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Abstract. A key step in the proof of global existence for Yang-Mills fields, prop-
agating in curved, 4-dimensional, globally hyperbolic, background spacetimes, was the

derivation and reduction of an integral equation satisfied by the curvature of an arbitrary

solution to the Yang-Mills field equations. This article presents the corresponding deriva-

tion of an integral equation satisfied by the curvature of a vacuum solution to the Einstein

field equations of general relativity. The resultant formula expresses the curvature at a
point in terms of a ‘direct’ integral over the past light cone from that point, a so-called

‘tail’ integral over the interior of that cone and two additional integrals over a ball in the

initial data hypersurface and over its boundary. The tail contribution and the integral

over the ball in the initial data surface result from the breakdown of Huygens’ principle

for waves propagating in a general curved, 4-dimensional spacetime.
By an application of Stokes’ theorem and some integration by parts lemmas, however,

one can re-express these ‘Huygens-violating’ contributions purely in terms of integrals

over the cone itself and over the 2-dimensional intersection of that cone with the initial

data surface. Furthermore, by exploiting a generalization of the parallel propagation,

or Cronström, gauge condition used in the Yang-Mills arguments, one can explicitly

express the frame fields and connection one-forms in terms of curvature. While global
existence is certainly false for general relativity one anticipates that the resulting integral

equation may prove useful in analyzing the propagation, focusing and (sometimes) blow

up of curvature during the course of Einsteinian evolution and thereby shed light on the

natural alternative conjecture to global existence, namely Penrose’s cosmic censorship

conjecture.

I. Introduction

Global existence fails to hold for many, otherwise reasonable solutions to the Einstein

field equations. Examples of finite-time blowup include solutions developing black holes

and solutions evolving to form cosmological big bang or big crunch singularities. The

singularities that arise in such examples often, but not always, involve the blowup of
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certain spacetime curvature invariants. More subtle types of singular behavior include

the formation of Cauchy horizons, at which the curvature can remain bounded, but

across which global hyperbolicity, and hence classical determinism, is lost.

Examples of this latter phenomenon are provided by the Kerr and Kerr-Newman

rotating black hole spacetimes and by non-isotropic, cosmological models of Taub-

NUT-type wherein violations of strong causality (as signaled by the occurrence of closed

timelike curves or the appearance of naked curvature singularities) develop beyond the

Cauchy horizons arising in these solutions. On the other hand a variety of arguments

and calculations strongly suggest that such Cauchy horizons, when they occur, are

highly unstable-giving way, under generic perturbations, to the formation of strong

curvature singularities that block the extension of such perturbed solutions beyond

their maximal Cauchy developments.

Considerations such as these led Roger Penrose to propose the so-called (strong)

cosmic censorship conjecture [1] according to which (in a here deliberately loosely stated

form):

globally hyperbolic solutions to the Einstein field equations evolving from
non-singular Cauchy data are generically inextendible beyond their maximal
Cauchy developments.

For the non-vacuum cases of this conjecture it is natural to consider only those mat-

ter sources which exhibit, in the absence of gravitational coupling, the global existence

property at least in Minkowski space but perhaps also (being somewhat more cautious)

in generic globally hyperbolic ‘background’ spacetimes. Otherwise, rather straightfor-

ward counterexamples can be presented involving, for instance, self-gravitating perfect

fluids that evolve to blow up in a nakedly singular but stable fashion [2, 3]. But

Penrose’s conjecture was never intended to suggest that Einsteinian gravity should

miraculously hide the defects of inadequate models of matter inside black holes or

cause their singularities to harmlessly merge with big bang or big crunch cosmological
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singularities.

There are a number of known types of relativistic matter sources that do exhibit

the desired global existence property, but one is currently so far from a proof of cosmic

censorship that their inclusion into the picture only presents an unwanted distraction

from the more essential issues. Thus it seems natural to set these complications aside

until genuine progress can be made in the vacuum special case.

On the other hand there is one particular class of matter fields whose study seems to

be directly relevant to the analysis of the vacuum gravitational equations-namely the

class of Yang-Mills fields propagating in a given, 4-dimensional, globally hyperbolic,

background spacetime. First of all, these are examples of sources for which global

existence results (for the case of compact Yang-Mills gauge groups) have already been

established in both flat [4, 5] and curved [6] background spacetimes. Secondly however,

the vacuum Einstein equations, when expressed in the Cartan formalism and combined

with the Bianchi identities, imply that the spacetime curvature tensor, written as a

matrix of two-forms, satisfies a propagation equation of precisely (curved-space) Yang-

Mills type.

But in contrast to the case of ‘pure’ Yang-Mills fields this Einsteinian curvature

propagation equation is coupled to another equation (the vanishing torsion condition)

which links the connection one-form field to the (orthonormal) frame field and thus

reinstates that frame (or metric) as the fundamental dynamical variable of general

relativity. An additional, related distinction from conventional Yang-Mills theory is

that the effective Yang-Mills gauge group for Einsteinian gravity, when formulated in

this way, is the non-compact group of Lorentz transformations which acts (locally) to

generate automorphisms of the bundle of orthonormal frames while leaving the metric

invariant.

An initially disconcerting consequence of this non-compactness of the effective gauge
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group is that the associated, canonical Yang-Mills stress-energy tensor (a symmetric,

second rank tensor quadratic in the curvature) need no longer have a positive definite

energy density (as it always does in conventional, compact gauge group, Yang-Mills

theory) and indeed this tensor vanishes identically in the gravitational case. Fortunately

however the Bel-Robinson tensor (a fourth rank, totally symmetric tensor quadratic

in curvature and having positive definite energy density) is available to take over its

fundamental role [7].

The proofs of flat and curved space global existence for conventional (compact gauge

group) Yang-Mills fields given, respectively, in References [5] and [6] use a combination

of light cone estimates and energy arguments that exploit, on the one hand, an integral

equation satisfied by the curvature of the Yang-Mills connection and, on the other, the

properties of the associated, canonical stress-energy tensor mentioned above. For the

case of curved, globally hyperbolic, background spacetimes the proof guarantees only

that the Yang-Mills connection, expressed in a suitable gauge, cannot blow up until the

background spacetime itself blows up, for example by evolving to form a black hole or

cosmological singularity or by developing a Cauchy horizon. But even linear Maxwell

fields typically blow up at such singular boundaries or Cauchy horizons, so one could

hardly expect better regularity in the nonlinear case.

Of course in general relativity there is no given, ‘background’ geometry at all and

global existence is much too strong a conjecture for the gravitational field as the afore-

mentioned examples and arguments show. Spacetime curvature does indeed blow up in

many otherwise reasonable instances of Einsteinian evolution and this blowup is antic-

ipated to be a stable feature of such solutions and not merely the artifact of, say, some

special symmetry or other ‘accidental’ property of the spacetime under study. Cosmo-

logical solutions may only persist for a finite (proper) time in one or both temporal

directions whereas timelike geodesics falling into a black hole may encounter divergent
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curvature, representing unbounded tidal ‘forces’, in a finite proper time.

But if Penrose’s conjecture is true then global hyperbolicity is at least a generic fea-

ture of maximally extended Einstein spacetimes that evolve from non-singular Cauchy

data and general relativity is thereby effectively rescued from an otherwise seemingly

fatal breakdown of classical determinism. If, on the other hand, cosmic censorship is

false then the implied breakdown of determinism may well render Einstein’s equations

inadequate as a classical theory of the gravitational field.

There is currently no clear-cut strategy for trying to prove the cosmic censorship

conjecture but it nevertheless seems evident that a better understanding of how space-

time curvature propagates, focuses and (in some circumstances) blows up in the course

of Einsteinian evolution will be essential for progress on this fundamental problem.

For that reason one might hope that a further development of the “Yang-Mills anal-

ogy”, wherein the parallel issues of curvature propagation, focusing and blowup for

‘pure’ Yang-Mills fields have already been somewhat successfully analyzed, could yield

significant insights for understanding the still-wide-open gravitational problem.

One of the key steps in the ‘pure’ Yang-Mills analysis was the derivation of an integral

equation satisfied by the curvature of an arbitrary solution to the field equations. This

integral equation resulted from combining the Yang-Mills equations and their Bianchi

identities in a well-known way to derive a wave equation satisfied by curvature and

by then applying the fundamental solution of the associated wave operator to derive

an integral expression for the curvature at an arbitrary point (within the domain of

local existence for the solution in question) in terms of integrals over the past light

cone of that point to the initial, Cauchy hypersurface. An additional key step was the

transformation of this integral formula through the use of the parallel propagation, or

Cronström, gauge condition [5, 6, 8] to eliminate the connection one-form explicitly in

favor of the curvature itself. Certain resulting integrals over the light cone, from its
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vertex back to the initial data surface, could be bounded in terms of the Yang-Mills

energy flux, defined via the aforementioned, canonical stress-energy tensor, and thence

in terms of the actual energy on the initial hypersurface.

In the simplest, flat space setting of Ref. [5] a Gronwall lemma argument was

employed to prove that the natural (gauge-invariantly-defined) L∞ -norm of curvature

is always bounded in terms of the (equally gauge-invariant) conserved total energy, with

all reference to the artifice of the Cronström or parallel propagation gauge, used in the

intermediate steps, effectively eliminated. Thus equipped with an a priori pointwise

bound on curvature one completed the proof of global existence by showing that an

appropriate Sobolev norm of the connection one-form, when evolved in the so-called

‘temporal gauge’, cannot blow up in finite time by a straightforward, higher order

energy argument. A more elaborate argument was needed for the case of the curved

backgrounds treated in Ref. [6] but the essential role played by the corresponding

integral equation for curvature remained unaltered.

In the flat space argument one avoided certain complications, resulting from the

breakdown of Huygens’ principle for the complete gauge-covariant wave operator ap-

pearing in the curvature propagation equation, by splitting that operator into a pure

flat-space wave operator (which does of course obey Huygens’ principle in four-dimensional

Minkowski space) and a collection of lower order, Huygens-violating, connection terms

which were moved over and included with the ‘source’ terms in the full, inhomogeneous

wave equation for curvature. One then derived the integral formula for curvature by

applying the well-known fundamental solution for the flat space wave operator to the

redefined source terms and then eliminating the connection terms in the redefined

source, in favor of curvature, through an application of the Cronström gauge argument

mentioned above.

This same operator splitting technique was also employed for curved backgrounds

6



in Ref. [6] but there, since the ordinary tensor wave operator itself violates Huygens’

principle (in a generic background), new terms in the resulting ‘representation formula’

for Yang-Mills curvature arose which had no direct analogue in the operator-split, flat

space argument. These new, so-called tail terms appeared as integrals over the interior

of the past light cone from an arbitrary point to the initial hypersurface and over the in-

terior of the three ball in the initial hypersurface bounded by the intersection of the past

light cone with this initial surface. Fortunately, however, these tail terms produced only

a slight complication in the argument for the curved-space ‘pure’ Yang-Mills problem

because all of the Huygen’s-violating, tail contributions to the fundamental solution

for the residual tensor wave operator (remaining after the aforementioned operator

splitting is carried out) are functionals only of the given, background metric and thus

are independent of the Yang-Mills field under study. Their contributions can therefore

always be bounded by constants dependent only upon the background geometry but

independent of the solution in question.

In this article we derive an integral equation satisfied by the curvature tensor of a

vacuum solution to Einstein’s equations by applying the fundamental solution of the

associated, curved-space tensor wave operator to the source terms in the curvature

propagation equation defined after an analogous operator splitting, within the Cartan

formulation for the field equations, has been carried out. For this purpose we exploit

the general theory of such wave operators developed over the years by Hadamard,

Sobolev, Reisz, Choquet-Bruhat, Friedlander and others [9]. We then transform the

resulting expression, by an application of Stokes’ theorem and some integration-by-

parts arguments, to rewrite the Huygen’s-violating tail contribution integrals in terms of

other integrals over the past light cone itself. A generalization of Cronström’s argument

is given which shows that not only the connection but also the frame field can be

explicitly expressed in terms of curvature by exploiting a natural parallel propagation
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gauge condition in conjunction with the standard Hadamard/Friedlander constructions.

While the aforementioned calculations exploit an operator split version of the curva-

ture propagation equation (written as an evolution equation for a matrix of two-forms),

we also show how the same result can be derived, without using the Cartan formalism

or associated operator splitting, by applying the Hadamard/Friedlander fundamental

solution for the wave operator acting on a fourth rank tensor to the purely (fourth rank)

tensorial form of the curvature propagation equation. At the other extreme one could

presumably arrive at the same result in still another way by converting all the indices

on the curvature tensor to frame indices, carrying out a maximal operator splitting

to include the connection terms with the source and then applying the fundamental

solution for the purely scalar wave operator to the wave equation for each component.

We have not performed this latter derivation but strongly suspect that it leads to the

same, ‘canonical’ result obtained in the other two ways.

In view of the foregoing remarks it may seem that we have gained little in em-

phasizing the use of the Cartan formalism and its associated ‘Yang-Mills analogy’ in

analyzing the field equations but one should keep in mind that the derivation of this

integral equation for curvature is only the first step in a proposed sequence of argu-

ments wherein one hopes to exploit the Cronström-type formulas to re-express all the

fundamental variables in terms of the curvature (written in Cartan fashion as a matrix

of two-forms) and derive estimates for curvature by analogy with those obtained in

Refs. [5] and [6]. Until such arguments are carried out it will not be evident whether

the Cartan formulation is actually essential for the analysis or only a convenience for

those familiar with the ‘pure’ Yang-Mills derivations.

Of course one cannot simply expect to copy the pattern of the ‘pure’ Yang-Mills

arguments and thereby derive a global existence result for the Einstein equations. First

of all we know that any such conclusion must be false but it is worth recalling here
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that the Yang-Mills arguments did not imply unqualified regularity of the Yang-Mills

field but only implied that the field could not blow up until the background spacetime

itself blew up. In general relativity though there is of course no background spacetime

and the vanishing torsion condition, which links the metric to the connection, has no

analogue in pure Yang-Mills theory.

One rather explicit obstruction to simply copying the ‘pure’, curved-space Yang-

Mills argument is that one cannot simply bound the Bel-Robinson energy fluxes (which

fortunately do bound certain relevant light cone integrals) in terms of the Bel-Robinson

energy defined on the initial data hypersurface. While the Bel-Robinson tensor does

in fact obey the vanishing divergence condition whose analogue, in the case of the

canonical stress energy tensor, permitted the derivation of such a bound in the pure

Yang-Mills problem, the Christoffel symbols occurring as coefficients in this equation

are no longer background quantities and thus no longer a priori under control as they

were in the arguments of Ref. [6].

However the full definition of a Bel-Robinson energy expression (and its associated

fluxes) depends upon the additional choice of a timelike vector field on spacetime. If one

had the luxury of choosing a timelike Killing or even conformal Killing field in defining

these quantities then the corresponding Bel-Robinson energy would be a strictly con-

served quantity and a significant portion of the needed arguments would revert to the

simple form available in the flat space (or conformally stationary curved space) ‘pure’

Yang-Mills problem wherein the canonical (positive definite, gauge invariant) energy

is strictly conserved. But such an assumption is absurdly restrictive in the case of

Einstein’s equations for which the small set of vacuum solutions admitting a globally

defined timelike conformal Killing field is essentially known explicitly [10].

But whereas the presence of a conformal Killing field is out of the question for

generic Einstein spacetimes there is nevertheless a potential utility in identifying what
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we might call quasi-local, approximate Killing and conformal Killing fields and trying

to exploit these in a ‘quasi-local, approximate’ variant of the arguments that assume

a strict Killing or conformal Killing field. The idea we have in mind is spelled out

more explicitly in the concluding technical section of this article wherein we show that

the parallel propagated frame fields (determined by parallel propagation of a frame

chosen at the vertex of each light cone) satisfy Killing’s equations approximately with

an error term that is explicitly computable in terms of curvature and that tends to

zero at a well-defined rate as one approaches the vertex of the given cone. The flux of

the corresponding quasi-local energy (built from the chosen vector field and the Bel-

Robinson tensor) will of course not be strictly equal (as it would for a truly conserved

energy) to the energy contained on an initial data slice but the error will be estimable in

terms of an integral involving the (undifferentiated) curvature tensor. The question of

how best to use this observation to obtain optimal estimates from the integral equation

for curvature is one we hope to address in future work.

The idea of exploiting the ‘Yang-Mills analogy’ to analyze Einstein’s equations is

certainly nothing new and has been proposed previously by Eardley and van Putten,

for example, with a view towards numerical applications [11]. Furthermore the global

existence of Yang-Mills fields propagating in Minkowski space has been proven by a

completely independent argument, which avoids light cone estimates, in a paper by

Klainerman and Machedon [12]. During a visit to the Erwin Schrödinger Institute in

the summer of 2004 the author described the preliminary results for this paper with

Sergiu Klainerman who then, together with Igor Rodnianski, independently succeeded

to derive an integral equation for curvature using a significantly different approach

from that described herein [13]. Since the two formulations are quite dissimilar (in

that, for example they do not use the frame formalism, the Hadamard/Friedlander

analysis or the parallel propagation gauge condition) it is not yet clear whether the

10



resultant integral equations are ultimately equivalent or perhaps genuinely different.

Klainerman and Rodnianski trace the origins of their approach back through some

fundamental papers by Choquet-Bruhat [14] and Sobolev [15] whereas the sources for

our approach, as we have indicated, trace more directly back through the work of

Friedlander [9] and Hadamard [16]
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II. Propagation Equations for Spacetime Curvature

In this section we rederive the familiar wave equation satisfied by the curvature tensor

of a vacuum spacetime and then reexpress that equation in a form which parallels the

one satisfied by the Yang-Mills curvature in a vacuum background. One could generalize

both forms by allowing the spacetime to be non-vacuum but since we shall not deal

with sources for Einstein’s equations in this paper, we simplify the presentation by

setting

Rα
µαν := Rµν = 0. (2.1)

The Bianchi identities give

Rα
βγδ;µ + Rα

βδµ;γ + Rα
βµγ;δ = 0 (2.2)

so that, upon contracting and exploiting the algebraic symmetries of the curvature

tensor, one gets

Rγδβα
;α = Rβγ;δ − Rβδ;γ. (2.3)

Imposing the vacuum field equations this yields

DαRγδβ
α := Rγδβα

;α = 0 (2.4)

where we have introduced Dα as an alternative to ;α to symbolize covariant differen-

tiation.

Taking a divergence of the Bianchi identity (2.2) yields

Rα
βγδ;µ

;µ = Rα
βγµ;δ

;µ −Rα
βδµ;γ

;µ. (2.5)

Commuting covariant derivatives on the right hand side and exploiting the field equa-

tions (2.1) together with Eq. (2.4), which follows from them, and using the algebraic

Bianchi identity

Rα
[βγδ] = 0 (2.6)
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to simplify the resulting expression finally gives

DµDµRα
βγδ := Rα

βγδ;µ
;µ

= −Rγδ
ρσRα

βρσ (2.7)

+ 2Rα
ρδσRβ

ρ
γ

σ − 2Rα
ργσRβ

ρ
δ

σ.

This is the fundamental wave equation satisfied by the curvature tensor of a vacuum

spacetime.

Now, following the notation of the appendix we set

Râ
b̂µν;α = θâ

λhσ
b̂
Rλ

σµν;α (2.8)

and expand out the right hand side of this expression to get

DαRâ
b̂µν := Râ

b̂µν;α

= θâ
λhσ

b̂
Rλ

σµν;α (2.9)

= ∇αRâ
b̂µν + ωâ

ĉαRĉ
b̂µν

− ωĉ
b̂αRâ

ĉµν

where we have defined

∇αRâ
b̂µν := (Râ

b̂µν),α

− Γδ
µαRâ

b̂δν − Γδ
ναRâ

b̂µδ. (2.10)

The operator ∇α captures only that part of the full spacetime covariant derivative

operator Dα that acts on the coordinate basis indices µ and ν of Râ
b̂µν and ignores

the contributions arising from the frame indices â and b̂. These latter contributions

are explicitly added back in Eq. (2.9) for the full spacetime covariant derivative of

Râ
b̂µν where they appear as the terms containing the Lorentz connection ωâ

b̂ν . We
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extend the definitions of Dα and ∇α to operators on tensors of arbitrary type in the

obvious way; Dα is the full spacetime covariant derivative operator while ∇α ignores

frame indices and acts only on spacetime coordinate indices.

This splitting of the full covariant derivative into a spacetime coordinate contribution

and a frame or “internal space” contribution is parallel to what one has in Yang-Mills

theory wherein the Yang-Mills connection Aâ
b̂ν plays the role of the Lorentz connection

ωâ
b̂ν but in which the internal space Lie algebra indices refer to the chosen gauge group

and not to the Lorentz group. In Yang-Mills theory of course the spacetime metric and

its Christoffel connection are prescribed a priori and have no relation to the internal

space connection Aâ
b̂ν .

Rewriting the Bianchi identity (2.2) in this notation one gets

DµRâ
b̂γδ + DγRâ

b̂δµ + DδR
â

b̂µγ = 0 (2.11)

or more explicitly, using the aforementioned splitting of Dα

∇µRâ
b̂γδ + ωâ

ĉµRĉ
b̂γδ − Râ

ĉγδω
ĉ

b̂µ

+ ∇γRâ
b̂δµ + ωâ

ĉγRĉ
b̂δµ − Râ

ĉδµωĉ
b̂γ (2.12)

+ ∇γRâ
b̂µγ + ωâ

ĉδR
ĉ

b̂µγ − Râ
ĉµγωĉ

b̂δ

= 0

wherein one sees the internal space (frame) contributions arising as a set of matrix

commutators of the Lorentz connection and curvature. This has exactly the structure

of the corresponding Bianchi identity for Yang-Mills theory and reproduces that for-

mula if one makes the substitutions of F â
b̂µν for Râ

b̂µν and Aâ
b̂µ for ωâ

b̂µ with the

“spacetime” covariant derivative ∇µ playing the same role in each equation. The full

spacetime/gauge covariant derivative bears the same relation to the pure “spacetime”

covariant derivative as Dα does to ∇α in Eq. (2.9) when the same substitutions are

made.
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On the other hand, a Yang-Mills curvature does not have the full algebraic sym-

metries of the Riemann curvature and, for closely related reasons, one cannot form

the analogue of the Ricci tensor from F â
b̂µν . Thus equation (2.1) has no analogue in

Yang-Mills theory. If Eq. (2.4) however is first reexpressed as

DαRâ
b̂βα := gαγDγRâ

b̂βα = 0 (2.13)

then it corresponds precisely to the (source-free) Yang-Mills equation which, by defini-

tion, is

DαF â
b̂βα := gαγDγF â

b̂βα

:= gαγ{∇γF â
b̂βα + Aâ

ĉγF ĉ
b̂βα (2.14)

− F â
ĉβαAĉ

b̂γ}

= 0.

In addition, F â
b̂µν is defined in terms of Aâ

b̂µ by the precise analogue of the equation

(A.17) which expresses Râ
b̂µν in terms of ωâ

b̂µ, namely

F â
b̂µν = ∂µAâ

b̂ν − ∂νAâ
b̂µ

+ Aâ
d̂µAd̂

b̂ν − Aâ
d̂νAd̂

b̂µ. (2.15)

Note that this formula does not involve the spacetime metric or its Christoffel symbols.

In fact, the Christoffel symbols entering into the definition of ∇α also cancel in Eq.

(2.12) which entails only the exterior derivatives of the two-forms F â
b̂µνdxµ ∧ dxν

when the aforementioned substitutions are made there. On the other hand, Eq. (2.14)

involves the metric and its Christoffel symbols explicitly and these quantities enter

thereby into the wave equation for Yang-Mills curvature which played a central role in

the Chruściel-Shatah analysis [6] of Yang-Mills fields on a curved background spacetime.
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Returning to the wave equation for space time curvature (2.7), we now write it in

the Cartan formalism which is, for us, motivated by the rather close analogy with

Yang-Mills theory. Setting

Râ
b̂µν;λ

;λ = θâ
ρ hσ

b̂
Rρ

σµν;αβ gαβ (2.16)

and expanding out the right hand side using the notation introduced above one now

gets

gαβ{∇β[∇αRâ
b̂µν + ωâ

ĉαRĉ
b̂µν

−Râ
ĉµνωĉ

b̂α]

+ ωâ
ĉβ [∇αRĉ

b̂µν + ωĉ
d̂αRd̂

b̂µν (2.17)

−Rĉ
d̂µνωd̂

b̂α]

− [∇αRâ
ĉµν + ωâ

d̂αRd̂
ĉµν − Râ

d̂µνωd̂
ĉα]ωĉ

b̂β}

= −Rµν
ρσRâ

b̂ρσ

+ 2Râ
ĉµσRĉ

b̂ν
σ − 2Râ

ĉνσRĉ
b̂µ

σ.

Rearranging this slightly, one can write it in the form

∇α∇αRâ
b̂µν + Rµν

ρσRâ
b̂ρσ

= 2Râ
ĉµσRĉ

b̂ν
σ − 2Râ

ĉνσRĉ
b̂µ

σ

− gαβ{∇β[ωâ
ĉαRĉ

b̂µν −Râ
ĉµνωĉ

b̂α] (2.18)

+ ωâ
ĉβ [∇αRĉ

b̂µν + ωĉ
d̂αRd̂

b̂µν

− Rĉ
d̂µνωd̂

b̂α]

− [∇αRâ
ĉµν + ωâ

d̂αRd̂
ĉµν − Râ

d̂µνωd̂
ĉα]ωĉ

b̂β}

where we have put ∇α = gαβ∇β. The operator acting on Râ
b̂µν on the left hand side

of this equation ignores the frame indices and has exactly the same form as the wave

operator that acts on the Faraday tensor Fµν of a solution to Maxwell’s equation on a

vacuum background spacetime.
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III. Normal Charts and Parallel Propagated Frames

In any Riemannian or pseudo-Riemannian (e.g., Lorentzian) manifold (V, g) one can

construct, using the exponential map, a normal coordinate chart on some neighborhood

of an arbitrary point in that manifold. Within our framework let q ε V be an arbitrary

point of V and choose an orthonormal frame {ẽµ} at the point q. Tangent vectors

ṽε TqV can then be expressed as ṽ = xµẽµ and, for each such ṽ, one can construct

the affinely parameterized geodesic of (V, g) which begins (with parameter value zero)

at the point q with initial tangent vector ṽ. If the components {xµ} are constrained

to a sufficiently small neighborhood of the origin in the relevant real number space

each such geodesic will extend (at parameter value unity) to a uniquely defined point

p ε V in some (normal) neighborhood of the point q. More precisely one proves that

this (exponential) mapping determines a diffeomorphism between a neighborhood of the

origin in the relevant real number space and a corresponding neighborhood of the point

q in the manifold V . As usual, such neighborhoods are called normal neighborhoods

and the corresponding coordinates {xµ} normal coordinates. This construction breaks

down only when distinct geodesics emerging from q begin to intersect away from q.

Note that by construction one has ẽµ = ∂
∂xµ |q though of course away from q the

(normal) coordinate basis fields { ∂
∂xµ } will no longer be orthonormal. It is not diffi-

cult to show that when the metric and Christoffel connection are expressed in normal

coordinates about q (with xµ(q) = 0) they obey

gµν(0) = ηµν , Γα
µν (0) = 0 (3.1)

at the point q. More remarkable are the formulas

gµν(x)xν = gµν(0)xν = ηµνxν (3.2)

and

Γα
µν(x)xµxν = 0 (3.3)
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satisfied throughout an arbitrary normal coordinate chart [17]. We shall give an alter-

native proof of these equations later in this section.

An important feature of normal coordinates based at q is that the geodesics through

q are expressed simply as straight lines in such coordinates. In other words the curves

defined by

xµ(λ) = xµ · λ , λ ε [0, 1] (3.4)

are all geodesics beginning at q for any {xµ(p)} lying in the range of the chosen chart.

The geodesic with xµ = xµ(p) connects q (at λ = 0) to p (at λ = 1) and is the

unique geodesic, lying entirely within the chart domain, to have this property. Note

that the tangent vector to this geodesic at the point p is given by ṽp = xµ(p) ∂
∂xµ |p.

Thus the vector field ṽ = xµ ∂
∂xµ is, away from q, everywhere tangent to the geodesic

from q which determines that arbitrary point p via the exponential map.

On any such normal coordinate chart domain we now introduce a preferred orthonor-

mal frame field {hâ} as follows. Choose hâ |q= δµ
â ẽµ at the point q and extend each such

frame field to a normal neighborhood of q by parallel propagation along the geodesics

emerging from q in the construction of the normal chart. Such parallel propagation au-

tomatically preserves orthonormality and thus yields an orthonormal frame field {hâ}
defined throughout the chart domain. The dual, co-frame field {θâ} can either be ob-

tained algebraically by computing θâ
µ = ηâb̂gµνhb̂ in the normal coordinate system or,

equivalently, from parallel propagation of the co-frame field {θâ} |q defined at q along

the geodesics emerging from q. This works naturally since parallel propagation of both

{θâ} and {hâ} along these geodesics automatically preserves the duality relations

< θâ, hb̂ >:= θâ
µhµ

b̂
= δâ

b̂
. (3.5)

Here and below we let <,> signify the natural pairing of a one-form and a vector.

From the foregoing construction it follows that ∇ṽhâ = 0 where ṽ = xµ ∂
∂xµ is the

geodesic tangent field previously defined and ∇ṽ is the directional covariant derivative
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operator. More explicitly this yields

(∇ṽhâ)µ = vν(hµ
â,ν + Γµ

γνhγ
â) = xν(hµ

â,ν + Γµ
γνhγ

â) = 0. (3.6)

Contracting with θĉ
µ one gets the equivalent equation

θĉ
µ(∇ṽhâ)µ = vν(θĉ

µhµ
â,ν + θĉ

µhγ
âΓµ

γν) = xν (θĉ
µhµ

â,ν + θĉ
γhµ

âΓγ
µν) = xνωĉ

âν = 0. (3.7)

In other words parallel propagation of the orthonormal frame {hâ} along ṽ corresponds

to the equation

< ωĉ
â, ṽ >= ωĉ

âνxν = 0 (3.8)

holding throughout the normal coordinates chart where, as before ωĉ
â = ωĉ

âνdxν is

the connection one-form defined by this choice of chart and frame.

Equation (3.8) is completely analogous to the Cronström gauge condition for a Yang-

Mills connection Aâ
b̂ = Aâ

b̂νdxν introduced in [8] and exploited in [5] and [6] to

establish global existence for solutions to the Yang-Mills equation in flat and curved

spacetimes respectively. In Yang-Mills theory the gauge condition,

Aâ
b̂νxν = 0 (3.9)

(again imposed throughout a normal coordinate chart on spacetime) results from par-

allel propagation in the internal space whereas here it results from parallel propagation

in the space of orthonormal frames tangent to spacetime. As in Yang-Mills theory

one can exploit this choice of gauge to compute the connection one-forms ωĉ
â directly

from the curvature two-forms Rĉ
â, reversing the order of the usual calculation. In the

chosen gauge Eq. (A17) gives immediately

xνRĉ
âµν = −xν ∂

∂xν
ωĉ

âµ − ωĉ
âµ (3.10)

or, equivalently, along the geodesic curve xµ(λ) = xµ · λ, that

− d

dλ
[λωĉ

âµ(x(λ)] = λxνRĉ
âµν(x(λ)). (3.11)
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Integrating this from λ = 0 to λ = 1 gives

ωĉ
âµ(x) = −

∫ 1

0

dλ λxνRĉ
âµν(x · λ) (3.12)

in exact parallel to Cronström’s formula for Aĉ
âµ in terms of F ĉ

âµν .

In general relativity however, one can go further and compute the (co-) frame field

{θa} (which has no analogue in Yang-Mills theory) directly in terms of the connection

and hence in terms of curvature. To see this first note that the tangent vector to any

of the (normal) geodesics through q is given by

dxµ(λ)
dλ

=
d

dλ
(xµλ) = xµ (3.13)

and thus is independent of λ. Since this tangent vector is (by the definition of geodesics)

parallel propagated along the geodesic its natural pairing with a parallel propagated

one-form such as θâ is necesarily independent of the curve parameter λ. Equating these

pairings at λ = 0 and λ = 1 gives

θâ
ν (0)xν = θâ

ν (x)xν (3.14)

∀{xν} within the normal neighborhood. Squaring this formula gives immediately

ηâb̂θ
â
ν (0)θb̂

µ(0)xνxµ = gµν(0)xµxν (3.15)

= ηâb̂θ
â
ν(x)θb̂

µ(x)xνxµ = gµν(x)xµxν

which is related to, but weaker than, Equation (3.2). We shall reproduce the strong

form momentarily.

The zero torsion condition is given by

∂νθĉ
µ(x) − ∂µθĉ

ν(x)

+ ωĉ
âν(x)θâ

µ(x) − ωĉ
âµ(x)θâ

ν (x)

= 0. (3.16)
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Contracting this with xν and using Eq. (3.8) one obtains

xν∂ν(θĉ
µ(x)) − ∂µ[xνθĉ

ν(x)]

+ θĉ
µ(x) − ωĉ

âµ(x)(xν θâ
ν (x))

= 0. (3.17)

But making use of the result in Eq. (3.14) we can reexpress this as

xν∂ν(θĉ
µ(x)) − ∂µ[xνθĉ

ν(0)]

+ θĉ
µ(x) − ωĉ

âµ(x)[xν θâ
ν (0)]

= xν∂ν (θĉ
µ(x)) + θĉ

µ(x) − θĉ
µ(0) (3.18)

− ωĉ
âµ(x)[xν θâ

ν(0)]

= 0

which can be written as

xν∂ν [θĉ
µ(x) − θĉ

µ(0)]

+ [θĉ
µ(x) − θĉ

µ(0)]

= ωĉ
âµ(x)[θĉ

ν (0)xν ], (3.19)

a transport equation for the quantity θĉ
µ(x) − θĉ

µ(0). Along a geodesic xµ(λ) = xµ · λ.

Through q one thus has

d

dλ
[λ(θĉ

µ(x(λ)) − θĉ
µ(0))] (3.20)

= ωĉ
âµ(x(λ))[xν · λ θĉ

ν(0)].

Integrating this form λ = 0 to λ = 1 one gets

θĉ
µ(x) = θĉ

µ(0) (3.21)

+
∫ 1

0

dλ[ωĉ
âµ(λx)(λxν θâ

ν (x))]
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which is the desired expression for θĉ
µ(x).

Combined with Eq. (3.12) this allows us to express both the connection and the

frame one-forms directly in terms of curvature by explicit integral formulas. Given

the (co-) frame {θâ} one can of course compute the frame fields {hâ} and the metric

algebraically.

To show how Eq. (3.21) implies Eq. (3.2) we use the former to evaluate

gµν(x)xν = ηĉd̂θ
ĉ
µ(x)θd̂

ν (x)xν

= ηĉd̂(θĉ
µ(0) +

∫ 1

0

dλ[ωĉ
âµ(λx)(λxγθâ

γ(0))])

× (θd̂
ν (0)xν +

∫ 1

0

dσ[ωd̂
b̂ν(σx)xν (σxδθb̂

δ(0))]) (3.22)

= (ηĉd̂θ
ĉ
µ(0) +

∫ 1

0

dλ[ωd̂âµ(λx)(λxγ θâ
γ(0))])

× θd̂
ν(0)xν

= ηĉd̂θĉ
µ(0)θd̂

ν (0)xν +
∫ 1

0

dλ[ωd̂âµ(λx)λxγθâ
γ(0) · xνθd̂

ν(0)]

= gµν(0)xν

where we have used the parallel propagation condition, ωâ
b̂ν(x)xν = 0, and the metric

compatibility condition, ωâb̂ν(x) = −ωb̂âν(x), to simplify the intermediate expressions.

Equation (3.3) is normally proven directly from the geodesic equation specialized to

normal coordinates. Using the duality relations θâ
µ hµ

ĉ = δâ
ĉ and θâ

µ hν
â = δµ

ν however,

we can reexpress Eq. (A.13) in the equivalent form

Γλ
δν = hλ

â θĉ
δ ωâ

ĉν + hλ
â θâ

δ,ν . (3.23)

Thus since ωâ
ĉν(x)xν = 0 we get

Γλ
δν (x)xδxν = hλ

â(x)θâ
δ,ν (x)xδxν . (3.24)
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But using Eq. (3.14), one gets

xνxδ(θâ
δ,ν (x)) = xν{∂ν [θâ

δ (x)xδ ]

− θâ
ν (x)} = xν{∂ν [θâ

δ (0)xδ ] − θâ
ν(x)} (3.25)

= xν{θâ
ν (0) − θâ

ν (x)} = 0

where the last step follows from Eq. (3.21) and the parallel propagation condition

ωĉ
âν(x)xν = 0. Thus Γλ

δν(x)xδxν = 0 in normal coordinates.
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IV. An Integral Equation for the Curvature Tensor

In Section II we rederived the fundamental wave equation satisfied by the curva-

ture tensor of a vacuum spacetime and expressed this, via the Cartan formalism, as

a curved space Yang-Mills equation coupled to the vanishing torsion condition. The

latter equation, which relates the frame field determining the spacetime metric to the

connection, has no analogue in a “pure” Yang-Mills problem but here of course provides

the fundamental link between the metric and its curvature.

In the Cartan formalism wherein one regards the curvature tensor as a matrix of

two-forms, Râ
b̂µνdxµ ∧ dxν , or equivalently as a two-form with values in the matrix

Lie algebra for the Lorenz group SO(3, 1), the wave operator (defined by the left-hand

side of Eq. (2.18)) takes the form (for each separate matrix element) of the same

wave operator that acts on the Faraday tensor Fµνdxµ ∧dxν of a solution to Maxwell’s

equations. In particular, the frame indices play completely inert roles on the left-hand

side of Eq. (2.18) which leaves the different matrix elements uncoupled.

We want to derive an integral equation satisfied by curvature by applying the funda-

mental solution for this wave operator to the “source” term defined by the right hand

side of Eq. (2.18), using Eqs. (3.12) and (3.21) to eliminate the connection and frame in

favor of curvature in much the same way that one previously used Cronström’s formula

to eliminate the Yang-Mills connection in favor of its curvature in studies of the flat and

curved space pure Yang-Mills fields. The theory developed in Friedlander’s book [9]

(which builds on the fundamental work of Hadamard, Riesz, Sobolev, Choquet-Bruhat

and others) applies to this wave operator (as well as to others we shall consider later)

and allows one to write an integral formula for the solution of the corresponding Cauchy

problem on so-called causal domains of the spacetime (i.e., on geodesically convex do-

mains which are also globally hyperbolic in a suitable sense [18]). For Friedlander, who

treats only linear problems, the integral formula in question is a genuine representation
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formula for the solution of the associated wave equation whereas for us it only yields

an integral equation satisfied by the relevant solution to the Cauchy problem.

Of course not every solution to Eq. (2.18) corresponds to a solution of Einstein’s

field equations. It is necessary, in order to avoid introducing spurious solutions, to

restrict the Cauchy data appearing in the Friedlander formula by imposing those first

order equations upon the curvature which results from the Bianchi identities when the

Ricci tensor vanishes (the vacuum condition). The Friedlander formalism applies to

all solutions of the relevant wave equation and hence in particular to the solutions of

physical interest.

To simplify the notation, let us write Fµν for any particular matrix element Râ
b̂µν

of curvature (surpressing the inert frame indices â, b̂) and fµν for the corresponding

source term so that Eq. (2.18) now takes the form

Fµν;γ
;γ + Rµν

αβFαβ = fµν . (4.1)

With reference to Fig. 5.3.1 of Friedlander’s book, let p be a point in some causal

domain of ((4)V, g) and S be a spacelike hypersurface within this domain such that

every past-directed causal geodesic from p meet S. Further, let Cp be the mantle of

the (truncated) past light cone from p to S, σp be the (two-dimensional) intersection

of Cp with S and let Dp be the interior of this truncated cone and designate by Sp the

(three-dimensional) intersection of Dp with S. Finally, let Tp designate the expanding

lightlike hypersurface which intersects S in σp.

Friedlander’s representation formula for the field at point p is given in local coordi-
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nates by [19]:

Fαβ(x) =
1
2π

∫
Cp

Uµ′ν′
αβ (x, x′)fµ′ν′(x′)µΓ(x′)

+
1
2π

∫
Dp

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′)µ(x′)

+
1
2π

∫
Sp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′) (4.2)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)]

+
1
2π

∫
σp

{Uµ′ν′
αβ (x, x′)[2(∇γ′

t(x′))(∇γ′Fµ′ν′(x′))

+ Fµ′ν′(x′) � t(x′)]

− 〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)}µt,Γ(x′).

Here Uµ′ν′
αβ (x, x′) = κ(x, x′)τµ′ν′

αβ (x, x′) where κ is the transport biscalar defined by Eq.

(4.2.17) of Ref. [9] and given in local coordinates by Eq. (4.2.18) or (4.2.19) of that

reference and τµ′ν′
αβ (x, x′) is the transport bitensor (or propagator) defined in Section

(5.5) of Friedlander. The latter is expressible explicitly in terms of an orthonormal

frame parallel propagated from p along the geodesic issuing from that point.

The measure µ(x′) is the standard spacetime volume measure given in local coordi-

nates by
√−det gµν(x′)d4x′ whereas the measure on the light cone µΓ(x′) is a Leray

form defined such that

dx′Γ(x, x′) ∧ µΓ(x′) = µ(x′) (4.3)

where Γ(x, x′) is the optical function (squared geodesic distance within a causal do-

main) introduced in Sect. (1.2) of Friedlander (c.f., Theorem 1.2.3). Leray forms are

introduced in Sect. (2.9) and developed further in Sect. (4.5) of this same reference

and the coordinate expression for the dual ∗v of a vector v is given there by Eq. (2.9.3).

This is needed in the boundary integral over Sp whereas µΓ arises in that over Cp. The
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two-dimensional Leray form µt,Γ(x′) needed for the integral over σp, is defined such

that (c.f., Lemma 5.3.3. of Ref. [9])

dt(x′) ∧ dx′Γ(x, x′) ∧ µt,Γ(x′) = µ(x′) (4.4)

where t(x′) is the null field defined by Lemma 5.3.2 of Friedlander. Note also in this

reference the needed expressions for (� t)µt,Γ and 〈∇t,∇Γ〉 given respectively by Eqs.

(5.3.20) and (5.3.19) of this same section.

The tail field (V +)µ′ν′
αβ (x, x′) is the solution of a characteristic initial value problem

for the homogeneous wave equation. By virtue of the self-adjoincy of our Eq. (4.1)

and the reciprocity relations derived by Friedlander in Sect. (5.2) (which apply as well

to the tensor case as discussed in Sect. (5.5)) the tail bitensor V + satisfies the wave

equation

(V +)µ′ν′;γ′
αβ;γ′ (x, x′) + Rµ′ν′

δ′γ′(x′)(V +)δ′γ′
αβ (x, x′) (4.5)

+ Rµ′
δ′ (x′)(V +)ν′δ′

αβ (x, x′) −Rν′
δ′ (x′)(V +)µ′δ′

αβ (x, x′)

= 0

wherein the indices αβ and coordinates xµ play inert roles. In the foregoing formulas,

as well as below, the notation ∇γ and ; γ are used interchangeably. The initial data

for V + is computable on the light cone Cp where it reduces to the bitensor field that

Friedlander expresses as V0. The transport equation determining V0 is provided by

Friedlander’s Eq. (5.5.23) and its explicit solution is given in his Eq. (5.5.25).
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V. Transformations of the Tail Field Integrals

Define the tail field contributions to Fαβ(x) by

F tail
αβ (x) :=

1
2π

∫
Dp

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′)µ(x′)

+
1
2π

∫
Sp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′) (5.1)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)]

− 1
2π

∫
σp

〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)µt,Γ(x′).

This consists of all the terms that would vanish if Huygen’s principle were valid since

in that case V + = 0 but, in a curved spacetime, these terms are generally non-zero.

Let us reexpress the source f through the use of the wave equation for F as

fµ′ν′(x′) = (PF )µ′ν′(x′) (5.2)

where P is the second order linear, self-adjoint operator defined by the left hand side

of Eq. (4.1). Recalling Eq. (4.5) which can be written as

(PV +)µ′ν′
αβ (x, x′) = 0 (5.3)

where P acts at x′ and the indices α, β and x are inert, one finds that the integrand

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′) can be expressed as

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′) =

(V +)µ′ν′
αβ (x, x′)(PF )µ′ν′ (x′) − (PV +)µ′ν′

αβ (x, x′)Fµ′ν′(x′)

= ∇γ′{(V +)µ′ν′
αβ (x, x′)(∇γ′

Fµ′ν′(x′)) (5.4)

− (∇γ′
(V +)µ′ν′

αβ (x, x′))Fµ′ν′(x′)}

where the curvature terms have canceled from the final expression by virtue of the self-

adjoint structure of the wave operator P . Thus the integrand in the volume integral
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over Dp can be reexpressed as a total divergence. It is worth noting that the scalar

field analogue to the above observation is given at the end of p.187 in Friedlander’s

book.

Using Eq. (5.4) to reexpress the integral over Dp in the equation for F tail
αβ (x) and

using Stokes’ theorem to rewrite this volume integral as a boundary integral over ∂Dp =

Cp ∪ Sp, one arrives at the result that

F tail
αβ (x) =

1
2π

∫
Cp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)] (5.5)

− 1
2π

∫
σp

〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)µt,Γ(x′)

where the orientation chosen for the integral over the null cone Cp corresponds to

a normal field directed towards the vertex p. The cancelation of the two boundary

integrals over Sp parallels that shown by Friedlander for the scalar case in his Eq.

(5.3.14) (wherein however it was assumed that the support of the scalar field did not

meet Cp). One can also think of deriving Eq. (5.5) from Eq. (5.1) by pushing the

surface Sp forward, holding its boundary σp fixed, until it merges in the limit with

Cp. Friedlander remarks in his Section (5.4) that the representation formula for the

characteristic initial value problem can be derived in a similar manner wherein, however,

one pushes Sptowards the past rather than towards the future.

Though we have succeeded to reexpress the tail contributions in terms of integrals

only over Cp and σp the resulting formula is still not in a satisfactory state from

the point of view of the ultimate applications we have in mind. This is so, in large

measure, because Eq. (5.5) contains derivatives of the unknown curvature and it would

be hopeless to try to derive estimates for the undifferentiated curvature from an integral

equation involving the derivatives of this same quantity.

Fortunately, however, in the integral over Cp in Eq. (5.5) for F tail
αβ (x) only deriva-
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tives of (V +)µ′ν′
αβ (x, x′) and Fµ′ν′(x′) tangential to the null generators of the light cone

are involved. The point is that since Cp is a null surface its normal (∇γ′
Γ(x, x′) in

Friedlander’s notation) is in fact tangential to the cone and hence the dual operator (∗
in Eq. (5.5)) produces only these tangential derivatives in the integrand. Thus one is at

liberty to integrate by parts and throw the directional derivative onto V + for example

and thereby remove it from F . In effect, Friedlander exploited this freedom (though in

the opposite way) in recasting the integral over Cp′ in his representation formula for

the characteristic initial value problem into a form in which only tangential derivatives

of F were involved. For our purposes, though it is essential to avoid the necessity of

computing tangential derivatives to F and to recall that the tangential derivative of V +

is given rather explicitly by Friedlander’s Eq. (5.5.23) for this latter quantity (which

coincides with V0 on Cp). On the other hand, this integration by parts produces an

additional contribution to the integral over Cp (since ∇γ′
Γ(x, x′) gets differentiated)

and a boundary contribution which modifies the integral over σp. We shall carry out

these further reductions in the following section and thereby arrive at our final integral

equation for curvature within the framework of the Cartan formalism.

The reader may be wondering though why it should be possible, as we have argued,

to transform the tail contributions, which result from the failure of Huygen’s principle to

hold in a general spacetime, into a form (involving only integrals over Cp and σp) which

seems to have miraculously restored Huygen’s principle. The resolution of this seeming

paradox results from noting that even for a truly linear problem (where the meaning of

Huygen’s principle is clearly defined) the transformed “representation” formula requires

knowledge of the unknown field Fµν , on the light cone Cp and not merely on σ, the

intersection of the cone with the initial hypersurface. Thus the transformed equation

is not really a representation formula at all, even in the linear case, whereas initially

(in Eq. (4.2)) it was. For the non-linear problems that we are interested in however, a
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genuine representation formula (for the solution of the Cauchy problem) is out of the

question and it is far more convenient to have the tail contributions transformed, as

we have done, to integrals over Cp and σp alone.
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VI. Reduction of the Tail Contributions

To simplify the notation slightly let us write Eq. (5.5) in the form

F tail
αβ (x) = IF tail

αβ (x) + IIF tail
αβ (x) (6.1)

where IF tail
αβ (x) is the integral over Cp and IIF tail

αβ (x) that over σp. Reexpressing the

dual ∗v to a vector v via Eq. (2.9.3) of Ref. [9] (see also p. 194 of this reference)

∗v(x′) = 〈v(x′), grad′Γ(x, x′)〉µΓ(x′) (6.2)

one gets the more explicit formula for IF tail
αβ (x)

IF tail
αβ (x) =

1
2π

∫
Cp

µΓ(x′){∇γ′
Γ(x, x′)[(V +)µ′ν′

αβ (x, x′)∇γ′Fµ′ν′(x′) (6.3)

− Fµ′ν′(x′)∇γ′(V +)µ′ν′
αβ (x, x′)]}.

The key point here is that only derivatives tangential to the null generators of the

cone Cp appear in the integrand. This allows one to integrate by parts to eliminate

derivatives of Fµ′ν′ in favor of (tangential) derivatives of (V +)µ′ν′
αβ which, in turn, may be

evaluated from the transport equation (c.f. Eq. (5.5.23) of Ref. [9]) which determines

this quantity along Cp. Carrying out these operations and writing (V0)
µ′ν′
αβ (x, x′) for

the restriction of (V +)µ′ν′
αβ (x, x′) to Cp one arrives at

IF tail
αβ (x) =

1
2π

∫
Cp

µΓ(x′){(∇γ′
Γ(x, x′))∇γ′((V0)

µ′ν′
αβ (x, x′)Fµ′ν′ (x′)) (6.4)

+ Fµ′ν′(x′)[PUµ′ν′
αβ (x, x′) + (�′Γ(x, x′) − 4)(V0)

µ′ν′
αβ (x, x′)]}

where P is the wave operator defined in Eq. (5.2) above and where, as mentioned

above, we can write

Uµ′ν′
αβ (x, x′) = κ(x, x′)τµ′ν′

αβ (x, x′) (6.5)
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with the parallel transport “propagator” τµ′ν′
αβ expressible in terms of our orthonormal

frame as

τµ′ν′
αβ (x, x′) = hµ′

ê (x′)θê
α(x)hν′

f̂
(x′)θf̂

β(x). (6.6)

One can evaluate the first integral in the above expression for IF tail
αβ (x) by first

transforming from normal coordinates {xµ′} to spherical null coordinates defined by

x1′
= r′ sin θ cos ϕ

x2′
= r′ sin θ sinϕ

x3′
= r′ cos θ (6.7)

t′ = x0′
=

u + v

2
, r′ =

v − u

2

r′ =
√

Σ(xi′ )2

so that

u = t′ − r′, v = t′ + r′ (6.8)

with Γ = −uv everywhere and v = 0 on Cp. In terms of these coordinates it is

straightforward to show that

Γ;α ∂

∂xα
= 2v

∂

∂v
+ 2u

∂

∂u
(6.9)

and that the Leray form

µΓ =

√−det(gµν)
u

du ∧ dθ ∧ dϕ (6.10)

satisfies

µ = dΓ ∧ µΓ =
√

−det(gµν)du ∧ dv ∧ dθ ∧ dϕ (6.11)

as required by its definitions (where detgµν is the determinant of g in the spherical null

coordinates). Substituting these expressions into the integral in question one easily
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arrives at

1
2π

∫
Cp

µΓ(x′)(∇γ′
Γ(x, x′))∇γ′ [(V0)

µ′ν′
αβ (x, x′)Fµ′ν′ (x′)]

=
1
2π

∫
Cp

du ∧ dθ ∧ dϕ[
∂

∂u
[2

√
−det(gγδ)(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]]

+
1
2π

∫
Cp

µΓ(x′)[(4 −∇γ′∇γ′
Γ(x, x′))(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)] (6.12)

= − 1
2π

∫
σp

dθ ∧ dϕ{2
√
−det(gγδ)[(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]}

+
1
2π

∫
Cp

µΓ(x′)[(4 − �′Γ(x, x′))(V0)
µ′ν′
αβ (x, x′)Fµ′ν′(x′)].

Evaluating the metric form restricted to Cp one gets

ds2
∣∣
Cp

= −dudv + (2)Vθdvdθ + (2)Vϕdvdϕ (6.13)

(2)gABdxAdxB + (−1
4

(4)guu +
1
4

(2)gAB
(2)V A (2)V B)dv2

where {xA;A = 1, 2} = {θ, ϕ} and where (2)gABdxAdxB and

(2)VAdxA = (2)gAB
(2)V BdxA are (at each fixed u on the hypersurface Cp defined by

v = 0) a 2-dimensional Riemannian metric and one-form respectively. Thus, on Cp

2
√−detgγδ

∣∣
Cp

=
√

det (2)gAB

∣∣
Cp

(6.14)

so that

1
2π

∫
Cp

µΓ(x′){(∇γ′
Γ(x, x′))∇γ′ [(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]} (6.15)

= − 1
2π

∫
σp

√
det (2)gABdθ ∧ dϕ[(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]

+
1
2π

∫
Cp

µΓ(x′)[(4 − �′Γ(x, x′))(V0)
µ′ν′
αβ (x, x′)Fµ′ν′ (x′)]
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It is easy to see from the metric form (6.13) that
√

det (2)gABdθ ∧ dϕ is just the

invariant 2-surface area element induced on σp (defined in coordinates by v = 0, u =

u(θ, ϕ)) by the spacetime metric. Writing this as dσp and combining Eqs. (6.4) and

(6.15) we get

IF tail
αβ (x) = − 1

2π

∫
σp

dσp[(V0)
µ′ν′
αβ (x, x′)Fµ′ν′ (x′)] (6.16)

+
1
2π

∫
Cp

µΓ(x′)Fµ′ν′(x′)(PUµ′ν′
αβ (x, x′))

where the terms involving (�′Γ(x, x′) − 4) have cancelled. Adding this result to the

expression for IIF tail
αβ (x) and recalling Friedlander’s formula for the measure µt,Γ(x′)

given by his Eq. (5.3.19),

〈∇t,∇Γ〉µt,Γ = −dσp (6.17)

one finds that the two remaining integrals in F tail
αβ (x) involving the non-local quantity

(V0)
µ′ν′
αβ (x, x′) also cancel leaving

F tail
αβ (x) =

1
2π

∫
Cp

µΓ(x′)(Fµ′ν′(x′)PUµ′ν′
αβ (x, x′)) (6.18)

so that our expression for Fαβ(x) (c.f. Eq. (5.1)) now becomes

Fαβ(x) =
1
2π

∫
Cp

Uµ′ν′
αβ (x, x′)fµ′ν′(x′)µΓ(x′)

1
2π

∫
σp

{Uµ′ν′
αβ (x, x′)[2(∇γ′

t(x′))(∇γ′Fµ′ν′(x′)) (6.19)

+ Fµ′ν′(x′)�′t(x′)]}µt,Γ(x′)

+
1
2π

∫
Cp

µΓ(x′)(Fµ′ν′(x′)PUµ′ν′
αβ (x, x′)).

The integral over σp in the above formula involves first derivatives of the unknown

field Fαβ but only on the initial, Cauchy hypersurface where these quantities must be

given.
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Upon substituting the explicit form for the source terms fµ′ν′ (x′) into Eq. (6.19) we

shall encounter integrals of the type

I =
1
2π

∫
Cp

µΓ(x′)(∇γ′
Ωγ′) (6.20)

where Ωγ′ is a one-form which (thanks to its explicit dependence upon ωâ
b̂γ′ which

satisfies the Cronström gauge condition) obeys Γ;γ′
Ωγ′ = 0 everywhere throughout the

causal domain containing Cp. This special fact allows us to successfully integrate the 4-

divergence over the 3-manifold Cp and obtain a boundary integral over σp. In deriving

this result, we must compute derivatives of the equation Γ;γ′
Ωγ′ = 0 in directions

transversal to the cone Cp so it is essential that this equation hold not just on Cp but

(at least to first order) off the cone as well.

By introducing coordinates {xµ} = {ū, v̄, θ̄, ϕ̄} of the form

ū = ū(u, θ, ϕ), v̄ = v, θ̄ = θ, ϕ̄ = ϕ (6.21)

adapted to the domain of integration so that σp coincides with a surface

ū = constant lying in Cp one can carry out the integration explicitly to find that

I =
1
2π

∫
σp

dσp(ξµΩµ) (6.22)

where, as before, dσp is the invariant surface area element induced upon σp by the

spacetime metric and in which ξµ∂µ is a future pointing null vector, orthogonal to σp

and normalized such that

ξµΓ;µ = 1. (6.23)

In Friedlander’s terminology, this vector is tangent to the null generators of the null

surface Tp which contains σp. As we shall see, the boundary term arising in this way

will combine naturally with the integral over σp in Eq. (6.19).
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We now reinstate the heretofore inert indices on the curvature and its source by

letting Fµν → Râ
b̂µν and fµν → f â

b̂µν so that Eq. (6.19) becomes

Râ
b̂αβ(x) = − 1

2π

∫
Cp

(Uµ′ν′
αβ (x, x′)f â

b̂µ′ν′(x′))µΓ(x′)

+
1
2π

∫
σp

{Uµ′ν′
αβ (x, x′)[2(∇γ′

t(x′))(∇γ′Râ
b̂µ′ν′(x′)) (6.24)

+ Râ
b̂µ′ν′(x′)�′t(x′)]}µt,Γ(x′)

+
1
2π

∫
Cp

µΓ(x′)(Râ
b̂µ′ν′ (x′)(PUµ′ν′

αβ (x, x′))).

Upon inserting the explicit formula for f â
b̂µ′ν′ from Eq. (2.18) and rewriting it slightly

one finds that it contains the divergence integral

Dâ
b̂αβ(x) :=

1
2π

∫
Cp

µΓ(x′){∇σ′
[2ωâ

ĉσ′(x′)Uµ′ν′
αβ (x, x′)Rĉ

b̂µ′ν′(x′)
(6.25)

− 2ωĉ
b̂σ′U

µ′ν′
αβ (x, x′)Râ

ĉµ′ν′ (x′)]}

which includes the only terms in the integrals over Cp which contain derivatives of

curvature. Exploiting the argument above to reduce this expression to an integral over

σp one finds that

Dâ
b̂αβ(x) =

1
2π

∫
σp

dσp{ξσ′
[2ωâ

ĉσ′ (x′)Uµ′ν′
αβ (x, x′)Rĉ

b̂µ′ν′(x′) (6.26)

− 2ωĉ
b̂σ′(x′)Uµ′ν′

αβ (x, x′)Râ
ĉµ′ν′(x′)]}.

The remaining integral over σp in Eq. (6.24) can be reexpressed, thanks to Eq. (6.17)

as

S â
b̂αβ(x) :=

1
2π

∫
σp

{Uµ′ν′
αβ (x, x′)[2(∇γ′

t(x′))(∇γ′Râ
b̂µ′ν′ (x′))

+ Râ
b̂µ′ν′ (x′)�′t(x′)]}µt,Γ(x′)

=
1
2π

∫
σp

dσp{2Uµ′ν′
αβ (x, x′)(ξσ′∇σ′Râ

b̂µ′ν′(x′)) (6.27)

+ Uµ′ν′
αβ (x, x′)Râ

b̂µ′ν′(x, x′)
(

�′t(x′)
(〈∇′t,∇′Γ〉(x′))

)
}.
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Defining (via Friedlander’s Eqs. (5.3.7) and (5.3.20)) the dilation θ of dσp along the

bicharacteristics of Tp by

θ(x′) =
�′t(x′)

〈∇′t,∇′Γ〉(x′)
(6.28)

and combining the integrals Dâ
b̂αβ(x) and S â

b̂αβ(x) one gets

Dâ
b̂αβ(x) + S â

b̂αβ(x)

=
1
2π

∫
σp

dσp{2Uµ′ν′
αβ (x, x′)(ξσ′

Dσ′Râ
b̂µ′ν′(x′)) (6.29)

+ Uµ′ν′
αβ (x, x′)Râ

b̂µ′ν′(x′)θ(x′)}

where now Dσ′ is the total spacetime covariant derivative defined in Section II. The

addition of Dâ
b̂αβ to S â

b̂αβ has contributed precisely the terms needed to convert ∇σ′

to Dσ′ in the formula above.

Writing out the factor PUµ′ν′
αβ (x, x′) more explicitly as

PUµ′ν′
αβ (x, x′) = ∇γ′∇γ′Uµ′ν′

αβ (x, x′)

+ Rµ′ν′
δ′γ′(x′)Uδ′γ′

αβ (x, x′)

= (
∇γ′∇γ′κ(x, x′)

κ(x, x′)
)Uµ′ν′

αβ (x, x′) + Rµ′ν′
δ′γ′(x′)Uδ′γ′

αβ (x, x′) (6.30)

+ 2(∇γ′
κ(x, x′))(∇γ′τµ′ν′

αβ (x, x′))

+ κ(x, x′)(∇γ′∇γ′(τµ′ν′
αβ (x, x′))),

where τµ′ν′
αβ (x, x′) is defined via Eq. (6.6), one can evaluate the derivatives of τµ′ν′

αβ (x, x′)

using Eqs. (A.10) - (A.13) which yield

hγ
â;ν = hγ

ĉω
ĉ

âν (6.31)

so that

∇γ′τµ′ν′
αβ (x, x′) = ωd̂

êγ′hµ′

d̂
(x′)θê

α(x)hν′

f̂
(x′)θf̂

β(x) (6.32)

+ ωd̂
f̂γ′h

µ′
ê (x′)θê

α(x)hν′

d̂
(x′)θf̂

β(x)
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with a similar expanded formula for ∇γ′
(∇γ′τµ′ν′

αβ (x, x′)). The latter will clearly entail

factors of the type (∇γ′
ωd̂

êγ′) as well as factors quadratic in the connection coefficients

ωd̂
êγ′ . Written out explicitly it becomes:

∇γ′∇γ′τµ′ν′
αβ (x, x′) = (∇γ′

ωd̂
êγ′)hµ′

d̂
(x′)θê

α(x)hν′

f̂
(x′)θf̂

β(x)

+ (∇γ′
ωd̂

f̂γ′)hµ′
ê (x′)θê

α(x)hν′

d̂
(x′)θf̂

β(x) (6.33)

ωd̂
êγ′gγ′σ′

(x′)[hµ′
ĉ (x′)ωĉ

d̂σ′(x′)hν′

f̂
(x′)

+ hµ′

d̂
(x′)ωĉ

f̂σ′ (x′)hν′
ĉ (x′)]θê

α(x)θf̂
β (x)

+ ωd̂
f̂γ′g

γ′σ′
(x′)[hµ′

ĉ (x′)ωĉ
êσ′ (x′)hν′

d̂
(x′)

+ hµ′
ê (x′)ωĉ

d̂σ′(x′)hν′
ĉ (x′)]θê

α(x)θf̂
β (x).

Assembling the various pieces of the formula for Râ
b̂αβ(x) we thus get:

Râ
b̂αβ(x) =

1
2π

∫
Cp

µΓ(x′){Uδ′γ′
αβ (x, x′)[−2Râ

ĉδ′σ′(x′)Rĉ
b̂γ′

σ′
(x′)

+ 2Râ
ĉγ′σ′ (x′)Rĉ

b̂δ′
σ′

(x′) + Râ
b̂µ′ν′(x′)Rδ′γ′ µ′ν′

(x′)]}

+
1
2π

∫
Cp

µΓ(x′){Uµ′ν′
αβ (x, x′)[gλ′σ′

(x′){ωâ
ĉσ′ [ωĉ

d̂λ′R
d̂

b̂µ′ν′(x′) −Rĉ
d̂µ′ν′ω

d̂
b̂λ′(x′)]

− [ωâ
d̂λ′R

d̂
ĉµ′ν′(x′) − Râ

d̂µ′ν′ω
d̂

ĉλ′(x′)]ωĉ
b̂σ′(x′)}

− [(∇σ′
ωâ

ĉσ′)Rĉ
b̂µ′ν′(x′) − Râ

ĉµ′ν′ (∇σ′
ωĉ

b̂σ′)]]}

+
1
2π

∫
Cp

µΓ(x′){−2(∇σ′
Uµ′ν′

αβ (x, x′))ωâ
ĉσ′(x′)Rĉ

b̂µ′ν′(x′) (6.34)

+ 2(∇σ′
Uµ′ν′

αβ (x, x′))Râ
ĉµ′ν′(x′)ωĉ

b̂σ′ (x′)}

+
1
2π

∫
σp

dσp{2Uµ′ν′
αβ (x, x′)(ξσ′

Dσ′Râ
b̂µ′ν′(x′))
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+ Uµ′ν′
αβ (x, x′)Râ

b̂µ′ν′(x′)θ(x′)}

+
1
2π

∫
Cp

µΓ(x′){Râ
b̂µ′ν′ [(∇γ′∇γ′κ(x, x′))τµ′ν′

αβ (x, x′)

+ 2(∇γ′
κ(x, x′))(∇γ′τµ′ν′

αβ (x, x′))

+ κ(x, x′)(∇γ′∇γ′τµ′ν′
αβ (x, x′))]}

where, of course, the factors involving

∇σ′
Uµ′ν′

αβ (x, x′) = (∇σ′
κ(x, x′))τµ′ν′

αβ (x, x′) + κ(x, x′)∇σ′
τµ′ν′
αβ (x, x′) (6.35)

can be expanded out as in the foregoing paragraph.

In this explicit form the result seems quite complicated but it is straightforward to

reexpress it as

Rα
βγδ(x) =

1
2π

∫
Cp

µΓ(x′){∇κ′∇κ′(Uαν′ρ′σ′
µ′βγδ (x, x′))Rµ′

ν′ρ′σ′ (x′)

+ Uαν′ρ′σ′
µ′βγδ (x, x′)[Rλ′ξ′

ρ′σ′ (x′)Rλ′ξ′ µ′
ν′(x′) (6.36)

− 2Rµ′
λ′σ′ξ′(x′)Rν′ λ′

ρ′ ξ′
(x′)

+ 2Rµ′
λ′ρ′ξ′(x′)Rν′ λ′

σ′ ξ′
(x′)]}

+
1
2π

∫
σp

dµσ{Uα ν′ρ′σ′
µ′ βγδ (x, x′)[2ξλ′

(∇λ′Rµ′
ν′ρ′σ′(x′))

+ Rµ′
ν′ρ′σ′ (x′)θ(x′)]}

where

Uα ν′ρ′σ′
µ′ βγδ (x, x′) (6.37)

= κ(x, x′)θâ
µ′ (x′)hα

â (x)hν′

b̂
(x′)θb̂

β(x)hρ′
ĉ (x′)θĉ

γ (x)hσ′

d̂
(x′)θd̂

δ (x)

the parallel propagator for tensors of type
(

1
3

)
. Equation (6.36) can be derived much

more directly by simply applying the Friedlander formalism to the wave equation (2.7)
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for curvature treated as a 4-th rank tensor and then proceeding as above to recast the

tail terms in the representation formula in terms of integrals over Cp which can in turn

be simplified by the methods of the present section.

However, we have already emphasized the potential usefulness of the Cartan for-

mulation in carrying out the sought-after light cone estimates for curvature because

of its close resemblance to the integral equation for curvature arising in Yang-Mills

theory. In references [5] and [6] it was necessary to express the integral equation for

(Yang-Mills) curvature in the form analogous to Eq. (6.34) above in order to exploit

the Cronström gauge conditions and derive bounds on the curvature tensor. Thus we

anticipate that the expanded form of the integral expression for gravitational curvature,

given by Eq. (6.34), will play an important role in subsequent work to derive estimates

for the spacetime curvature of a solution to Einstein’s equations.
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VII. Approximate Quasi-Local Killing and Conformal Killing Fields

As is well-known the Bel-Robinson tensor for a vacuum spacetime can be used to

construct a conserved positive definite “energy” (essentially an L2-norm of spacetime

curvature) for any timelike Killing or conformal Killing field admitted by the metric.

This follows from exploiting its total symmetry as a 4-th rank tensor and the vanishing

of its divergence and trace in much the same way that one can use the (trace-free)

stress energy tensor of a matter field to construct the conserved energy associated to a

Killing or conformal Killing field of the “background”. Except for “test” matter fields

propagating on a stationary or self-similar background however this observation is of

little value in practice since the imposition of a Killing or conformal Killing symmetry

is far too restrictive a condition to enforce on physically interesting gravitational fields.

On the other hand it may not be necessary to have a strictly conserved energy in

order to get adequate analytical control of some mathematically relevant energy norm.

For example, in their treatment of Yang-Mills fields propagating in a background space-

time, Chruściel and Shatah exploited the observation that the (gauge invariant, posi-

tive definite) L2-norm of Yang-Mills curvature cannot blow up until the spacetime itself

blows up (through becoming singular or developing a Cauchy horizon at its boundary)

[6]. This fact, which follows from the vanishing of the divergence of the Yang-Mills

stress energy tensor and the fact that its components are pointwise bounded by the

energy density, was essentially as useful in practice as a fully conserved energy would

have been had it existed. When the spacetime itself though is the object of dynamical

study this argument (applied to the Bel-Robinson tensor) is of less interest since it

requires pointwise control of the connection to yield a mere L2 bound on the curvature

and there is no a priori reason for the Christoffel components to be so bounded.

For this reason it seems potentially useful, especially in the gravitational case, to look

for approximate Killing or conformal Killing fields, in a general spacetime, that could in
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turn be employed to construct corresponding approximately conserved energies. With

this in mind we show below that the orthonormal frame fields {hµ
â

∂
∂xµ } defined, as

in Section III, by parallel propagation of a fixed frame at a point p along the radial

geodesics issuing from that point, satisfy Killing’s equations in an approximate sense

that becomes more and more exact (at a well-defined rate) as one approaches the point

p along an arbitrary radial geodesic. The error term, or so-called deformation tensor,

which measures precisely the failure of Killing’s equations to be satisfied, will be shown

to be explicitly expressible in terms of radial integrals of spacetime curvature which

vanish linearly (in normal coordinates centered at point p) as one approaches this vertex

radially.

In a similar way we shall show that the gradient, ∇Γ, of the ”optical function” Γ

(representing squared geodesic distance from the vertex p) satisfies an approximate

form of the conformal (in fact homothetic) Killing equations with an error term that

vanishes quadratically (in terms of normal coordinates) as one approaches p radially.

Both ∇Γ and any timelike linear combination of the {hµ
â

∂
∂xµ } provide timelike vector

fields inside the past lightcone from point p (and restricted to a causal domain of p) and

thus allow the definition of corresponding positive definite and approximately conserved

energy expressions for curvature inside this past lightcone. The timelike character of a

frame field such as {hµ

0̂
∂

∂xµ } is of course not confined to the interior of the cone and its

associated energy is therefore positive definite throughout the causal domain in which

it remains well-defined.

These approximate Killing and conformal Killing fields should perhaps (for lack

of a better term) be called quasi-local since they only approach satisfaction of the

relevant Killing equations as one approaches the preferred vertex that was used in their

construction. The potential (quasi-local) application that we have in mind for such

objects can be described loosely as follows. Suppose that some future directed timelike
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geodesic γ approaches a singular boundary point for the spacetime under study and

that we wish to derive bounds on the rate at which curvature can blow up as γ nears

its (singular) endpoint. For each point p lying on γ we can construct the past lightcone

from p and parallel propagate the (unit, timelike) tangent to γ at p throughout a causal

domain for p to get a timelike, approximate Killing field of the type described above

(which will however vary with the choice of the “moving” point p). By exploiting the

associated approximately conserved energy we might reasonably hope to estimate (with

some controllable error) the energy flux through the past light cone from p, back to

some “initial” hypersurface, in terms on the energy defined (by an integral over the

ball bounded by the intersection of the light cone with this surface) on this initial

“slice”. Since control of these (Bel-Robinson) energy fluxes is sure to play a vital role

in carrying out the light cone estimates we propose to derive later, the possibility of

bounding them in terms of initial data is sure to provide a key step in the hoped-for

argument to bound curvature pointwise in terms of its L2-norms.

If, as in Section III, {hν
b̂

∂
∂xν } is an orthonormal frame field constructed by parallel

propagation of a fixed frame at p along the radial geodesics spraying out from p to

fill out a causal domain of this point, then the corresponding co-frame field {θâ
µdxµ}

is given by θâ
µ = ηâb̂gµνhν

b̂
. Using the defining formula for the connection coefficients

ωâ
b̂ν ,

θâ
µ,ν − Γλ

µνθâ
λ = θâ

µ;ν = −ωâ
b̂νθb̂

µ (7.1)

one computes the Killing form of {θâ
µ} to find

θâ
µ;ν + θâ

ν;µ = −ωâ
b̂νθb̂

µ − ωâ
b̂µθb̂

ν (7.2)

with the right hand side representing the error for Killing’s equation. The frame fields

approach a fixed orthonormal (co-) frame at the vertex point p but the connection
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components satisfy the “Cronström” formula given (taking xµ(p) = 0) by

ωĉ
âµ(x) = −

∫ 1

0

dλ λxνRĉ
âµν(λx) (7.3)

and thus vanish to order 0(x), for any metric with pointwise bounded curvature, as one

approaches the vertex along a radial geodesic. A key observation, from our point of

view, is that only undifferentiated curvature enters into this equation for the error. By

contrast one can show that the coordinate basis fields { ∂
∂xµ } (of a normal coordinate

system based at p, with xµ(p) = 0) also satisfy Killing’s equations approximately,

with an error that vanishes linearly with the {xµ}, but, in this case, we do not have

a formula for the error that depends only upon undifferentiated curvature (though it

is conceivable that one exists). Thus we are inclined to strongly prefer the parallel

propagated frame fields as natural candidates for our quasi-local approximate Killing

fields. Though not commuting in general (as the coordinate basis fields would of course

do) these fields nevertheless satisfy an approximate Lie algebra relation, with linearly

vanishing error terms, since their commutator is given by

hµ
âhν

b̂;µ
− hµ

b̂
hν

â;µ = [hâ, hb̂]
ν = hν

f̂
[hµ

â ωf̂
b̂µ − hµ

b̂
ωf̂

âµ] . (7.4)

Now, consider the ”optical” function Γ, introduced in Section IV, and its gradient

∇Γ which, in normal coordinates, satisfies

(∇Γ)β = Γ;β = gαβΓ,α = 2gαβ(x)gαν (x)xν = 2xβ (7.5)

One expects that ∇Γ = 2xβ ∂
∂xβ should generalize the well-known, corresponding ho-

mothetic Killing field of Minkowski space and indeed, by construction, this vector field

is timelike inside the lightcone from p, null on the cone itself and spacelike outside

since, in general we have

〈∇Γ,∇Γ〉g = gαβΓ,αΓ,β = 4Γ (7.6)
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and Γ represents the squared geodesic distance from the cone vertex p.

Computing the Killing and conformal Killing forms for ∇Γ one gets

Γ;αβ + Γ;βα = 4gαβ + 2xνgαβ,ν,

Γ;αβ + Γ;αβ − 1
2
gαβgµνΓ;µν (7.7)

= 2xνgαβ,ν − 1
2
gαβgγδ(xνgγδ,ν)

where the error term on the right hand side of the last equation is simply the trace

free part of 2xνgαβ,ν (evaluated in normal coordinates). This latter quantity can be

calculated using the same transport formula (derived from the zero torsion equation)

that we used in Section III to express the frame field in terms of the connection. The

result is

xβgµν,β(x) = ηâb̂{θb̂
ν(x)[ωâ

f̂µ(x)(xγ θf̂
γ (0))

−
∫ 1

0

dλ[ωâ
f̂µ(λx)(λxγ θf̂

γ (0))]] (7.8)

+ θâ
µ(x)[ωb̂

f̂ν(x)(xγθf̂
γ (0)) −

∫ 1

0

dλ[ωb̂
f̂ ν(λx)(λxγ θf̂

γ (0))]]}

wherein θb̂
ν(x) and ωb̂

f̂ν(x) are given explicitly in terms of integrals of curvature by

Eqs. (3.21) and (3.12). Thus in this case the error term vanishes quadratically with the

normal coordinates as one approaches the vertex at xµ(p) = 0 though here of course the

vector field itself, ∇Γ = 2xβ ∂
∂xβ vanishes linearly. The divergence of this approximate

conformal Killing field is given, through the trace of the first Eqs. (7.7), by

Γ;α
;α = 8 + xν(gαβgαβ,ν) (7.9)

= 8 + 2xν (
√−det g),ν√−det g

which coincides with a well-known equation for the d’Alembertian of Γ given by Fried-

lander [20]. Thus the divergence is constant up to a quadratically vanishing error which

suggests that we regard ∇Γ as approximately homothetic.
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In Minkowski space, the vector fields {hµ
â

∂
∂xµ ,Γ;µ ∂

∂xµ } form a Lie sub-algebra of the

algebra of generators of the conformal group. Here of course this algebra can at most

be approximate but, for completeness, we compute the remaining commutators of ∇Γ

with the frame fields {hµ
â

∂
∂xµ }. The Lie brackets are given initially by

[hâ,∇Γ]ν = hµ
âΓ;ν

;µ − Γ;µhν
â;µ (7.10)

but we can simplify this by noting that the equations

hν
â;µ = ωf̂

âµhν
f̂
, (7.11)

Γ;β = 2xβ

together with the parallel propagation gauge condition, xµωf̂
âµ = 0, imply that,

Γ;µhν
â;µ = 0 (7.12)

and thus (using Eq. (7.9)) that

[hâ,∇Γ]ν = hµ
âgλνΓ;λµ

= hµ
âgλν(2gλµ + xβgλµ,β) (7.13)

= 2hν
â + hµ

âgλν(xβgλµ,β).

Hence we recover the flat space result up to a quadratically vanishing “error” in the

would-be Lie algebra. Though we did not need it to derive the foregoing results, it is

useful to note that

xνΓβ
µν =

1
2
gαβ(xνgµα,ν) (7.14)

which follows from the normal coordinate identity gµν(x)xν = gµν(0)xν by differenti-

ating to get

xνgµν,α(x) = gµα(0) − gµα(x) (7.15)
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and then antisymmetrizing in µ and α to arrive at

xν(gµν,α(x) − gαν,µ(x)) = 0. (7.16)

Without this result, the direct calculation of Γ;αβ , beginning with Γ;α = 2gαν(x)xν ,

would not yield a symmetric formula in α and β as it must.

While one could continue along the above lines and define approximate Killing and

conformal Killing analogues for Lorentz rotation, boost and inversion generators with

formulas like x1hν
2̂

∂
∂xν −x2hν

1̂
∂

∂xν , x0hν
1̂

∂
∂xν +x1hν

0̂
∂

∂xν , etc., these would not be timelike

throughout the regions (interiors of past light cones from vertices with xµ(p) = 0) of

interest and so would not yield positive energy expressions. While their approximate

conformal Lie algebra relations might be of interest to develop, we shall not pursue

that issue here.
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Appendix

Notation, conventions and basic definitions

Much of our analysis will be carried out in rather specially chosen charts and asso-

ciated frames. For the moment however, to introduce the notation that we shall use

throughout, we consider an arbitrary chart and an arbitrary (orthonormal) frame. In

coordinates {xµ} defined on some domain of our spacetime manifold V we write the

Lorentzian metric g in the standard form

g = gµνdxµ ⊗ dxν (A.1)

and introduce an orthonormal frame {hâ} = {hµ
â

∂
∂xµ } and dual, coframe

{θâ} = {θâ
µdxµ} for this (locally expressed) metric. The orthonormality and duality

relations satisfied by these fields are summarized as follows:

hâ = hµ
â

∂

∂xµ
, θâ = θâ

µdxµ coordinate basis expression

gµνhµ
âhν

b̂
= ηâb̂, gµνθâ

µθb̂
ν = ηâb̂ orthonormality relations

θâ
µhµ

b̂
= δâ

b̂
, θâ

µhν
â = δν

µ duality relations (A.2)

gµν = ηâb̂θ
â
µθb̂

ν , gµν = ηâb̂hµ
âhν

b̂
metric formulas

∂

∂xν
= θâ

νhâ, dxν = hν
âθâ coordinate basis vectors and forms

θâ
µ = ηâb̂gµνhν

b̂
, hµ

â = ηâb̂g
µνθb̂

ν component relations.

Here (ηâb̂) is the standard Minkowski metric

η = (ηâb̂) =

⎛
⎜⎝

−1 0
1

1
0 1

⎞
⎟⎠ (A.3)

and η−1 = (ηâb̂) is its inverse. Many of the formulas we shall derive in this section

hold true for arbitrary spacetime dimensions and also for Riemannian metrics instead

of Lorentzian ones if η is replaced by a Euclidean metric. Tensors are expressed in

coordinate and orthonormal bases as
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S = Sµν...
γδ...

∂

∂xµ
⊗ ∂

∂xν
⊗ . . . ⊗ dxγ ⊗ dxδ ⊗ . . . (A.4)

= S âb̂...
êf̂ ... hâ ⊗ hb̂ ⊗ . . . ⊗ θê ⊗ θf̂ ⊗ . . .

with components related by

S âb̂...
êf̂ . . . = Sµν...

γδ... θ
â
µθb̂

ν . . . hγ
êhδ

f̂
. . . . (A.5)

In particular, the metric g and its inverse g−1 take the forms

g = ηâb̂θ
â ⊗ θb̂, g−1 = ηâb̂hâ ⊗ hb̂. (A.6)

For all differentiable tensor fields, we have the conventional (coordinates basis) ex-

pressions for the covariant derivatives of scalar, vector and one-form (or co-vector)

fields respectively given by

ϕ;α = ϕ,α =
∂ϕ

∂xα
scalar

vµ
;ν = vµ

,ν + Γµ
γνvγ vector (A.7)

λµ;ν = λµ,ν − Γγ
µνλγ co-vector

where {Γµ
αβ} are the Christoffel symbols of g given by

Γµ
αβ =

1
2

gµν(gαν,β + gβν,α − gαβ,ν). (A.8)

The frame components of these formulas take the form

ϕ;â = hµ
âϕ;µ = hµ

â

∂ϕ

∂xµ

vâ
;b̂

= θâ
µhν

b̂
vµ
;ν = vâ

,b̂
+ Γâ

ĉb̂
vĉ = hν

b̂

(
∂vâ

∂xν

)
+ Γâ

ĉb̂
vĉ (A.9)

λâ;b̂ = hµ
âhν

b̂
λµ;ν = λâ,b̂ − Γĉ

âb̂
λĉ = hν

b̂

(
∂λâ

∂xν

)
− Γĉ

âb̂
λĉ
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where

Γâ
ĉb̂

= hν
b̂

θâ
µ {hγ

ĉ Γµ
γν + hµ

ĉ,ν} (A.10)

we shall also write

Γâ
ĉb̂

= hν
b̂
ωâ

ĉν (A.11)

and express the connection one-forms, ωâ
ĉ as

ωâ
ĉ := ωâ

ĉνdxν = ωâ
ĉνhν

b̂
θb̂ = Γâ

ĉb̂
θb̂ (A.12)

which is equivalent to setting

ωâ
ĉν = θâ

µhγ
ĉ Γµ

γν + θâ
µ(hµ

ĉ,ν). (A.13)

Defining

ωb̂ĉ = ηâb̂ω
â

ĉ = ηâb̂ω
â

ĉνdxν (A.14)

one easily verifies that

ωb̂ĉν = −ωĉb̂ν (A.15)

which captures the metric compatibility of the chosen connection (i.e., the fact that

gµν;α = 0). The vanishing of torsion for the Christoffel connection (i.e., the fact that

Γµ
αβ = Γµ

βα) takes the form

∂νθĉ
µ − ∂µθĉ

ν + ωĉ
âνθâ

µ − ωĉ
âµθâ

ν = 0 (A.16)

which can also be regarded as an equation determining the connection one forms,

ωĉ
âν dx in terms of the (co-) frame fields θĉ = θĉ

µdxµ.

In this same notation the Riemann curvature tensor takes the form

Rĉ
âµν = θĉ

γhλ
âRγ

λµν (A.17)

= ∂µωĉ
âν − ∂νωĉ

âµ + ωĉ
d̂µωd̂

âν − ωĉ
d̂νωd̂

âµ
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which, since

Rĉ
âµν = −Rĉ

âνµ (A.18)

and

Rb̂âµν = −Râb̂µν (A.19)

where

Rb̂âµν := ηb̂ĉR
ĉ

âµν (A.20)

may be regarded as a two-form which takes values in the space of anti-symmetric

Lorentz matrices. In view of Eq. (A.15 ) the connection one-form can be thought of

as taking values in this same space which in turn represents the Lie algebra of (local)

Lorentz transformations that can act on the frame fields while leaving the spacetime

metric invariant.

Regarding connection and curvature as one and two-forms which take their values

in the Lie algebra of some “internal” gauge group (in this case the Lorentz group

of frame transformations) is parallel to what one does in Yang-Mills theory. There

the principle bundle connection one-form Aµdxµ and its curvature two-form Fµνdxµ ∧
dxν take their values in a matrix representation of the Lie algebra g of some gauge

“internal” Lie group G. By attaching (in a slightly unconventional way) row and

column indices to label the matrix elements of these geometric objects, one could

express their components as Aâ
b̂µ and F â

b̂µν respectively, in parallel to the notation

we have used above. The expression for F â
b̂µν in terms of Aâ

b̂µ is identical in form to

that for Râ
b̂µν in terms of ωâ

b̂µ given in Eq. (A.17) above. There are numerous other

precise correspondences between Yang-Mills theory and Cartan’s formulation of general

relativity but there are also significant differences. For example in Yang-Mills theory,

even if formulated on a curved background spacetime, there is no relationship between

the connection one-form Aµdxµ and the spacetime connection as expressed through the

Christoffel symbols {Γµ
αβ} since the former does not derive from a metric or frame field
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whereas the latter does. Furthermore, the gauge groups for physically interesting Yang-

Mills theories are normally required to be compact whereas the corresponding “gauge”

group for general relativity is the non-compact (local) Lorentz group of orthonormal

frame transformations. The compactness normally assumed for a gauge group G allows

one to define an energy momentum tensor, quadratic in the Yang-Mills curvature,

which has positive definite energy density. The corresponding second rank symmetric

tensor, quadratic in the spacetime curvature, vanishes identically in Einstein’s theory.

Fortunately, the fourth-rank, totally symmetric Bel-Robinson tensor and its associated

positive definite “energy” density supply the needed replacements for these important

objects.
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