monitor the decay process.

In Section II we describe briefly the experimental setup and give some background infor-

mation on the initial EC patterns. Section III is devoted to the linear eigenvalue problem

alluded to before, which leads to the decay rate spectrum and in particular to the under-

standing of the relative importance of the corresponding eigenmodes when the decay from

different initial states is considered. In Section IV we present a theoretical analysis of the

light diffraction method, where we employ a standard (slightly refined) physical optical de-

scription [10, 11]. In Section V we compare theory and experiment in the linear regime.

In addition we show experiments where the initial conditions have been modified either

by stronger forcing or by different waveforms of the driving signal. The paper ends with

some concluding remarks and an outlook for future work. An appendix is devoted to some

technical details.

II. EXPERIMENTAL SETUP

The decay of EC patterns was investigated in standard sandwich cells (E.H.C. Co)

which produce by their proper surface treatment a uniform planar orientation of nematics

in the equilibrium state. In the experiments we have used the commercial nematic ’Phase

5’ (Merck) and its factory doped version Phase 5A. This substance (a kind of a standard

for EC measurements) is chemically stable and its material parameters on which all explicit

calculations throughout this paper were based, are well known [6]. All measurements were

carried out at the temperature T = 30.0 ± 0.05 oC kept constant by a PC controlled Instec

hot-stage. Cells with different thicknesses d have been used, where d was determined by an

Ocean Optics spectrophotometer.

The EC instability was typically driven by an ac voltage U
√

2sinωt with frequencies

f = ω/(2π) up to 1400 Hz and rms amplitudes U up to 90 V [7]. Convection in form
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FIG. 1: a; Critical voltage Uc and b; dimensionless components q′c = qcd/π (open squares) and

p′c = pcd/π (open triangles) of the critical wavevector for a Phase 5 cell (d = 9.2µm) as function

of frequency f . Measurements (symbols) are compared with theory (solid lines).

of rolls with a critical wavevector qc = (qc, pc) sets in if the applied voltage U exceeds

a certain threshold Uc(f). In Fig. 1a a typical critical voltage curve is presented as a

function of frequency, where two well known regimes can clearly be identified. At frequencies

below a certain cutoff frequency, fc, which is material parameter dependent, one observes

electroconvection in the conductive regime, where the director distortion is practically time

independent, whereas it oscillates in the dielectric regime above fc (for more details see

Sect.III). The transition from one regime to the other is indicated by a sudden change in the

slope of the Uc(f) curve. In Fig. 1b we show the components q, p of the critical wavevector

qc. At lower frequencies we have oblique rolls with a nonzero angle δ = arctan(p/q) between

q and n0. Above the Lifshitz frequency fL we have normal rolls with pc = 0. At fc we

observe a jump in qc. In Figs. 1a and 1b we have included the theoretical curves obtained

from the linear stability analysis of the nematohydrodynamic equations [5] with the material

parameter set for Phase 5, which describes the experiments very well.

The cut-off frequency is proportional to the electric conductivity of a nematic. Phase 5

has a low cut-off frequency (fc = ωc/(2π) < 300 Hz) thus it allows easy measurements in

the dielectric mode of EC in thin cells. Due to its much higher electrical conductivity Phase

5A has a higher cut-off (fc > 1500 Hz) offering a wide frequency range for the conductive

mode. But the dielectric regime was not accesible, since the required voltage becomes too

high and destroys the cells. To facilitate comparison with theory we restricted ourselves to
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FIG. 2: Schematic sketch of the light diffraction geometry.

the normal roll regime (f > fL). While the wavelength Λ = 2π/q in the conductive regime

varies roughly between 2d and 0.9d, in the dielectric regime considerably smaller values

≈ 0.3d become accessible. In order to cover a wide q−range we have chosen d = 28µm for

Phase 5A and d = 9.2µm for Phase 5, respectively.

The nematic layer (see Fig.2) is illuminated with a polarized monochromatic laser beam

(circular frequency Ω, wavelength λ = 2πc/Ω = 650nm, c is the velocity of light). Diffraction

fringes were observed on a screen placed normal to the beam at a distance of L = 660 mm.

In order to have a higher contrast, oblique incidence was used with an angle of incidence

γ = 5 ◦. This set-up allowed easy determination of the pattern wavelength Λ from the

distances of the fringes.

The pattern decay has been initiated by a practically instantaneous (within 10µs) shutting

down of the voltage. The process has been monitored by recording the intensity I−1(t) of

the first order fringe n = −1 [8]. From the analysis of the time evolution of I−1(t), to be

described in the subsequent sections, the decay rates could be extracted.

III. THEORETICAL ANALYSIS OF THE DECAY PROCESS

We consider the standard configuration of a nematic sandwiched between two plates

parallel to the x-y plane at a distance d (−d/2 < z < d/2). We concentrate on the planar

configuration, where in the ground state the director is oriented along the x axis, i. e. parallel

to n0 = (1, 0, 0). Applying an electric voltage U , which exceeds slightly the threshold Uc, a

stripe pattern develops. It involves a periodic modulation of n with wavenumber q in the n0
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direction. The modulations are coupled in a positive feedback to the flow in convection rolls

and to space charge distributions with the same periodicity; all spatial variations are confined

to the x-z plane (”normal rolls”). n is characterized by its space- and time dependent angle,

θEC(x, z, t), with x̂. It is convenient to separate an amplitude θm and the part periodic

along x from θEC , which is thus presented as θEC(x, z, t) = θmsin(qx)ϑEC(q, z, t) where

ϑEC(q, 0, 0) is normalized to one.

The threshold voltage Uc, the critical wavenumber qc of the roll pattern and the director

profile ϑEC(q, z, t) can be obtained from a linear stability analysis of the standard model

(SM) of EC [12], which consists of a set of coupled partial differential equations (PDE).

Galerkin methods [9] are very convenient to obtain numerical solutions of the SM. The

various fields (director, flow, charge density) are represented in the form of appropriate

series expansions, like

ϑEC(q, z, t) =

∞
∑

m=−∞

eimωt

∞
∑

l=1

aml(q)sin(l
π

d
(z + d/2)), (1)

for the director, which automatically fulfill the boundary conditions of vanishing distortion,

ϑEC(q,±d/2, t) = 0, at the confining plates. Due to the up-down symmetry of standard EC

the solutions are either odd or even against the reflection z → −z. At small dimensionless

control parameter values ǫ = (V 2 − V 2
c )/V 2

c , i.e. near onset, ϑEC is in fact even in z and

thus aml(q) = 0 for all even values of l. The solutions are in addition characterized by a

parity under the transformation t ⇒ t + π/ω. While ϑEC has even parity (aml = 0 for odd

m) in the conductive regime, it switches to odd parity at the cut-off frequency ωc for the

high-frequency dielectric regime (aml = 0 for even m). By projecting the SM equations on

the Galerkin modes one arrives at algebraic equations for the expansion coefficients like the

aml(q), which are determined numerically. Truncating at 8 Galerkin modes (0 < l < 8) in the

z−direction and at 3 temporal modes (0 < |m| < 3) usually gives an excellent description

of patterns near onset. For the nematic Phase 5 the director profile ϑEC(q, z, t) turns out

to be dominated by the leading non-vanishing terms (l = 1; m = 0 for conductive and

l = 1; m = ±1 for dielectric regimes), while the other coefficients aml yield only small (< 5

%) corrections.

The decay of a pattern, which starts when the voltage is suddenly switched off, say at

t = 0, does not change the wavenumber q. Therefore we use for the director profile θd during

the decay the representation θd(x, z, t) = θmsin(qx)ϑd(q, z, t) in analogy to θEC(x, z, t).
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As already mentioned the analysis of the decay process requires the solution of a linear

eigenvalue problem, which originates from the standard model, to determine the decay rates

µk(q) and the decay modes Nk(q, z). Compared to the analogous calculation of the critical

EC values, the equations become simpler [2], since for zero electric field the charge and the

director relaxation dynamics are decoupled (see Appendix).

In line with the standard procedure for linear PDEs the time evolution of the decaying

director profile ϑd(q, z, t) can be represented as:

ϑd(q, z, t) =

∞
∑

k=1

e−µk(q)twk(q)Nk(q, z). (2)

The expansion coefficients wk(q) are determined by a suitable projection on the initial state

ϑd(q, z, 0) ≡ ϑEC(q, z, 0).

wk(q) =

∫ +d/2

−d/2

ϑEC(q, z, 0)N+
k (q, z)dz k = 1, 2, ... (3)

where the adjoint linear eigenvectors N+
k (q, z) of the eigenvalue problem (see Appendix)

fulfill the ortho-normality condition:

1

d

∫ +d/2

−d/2

Nk(q, z)N+
l (q, z)dz = δkl k, l = 1, 2. (4)

where δkl denotes the Kronecker symbol.

The expansion coefficients wk(q) depend strongly on q. This is obvious when inspecting

the q−dependence of the weights wk (k = 1, ..., 8) plotted as function of the dimensionless

wavenumber square q′2 = (qd/π)2 in Figs. 3a and 3b. The wk have been determined with

the help of Eq. (3), where for simplicity ϑEC(q, z, 0) has been approximated by its leading

term sin(π
d
(z +d/2)) in Eq. (1). The functions wk(q) are very small everywhere except over

a certain q′2 interval, where they rise steeply to a finite value. In other words the q′2 axis can

be covered by a set of intervals, such that for each of them a unique k̂(q) exists associated

with the dominating wk̂(q) function. With increasing q′2 the corresponding k̂(q) increases

monotonously. Only in the vicinity of special q′2 values, where two neighboring wk(q) curves

cross, i.e at the borders of the q′2 intervals described before, the decay is governed by two

comparable decay rates µk̂ and µk̂+1.

We have in addition calculated the weights wk(q) for some q values using the rigorous

theoretical initial director profilea ϑEC(q, z, 0) in Eq.(3), which includes nonzero coefficients
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FIG. 3: Variation of the absolute value of the weights wk of various decay eigenmodes (plotted with

different line styles) with respect to the dimensionless wavenumber square q′2 for a; k = 1, ..., 4

and for b; k = 5, ..., 8, using a sin(π
d (z + d/2)) initial director profile. The weights |wk| calculated

from the actual EC director profile are plotted as symbols for a few frequencies in the conductive

(q′2 < 6, squares for k = 1, up triangles for k = 2) as well as in the dielectric regime (q′2 > 8)

(circles for k = 3 and down triangles for k = 4).

aml with l > 1 in Eq. (1). The corrections are in fact almost negligible (see the symbols in

Fig. 3a).

IV. THEORETICAL DESCRIPTION OF THE DIFFRACTION OPTICS

EC roll patterns represent a periodic spatial modulation of the director which corresponds

to an optical phase grating with a lattice constant Λ. This feature allows us to keep track

of the decay of the pattern by monitoring the intensities of the fringes in laser diffraction.

Since our director distortions are small, the linearized physical optics approach discussed

in the literature for diffraction from EC rolls [10] is well suited. To disentangle clearly the

main contributions to the fringe intensities and to set our notation, we review briefly the

previous theoretical approach ([10]) and allow at the same time for arbitrary profiles ϑd(z)

instead of sin[π
d
(z + d/2)] chosen in Ref. [10].

The incident light can be well described by a plane wave ∼ exp[i(Ωt − k0x)], since the

spatial extension of the beam is much larger than Λ. The wave vector k0 (k0 = Ω/c) and

the (extraordinary) light polarization are restricted to the x-z plane.
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The optical properties of the nematic are governed by the anisotropic dielectric per-

mittivities ǫ‖, ǫ⊥ (at the optical frequency ω) or by the corresponding refractive indices,

n2
e = ǫ‖, n

2
o = ǫ⊥.

In the case of small distortions of the planar geometry, i.e. for small θm, the diffraction

pattern is determined only by the phase k0Φ of the transmitted light. Thus an eikonal type

approximation for the electric and magnetic field components of the light wave is appropriate.

According to [10] in the present geometry the Maxwell equations can be reduced to an

equation for the y component of the magnetic field, By, of the laser beam. The equation is

solved by the substitution:

By(x, z) = C exp[i(ωt + k0Φ)] with Φ(x, z) = x sin γ − nfz + βθmu(x, z). (5)

Here C is a constant and the following abbreviations are used :

nf = ne

√

1 − sin2 γ

n2
o

, β =
n2

e

n2
o

− 1. (6)

Obviously the function u(x, z) describes the modification of a plane wave due to the presence

of the periodic director distortion.

Following [10] it is useful to separate u(x, z) as

u(x, z) = g1(z) exp[−iqx] + g2(z) exp[iqx] (7)

which eventually leads to a linear inhomogeneous ordinary differential equation (ODE) for

g1(z):

(−n2
e

n2
o

q2 + ∂zz)g1(z) − 2ik0[nf∂zg1(z) +
n2

e

i
q sin γ g1(z)]

= [−2k0nf sin γ ϑ(z) − i sin γ ∂zϑ(z) + qnfϑ(z)]/2 (8)

The corresponding ODE for g2(z) is obtained by the replacement q → −q.

The standard matching conditions of the light wave at the boundaries of the cell at

z = ±d/2 are fulfilled if the following conditions hold [10].

g1(−d/2) = ∂zg1(−d/2) = 0; g2(−d/2) = ∂zg2(−d/2) = 0. (9)

The maxima of the diffraction patterns correspond to rays which include the angles γ+αn

(n = ±1, ±2, ...) with the z axis, fulfilling the relation

sin(γ + αn) − sin(γ) =
nλ

Λ
(10)
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where αn < 0 for negative n. In this paper we concentrate on the intensity I−1 of the first

order fringe n = −1 (see Fig. 2). It can be shown by expanding Eq. (5) with respect to θm ≪
1 (see [11]), that within our linear approximation scheme I−1 is given as θ2

m|ik0g1(d/2)|2 :=

θ2
m|H1|2, where the intensity I0 of the undistorted laser beam is normalized to one.

We solve Eq. (8) using the ’variation of constant’ method. The two linearly independent

solutions of the homogeneous equation are given as f±(z) = exp(iκ±z) with

κ± = nfk0

[

1 ±
(

1 − R−2n2
e

n2
o

[1 − 2R sin γ]/n2
f

)1/2
]

; R = k0/q. (11)

Corrections to geometrical optics and thus diffraction become smaller with increasing R,

which varies between 6 and 38 in our experiments. It is obvious, that even a small incidence

angle like γ = 50 is advantageous, since the term 2R sin γ compensates to some extent the

small factor R−2 in Eq.(11).

The solution of Eq. (8) with the boundary conditions Eq. (9) is then determined as:

g1(z) =
1

i(κ+ − κ−)

∫ z

−d/2

dz′ (f+(z − z′) − f−(z − z′)) Inh(z′) (12)

where Inh(z) denotes the inhomogeneity on the right hand side of the ODE in Eq. (8). It

is obvious that the contribution from f+(z) - which oscillates strongly on the scale of d due

to κ+ ≫ κ− - can be safely neglected in the sequel.

Thus we arrive at the following final expression for I−1 ∝ |H1|2:

H1 = −(c̄1 + c̄2κ−)

∫ 1/2

−1/2

exp[iκ−d(
1

2
− z̄)]ϑ(z̄)dz̄ (13)

with

c̄1 = dqnf
k0

(κ+ − κ−)
[1 − 2R sin γ]/2, c̄2 = dk0

R−1

(κ+ − κ−)
[R sin γ]/2. (14)

Here we have changed to dimensionless units z̄ = z/d. According to Eq. (13) H1 appears as

a certain weighted average over the director profile ϑ(z). Note that the contribution ∝ c̄2

originates from a partial integration of the ∂zϑ term contained in Inh(z).

Inserting our representation for decaying director profile given in Eq. (2) into Eq. (13),

all integrals can be performed analytically and H1 appears in a natural way as a sum of the

contributions of the different eigenmodes Nk(z). Thus eventually the fringe intensity I−1 is

given as:

I−1 = θ2
mCq |

∞
∑

k=1

copt
k wk exp(−µkt)|2 (15)
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where the q dependent pre-factor

Cq = |(c̄1 + c̄2κ−)|2 (16)

and the coefficient

copt
k (q) =

∫ 1/2

−1/2

exp[iκ−(q)d(
1

2
− z̄)]Nk(z̄, q)dz̄. (17)

capture the diffracting efficiency of a given decay mode.

In Fig. 4 we show some coefficients copt
k (q) as a function of q′2. While copt

1 decreases with

increasing q′2, the coefficients copt
k for k > 1 show a damped oscillation in the experimentally

relevant q range. In analogy to the maxima of the weights |wk| (see Fig. 3a) the leading

maxima of |copt
k | are continuously shifting toward higher q′2 values and appear roughly at the

same q′ interval with k = k̂(q′) as defined for |wk(q)| in Sect. III. Thus via their product in

Eq. (15) the mode selection mechanism (wk) and the optical efficiency (copt
k ) enhance each

other. The product |wk(q)c
opt
k (q)| is shown in Figs. 5a and 5b as a function of q′2, which

is indeed maximal for k = k̂(q). Consequently it is obvious that the initial stage of the

pattern decay, at small t, is for a given q governed by the decay rate µk̂(q). Since k̂(q) > 1

for q2 > 4 we would like to emphasize that the initial decay is not automatically governed

by the smallest decay rate µ1(q), as one might have guessed intuitively. With increasing t,

however, we inevitably arrive at a time t1 where the relation:

|copt

k̂
wk̂|exp(−µk̂t1) = |copt

k̂−1
wk̂−1|exp(−µk̂−1t1) (18)

holds and µk̂−1 comes into play. Upon further increasing t we will visit all lower k values until

k = 1 is reached. With the analytical expression (15) at hand there is no difficulty to study

the time dependence of I−1(t) in any detail. On the other hand, when only experimental

values for I−1(t) are given, we are faced with the problem to extract the decay rates µk(q)

in a controlled way. For that purpose we fit the data available in the interval ta < t <

ta + Tf to an exponential curve Aexp(−2µf t), where the factor 2 in the exponent is obvious

since the intensity depends quadratically on the tilt angle (see Eq. (15)). The interval Tf

has to be chosen small enough, to allow for discriminating the sequence of the µk to be

expected with increasing ta according to our general analysis above. As a test we applied

the fitting procedure to the analytical expression for I−1(t) given in Eq. (15). The weights

of the decay modes have been calculated from the initial EC state for a number of q values
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(including ones from the conductive as well as from the dielectric regime). It is convenient to

nondimensionalize the effective exponents using the characteristic director relaxation time

τd = γ1d
2/K1π

2 (γ1 is a rotational viscosity, K1 the splay elastic constant), which is of the

order of 1s for d = 10µm. The resulting µ′
f = µfτd are shown in Fig. 6 together with the

first few µ′
k = µkτd branches as function of q′2. It is reassuring that our µ′

f reproduce the

µ′
k = µkτd branches very well: the µ′

f follow the µ′
k branches, and exploit their steep parts

to switch to higher k values with increasing q′2. The same scenario has also been observed

and discussed before when analyzing the experimental data in [2].

In order to have a closer look at the time dependence of the I−1(t) curves the starting point

ta of our fitting regime was continuously shifted towards larger times. Thus we obtain an

effective decay rate µ′
f(ta). Figures 7a and 7b exhibit examples of µ′

f(ta) for the conductive

(q′2 = 5.619) as well as for the dielectric (q′2 = 18.796) regime, respectively. It is seen

that the decay rate varies with increasing ta; a gradual crossover from the decay rate of

the dominant mode (µ′
f(0) = µ′

k̂
) via the intermediate µ′

k(q) with k < k̂ toward the slowest

decay rate µ′
1 is observed.

To allow an easier comparison of the time evolution of µ′
f(ta) at various wavenumbers,

Fig. 8 contains their values scaled by the largest one, i.e. µ′
f(ta)/µ

′
f(0). For the lowest

q the slowest mode µ1(q) is the dominant one, so µ′
f(ta) is practically constant, while for

increasing q, where k̂(q) > 1 also larger µk with k < k̂ come into play before the curves
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with respect to the dimensionless wavenumber square q′2 for a; k = 1, ..., 4 and for b; k = 5, ..., 8,

assuming a sin(π
d (z + d/2)) initial director profile.

saturate again at the slowest mode µ1 at ta & 15/µ′
k̂
. Notice, however, that by this time,

the fringe intensity has already decreased by a factor of 3 · 10−7 which is much too low to

be resolved in the experiment.

For completeness we have also plotted the mode independent normalization factor |Cq| as

a function of q′2 in Fig. 9, which determines the absolute intensity I−1 of the first order fringe

n = −1. It becomes fairly small at large q2 and approaches zero at a certain γ-dependent

wavenumber qγ. The absolute intensity, which sets a limitation on resolving the patterns,

has otherwise no direct relevance for the determination of the decay rates. In addition we

have no real access to the initial amplitude θm in Eq. (15) which determines the fringe

intensity as well.

V. COMPARISON WITH EXPERIMENTS

To compare experiments directly with theory we have at first analysed the decay of initial

small-amplitude roll patterns, that have been prepared with applied voltages slightly above

the threshold Uc(ω). In this case for each q the maximal decay rate µk with k = k̂(q) could

easily be identified. The experimental decay rates µexp in Fig. 11 agree very well with the

theoretical results in Fig. 6 as has been already emphasized in [2].

However, since the pattern amplitude becomes too small at a later stage of the decay
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FIG. 6: Dimensionless decay rates µ′
f obtained by a single exponential fit versus q′2 for the start

of the decay. Squares and triangles indicate decay of conductive and dielectric rolls, respectively.

The lines of different style depict the µ′
1, ..., µ

′
7 branches of the dispersion relation.

process, it was not possible to reach the further µk with k < k̂ which must in principle show

up (see Fig. 7). Thus we will explore in the following subsections the possibility to initiate

the decay process with higher amplitudes and thus to modify the initial conditions.

A. Sine wave excitation

Low amplitude initial patterns are typically produced in our experiments by increasing

the applied voltage U slowly above the threshold Uc and waiting some time (of the order of

minutes) to allow for equilibration. There is, however, an obstacle to proceed to higher and

higher amplitudes θm: roll patterns become zigzag unstable already very near to threshold

( ε ≈ 0.04 [5]). This instability leads to roll pinching, generation of dislocation pairs and

thus to defect turbulence, which destroys the homogeneity of the pattern. The resulting
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FIG. 7: Dimensionless decay rates µ′
f obtained by a single exponential fit versus the time ta elapsed

between switching off the voltage and start of the fit a; in the conductive regime (q′2 = 5.62,

µ′
k̂

= µ′
2 = 31.28, µ′

1 = 22.42), b; in the dielectric regime (q′2 = 18.80, µ′
k̂

= µ′
5 = 147.64,

µ′
4 = 121.23, µ′

3 = 94.27, µ′
2 = 84.10, µ′

1 = 73.21).
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FIG. 8: Temporal evolution of the normalized decay rates µ′
f (t)/µ′

f (0) obtained by a single ex-

ponential fit for q′2 = 1.88 (solid squares), q′2 = 5.62 (solid up triangles), q′2 = 9.02 (open up

triangles), q′2 = 15.10 (open circles) and q′2 = 18.80 (solid stars).

diffuse scattering deteriorates the resolution of diffraction spots and does in practice not

allow precise measurements for ε & 0.07.

Though the growth of the pattern amplitude and the nucleation of defects are both

consequences of driving at higher ε, the two phenomena do not occur on the same time

scale. Defects cause a quite extended distortion of the director and of the flow patterns

by phase diffusion, thus the characteristic time for this process is typically longer than
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that for the simple growth of the amplitude. Therefore, if we just ’kick’ the system by

applying a higher voltage for a sufficiently small period only, one expects that the system

can be driven temporarily above the zigzag destabilization curve to obtain higher pattern

amplitude without the appearance of defects and/or the change of q. Thus we have designed

an additional device which has allowed for a fast non-adiabatic amplification of the voltage

over a controlled switching period of time ∆ts = 0−1 s. This technique proved to be indeed

efficient, as increasing the voltage by 7.5 % (i.e. jumping from ε = 0.02 to εp ≈ 0.18) for

∆ts = 0.2 s the number of visible diffraction orders n (note that In ∝ θ2n
m [10, 18]) could be

temporarily doubled without noticeable increase in scattering. We have found that larger

jumps in the applied voltage, have to be associated with shorter periods ∆ts, if we intend to

avoid nucleation of defects (i.e. to preserve the sharpness of the fringes). The decay curves

for different switching times ∆ts are shown in Fig. 10. In contrast to the monotonuous decay

for ∆ts = 0, from which we extract the decay rates µk̂, the presence of minima and maxima

in the I−1(t) curves recorded at larger ∆ts indicate much bigger initial pattern amplitudes

θm. The detailed analysis of the decay curves at finite ∆ts is outside the scope of the present

paper. At larger amplitude θm one leaves the linear regime and both amplitude- and phase

grating effects of the periodic director modulations have to be considered. According to the

literature ([13],[18]) the fringe intensity I−1 is then given as

I−1 ∝
[

J1(Qϑm)
]2

, (19)

Here Q is a factor depending on the material parameters and the angle of incidence and J1

denotes the Bessel function of order 1. The oscillatory behavior of J1 provides a natural
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FIG. 10: Temporal evolution of the light intensity of the 1st order diffraction fringe following the

shut-down of the applied voltage in a 28 µm thick cell of Phase 5A. Curves with different line styles

correspond to different values of the period ∆ts during which an increased amplitude excitation

(εp = 0.18 instead of ε = 0.02 ) was used.

explanation for the nonmonotonuous ∆ts− dependence of the decay curves. It is clear that

with inreasing ∆ts we reach larger θm for the same ǫp, which is reflected in more oscillations

of J1.

For finite ∆ts it is reasonable to assume, that tails of the I(t) curves in Fig. 10 which

monotonously decay in time, will represent the linear θm regime which allows to extract the

linear decay rate spectrum. It turned out that the resulting µexp (not shown) were only

slightly below the decay rates obtained with ∆ts = 0.

B. Square wave excitation

The director profile in the EC state is expected to depend also on the driving waveform

of the ac voltage. Therefore changing the waveform of the applied voltage from sinusoidal

to different ones offers another way to alter the initial conditions.

Thus we have tentatively combined square wave driving with the kicking procedure (a

jump from ε ≈ 0.02 to εp ≈ 0.18 for ∆ts = 0.2 s) described before with the hope to

change the initial condition substantially. The decay rates obtained under such conditions

are compared in Figs. 11a and 11b with those measured at sinusoidal voltage with ∆ts = 0.

It is seen that in the conductive regime (Fig. 11a) the decay rates obtained by the two types
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FIG. 11: Theoretical (µ′
k) and measured (µexp) values of the dimensionless decay rate of the director

versus dimensionless q′2 for a; the conductive mode of Phase 5A, b; the dielectric mode of Phase

5. Lines of various styles correspond to the eight lowest branches of the dispersion relation. Solid

triangles are the data measured at sinusoidal excitation with ∆ts = 0, empty squares are the data

obtained at square wave excitation with ∆ts = 0.2 s.

of excitation coincide at low q′2, as expected. The noticeable, though not fully convincing,

shift to lower µexp (slower decay) at higher q′2 > 7.3 may imply that µ(k)(q) with k < k̂ have

been activated. Deviations are in particular visible in the dielectric regime (see Fig.11b).

There the decay rates follow lower branches µ′
k of the dispersion relation.

At the moment we can only offer some qualitative explanations for this behavior. On

the one hand we have passed a highly nonlinear regime (in analogy to Fig. 10), before

arriving the decaying branch. Thus it cannot be excluded that the dominant mode with

the decay rate µk̂ has not survived in this process. On the other hand the z−profile of

the director could also have experienced considerably modifications, such that the product
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copt

k̂
wk̂ is no more the dominant one. To settle the problem we plan to perform nonlinear

decay calculations which also allow modifications of the ac waveform.

VI. CONCLUSIONS

In this paper we have presented a rigorous analysis of the decay of stripe (roll) patterns

in a planar nematic layer. A precise understanding of the selection process of the dominant

mode and its decay rate has been achieved. We found that the dominant decay rate can

differ substantially from the slowest one. The results have been applied to a standard

nematic (Phase 5), where the initial patterns have been generated by electroconvection in

the planar configuration. The experimental results are in very good agreement with the

quantitative theoretical analysis in the regime of small director distortions, which includes

the optical detection of the patterns by diffraction. Some first interesting results for the

nonlinear regime and for an ac driving with square waveform need a much more elaborate

theoretical analysis, which we plan for the near future.
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VII. APPENDIX

In this appendix we sketch briefly the decay of a low-amplitude stripe pattern, which

is periodic in the x direction (normal roll), using the linearized equations of nemato-

hydrodynamics. The relevant variables are the tilt angle of the director, ϑ(x, z, t) ≈
nz(x, z, t) = Nz(z)sin(qx)e−µt, and the components, vz(x, z, t) = Vz(z)cos(qx)e−µt and

vx(x, z, t) = Vx(z)sin(qx)e−µt, of the velocity field. Eliminating vx by the incompressibility
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condition the PDEs governing the decay can be written as [2]:

[

− µ′ + k33q
′2 − ∂2

z′

]

γ1q
′Nz(z

′)

− [α2q
′2 + α3∂

2
z′ ]V

′
z (z

′) = 0, (20)

−[α2q
′2 + α3∂

2
z′]q

′µ′Nz(z
′)

− [η2∂
4
z′ − ηrq

′2∂2
z′ + η1q

′4]V ′
z (z

′) = 0, (21)

where the quantities

η1 = (−α2 + α4 + α5)/2 ; η2 = (α3 + α4 + α6)/2 ;

ηr = η1 + η2 + α1 (22)

denote the effective (Miesowicz) shear viscosities, γ1 is the rotational viscosity, k33 =

K33/K11 is the ratio of elastic moduli. Here we have switched to dimensionless quanti-

ties marked by primes. The unit of length is chosen to be d/π, time is measured in units

of the director relaxation time τd = γ1d2

K11π2 . We use realistic rigid boundary conditions, i.e.

strong planar anchoring of the director and no slip for the velocities at the bounding plates

at z′ = ±π/2 in dimensionless units:

Nz = 0, V ′
z = 0, ∂z′V

′
z = 0 at z′ = ±π/2. (23)

Eliminating V ′
z and looking for solutions Nz(z) ∝ eisz′ one arrives at the following dis-

persion relation:

(α2q
′2 − α3s

2)2µ′ + γ1(η2s
4 + ηrq

′2s2 + η1q
′4)(K ′

33q
′2 + s2 − µ′) = 0. (24)

Eq. (24) is cubic in s2 and has three roots (s2
1, s2

2 and s2
3). Thus the corresponding eigenvector

is constructed as a superposition from three modes:

Nz(z) = Σ3
j=1AjGj cos(sjz

′)

V ′
z(z) = Σ3

j=1Aj cos(sjz
′) (25)

with

Gj =
α2q

′2 − α3s
2
j

γ1q′(K ′
33q

′2 + s2
j − µ′)

. (26)
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The corresponding eigenmodes with odd z−symmetry are not relevant, since the initial state

is always even in z. The boundary conditions in Eq. (23) single out a discrete eigenvalue

spectrum µ′
i, with the relevant eigenvectors Ni(z

′) to be calculated from Eq. (25). These

eigenvectors are normalized to have the condition

∫ π/2

−π/2

Ni(z
′)Ni(z

′)dz′ = 1 (27)

fulfilled.

Eqs. (20) and (21) can be symbolically rewritten as:

LWi = µ′
iDWi (28)

where Wi = (Ni(z
′), V ′

i (z
′)) is a symbolic vector while L is a matrix differential operator:

L11 =
[

K ′
33q

′2 − ∂2
z′

]

q′ ; L12 = −[α2q
′2 + α3∂

2
z′],

L21 = L11L12 ; L22 = L2
12 − γ1[η2∂

4
z′ − ηrq

′2∂2
z′ + η1q

′4], (29)

and

D11 = q′ ; D12 = 0,

D21 = 0 ; D22 = 0. (30)

Defining the adjoint operator L+ (and similarly D+) by the identity

∫ π/2

−π/2

ULWdz′ =

∫ π/2

−π/2

(L+U)Wdz′ (31)

one arrives at the adjoint problem:

L+U = µ′D+U (32)

The adjoint operator L+ can be constructed by partial integration of the left hand side

of Eq. (29). It follows that L+
ij = Lji holds if the boundary terms introduced by the

integration are forced to disappear with proper choice of the boundary conditions for the

adjoint problem:

γ1N
+
z − α3∂

2
z′V

′+
z = 0, V ′+

z = 0, ∂z′V
′+
z = 0 at z′ = ±π/2. (33)

Trivially D+ = D also holds.
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It is now easy to see, that the eigenvalue spectra µ′
i of the adjoint and the direct problem

(with eigenvectors Ui = (N+
i (z′), V ′+

i (z′)) and Wi, respectively), coincide. The normaliza-

tion of the adjoint eigenvectors is given in Eq. (27):

∫ π/2

−π/2

N+
i (z′)N+

i (z′)dz′ = 1. (34)

In addition the following orthogonality conditions hold:

∫ π/2

−π/2

UiLWjdz′ = δij

∫ π/2

−π/2

UiLWidz′ (35)

Combining Eqs. (31) and (30) one obtains that Eq. (35) is equivalent of Eq. (4) as the

velocity drops out, i.e. the director profiles of the adjoint eigenvectors and of the EC initial

conditions can be used for determining the weights of the decay modes.
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