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Abstract

The Swift-Hohenberg equation with quadratic and cubic nonlinearities exhibits a remarkable

wealth of stable spatially localized states. The presence of these states is related to a phenomenon

called homoclinic snaking. Numerical computations are used to illustrate the changes in the local-

ized solution as it grows in spatial extent and to determine the stability properties of the resulting

states. The evolution of the localized states once they lose stability is illustrated using direct

simulations in time.
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I. INTRODUCTION

Ever since the observation that the subcritical complex Ginzburg-Landau equation ex-

hibits stable spatially localized states [1] there has been considerable interest in the properties

of these states. The presence of these states has important consequences for other systems

described by partial differential equations on the line since the Ginzburg-Landau equation

describes the behavior of such systems near bifurcation from the trivial state of the sys-

tem. Specifically, the complex Ginzburg-Landau equation describes the evolution of a long

wavelength oscillatory instability, as well as oscillatory instabilities at finite wavelength in

systems with broken reflection symmetry. In contrast, near a steady state bifurcation with

finite wavelength the evolution of the instability is described by the real Ginzburg-Landau

equation, and this equation possesses only unstable spatially localized states. It is of interest

therefore to examine what happens to these unstable states at larger amplitude, where the

real Ginzburg-Landau equation no longer provides an adequate description of the system. In

this paper we show that the localized states can become stable at such amplitudes, and in-

deed that there is a large multiplicity of coexisting stable localized states under very general

conditions. We are able to relate the existence of these states to a phenomenon sometimes

called homoclinic snaking that is well known from the theory of reversible systems with 1:1

resonance, and use this theory to construct a large number of such states. The stability

properties of these states are also determined, and the evolution of non-stationary localized

states is studied by numerical integration in time.

It is an interesting fact that closely related phenomena have already been described

in several areas involving pattern formation. The theory was originally developed in the

context of water waves, where localized states have been studied by moving into a reference

frame of the waves and converting the problem into an ordinary differential equation (ode).

The resulting localized states are called solitary waves, and in some cases turn out to be

solitons. Kirchgässner has pioneered a successful approach to this type of problem that

led to a number of advances in this area. Specifically, the ode is viewed as a dynamical

system in space, and localized states are sought as homoclinic orbits connecting the trivial

state to itself. Whether such orbits are possible depends on the stability properties of the

trivial state: eigenvalues with positive real part indicate that a nontrivial state can grow

from x = −∞, while eigenvalues with negative real part indicate that such a state may
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return, under appropriate conditions, back to the trivial state as x → ∞. The spectrum of

the linearization about the trivial state is influenced by spatial symmetries of the system.

In many cases, and in particular in the case considered here, the ode is reversible. As a

result the bifurcations that are encountered as a parameter is increased are nongeneric. In

the present case the spatial dynamics of the system near the trivial state turn out to be

described by the reversible 1:1 resonance. The unfolding of this resonance has been worked

out in detail by Iooss and Perouème [2], and can be used to understand the appearance of

a variety of homoclinic orbits in this system, and hence of localized states with different

spatial structure.

Parallel to these developments Pomeau [3] presented an intuitive picture why a multiplic-

ity of localized states might be expected. In a typical (variational) system with bistability

between two spatially homogeneous states all fronts connecting such states will move in such

a way that the state of lower energy density invades the state of higher energy density; sta-

tionary fronts are present at isolated parameter values only, corresponding to equal energy

densities (the Maxwell point). However, this is no longer so when a front connects a homo-

geneous state to a spatially periodic one, since the front can ’lock’ to the latter. The result

is the presence of a pinning region in parameter space, straddling the Maxwell point, with

localized states bounded by stationary fronts at either end. Some states of this type have

been computed in subsequent work [4] on the Swift-Hohenberg equation with quadratic and

cubic nonlinearities, and it is this work that provides the motivation for the present paper.

We show here that multiple localized states are present in three distinct regions of param-

eter space, and relate their origin to the presence of reversible 1:1 resonances in the spatial

dynamics of the system, thereby relating Pomeau’s picture to subsequent mathematical de-

velopments, summarized in the physics literature by Coullet et al. [5], but anticipated by

Champneys and colleagues in the context of localized buckling [6, 7]. In fact Nishiura and

Ueyama [8] identified the same type of behavior in a system of reaction-diffusion equations

on the line in their study of self-replication. The latter paper has much in common with

the work of Hilali et al. [4] in the sense that it focuses on the dynamics that result from the

depinning of the Pomeau fronts, without seeking a detailed explanation of the origin of the

multiplicity of localized states.

With this brief (and incomplete) overview we introduce in the next section the model

system we study and summarize its basic properties. In section 3 we discuss the so-called
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single pulse localized states in this system and describe their origin and stability properties;

multi-pulse states are not considered. The range of existence of the single pulse states is

explored in section 4, followed by a concluding section that examines the relation of our

results to earlier work by Hilali et al and others, as well as to the mathematical theory

alluded to above.

II. THE SWIFT-HOHENBERG EQUATION

We write the generalized Swift-Hohenberg equation in the form

∂u

∂t
= ru −

(

∂2

x + q2

c

)2
u + vu2 − gu3 (1)

used by Hilali et al [4]. Here r is the control parameter while qc, v and g are coefficients

which we take to be qc = 0.5, v = 0.41, g = 1 as in Ref. [4]. In the presence of periodic

boundary conditions with period L this equation possesses a Lyapunov functional F (which

we refer to as an energy) given by

F =

∫ L

0

dx

{

−1

2
ru2 +

1

2

[

(∂2

x + q2

c )u
]2 − 1

3
vu3 +

1

4
gu4

}

(2)

such that ∂u
∂t

= − δF
δu

. It follows that along any trajectory the energy decreases to a (lo-

cal) minimum. In particular no Hopf bifurcations are possible and (at fixed x) all time-

dependence ultimately dies out.

The linear stability of a stationary solution us(x) of period L is determined by writing

u(x, t) = us(x) + ǫũ(x)eβt, (3)

where β is the growth rate of the infinitesimal perturbation ǫũ(x). Thus ũ(x) satisfies the

eigenvalue problem

βũ(x) = L[us(x)]ũ(x), ũ(x + L) = ũ(x), (4)

where

L[us(x)] ≡
{

r −
(

∂2

x + q2

c

)2
+ 2vus(x) − 3gu2

s(x)
}

(5)

is the linear differential operator obtained by linearizing the right ride of (1) about us(x),

and the growth rate β is the associated eigenvalue.
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FIG. 1: The flat stationary solutions u0 and u± as a function of r. Stability with respect to uniform

perturbations and perturbations with wavenumber qc, respectively, is indicated by the signs of the

corresponding eigenvalues. The labeled bifurcation points are: r0 = 0, r1 = 0.020475, r2 = 0.0625,

r+ ≃ 0.03084, r− ≃ 0.1146.

A. Spatially homogeneous solutions

Flat, stationary solutions of (1) satisfy

0 = (r − q4

c )u + vu2 − gu3. (6)

The three flat solution branches (shown in Fig. 1) are

u0 = 0, u± =
1

2g

[

v ±
√

v2 + 4g(r − q4
c )
]

. (7)

The u± branches are created in a saddle-node bifurcation at r1 ≡ q4
c − v2/4g. The u−

branches bifurcate from the trivial solution u0 in a transcritical bifurcation at r2 ≡ q4
c .

For these states the eigenfunctions that solve (4) are ũ(x) = sin(kx), cos(kx). The

corresponding growth rates on the u0 and u± branches are

β0 = r − (q2

c − k2)2, (8)

β± = 3q4

c − (q2

c − k2)2 − 2r − v

2g

(

v ±
√

v2 + 4g(r − q4
c )
)

, (9)
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respectively. For uniform states the domain size L used in (4) is arbitrary so these expressions

are valid for all k = 2π/L. The u0 branch is unstable to uniform perturbations (k = 0) for

r > r2, while the u− > 0 branch is unstable between the saddle-node bifurcation at r1 and

the transcritical bifurcation at r2.

Increasing k up to qc results in a monotonic increase in β, so at any fixed value of r the

most unstable perturbations are those with wavenumber k = qc. Increasing k also widens

the domain of r over which the flat solutions are unstable. For each wavenumber k, the

zeros of (8) and (9) give the r values at which the branch first loses stability with respect

to perturbations of wavelength λ = 2π/k:

rλ,0 = (q2

c − k2)2 (10)

rλ,± =
1

2

[

3q4

c − (q2

c − k2)2 − v

4g

(

v ±
√

v2 + 8g (q4
c − (q2

c − k2)2)
)

]

. (11)

As a result the initial instability for all flat branches has wavelength Lc = 2π/qc and occurs

at

r0 ≡ rLc,0 = 0 (12)

r± ≡ rLc,± =
1

2

[

3q4

c −
v

4g

(

v ±
√

v2 + 8gq4
c

)

]

. (13)

Further increase of k above qc uniformly decreases the growth rate; for values of k above

kmax, defined by

kmax =

(

q2

c +

√

q4
c +

v2

8g

)1/2

, (14)

the growth rates β± are strictly negative and so the u± branches are stable to all short

wavelength perturbations. The u0 branch is only unstable to short wavelength instabilities

at large values of r.

In the following we therefore focus on solutions to (1) with L = Lc, although at times it

will be useful to take L = nLc, with n > 1 an integer.

B. Primary solutions with wavelength Lc and their stability

At the bifurcation points r0 and r± branches of solutions with wavelength Lc are created.

We compute the resulting branches of spatially periodic solutions using numerical continu-

ation [9]. The results for the branch connecting the points r0 and r+, hereafter refered to

6



0 0.1 0.2 0.3

0

0.25

0.5

r

N
u

+

u
0

u
P

r
0

r
+

r
3

r
4

r
M1

 

 r
M2

(a)
0 0.1 0.2 0.3

−0.03

−0.02

−0.01

0

r

F

r
M2

u
+

u
0

u
P

r
M1

(b)

FIG. 2: (a) Bifurcation diagram showing the norm N ≡
(

L−1
∫ L
0

u2dx
)1/2

of the flat states with

u ≥ 0 and patterned states ( uP ) with wavelength Lc as functions of r. The locations of the saddle-

nodes on the patterned branch are: r3 ≃ −0.01670, r4 ≃ 0.2992. (b) Energy F of the flat and

patterned branches as a function of r; the inset shows an enlargement near r = 0. The Maxwell

points rM1 ≃ −0.01381 and rM2 ≃ 0.07328 are indicated in (a) by dashed vertical lines.

as the ’patterned’ branch and denoted by uP , are summarized in Fig. 2. Sample solution

profiles are shown in Fig. 3(a,b). There are two Maxwell points of interest: at rM1 the

patterned state has the same energy as the trivial flat state u0, while at rM2 the patterned

state has the same energy as u+. Another branch of Lc-periodic states, created at r− on

u−, extends all the way to r = ∞ but is omitted from the figure. In view of the symmetry

(v, u) → (−v,−u) bifurcations from u− with v > 0 correspond to bifurcations from u+ with

v < 0; such bifurcations from u+ are also analyzed in what follows.

In addition we solve the eigenvalue problem (4) for the growth rate of perturbations

with spatial period Lc. There is always (at least) one zero eigenvalue corresponding to the

eigenfunction ũ = dus/dx generating infinitesimal translations. The remaining eigenvalues

are determined numerically. The results for the patterned branch are summarized in Fig. 4.

This branch is unstable near both ends but gains stability through saddle-node bifurcations

at r3 and r4. All other eigenvalues (corresponding to eigenfunctions with wavelength Lc/m

for integers m ≥ 2) are negative, indicating that the patterned branch is stable with respect

to short wavelength disturbances.

On larger domains the patterned states in Fig. 4(a) are subject to additional modes
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FIG. 3: Solution profiles on the patterned branch. (a) r ≈ r3, (b) r ≈ r4.
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FIG. 4: (a) The stability of the patterned branch with respect to wavelength Lc and two different

wavelength 2Lc modes, with − indicating stability and + instability. Thick lines indicate stable

branches. The locations of the period-doubling bifurcations are: r5 ≃ 0.2198, r6 ≃ 0.2986, r7 ≃

0.1582, r8 ≃ 0.03407. (b) Growth rates on the patterned branch for perturbations of wavelength

Lc and 2Lc.

of instability. Figure 4 also shows the eigenvalues corresponding to eigenfunctions with

wavelength 2Lc. At the primary bifurcation points all the extra eigenvalues are negative.

However, the eigenvalues of the two wavelength 2Lc eigenfunctions, which start at β =

−9q4
c/16 when r = 0, change sign a total of four times, corresponding to four changes

in stability of the patterned solutions with respect to wavelength 2Lc perturbations, and

hence four secondary bifurcations to wavelength 2Lc solutions. Three of these crossings
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FIG. 5: Growth rate on the patterned branch of perturbations of wavelength nLc for n = 1, 2, 3, 4,

and 5. All eigenvalues change sign near r5 and again near r7.

(labelled r6, r7, r8) occur between r+ and r4 where the patterned branch is already unstable.

The remaining bifurcation at r5 reduces the stable domain of the patterned branch from

r3 < r < r4 to r3 < r < r5. Similar results hold for branches with spatial period nLc,

n > 2, although the number of distinct secondary branches grows quite rapidly, much as

in other problems of this type [10]. The eigenvalues corresponding to wavelength nLc for

integers n = 1, 2, 3, 4 and 5 are shown in Fig. 5. The n = 2 instability has the largest

growth rate for r & r5, and likewise near r7. Observe that for each n there is at least one

eigenvalue that passes through zero at (or near) r5; this is so for larger values of n as well. A

careful analysis of this region shows that although these bifurcations all occur close to one

another their location in r decreases as n increases. Based on our numerical investigation

we surmise that as n → ∞ these bifurcations accumulate at some r = r∗ . r5, with the

result that the solutions along the patterned branch between r3 and r∗ are stable to all long

wavelength perturbations. Thus the ’bifurcation’ at which the patterned states lose stability

with increasing r is in fact a much more complicated object than implied in Ref. [4]. Similar

clustering of eigenvalues has been observed in other problems of this type [8], but to the

authors’ knowledge the reason for such clustering remains unclear.
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III. LOCALIZED STATES

With the above background we turn to the study of spatially localized states. The first

class of localized solutions of interest are small amplitude stationary states biasymptotic to

u0, which exist near r = 0. The time-independent version of equation (1) forms a fourth

order reversible dynamical system in space: the equation is invariant under the spatial

reflection (x → −x, u → u). Any localized states connecting to the trivial state u0 = 0

as x → ±∞ requires that u0 has both stable and unstable spatial eigenvalues. It is easy

to check that for r < 0 these eigenvalues are ±iqc ± (
√
−r/2qc) + O(r), while for r > 0

they are ±iqc ± i(
√

r/2qc) + O(r). Thus for r < 0 the eigenvalues form a quartet, and u0 is

hyperbolic with two stable eigenvalues and two unstable eigenvalues. In contrast for r > 0

all the eigenvalues lie on the imaginary axis and u0 is not hyperbolic. In particular it is

not possible to approach u0 as soon as r > 0; thus no localized states can be present when

r > 0 [11]. At r = 0 there is a pair of imaginary eigenvalues ±iqc of double multiplicity. The

bifurcation at r = 0 is thus a Hopf bifurcation in a reversible system with 1:1 resonance [2].

Theory shows that under certain conditions the hyperbolic regime (r < 0, |r| ≪ 1) contains

a large variety of spatially localized states.

Two of these states can be constructed using perturbation theory. We define the small

parameter ǫ by r = −ǫ2µ2, µ2 > 0, and look for stationary solutions of equation (1) of the

form

u(x) = ǫu1(x, X) + ǫ2u2(x, X) + . . . , (15)

where X ≡ ǫx is a large scale over which the amplitude of the pattern changes. It follows

that

u1(x, X) = A1(X)eiqcx + c.c., (16)

u2(x, X) =
2v

q4
c

|A1|2 +
v

9q4
c

A2

1e
2iqcx + A2(X)eiqcx + c.c. (17)

The amplitude A(X, ǫ) ≡ A1(X) + ǫA2(X) + . . . satisfies the equation

4q2

cAXX = µ2A − γ3A|A|2 +
iǫ

qc

[

µ2AX + σ3AX |A|2 − γ3A
2A∗

X

]

+
ǫ2

q2
c

[

γ5A|A|4 + . . .
]

+ O(ǫ3). (18)

Here

γ3 =
38v2

9q4
c

− 3g, σ3 = 6g − 260v2

27q4
c

,

10



γ5 = − 3g2

64q2
c

+
5795gv2

144q6
c

− 3521v4

432q10
c

.

Since γ3 ≃ 8.35 > 0 the bifurcation at the origin is subcritical. This asymptotic result is

formally valid only in the limit ǫ → 0 although some of the higher order terms have been

kept for later reference. In particular the only O(ǫ2) term we shall require is the A|A|4 term.

The simplest non-trivial solution of (18) is the uniform solution

A(X) = (µ2/γ3)
1/2 eiφ + O(ǫ), (19)

corresponding to spatially periodic states with period Lc near r = 0, viz.,

u(x) = 2

(−r

γ3

)1/2

cos(qcx + φ) + O(r). (20)

Here φ is an arbitrary phase and µ2 > 0 (so r < 0). Other solutions to equation (18) can

be found in terms of elliptic functions, and localized states correspond to infinite period

solutions of this type with A → 0 as X → ±∞:

A(X) =

(

2µ2

γ3

)1/2

sech

(

X
√

µ2

2qc

)

eiφ + O(ǫ). (21)

This solution corresponds to

u(x) = 2

(−2r

γ3

)1/2

sech

(

x
√
−r

2qc

)

cos(qcx + φ) + O(r). (22)

Like the spatially periodic states this family of solutions is parametrized by φ ∈ S1, which

controls the phase of the pattern within the sech envelope. Within the asymptotics this phase

remains arbitrary; there is no locking between the envelope and the underlying wavetrain at

any finite order in ǫ. However, it is known [12–14] that this is no longer the case once terms

beyond all orders are included. These terms break the rotational invariance of the envelope

solution and result in a weak flow on the circle S1. This flow in turn selects specific values of

the phase: φ = 0 and φ = π [15]. At the same time these terms lead to transversal crossing

of stable and unstable manifolds of u0 [5] thereby producing the snaking that becomes so

prominent farther away from r = 0. Note that the phases φ = 0, π are the only two phases

that preserve the symmetry (x → −x, u → u). Since one of these has to be (weakly)

attracting and the other (weakly) repelling, it follows that two branches of localized states

bifurcate subcritically from r = 0, one of which is stable with respect to translations of

the envelope relative to the wavetrain, the other being unstable. However, both states are
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amplitude-unstable [16]. Near r = 0 these two branches are essentially indistinguishable,

but one might expect that with increasing −r the differences will grow and therefore that

two distinct branches will emerge from r = 0.

To prove that the localized states calculated above exist in a finite neighborhood of the

origin we analyze the stationary solutions of (1) near the bifurcation at the origin using

normal form theory. The appropriate normal form for the reversible Hopf bifurcation with

1 : 1 resonance is [2]

A′ = iqcA + B + iA P

(

µ; |A|2, i

2
(AB∗ − A∗B)

)

, (23)

B′ = iqcB + iB P

(

µ; |A|2, i

2
(AB∗ − A∗B)

)

+ A Q

(

µ; |A|2, i

2
(AB∗ − A∗B)

)

, (24)

where in the context of spatial dynamics the prime denotes differentiation with respect to

x, the functions A and B transform under spatial reflection as (A, B) → (A∗,−B∗), and P

and Q are polynomials with real coefficients which to lowest order take the form

P (µ; y, w) = p1µ + p2y + p3w, Q(µ; y, w) = −q1µ + q2y + q3w + q4y
2. (25)

The bifurcation from the trivial state occurs at µ = 0, and this state is hyperbolic in the

region µ < 0 provided q1 > 0. The fact that the normal form is completely integrable [2] is

of great assistance in its analysis. One finds that there are two possible types of behavior

depending on the sign of q4 at q2 = 0. When q4 < 0 homoclinic solutions are present in the

whole half-space µ < 0 (Fig. 6(a)). In contrast, when q4 > 0 homoclinic solutions are present

only for q2 < 0 and then only between µD < µ < 0, where µD = −3q2
2/16q1q4 (Fig. 6(b)).

At µD homoclinic solutions terminate in a heteroclinic connection between the flat state

(A = 0) and a nontrivial state (A 6= 0) with the same energy.

It should be noted that for µ = −ǫ2µ2 < 0, where µ2 = O(1), we can introduce a large

spatial scale X ≡ ǫx. The transformation (A, B) = (ǫÃ(X), ǫ2B̃(X))eiqcx permits us to

eliminate B̃ from the normal form, resulting in the equation

A′′ = q1µ2A + q2A|A|2 +
iǫ

2

[

−4p1µ2A
′ + (6p2 − q3)A

′|A|2 + (2p2 + q3)A
2(A∗)′

]

+ ǫ2
[

(p2

2 − p2q3 + q4)A|A|4 + . . .
]

+ O(ǫ3), (26)

where the prime now denotes derivatives with respect to X and we have dropped the tildes.

A comparison of this equation with (18) permits us to identify the coefficients in the normal
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FIG. 6: For (a) q4 < 0 and (b) q4 > 0 the normal form contains homoclinic orbits to the trivial

state when the parameters µ and q2 fall within the shaded region. The solid line µ = µD in (b)

marks the location of heteroclinic orbits between the trivial state and a nontrivial state.

form in terms of the parameters in the Swift-Hohenberg equation [17]:

p1 = − 1

8q3
c

, q1 =
1

4q2
c

, q2 =
3g

4q2
c

− 19v2

18q6
c

= − γ3

4q2
c

, (27)

q4 = − 15g2

128q6
c

+
3023gv2

288q10
c

− 19117v4

7776q14
c

,

and

p2 =
9g

16q3
c

− 187v2

216q7
c

, q3 =
3g

8q3
c

− 41v2

108q7
c

.

The remaining coefficients require matching at higher order. The computation shows that

the remaining O(ǫ2) terms are modified by the higher order terms omitted from the expan-

sion (25) of the polynomials P , Q; however, none of these contributes to the coefficient of

A|A|4. The above results can also be obtained through a lengthier calculation of the ex-

plicit reversibility-preserving normal form transformations at µ = 0, followed by appropriate

unfolding.

For the parameter values used here q2 < 0, corresponding to the subcritical case [2]. As

q2 is not small, q4 does not play an important role in classifying the dynamics, and both

Fig. 6(a) and (b) predict that homoclinic connections to the A = 0 state are present for

µ < 0. These are precisely the states calculated explicitly in (22). However, the scaling

assumed in (15) fails for small q2 and the localized structures then take a different form [18].

In the following we use the continuation package HomCont to extend the solutions (22)

with φ = 0, π to solutions of equation (1) valid farther away from r = 0. Technically the

numerical routine finds reflection symmetric solutions to equation (1) on a large but finite

domain L, but provided the width of the resulting localized state is smaller than the domain
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FIG. 7: (a) Bifurcation diagram showing the φ = 0 and φ = π branches of homoclinic states near

r = 0. The branch of uniform patterned solutions (dot-dash) is also shown. The vertical axis is the

norm N taken over a large but finite domain in x. The lower panels show the homoclinic solutions

on the (b) φ = 0 and (c) φ = π branches at r = −0.002. The dashed lines in these panels show the

leading order envelope computed in equation (22).

(typically 40Lc) the true homoclinic connection is well approximated by a large period orbit.

Figure 7 illustrates some of the results obtained in this manner for small −r while Fig. 8

extends these results to larger values of −r. Sample profiles along each branch are shown

in Fig. 9. Along the φ = 0 branch the midpoint (x = 0) of the localized state is always

a local maximum, while along the φ = π branch the midpoint is always a local minimum.

Near the origin the amplitude is small and the width of the sech envelope is large enough to

contain many wavelengths of the underlying pattern. Away from the origin the amplitude

grows and becomes comparable to the amplitude of the patterned states (specifically, the

stable branch beyond the bifurcation at r3) and the width decreases until it is comparable

to Lc, the wavelength of the underlying pattern. Beyond this point both the φ = 0 and

φ = π branches undergo a series of saddle-node bifurcations responsible for the terminology

homoclinic snaking. Each saddle-node bifurcation adds a pair of oscillations to the profile

u(x), and the saddle-node bifurcations asymptote exponentially rapidly to rP1 and rP2. At
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FIG. 9: Sample profiles at the saddle-nodes indicated in Fig. 8. (a,b,c,d) lie on the φ = 0 branch

while (e,f) lie on the φ = π branch.
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each value of r within this range there exists an infinite number of solutions, each of a

different width. Higher up along each ’snake’ the solutions u(x) begin to look like a pattern

of wavelength Lc and uniform amplitude, truncated at either end by a stationary ’front’

of width of order Lc connecting this state to u0. The amplitude of this state is nearly

identical to the upper branch of the patterned solutions. These results suggest that within

the region rP1 < r < rP2 there exist heteroclinic connections between the flat and patterned

states as well. Far up each branch shown in Fig. 8, after many saddle-node bifurcations,

the homoclinic solutions u(x) connecting the flat state u0 to itself resemble two of these

heteroclinic connections, from u0 up to the patterned state and then from the patterned

state back down to u0. We identify these states with the Pomeau fronts; as in his scenario

these fronts are stationary because of pinning by the underlying wavetrain. Indeed we may

think of the region rP1 < r < rP2 as a Maxwell point that has been broadened by pinning

to the underlying patterned state, a picture supported by the presence within this region of

the Maxwell point rM1 at which the u0 and patterned branches have the same energy.

Figure 8 also indicates the stability of the localized solutions in time, a consideration that

is absent from the general theory of reversible systems. The eigenvalue problem (4) yields the

growth rate of infinitesimal perturbations of the homoclinic solutions at each point along the

branches, as well as the associated eigenfunctions ũ(x). The latter are localized around the

base state us(x) and are therefore insensitive to the exact choice for L. The results for the

φ = 0 and φ = π branches are shown in Fig. 10. This analysis confirms that both branches are

unstable near the origin. The φ = π branch (Fig. 10(b)) has two positive eigenvalues. Of the

corresponding unstable modes one is even in x and corresponds to an amplitude perturbation

of the small sech-like solution. The other is odd and corresponds to a phase perturbation

that pushes the envelope away from φ = π. The φ = 0 branch (Fig. 10(a)) has only one

positive eigenvalue corresponding to an even amplitude perturbation. On both branches

the phase eigenvalues remain almost zero until the snakes develop. Once this happens the

stability is controlled by a single even mode and a single odd mode – several other modes

approach zero growth rate but never cross. Each crossing of the even mode corresponds to a

saddle-node bifurcation in Fig. 8. The crossings of the odd mode correspond to bifurcations

to branches of asymmetric solutions that we do not follow [19]. After the first few folds

the two eigenvalues approach one another rapidly, indicating that the symmetry-breaking

bifurcations approach the saddle-node bifurcations. When this happens the eigenfunctions
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FIG. 10: Spectrum of growth rates β on (a) φ = 0 and (b) φ = π branches homoclinic to the

u0 = 0 flat state as a function of the arclength s along the branch measured from the bifurcation

at the origin (upper panels). The lower panels show the corresponding branches as a function of s.

become localized around the two fronts while preserving their parity (Fig. 11). It follows

that there are stable homoclinic solutions of arbitrary width along both the φ = 0 and φ = π

branches. The heteroclinic connections are therefore also stable, as hypothesized by Pomeau.

Although the snaking of the true homoclinic orbit represented in Fig. 8 goes on forever, the

solutions shown in the figure were found on a finite domain in x. In these circumstances the

sequence of saddle-node bifurcations must terminate: as the domain fills with the pattern

the snakes terminate on the patterned branch. The termination point corresponds to a

bifurcation at which a pair of homoclinic branches biasymptotic to the patterned state is

created, similar to the bifurcation at the other end of the snake at r = 0. This duality is a

generic feature in problems of this type [20]. Numerical analysis beyond that presented here

indicates that the location of this bifurcation coincides with the saddle-node bifurcation at

r3.

A. Wavelength selection

Close examination of the wide homoclinic solutions (far up the snakes) shows that despite

appearances the shape inside the envelope does not match the patterned branch perfectly.

The largest deviation is in the wavelength, which is typically slightly larger than Lc. Near

the bifurcations at r0 and r+ there exists a continuum of bifurcations to branches of solutions
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FIG. 11: (a) Solution profile u(x) at rP2 high up the φ = 0 snaking branch. (b) The three

eigenfunctions of interest. The corresponding eigenvalues (growth rates) are all zero at rP2. Away

from the saddle-node thes eigenvalues of the first two are nonzero but the general shape and

symmetry remains.

with wavelengths near Lc. These branches look qualitatively similar to the wavelength Lc

branch shown in Fig. 2. Perturbations with wavelength Lc are always the most dangerous

instability for the flat states, and near such bifurcations the wavelength Lc branches are

energetically favored over branches with other wavelengths. At large amplitude this is no

longer the case, however, and on large domains we may expect the preferred solution to

shift from this wavelength. Figure 12 shows the wavelength of the preferred solution in the

neighborhood of the pinning region. This curve was found by minimizing the energy density

of the solutions with respect to the spatial period L, at fixed r. Figure 12 also shows the

wavelength of the pattern within the localized states. Far up the snaking branch, where

the localized state contains many wavelengths of the pattern, this wavelength is spatially

uniform and independent of the width of the localized state. It is not independent of r,

however. Pomeau’s pinning mechanism allows for the existence of localized states away

from the Maxwell point, but evidently the wavelength of the patterned domain within such

states is affected by the presence of the fronts at either side: near rP1, where the flat state
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FIG. 12: Plot of the wavelength of the pattern within the localized states (dashed line) found in the

pinning region between rP1 and rP2, and the preferred wavelength of the stable uniform patterned

solution based on energy minimization (solid line).

is energetically favored, the packet is squeezed tighter, while near rP2, where the patterned

state is favored, the packet expands. This is a frustration effect: the fronts at rP1 < r < rM

want to move in such a way as to eliminate the localized state, leading to a compression

of the state relative to its wavelength at the Maxwell point r = rM (Fig. 12). Likewise at

rM < r < rP2 the fronts want to move outwards, thereby stretching the localized state. It

is noteworthy that the resulting conmpression or expansion is distributed uniformly across

the localized state, a fact that appears to be a consequence of local energy minimization.

As a consequence the localized states approach a different spatially periodic state at each r,

although in Fig. 8 (as well as later bifurcation diagrams) we use the wavelength Lc patterned

branch as a stand-in for the actual periodic state approached by the snaking. Some aspects of

wavenumber selection at moderate amplitude can be captured using improved perturbation

theory [18].
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pinning region.

B. Depinning transition

The discussion summarized above indicates that below rP1 the (heteroclinic) fronts con-

necting the flat and patterned states are no longer stationary, and will instead drift in such

a way that the patterned state is gradually eliminated until the lower energy flat state fills

the entire domain. Above rP2 the fronts also cease to be stationary but now drift in such a

way as to expand the patterned state until it fills the whole domain. Likewise the stationary

homoclinic states that are present everywhere within the pinning region also cease to be

stationary, and evolve to either the flat or patterned state. A homoclinic localized state like

those shown in Fig. 8 but at a small distance outside the pinning region (for example, at

r = rP2 + δ, with δ ≪ 1,) will evolve slowly at first because of its proximity to the saddle-

node bifurcation. As it evolves farther away from the saddle-node its shape will change

more rapidly, its width increasing abruptly by one wavelength on either side (or decreasing,

if r = rP1 − δ), until it approaches the neighborhood of the next saddle-node bifurcation.

Since the saddle-nodes almost line up (Fig. 13) the profile will grow in a sequence of quick

’bursts’ as it passes between the saddle-nodes (or shrink, as it passes the ones at rP1). These

bursts can be viewed as nucleation events. An example of this evolution is shown in Fig. 14

in the form of a space-time plot.

The transition time T to pass between two consecutive saddle-nodes follows from a semi-
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FIG. 14: (a) Time evolution of a localized state outside the pinning region, at r ≃ rP2 + 7 ×

10−5. The width increases symmetrically in a series of abrupt steps separated by nearly stationary

episodes that last for T ≃ 3500. (b) The steps are seen more easily in a plot of the energy F (t).

The dashed vertical lines mark the energy density corresponding to a domain filled with the flat

(F [u0] = 0) or patterned (F [uP ] ≃ −1.88 ∗ 10−5) state.

analytic analysis of the dynamics near the bifurcation [21]. We let U0(x) be the stationary

localized state at the depinning transition δ = 0. For |δ| ≪ 1 we then have u(x, t) =

U0(x) + |δ|1/2u1(x, t) + · · · , at least while the solution remains near U0(x). It follows that

u1(x, t) satisfies the equation

Lu1 = ∂tu1 − |δ|1/2(sgn(δ)U0 + vu2

1 − 3gU0u
2

1) + O(|δ|), (28)

where L = L[U0] is the linearized Swift-Hohenberg operator (5) at rP2. This equation

must be solved subject to the requirement that |u1| → 0 as |x| → ∞. Since for |δ| ≪ 1

the perturbation u1 evolves on the timescale |δ|−1/2 the right hand side of this equation

is uniformly small. Thus at leading order we solve Lu1 = 0, i.e., the eigenvalue problem

(4) restricted to the β = 0 subspace. At a saddle-node high up each snake U0(x) has a

three-dimensional neutral eigenspace spanned by: Ũ10(x) (the even mode whose eigenvalue

vanishes at the saddle-node), Ũ11(x) (the odd mode that tracks the even mode ever more

closely as one moves up the snakes), and Ũ12(x) (the neutrally stable odd mode U ′

0(x)).
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Sample profiles of these eigenfunctions can be seen in Fig. 11 taken at one of the saddle-

nodes at rP2 located far up the snake, corresponding to a wide localized state. It follows

that

u1(x, t) = a(t)Ũ10(x) + b(t)Ũ11(x) + c(t)Ũ12(x) + O(|δ|1/2),

where a(t), b(t), and c(t) are slowly evolving real amplitudes. The evolution equations for

these amplitudes are obtained by imposing solvability conditions on equation (28); since

L is self-adjoint this condition requires that the right hand side be orthogonal to all null

eigenvectors. The resulting calculation can be simplified by noting that in the space of

reflection-symmetric perturbations the ’center of mass’ of the pattern remains fixed. Con-

sequently we may set b ≡ c ≡ 0, leaving (cf. [21])

α1ȧ = |δ|1/2(α2sgn(δ) + α3a
2) + O(|δ|), (29)

where

α1 ≡
∫

∞

−∞

Ũ2

10 dx ≃ 0.2564, α2 ≡
∫

∞

−∞

U0Ũ10 dx ≃ 0.2036, (30)
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α3 ≡
∫

∞

−∞

(v − 3gU0)Ũ
3

10 dx ≃ 4.558 × 10−3. (31)

The integrals have been evaluated using numerically generated values for U0(x) and Ũ10(x)

at the saddle-node at rP2. As α2 and α3 are of the same sign there are two solution branches

present in δ < 0 while for δ > 0 the solution runs away, consistent with the location of rP2 on

the right side of the line of saddle-nodes. The transition time T to pass between successive

saddle-nodes is estimated as the time it takes the solution in (29) to pass from −∞ to +∞,

viz.

T =
πα1

(|δ|α2α3)1/2
≃ 26.44

|δ|1/2
. (32)

Figure 15 shows the transition times, determined through explicit time integration of the

type shown in Fig. 14, for several values of r near rP2. The predicted value (32) compares

well with the best fit to the data: T ≃ 24.90|δ|−1/2. It should be noted that an identical

calculation applies near rP1, except that here α2 and α3 are of opposite signs.

C. More localized states

The localized states of the previous section were found in a region of bistability, bounded

on one side by the bifurcation at r = 0 of the patterned branch from the flat state u0,

and on the other side by the saddle-node of the patterned branch at r3, a regime examined

in the context of buckling by Champneys et al [6, 7]. Figure 4 shows that another region

of bistability is present, lying between r+ and r5 where both the flat u+ branch and the

patterned branch are stable. To study this region we shift the origin of r to r+, and define

the quantities ũ and r̃ as

u(x, t) = u+ + ũ(x, t), r = r+ − r̃.

Thus ũ satisfies the equation

∂ũ

∂t
= r̃

[

1 +
2uLc,+(v − 3guLc,+)

v − 2guLc,+

]

ũ − (∂2

x + q2

c )
2ũ

+(v − 3guLc,+)ũ2 − gũ3 + O(r2), (33)

where uLc,+ = (v +
√

v2 + 8gq4
c )/4g ≃ 0.3068 is the value of u+ evaluated at r+. As

(33) is of the same form as the original equation (1), the behavior in the new bistable

region is mathematically analogous to that described in the preceding section, although this
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FIG. 16: Bifurcation diagram showing the two homoclinic branches biasymptotic to u+, together

with the flat and patterned branches of Fig. 4. Away from the bifurcation at r+ the homoclinic

branches are contained within the pinning region (shaded) between rP3 ≃ 0.03874 and rP4 ≃

0.2643. Thick lines indicate stable solutions. For clarity the stability of the localized states is only

indicated in the insets, which show the behavior near the saddle-nodes. The dashed vertical line

marks the location of the Maxwell point rM2 between the flat and patterned branches. The letters

(a)-(f) mark the locations of the profiles shown in Fig. 17.

possibility is absent from Refs. [6, 7] owing to a different parametrization. In particular,

the asymptotic analysis and the computation of the normal form coefficients carried out in

equations (15)-(22) and (27) carries over to this case using the transformation

u → u − u+, r → −(r − r+)

[

1 +
2uLc,+(v − 3uLc,+g)

q4
c

]

, v → v − 3guLc,+. (34)

For example, at r = r+

γ3 =
38(v − 3guLc,+)2

9q4
c

− 3g ≃ 14.6.

It follows that this region also contains two branches of homoclinic solutions which, like the

patterned branch, bifurcate from the u+ branch at r+. As shown in Fig. 16 these homoclinic

branches undergo a series of saddle-node bifurcations between rP3 and rP4. As in the

previous case, there is a Maxwell point rM2 within the pinning region where the energy of
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FIG. 17: Sample profiles at the saddle-nodes indicated in Fig. 16. (a,b,c) lie on the φ = 0 branch

while (d,e,f) lie on the φ = π branch.

the flat u+ branch matches that of the patterned branch. Below this point the patterned

state has the lower energy density while above the u+ state is preferred. However, once

again the patterned branch uP shown in Fig. 16 has a wavelength that does not exactly

match the pattern inside the localized states that make up the snakes: near r5 and rP4 the

wavelength within the localized states deviates by as much as 15% from Lc. The wavelength

discrepancy is most noticeable at large r where the flat state has lower energy density,

squeezing the packets so that the observed wavelength within the localized states is less

that Lc. It is significant that the patterned branch with this wavelength does not undergo a

period-doubling bifurcation at r5. As a result the localized states on the snakes do not inherit

the change of stability of uP at r5 or indeed any of the bifurcations to nLc-periodic states

that are present near r∗, and remain stable all the way up to the saddle node bifurcations

at rP4.

As mentioned earlier bifurcations from the u− branch can be mapped to the u+ branch. As

a result the bistable region that exists between u− and the patterned branch can be studied

within the same framework. The remaining possibility, branches of solutions connecting the

u+ and u− states, can be excluded on energy grounds: if v > 0 (v < 0) the energy of the u+

state is always less than (greater than) the u− state. Moreover, no pinning is possible. Thus
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no stationary fronts between these two flat states are possible when v 6= 0. Kink solutions,

present when v = 0, are discussed in Ref. [7].

IV. LOCALIZED STATES AS A FUNCTION OF v

Thus far we have studied the behavior of equation (1) as r varies at fixed values of qc,

v, and g. To explore the v dependence of our results we rescale x and u so that qc = 0.5

and g = 1.0, and vary v. Consider first the bifurcation from the u = 0 flat state, shown in

Fig. 8 at v = 0.41. Within the normal form (26) changing v corresponds to changing q2. The

condition q2 = 0 defines a codimension-2 point in the (r, v) plane with coordinates r = 0, v =

±
√

27gq4
c/38; without loss of generality we take v > 0. At this point q4 = 2202g2/361q6

c > 0

so the bifurcation at the origin in (1) is of the type shown in Fig. 6(b). In this case normal

form theory predicts that homoclinic solutions only exist in the subcritical regime q2 < 0

(i.e., v2 > 27gq4
c/38) and only in the range µD < µ < 0. The heteroclinic solution at µD in

the normal form corresponds to the Maxwell point rM1 in the partial differential equation.

Away from the codimension-2 point we can use the normal form to confirm the existence

of homoclinic solutions when r . 0 and it is these small amplitude solutions that provide

a starting point for the numerical continuation to large amplitude used to determine the

extent of the pinning region. We can also follow the Maxwell point.

Figure 18 summarizes the regions of existence of heteroclinic connections to the trivial

flat state u0. In view of the parameter symmetry (u, v) → (−u,−v) of equation (1) a mirror

image of this picture exists in the v < 0 region of parameter space. The bifurcation diagram

in Fig. 8 corresponds to a horizontal slice through this figure at v = 0.41 and is typical of

the behavior below v ≃ 0.688. Above this value of v a new Maxwell point, corresponding to

equal energies of the u0 and u+ states,

rM3 = q4

c −
2v2

9g
, (35)

becomes dynamically important. For v >
√

9gq4
c/2 this Maxwell point lies to the right of the

bifurcation at r+, within the region where u+ is stable, and at v ≃ 0.688 rM3 = rP2. Thus

for v & 0.688 the new Maxwell point enters the pinning region around rM1 and the structure

of the flat and patterned states changes, as do the homoclinic branches. In particular, above

v ≃ 0.735 the φ = 0, π homoclinic branches created at the origin undergo homoclinic snaking
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FIG. 18: The pinning region (shaded) of solutions heteroclinic to the trivial u0 state. This region,

located between rP1 and rP2, is created in a codimension-2 bifurcation at (r, v) ≃ (0, 0.2107).

Dashed lines correspond to the Maxwell points rM1, rM3 and rM4. The thick solid line corresponds

to homoclinic snaking of the type shown in Fig. 19. The dotted line marks the location of the

heteroclinic orbits (Maxwell points) as predicted by the normal form.

towards the u+ state instead of uP . Since u+ is a spatially homogeneous state no pinning

occurs, and the snakes collapse asymptotically to a single point at r = rM3. Thus at rM3 an

infinite number of homoclinic states of different lengths biasymptotic to u0 is still present,

but away from rM3 only a finite number of such states remains [23]. Bifurcation diagrams

describing these homoclinic states for φ = 0, π are shown in Fig. 19. The solutions on the

φ = π branch, shown in Fig. 19(b), include a small region of width of order Lc where the

solution profile dips back down to u ∼ 0 in order that x = 0 remains a minimum.

Between v ∼ 0.688 and v ∼ 0.735 there is a transition region as the homoclinic snaking

in the pinning region around rM1 (Fig. 16) shifts to straddle the new heteroclinic connection

at rM3 (Fig. 19). This intermediate region (Fig. 20) is complicated by the existence of

yet another new Maxwell point, labeled rM4, between u0 and the unstable section of the

patterned branch near r+. This Maxwell point is close to rM3 because near r+ the energies

of the flat and patterned states are very similar. The profiles along both the φ = 0 and
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illustrating (a) φ = 0 and (b) φ = π homoclinic snaking around a heteroclinic connection between

two flat states u0 and u+. Thick lines indicate stable solutions. The insets show typical solution

profiles as the envelope widens and fills with the u+ state.

φ = π branches contain domains within which u(x) resembles three different states: u0,

the (unstable) solution from the upper segment of the patterned branch, and the (stable)

solution from the middle segment. As one proceeds up each branch the fronts between the

flat and unstable pattern move apart filling most of the domain with the unstable pattern.

However, the fronts between the two structured states remain fixed leaving a small patch

of the stable pattern near the origin. It is this ’double’ structure that is responsible for

the complex structure of the corresponding snakes, cf. [24]. Note in particular the unusual

looping on the lower part of the φ = 0 branch (absent from the φ = π branch) whose origin

remains unclear. An analysis of the eigenvalues shows that all such states far up the snaking

branches are unstable.

The snaking shown in Fig. 20 is a consequence of the the Maxwell point rM4 but two

other Maxwell points are present as well. Snaking about the latter is illustrated in Figs. 16,

19. It is natural to ask what selects the Maxwell point about which a snake develops,

and if snakes abandon one Maxwell point in favor of another as parameters are varied how

such transitions take place. For example, Fig. 18 suggests an abrupt end to the pinning

region surrounding rM1 at v ≃ 0.688 that may mark a genuine limit point above which the

snaking branch transitions to one of the other Maxwell points. One may think that only a

single Maxwell point can be graced by snakes since only a single pair of localized states ever

bifurcates from the flat state. Whether snakes can split at finite amplitude into multiple

28



−0.1 −0.08 −0.06 −0.04 −0.02 0

0

0.2

0.4

0.6

r

N

r
+

u
+

u
P

r
M1

 

r
M3

  r
M4

 

−100 0 100

u(x)

(a)
−0.1 −0.08 −0.06 −0.04 −0.02 0

0

0.2

0.4

0.6

r

N

r
+

u
+

u
P

r
M1

 

r
M3

  r
M4

 

−100 0 100

u(x)

(b)

FIG. 20: Bifurcation diagram corresponding to a horizontal slice through Fig. 18 at v = 0.70. In

(a) the localized states correspond to φ = 0 while (b) shows the φ = π branch. Thick lines indicate

stable solutions. The insets show typical solution profiles far up the snaking branches. The larger

(smaller) amplitude states correspond to the stable middle (unstable upper) segments of the uP

branch.

pairs remains unclear. Moreover, as discussed further below, snaking does not even require

the presence of Maxwell points.

We next consider homoclinic states biasymptotic to u+. It is easy to show using equation

(34) that at r+ the coefficient q2 < 0 for all values of v. Hence this bifurcation is always

subcritical and no codimension-2 point occurs from which heteroclinic states can be traced.

Small amplitude homoclinic solutions near r+ remain, however, and are given by equations

(22) and (34). These can be followed numerically to larger amplitude. Figure 21 shows the

location in (r, v) phase space of the pinning region that contains solutions heteroclinic to u+.

At each point within this region there exists an infinite number of homoclinic solutions that

differ only in width. We identify three possible structures that describe the organization of

these states along one-parameter slices through this figure. The first is regular homoclinic

snaking, shown previously in Fig. 16, with all states joined into a finite number of branches

according to the phase φ (here φ = 0, π). The second possibility may be termed semi-infinite

snaking and arises when one of the lines of saddle-nodes moves off to infinity. The third

case, which we call homoclinic loops, consists of an infinite stack of disconnected isolas, each

made up of solutions with a fixed number of oscillations; this number increases from isola

to isola as one moves up the stack.

Constant v slices of Fig. 21 indicate that both Fig. 4 and Fig. 16 are incomplete. In each

case the complete picture resembles that shown in Fig. 22 but includes an extra stack of
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FIG. 21: (a) The pinning region (shaded) of solutions heteroclinic to the u+ state. (b) The same

but on a larger scale.
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FIG. 22: Bifurcation diagram corresponding to a horizontal slice through Fig. 21 at v = 0.375.

The depinning transitions for the finite snaking region occur at rP3 ≃ 0.04696 and rP4 ≃ 0.4891,

and for the semi-infinite snaking region at r ≃ 0.7077. The only Maxwell point between the u+

and patterned branches (rM2) occurs within the finite snaking region.

disconnected patterned states that extend to arbitrarily large r and form what we have called

a semi-infinite snake. It is interesting that the latter is not associated with a Maxwell point:

the only Maxwell point between the flat and patterned states occurs at rM2 in the regular

homoclinic snaking region. Both the regular and semi-infinite snaking regions apparently
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FIG. 23: Bifurcation diagram corresponding to a horizontal slice through Fig. 21 at v = 0. The

depinning transition occurs at rP3 ≃ 0.10973 and the Maxwell point is at rM2 ≃ 0.355. The

apparent branch crossings near r ∼ 0.2 are an artifact of the norm plotted on the vertical axis.

persist to arbitrarily large v.

Close inspection of Fig. 22 shows that the pinning region extends beyond the patterned

branches. This is a consequence of the wavelength selection mentioned above. The patterned

branch shown in the figure has wavelength Lc; at large r this wavelength differs from that

within the localized state. Inspection of the wavenumber of the pattern within these states

shows that the preferred value is about 30% higher. The patterned branch corresponding to

this wavenumber extends all the way back to the pinning transition, providing support for

all the localized states in the semi-infinite snaking region.

As v decreases below v ≃ 0.3733 the states in Fig. 22 merge in a ’zipping’ transition [26],

leaving a single semi-infinite snake that extends from rP3 to r = ∞. It is remarkable that

this region includes the case v = 0 corresponding to the standard Swift-Hohenberg equation

with no quadratic nonlinearity. The corresponding bifurcation diagram is shown in Fig. 23

and is typical of this region. The case v = 0 has been studied in the past (eg., [21, 22]) but

the disconnected branches of (stable) localized states have not been noted before. Indeed, in

view of the general scaling r ∼ q4
c we find that rP3 = 0.10973 = 1.756q4

c at v = 0, a prediction
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The inset shows isolas of localized states that fill the pinning region and account for the term

’homoclinic isolas’. Each isola corresponds to solutions with the same number of oscillations of the

pattern. Thick lines indicate stability. There is also a semi-infinite snaking region at this v value

but it is omitted from the figure because it only exists at very large r.

that agrees with the location of the depinning transition found in Ref. [21] (r ≃ 1.74, qc = 1).

Likewise the Maxwell point occurs at rM2 = 0.355 = 5.68q4
c , as found in Ref. [25].

Below v . −0.03 the semi-infinite snake ’unzips’ into two segments in r, one finite and

one extending to r = ∞. In the finite segment the bifurcation diagrams (Fig. 24) are now

topologically distinct from those in Fig. 22, consisting of stacks of homoclinic isolas instead

of snakes. Each isola contains a segment with stable localized states. At these values of v

the two branches of patterned solutions created at r0 and r+ extend to infinite r, and the

semi-infinite snaking region does contain a Maxwell point where the flat and patterned states

have equal energies. However, the isola region possesses no such point. Further decrease

below v ≃ −0.109 causes the homoclinic isolas to shrink and vanish, but the semi-infinite

snaking region remains at arbitrarily large negative v.

At first glance the two different regions of homoclinic snaking identified in the previous

section (one created at r0 and shown in Fig. 8 and the other at r+ and shown in Fig. 16)
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appear similar but despite the mathematical similarity between the bifurcations at r0 and

r+ this is not the case. The saddle-node at r4 is created when stable and unstable branches

of patterned solutions pinch off and disconnect, in contrast to what happens at r3. Thus

the semi-infinite snakes are likely inherited from snakes that are ultimately associated with

Maxwell points at smaller values of r. There is no analog of this behavior for the first snake,

consisting of localized states biasymptotic to u0 = 0 (cf. Fig. 18). This difference is a

consequence of terms such as ru2 and r2u that are present in equation (33) for ũ but not in

equation (1).

V. DISCUSSION AND CONCLUSIONS

In this paper we have revisited the generalized Swift-Hohenberg equation, and reexamined

the formation of spatially localized states within this system. We have focused on the relation

between finite amplitude localized states and the small amplitude localized states that can be

computed via perturbation theory. In addition we have examined the linear stability of these

states. We have shown that a pair of branches of localized states generically bifurcates from

the trivial state as the bifurcation parameter r increases. Both bifurcations are subcritical.

The solutions on these two branches are reflection symmetric and differ only in their phase

φ = 0, π. Initially both branches are unstable, but with increasing |r| begin to ’snake’ in

a characteristic fashion as the localized state broadens, and begins to approach a spatially

periodic state. The snaking generates a sequence of saddle-node bifurcations at each of

which the pattern adds a pair of ’rolls’. These bifurcations accumulate rapidly, with the

interval between the limit points defining the so-called ’pinning’ region. We have seen that

the pinning region is a consequence of locking of the fronts at either end of the localized

structure to the underlying periodic state, and as such can be thought of as a broadened

Maxwell point. Each pinning region contains an infinite number of stable localized states of

both phases.

To obtain these results we formulated the problem of finding localized states as a problem

of finding homoclinic orbits in a fourth order dynamical system in space. The reversible

structure of this system is responsible for the presence of 1:1 reversible Hopf bifurcations at

particular values of r, and the theory of this bifurcation provides a key to understanding the

origin of the localized states. This theory requires the use of beyond-all-orders asymptotics
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[12, 13, 27]; for this reason the phase selection between the φ = 0 and φ = π branches

is initially extremely weak, as is the amplitude of the snake. Both processes only become

significant in the pinning region. High up each snake the localized states become broad and

begin to resemble heteroclinic orbits, i.e., slugs of a periodic wavetrain embedded in a flat

background.

We have seen that the generalized Swift-Hohenberg equation admits multiple Maxwell

points, and hence multiple pinning regions exhibiting snaking. We have focused on three

such regions. The first, present for r < 0, occurs when the trivial and patterned states have

equal energies. The second and third arise when the patterned state has the same energy

as the nontrivial flat states u±. The corresponding pinning regions describe the location

of localized states that are biasymptotic to a nonzero flat state. In other regimes we have

located infinite stacks of isolas of localized states. However, perhaps the most unexpected

observation is that there is a broad range of values of v for which stacks of localized states

come in from infinity (in r), turn around in a saddle-node bifurcation, and return to infinity.

These states are highly nonlinear, acquire stability at the saddle-node bifurcations, and

are present even when v = 0, i.e., in the usual Swift-Hohenberg equation with only a

single stabilizing cubic nonlinearity. Throughout the paper we have only considered the so-

called single pulse solutions. Multi-pulse solutions, consisting of several more or less isolated

localized states interacting via their tails, possess rich behavior in their own right [13, 20, 27],

but are beyond the scope of the present work.

Localized states are of course of great interest to pattern formation. They occur not

only in vibrating granular media [28] and polymeric fluids [29], but also in reaction-diffusion

systems [8], nonlinear optics [30, 31] and in several convection systems [32–37]. They are also

present in the Swift-Hohenberg equation with cubic and quintic nonlinearities [38]. Two-

dimensional localized patterns also exhibit snaking [5, 31, 39]. In particular the theory of

localized buckling of long struts bears a substantial similarity to the work reported above

[6, 7]. This in turn is closely related to the study of solitary waves in the fifth order Korteweg-

de Vries (KdV) equation arising in the theory of long wavelength water waves [40, 41] and

related systems [42]. In particular the solitary waves studied in the context of the fifth order

KdV equation correspond precisely to the localized states of the Swift-Hohenberg equation

(1) in the special case g = 0, with the parameter r related to the speed of the waves.

Indeed, it is in this context that the bifurcation of the φ = 0, π branches of localized states
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from the trivial state was first established [43], the dominant nonlinearity near r = 0 being

quadratic. Moreover no other branches of localised states bifurcate from r = 0 [13]. It is

worth mentioning that the water wave problem, like the buckling problem, is fundamentally

time-independent. Thus the question of linearized stability does not arise in a natural way,

unless additional physical notions such as wave radiation to infinity are included. It is for

this reason that stability questions have not been central to the study of localized states in a

great many cases, although in other contexts the stability of the solutions along the snakes

has been studied [31, 44] albeit with respect to symmetric perturbations only.

It is worth mentioning that in the large body of work on localized buckling the load

parameter enters as the coefficient of the second derivative. Thus in this class of problems

the parameter that is varied is the wavenumber qc, while keeping a particular combination

of r and q4
c constant. This procedure represents a distinct cut through the parameter plane

that encounters only one of the possible Maxwell points, corresponding to our first snaking

region (near r = 0). We surmize that this is the reason why the interesting behavior in and

near the other snaking regions described here has not already been noted.
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