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Abstract. For the case of an electric or scalar charge traveling along a timelike

geodesic in a curved, background spacetime we apply a Green’s theorem argument to

transform the tail contribution to the particle’s self force at a point p along its trajectory

to a form which involves only an integral over the past light cone from p. One potential
advantage of this reformulation is that the tail contribution to the fundamental solution

for a (self-adjoint) tensor wave equation in an arbitrary spacetime is (at least within

so-called causal domains) explicitly computable on the past light cone of an arbitrary

point through the integration of certain linear transport equations defined along the null

generators of the cone. The conventional approach to computing the self-force requires
this tail field throughout the interior of the past light cone and extracts it from the par-

ticle’s (numerically generated) total field through an intricate mode-by-mode numerical

decomposition. By contrast our approach requires that the particle’s total field be paired

with the (explicitly computable) tail field on the light cone itself and then integrated over

this cone. We thus avoid the need for the aforementioned mode-by-mode decomposition
of the particle’s total field into direct ⊕ tail contributions. We speculate that in some

circumstance it may be sufficient to truncate the particle’s total field, as needed in our

calculation, to its (also explicitly computable), direct Liénard Wiechert approximation.

I. Introduction

The self-force acting on a relativistic charged particle moving in a flat or curved

spacetime has been the subject of numerous investigations beginning with the funda-

mental work of Dirac [1] for the flat case and DeWitt and Brehme [2] for the case of

a curved background. The gravitational analogue of this problem has received much

attention recently [3, 4, 5 ] because of its expected importance for the projected LISA

spacecraft observations to search for gravitational waves. A principal goal of this mis-

sion will be to detect the gravitational radiation emitted by a relatively small star or
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black hole orbiting in the vicinity of a supermassive black hole which can be treated

as a stationary attractor. As a first approximation, one computes the linearized metric

perturbation produced by a point-like distributional source which traces out a timelike

geodesic of the background gravitational field (typically a Schwarzschild or Kerr black

hole) and the technology for doing such calculations numerically is well under control.

Unfortunately though, it is now generally accepted that this first approximation will be

inadequate to give the precision needed for comparison with the anticipated spacecraft

observations, and that it will be necessary to calculate the correction to the test body’s

motion due to its (self-force) interaction with its own radiation field and ultimately to

then compute the radiation resulting from this corrected motion.

That a massive test body can be acted upon by its own gravitational radiation

field is a consequence of the breakdown of Huygen’s principle in a general curved

spacetime. Rather than merely propagating out sharply along the light cone as would

happen in a flat background, this test body’s radiation field can in effect scatter off

the background curvature and reintercept the particle’s timelike trajectory giving rise

to what is normally called (even for the gravitational case) a self-force on the particle.

More properly the scattered gravitational radiation is modifying the metric in which

the particle is moving in such a way that geodesic motion in the perturbed metric

can sometimes be usefully viewed as forced motion in the background spacetime. An

important complication in this gravitational radiation problem (which is essentially

absent in its otherwise rather similar electromagnetic analogue) is that, as always in

general relativity, the geometrical meaning of the coordinates that are used to describe

the particle’s motion depends upon what metric the particle is moving in and this

metric is itself undergoing a non-negligible perturbation due to the very presence of

the moving particle. This complication shows up as an effective “gauge dependence” of

the particle’s corrected equation of motion which requires knowledge of the perturbed
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metric itself to resolve and properly interpret.

By contrast to the above, a charged particle moving in a background gravitational

field but subject to its own electromagnetic self-force may very well generate such

a negligibly small perturbation to the metric that this latter can be safely ignored

in computing corrections to the particle’s motion. This corrected motion could then

simply be used as a new and better approximation to the particle’s actual trajectory and

thus as a satisfactory basis for an improved computation of its resultant electromagnetic

radiation field.

On the other hand, much of the mathematical machinery available for computing

the radiation fields and their reaction effects is somewhat similar for the two problems

mentioned above as well as for a third problem involving the radiation of a hypothetical

massless scalar field which is slightly easier to handle technically. For this reason

investigators often study the electromagnetic and scalar self-force problems as a prelude

to dealing with the far more intricate gravitational one.

For any of these problems the radiative contribution to the self-force results from the

so-called “tail term” in the retarded field of the moving particle. This tail, because of

the breakdown of Huygen’s principle, is non-vanishing inside the future light cone of the

emitting particle and so can influence the particle’s motion at a later time. Conversely,

the radiative self-force that a particle “feels” at a given instant is the cumulative effect

of the tail contributions (to the instantaneous field at the particle’s location) from the

entire past history of the moving particle’s trajectory. As such, it is normally expressible

(in the linearized approximation to which we are working) as an integral over that past

history.

Our aim in this note is to sketch how the tail field’s contribution to the self-force (at

some arbitrary event along the particle’s trajectory) can be transformed into an integral

over the past light cone of this event. One potential advantage of this transformation
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lies in the fact that the tail field is explicitly computable on the light cone (through

the integration of certain first order, linear “transport equations” defined on the cone)

wherein its expression provides the first term in Hadamard’s formal series expansion

for the tail field inside the light cone. Even for analytic background metrics, for which

Hadamard’s series actually converges, the domain of convergence may be artifically

limited by the presence of poles in the expression for the complexified metric and, in

any case, the practical evaluation of the tail field inside the cone normally requires

direct numerical calculation of the particle’s total radiation field from which the tail

term must then be extracted by further extensive numerical work.

In our approach the integral of the tail field, paired with the particle’s distributional

source (which results in the integral over the particle’s past history alluded to above),

is replaced, through an application of Green’s theorem, by an integral of the tail field,

paired with the particle’s full Liénard-Wiechert field, over the past light cone of the

event at which the self-force is being evaluated.

This full Liénard-Wiechert field of the moving particle is normally calculated nu-

merically by solving the relevant wave equation, with distributional source, on the

chosen background spacetime. In our formulation, however, there is no additional ne-

cessity to decompose this field (as is done in the conventional approach by an intricate

mode-by-mode numerical analysis) into direct ⊕ tail contributions. On the other hand

there is now the possibility that one might obtain a sufficiently accurate approximation

to the desired self-force result by truncating the particle’s full Liénard-Wiechert field

to its (explicitly computable) direct, leading term and dropping its (presumably sub-

dominant) tail contribution. This would amount to calculating analytically the direct

⊗ tail contributions but ignoring the tail ⊗ tail contributions to the light cone integrals

in question. Since an analytical justification for such a truncation is currently lacking

it would seem that an estimate of its validity, or lack thereof, must hinge upon detailed
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numerical comparisons.

One should perhaps clarify and qualify the foregoing remarks by saying that when we

use the term explicitly computable, as we have already done several times, we only mean

this in the sense of ’reducible to quadratures’, i.e., integrals and algebraic operations

that in general may not themselves be elementary. In much the same sense one says that

the geodesics problem for the Schwarzschild or Kerr spacetime is solvable even though

the solution is not available in closed form. The integrals and inversions needed in the

aforementioned calculations would normally themselves require numerical evaluation.

As we have mentioned above, the gravitational self-force calculation is fraught with

additional conceptual difficulties not present in the electromagnetic or scalar one but the

purely mathematical aspects of the three problems are nevertheless somewhat similar.

Since we are primarily proposing a new mathematical technique, it is natural to test it

first in the conceptually simplest setting where subtle issues of coordinate covariance

can be (temporarily at least) put aside. For this reason, we shall concentrate on the

electromagnetic and scalar self-force problems and leave the gravitational one to a

future study.

The idea for transforming the tail contributions to the self-force problem to light cone

integrals arose out of an independent project on “light cone estimates for Einstein’s

equations” wherein the author applied similar techniques to transform tail contributions

to the wave equation for spacetime curvature to light cone integrals where their influence

(upon the value of curvature at the vertex of the cone) could be more easily estimated

[6, 7]. There, as here, the idea was to exploit the fact that the tail field (a summand in

the fundamental solution to the appropriate curved space wave equation) is computable

via first order, linear transport equations along the light cone whereas evaluation of

this field off the cone requires the solution of an associated characteristic initial value

problem.
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Our analysis is fundamentally based upon the treatment of curved space, linear wave

equations developed in F. G. Friedlander’s book The Wave Equation in a Curved Space-

time [8]. To avoid introducing excessive complications in the present paper we have

simply cited the relevant sections of this book for standard arguments given in detail

there. Our only major deviation from Friedlander’s conventions is that we employ the

Lorentzian signature (−+++) instead of the opposite one that he uses. This introduces

some sign differences into the formulas that we present relative to their antecedents in

[8]. A more complete treatment of the reductions discussed here (which do not appear

in Friedlander’s book) will be presented in [6, 7] devoted to the “light cone estimates

for Einsteins equations” project.
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II. The wave equation for a Maxwell field on a curved background

Maxwell’s equation on a background spacetime ((4)V, g) can be expressed in local

coordinates as

Fµν
;ν = 4πjµ (1)

and

Fαβ;γ + Fβγ;α + Fγα;β = 0 (2)

where Fµν = −Fνµ is the Faraday 2-form field and ; signifies covariant diferentiation

with respect to gµν . Normally one solves the second equation by setting Fµν = ∂µAν −
∂νAµ = Aν;µ − Aµ;ν and then substitutes this expression for the Faraday tensor into

the first equation to derive a second order equation for the “vector potential” Aµ. The

latter takes on a manifestly hyperbolic form if one imposes, for example, the Lorentz

gauge condition Aµ
;µ = 0 as is conventionally done.

Here however we prefer to work with the (equally well-known) second order hyper-

bolic equation for F itself. Taking the covariant divergence of Eq. (2) above, suitably

commuting covariant derivatives through the use of the identity

Fαβ;γδ − Fαβ;δγ = Rµ
αγδFµβ (3)

+ Rµ
βγδFαµ

where Rµ
αβγ is the Riemann tensor of gµν, and using Eq. (1) above to replace the

covariant divergence of F with the current, one arrives at

F ;γ
αβ;γ + R µν

αβ Fµν + Rµ
αFβµ (4)

− Rµ
βFαµ = 4π(jα;β − jβ;α).

The last two terms on the left hand side can be dropped for vacuum backgrounds but,

in any case, the linear operator acting on F defined by the left hand side of this equation
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is hyperbolic and self-adjoint in the sense defined by Friedlander [9]. In deriving this

equation and verifying its self adjoincy, we have used the algebraic Bianchi identities

Rµ
[αβγ] ≡ 0, Rαβγδ = Rγδαβ , (5)

Rαβγδ = R[αβ][γδ].

The theory developed in Friedlander’s book [8] (which builds on the fundamental

work of Hadamard, Riesz, Sobolev, Choquet-Bruhat and others) applies to Eq. (4)

and allows one to write a representation formula for the solution of the corresponding

Cauchy problem on so-called causal domains of the given spacetime (i.e., on geodesically

convex domains which are also globally hyperbolic in a suitable sense [10]).

Of course not every solution of Eq. (4) corresponds to a solution of the original

Maxwell equations. It is necessary, in order to avoid introducing spurious solutions,

to restrict the Cauchy data for Eq. (4) by imposing Eqs. (1) and (2) on the data

given for Eq. (4) on the initial Cauchy slice. The Friedlander formalism applies to all

solutions of Eq. (4) and hence in particular to the solutions of physical interest. One

need only remember that the allowed Cauchy data for a Maxwell solution is subject to

the restriction mentioned above.

With reference to Fig. 5.3.1 of Friedlander’s book, let p be a point in some causal

domain of ((4)V, g) and S be a spacelike hypersurface within this domain such that

every past-directed causal geodesic from p meets S. Further, let Cp be the mantle of

the (truncated) past light cone from p to S, σp be the (two-dimensional) intersection

of Cp with S and let Dp be the interior of this truncated cone and designate by Sp the

(three-dimensional) intersection of Dp with S. Finally, let Tp designate the expanding

lightlike hypersurface which intersects S in σp.

Friedlander’s representation formula for the Faraday field at point p is given in local
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coordinates by [11]:

Fαβ(x) =
1
2π

∫

Cp

Uµ′ν′
αβ (x, x′)fµ′ν′(x′)µΓ(x′)

+
1
2π

∫

Dp

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′)µ(x′)

+
1
2π

∫

Sp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)] (6)

+
1
2π

∫

σp

{Uµ′ν′
αβ (x, x′)[2(∇γ′

t(x′))(∇γ′Fµ′ν′(x′))

+ Fµ′ν′(x′) � t(x′)]

− 〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)}µt,Γ(x′).

Here Uµ′ν′
αβ (x, x′) = κ(x, x′)τµ′ν′

αβ (x, x′) where κ is the transport biscalar defined by

Eq. (4.2.17) of [8] and given in local coordinates by Eq. (4.2.18) or (4.2.19) of that

reference and τµ′ν′
αβ (x, x′) is the transport bitensor (or propagator) defined in Section

(5.5) of Friedlander. The latter is expressible explicitly in terms of an orthonormal

frame parallel propagated from p along the geodesic issuing from that point (c.f., Refs.

[6,7]). The field fµν(x) represents the source term for the inhomogeneous wave equation

and is here given by the distribution

fµν(x) = 4π(jµ;ν(x) − jν;µ(x)) (7)

where jµ(x) is the current of the moving charged particle. The measure µ(x′) is the

standard spacetime volume measure given in local coordinates by
√−detgµν(x′)d4x′

whereas the measure on the light cone µΓ(x′) is a Leray form defined such that

dx′Γ(x, x′) ∧ µΓ(x′) = µ(x′) (8)

where Γ(x, x′) is the optical function (squared geodesic distance within a causal do-

main) introduced in Sect. (1.2) of Friedlander (c.f., Theorem 1.2.3). Leray forms are
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introduced in Sect. (2.9) and developed further in Sect. (4.5) of this same reference

and the coordinate expression for the dual ∗v of a vector v is given there by Eq. (2.9.3).

This is needed in the boundary integral over Sp whereas µΓ arises in that over Cp. The

two-dimensional Leray form µt,Γ(x′) needed for the integral over σp, is defined such

that (c.f., Lemma 5.3.3. of [8])

dt(x′) ∧ dx′Γ(x, x′) ∧ µt,Γ(x′) = µ(x′) (9)

where t(x′) is the null field defined by Lemma 5.3.2 of Friedlander. Note also in this

reference the needed expressions for (� t)µt,Γ and 〈∇t,∇Γ〉 given respectively by Eqs.

(5.3.20) and (5.3.19) of this same section.

The tail field (V +)µ′ν′
αβ (x, x′) is the solution of a characteristic initial value problem

for the homogeneous wave equation. By virtue of the self-adjoincy of our Eq. (4) and

the reciprocity relations derived by Friedlander in Sect. (5.2) (which apply as well

to the tensor case as disucssed in Sect. (5.5)) the tail bitensor V + satisfies the wave

equation

(V +)µ′ν′;γ′
αβ;γ′ (x, x′) + Rµ′ν′

δ′γ′(x′)(V +)δ′γ′
αβ (x, x′)

+ Rµ′
δ′ (x′)(V +)ν′δ′

αβ (x, x′) −Rν′
δ′ (x′)(V +)µ′δ′

αβ (x, x′) (10)

= 0

wherein the indices αβ and coordinates xµ play inert roles. In the foregoing formulas,

as well as below, the notation ∇γ and ; γ are used interchangeably. The initial data

for V + is computable on the light cone Cp where it reduces to the bitensor field that

Friedlander expresses as V0. The transport equation determining V0 is provided by

Friedlander’s Eq. (5.5.23) and its explicit solution is given in his Eq. (5.5.25).
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II. Transformations of the tail field integrals

Define the tail field contributions to Fαβ(x) by

F tail
αβ (x) :=

1
2π

∫

Dp

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′)µ(x′)

+
1
2π

∫

Sp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)] (11)

− 1
2π

∫
σp

〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)µt,Γ(x′).

This consists of all the terms that vanish when Huygen’s principle is valid since in that

case V + = 0 but, in a curved spacetime, these terms are generally non-zero and yield

a contribution to the self-force if the source particle passes through the point x. This

latter is simply the Lorentz force due to F tail
αβ (x) acting on the particle at that point. In

many discussions of the self-force problem it is assumed that if the initial data surface

Sp is pushed back sufficiently far into the past the contributions to the tail field coming

from the initial surface integrals over Sp and its boundary σp will be negligibly small.

In that case the expression for F tail
αβ (x) effectively reduces to the integral over Dp which,

for the case of a point particle, simplifies to an integral over the past history of the

particle. We shall need a similar assumption later but, for now, find it more natural to

retain all the potential contributions to the tail field since the form of these integrals

will be modified by the transformations we carry out. In particular, the integrals over

Sp and σp will be exactly canceled.

Let us reexpress the source f through the use of the wave equation for F as

fµ′ν′(x′) = (PF )µ′ν′(x′) (12)

where P is the second order linear, self-adjoint operator defined by the left hand side

of Eq. (4). Recalling Eq. (10) which can be written as

(PV +)µ′ν′
αβ (x, x′) = 0 (13)
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where P acts at x′ and the indices α, β and x are inert, one finds that the integrand

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′) can be expressed as

(V +)µ′ν′
αβ (x, x′)fµ′ν′(x′) =

(V +)µ′ν′
αβ (x, x′)(PF )µ′ν′ (x′) − (PV +)µ′ν′

αβ (x, x′)Fµ′ν′(x′)

= ∇γ′{(V +)µ′ν′
αβ (x, x′)(∇γ′

Fµ′ν′(x′)) (14)

− (∇γ′
(V +)µ′ν′

αβ (x, x′))Fµ′ν′(x′)}

where the curvature terms have canceled from the final expression by virtue of the self-

adjoint structure of the wave operator P . Thus the integrand in the volume integral

over Dp can be reexpressed as a total divergence. It is worth noting that the scalar

field analogue to the above observation is given at the end of p.187 in Friedlander’s

book.

Using Eq. (14) to reexpress the integral over Dp in the equation for F tail
αβ (x) and

using Stokes’ theorem to rewrite this volume integral as a boundary integral over ∂Dp =

Cp ∪ Sp, one arrives at the result that

F tail
αβ (x) =

1
2π

∫

Cp

∗[(V +)µ′ν′
αβ (x, x′)∇γ′

Fµ′ν′(x′)

− Fµ′ν′(x′)∇γ′
(V +)µ′ν′

αβ (x, x′)] (15)

− 1
2π

∫
σp

〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′ν′
αβ (x, x′)Fµ′ν′(x′)µt,Γ(x′)

where the orientation chosen for the integral over the null cone Cp corresponds to

a normal field directed towards the vertex p. The cancelation of the two boundary

integrals over Sp parallels that shown by Friedlander for the scalar case in his Eq.

(5.3.14) (wherein however it was assumed that the support of the scalar field did not

meet Cp). One can also think of deriving Eq. (15) from Eq. (11) by pushing the

surface Sp forward, holding its boundary σp fixed, until it merges in the limit with
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Cp. Friedlander remarks in his Section (5.4) that the representation formula for the

characteristic initial value problem can be derived in a similar manner wherein, however,

one pushes Sptowards the past rather than towards the future.

In fact, an appealing symmetric alternative to the formulation outlined above would

result from replacing the solution of the Cauchy initial value problem with that for

the characteristic initial value problem and then transforming it, via Green’s theorem,

in the analogous way. For example let p′ be a point on the particle’s trajectory lying

to the past of p and designate by Cp′ the future light cone issuing from p′. Cp′ will

intersect the past directed cone Cp issuing from p in a 2-surface which we now take to

be σp. The region Dp is here understood to include the entire interior region bounded

by the two cones (each truncated at σp) and the initial data originally prescribed on

Sp is herein replaced by characteristic initial data defined on Cp′. If however, we again

use Green’s theorem to transform this representation formula in the analogous way,

we again arrive at the expression given by Eq. (15) above except that now σp is the

surface defined by Cp ∩ Cp′ instead of being the boundary to Sp.

13



IV. Reduction of the tail contributions

To simplify the notation slightly let us write Eq. (15) in the form

F tail
αβ (x) = IF tail

αβ (x) + IIF tail
αβ (x) (16)

where IF tail
αβ (x) is the integral over Cp and IIF tail

αβ (x) that over σp. Reexpressing the

dual ∗v to a vector v via Eq. (2.9.3) of Ref. [8] (see also p. 194 of this reference)

∗v(x′) = 〈v(x′), grad′Γ(x, x′)〉µΓ(x′) (17)

one gets the more explicit formula for IF tail
αβ (x)

IF tail
αβ (x) =

1
2π

∫

Cp

µΓ(x′){∇γ′
Γ(x, x′)[(V +)µ′ν′

αβ (x, x′)∇γ′Fµ′ν′(x′) (18)

− Fµ′ν′(x′)∇γ′(V +)µ′ν′
αβ (x, x′)]}.

The key point here is that only derivatives tangential to the null generators of the

cone Cp appear in the integrand. This allows one to integrate by parts to eliminate

derivatives of Fµ′ν′ in favor of (tangential) derivatives of (V +)µ′ν′
αβ which, in turn, may be

evaluated from the transport equation (c.f. Eq. (5.5.23) of Ref. [8]) which determines

this quantity along Cp. Carrying out these operations and writing (V0)
µ′ν′
αβ (x, x′) for

the restriction of (V +)µ′ν′
αβ (x, x′) to Cp one arrives at

IF tail
αβ (x) =

1
2π

∫

Cp

µΓ(x′){(∇γ′
Γ(x, x′))∇γ′((V0)

µ′ν′
αβ (x, x′)Fµ′ν′ (x′)) (19)

+ Fµ′ν′(x′)[PUµ′ν′
αβ (x, x′) + (�′Γ(x, x′) − 4)(V0)

µ′ν′
αβ (x, x′)]}

where P is the wave operator defined in Eq. (10) above and where, as mentioned above,

we can write

Uµ′ν′
αβ (x, x′) = κ(x, x′)τµ′ν′

αβ (x, x′) (20)
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with the parallel transport “propagator” τµ′ν′
αβ , expressible in terms of an orthonormal

frame {hâ} and co-frame {θâ} parallel propagated from point p, as

τµ′ν′
αβ (x, x′) = hµ′

ê (x′)θê
α(x)hν′

f̂
(x′)θf̂

β(x). (21)

One can evaluate the first integral in the above expression for IF tail
αβ (x) by first

transforming from normal coordinates {xµ′} to spherical null coordinates defined by

x1′
= r′ sin θ cos ϕ

x2′
= r′ sin θ sinϕ

x3′
= r′ cos θ (22)

t′ = x0′
=

u + v

2
, r′ =

v − u

2

r′ =
√

Σ(xi′ )2

so that

u = t′ − r′, v = t′ + r′ (23)

with Γ = −uv everywhere and v = 0 on Cp. In terms of these coordinates it is

straightforward to show that

Γ;α ∂

∂xα
= 2v

∂

∂v
+ 2u

∂

∂u
(24)

and that the Leray form

µΓ =

√−det(gµν)
u

du ∧ dθ ∧ dϕ (25)

satisfies

µ = dΓ ∧ µΓ =
√

−det(gµν)du ∧ dv ∧ dθ ∧ dϕ (26)

as required by its definitions (where det(gµν ) is the determinant of g in the spherical

null coordinates). Substituting these expressions into the integral in question one easily
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arrives at

1
2π

∫

Cp

µΓ(x′)(∇γ′
Γ(x, x′))∇γ′ [(V0)

µ′ν′
αβ (x, x′)Fµ′ν′ (x′)]

=
1
2π

∫

Cp

du ∧ dθ ∧ dϕ[
∂

∂u
[2

√
−det(gγδ)(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]] (27)

+
1
2π

∫

Cp

µΓ(x′)[(4 −∇γ′∇γ′
Γ(x, x′))(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]

= − 1
2π

∫

σp

dθ ∧ dϕ{2
√
−det(gγδ)[(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]}

+
1
2π

∫

Cp

µΓ(x′)[(4 − �′Γ(x, x′))(V0)
µ′ν′
αβ (x, x′)Fµ′ν′(x′)].

Evaluating the metric form rstricted to Cp one gets

ds2
∣∣
Cp

= −dudv + (2)Vθdvdθ + (2)Vϕdvdϕ (28)

(2)gABdxAdxB + (−1
4

(4)guu +
1
4

(2)gAB
(2)V A (2)V B)dv2

where {xA;A = 1, 2} = {θ, ϕ} and where (2)gABdxAdxB and

(2)VAdxA = (2)gAB
(2)V BdxA are (at each fixed u on the hypersurface Cp defined by

v = 0) a 2-dimensional Riemannian metric and one-form respectively. Thus, on Cp

2
√−detgγδ

∣∣
Cp

=
√

det (2)gAB

∣∣
Cp

(29)

so that

1
2π

∫

Cp

µΓ(x′){(∇γ′
Γ(x, x′))∇γ′ [(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)]}

= − 1
2π

∫

σp

√
det (2)gABdθ ∧ dϕ[(V0)

µ′ν′
αβ (x, x′)Fµ′ν′(x′)] (30)

+
1
2π

∫

Cp

µΓ(x′)[(4 − �′Γ(x, x′))(V0)
µ′ν′
αβ (x, x′)Fµ′ν′ (x′)]
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It is easy to see from the metric form (28) that
√

det (2)gABdθ ∧ dϕ is just the

invariant 2-surface area element induced on σp (defined in coordinates by v = 0, u =

u(θ, ϕ)) by the spacetime metric. Writing this as dσp and combining Eqs. (19) and

(30) we get

IF tail
αβ (x) = − 1

2π

∫
σp

dσp[(V0)
µ′ν′
αβ (x, x′)Fµ′ν′ (x′)] (31)

+
1
2π

∫

Cp

µΓ(x′)Fµ′ν′(x′)(PUµ′ν′
αβ (x, x′))

where the terms involving (�′Γ(x, x′) − 4) have cancelled. Adding this result to the

expression for IIF tail
αβ (x) and recalling Friedlander’s formula for the measure µt,Γ(x′)

given by his Eq. (5.3.19),

〈∇t,∇Γ〉µt,Γ = −dσp (32)

one finds that the two remaining integrals in F tail
αβ (x) involving the non-local quantity

(V0)
µ′ν′
αβ (x, x′) also cancel leaving

F tail
αβ (x) =

1
2π

∫

Cp

µΓ(x′)(Fµ′ν′(x′)PUµ′ν′
αβ (x, x′)). (33)

Useful formulas for the evaluation of the “source” term PUµ′ν′
αβ (x, x′) may be found in

Ref. [6].

Returning to the main stream of the argument we want to evaluate F tail
αβ (x) as

given by Eq. (33). Notice especially that this expression for F tail
αβ (x) involves an

integral of the source’s total field, Fµ′ν′ (x′) (rather than just its tail contribution)

paired with a computable background quantity, PUµ′ν′
αβ (x, x′). The integral extends

over the light cone from point p back to the “initial” Cauchy hypersurface which can,

in principle, be pushed into the distant past where, one presumes, the evaluation of

F tail
αβ (x) is insensitive to this hypersurface’s precise location. Our simplified formula

for F tail
αβ (x) has resulted, in effect, from trading the source distribution jµ(x) for its
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(total) field Fµν(x) and the tail function (V +)µ′ν′
αβ (x, x′), after an application of Green’s

theorem, for its restriction to Cp where it is determined by a transport equation. In

the final simplifying step, we have been able to eliminate all direct reference to the

tail function by using this transport equation to reexpress the tangential derivative,

Γ;γ′
(x, x′)∇γ′(V +)µ′ν′

αβ (x, x′), of this tail function in terms of its “source”, PUµ′ν′
αβ (x, x′).

The key point is that one can evaluate F tail
αβ (x) without the necessity of splitting

the moving charge’s field into direct and tail contributions as is needed in the more

traditional approaches to this problem which require tedious numerical decompositions.

Though one approach to evaluating F tail
αβ (x) is simply to use the source’s (numerically

produced) total field Fµ′ν′ (x′) in a numerical computation of the integral (33), we want

to propose an alternative, though approximate, purely analytical calculation. The

idea is to use Friedlander’s curved-space Liénard -Wiechert formula for the total field

Fµ′ν′(x′) of a moving charge (c.f., Sect. (5.6) of Ref. (8)) but to truncate this by

dropping its tail contribution, keeping only the direct part of the total field.

Our proposal thus is to approximate this total field by the direct part of the particle’s

Liénard-Wiechert field as given by (the curl of) Friedlander’s formula for Aµ′(x′). In

substituting this (truncated) expression for the particle’s actual retarded field, we are

discarding the contribution from the tail part of the fundamental solution as represented

by the integral in Friedlander’s formula (5.6.22) over the past history of the moving

particle.

Is there any justification for such a truncation, aside from the fact that it yields a

computable expression? The part we have dropped, to the contribution to the retarded

field at x′, consists of an integral of tail contributions from the particle’s past history

up until the instant where the past light cone from x′ intercepts the particle’s world-

line (at some point q(x′)). As a superposition of solutions to the homogeneous wave

equation (c.f., Eq. (10)) one might anticipate that the pairing of this contribution to
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F tail
µ′ν′(x′) with the tail field (V +)µ′ν′

αβ (x, x′) should yield a potentially negligible addition

to F tail
µν (x) for the following reason. If the reduction argument using Green’s theorem is

now reversed (but only for the tail⊗tail contribution to F tail) then there is no longer a

source inside Dp to produce the retarded field on Cp but only “initial” data prescribed

(depending upon the setup used) on either Sp or Cp′ and on the boundary 2-surface

σp. One’s hope is that if these surfaces are pushed sufficiently far to the past, then

their contributions will be negligible.

Unfortunately this argument is complicated by the observation that the tail integral

contribution to Friedlander’s Liénard-Wiechert formula for Fµ′ν′(x′) is not, strictly

speaking, a solution to the homogeneous wave equation although it would be if the

upper limit of integration (q(x′) in the notation introduced above) were independent

of x′. Thus Friedlander’s formula for the Liénard-Wiechert field does not split simply

into a computable, direct term plus a solution of the homogeneous wave equation. It

is difficult to assess the impact of this subtlety upon the plausibility of neglecting the

tail contribution to the Liénard-Wiechert expression for the particle’s retarded field.

One’s expectation though is that the tail⊗tail contribution to F tail
αβ (x) (which we are

suggesting to neglect, is of higher order than the tail⊗direct contribution (which we are

retaining) and thus that the latter should provide the dominant part of the calculation.

Before concluding this section, we would like to mention an alternative formulation

which may shed some light upon the plausibility of our approximation or its limitations.

Suppose, using the characteristic initial value formulation defined above, we endeavor

to compute the self-force at p′ (rather than at p) from “final” data prescribed on the

backwards light cone Cp extending from p to its boundary σp and from data defined by

the orbiting source. Reversing the roles of p and p′ in the argument above, one arrives

at a formula analogous to that of (33) above though now with an integral over the cone

Cp′ (rather than over Cp) extending to the future of the point p′ where the self-force
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is desired.

Again we require the particle’s retarded field but now along Cp′ (rather than along

Cp where its contribution has been canceled by the Green’s theorem argument). A

crucial difference is that now the tail contribution to Friedlander’s Liénard-Wiechert

formula involves a fixed upper limit (namely the point p′) and thus this expression for

Fµ′ν′(x′) |Cp′ splits into a direct, computable term and a remainder which now does

satisfy the homogeneous wave equation.
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V. Self-force reduction for scalar radiation fields

Consider a point particle with mass m, scalar charge q and distributional source µ

which generates a scalar field Φ via the wave equation

Φ;γ
;γ = −4πµ (34)

and which reacts to that field according to the force law

m
duµ

dτ
= maµ = q(gµν + uµuν)∇νΦ (35)

where uµ = dxµ

dτ is the particle’s normalized four-velocity. It was shown by Quinn [12]

that if one requires the equations of motion to follow from a variational principle, the

mass m must vary according to

dm

dτ
= −quµ∇µΦ. (36)

Since the force on the particle involves the gradient of Φ rather than Φ itself, we

find it more convenient to work with the field equation for the gradient. Writing Λα

for Φ;α one finds, upon differentiating Eq. (34) that Λα satisfies

Λ;γ
α;γ − Rβ

αΛβ = −4πµ;α. (37)

To avoid spurious solutions to Eq. (37) one should impose the restrictions that Λα =

Φ;α with Λ;α
α = −4πµ on the initial Cauchy surface. Note that Eq. (37) is equivalent

to the field equation for a (pure gauge) Maxwell vector potential Aα = Λα = Φ;α with

(for consistency) vanishing source current (jµ = 0) but satisfying the modified Lorentz

gauge condition Aα
;α = Λα

;α = Φ;α
;α = −4πµ. Since the effective source in Eq. (37)

is not a genuine Maxwell current, it need not be required to have vanishing divergence.

No inconsistency results here if µ;α
;α �= 0.
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Friedlander’s formulation of the Cauchy problem now gives a representation formula

for the field Λα:

Λα(x) =
1
2π

∫

Cp

Uµ′
α (x, x′)fµ′ (x′)µΓ(x′)

+
1
2π

∫

Dp

(V +)µ′
α (x, x′)fµ′ (x′)µ(x′)

+
1
2π

∫

Sp

∗[(V +)µ′
α (x, x′)∇γ′

Λµ′(x′) (38)

− Λµ′(x′)∇γ′
(V +)µ′

α (x, x′)]

+
1
2π

∫

σp

{Uµ′
α (x, x′)[2(∇γ′

t(x′))(∇γ′Λµ′(x′))

+ Λµ′(x′) � t(x′)]

− 〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′
α (x, x′)Λµ′ (x′)}µt,Γ(x′).

Here Uµ′
α (x, x′) = κ(x, x′)τµ′

α (x, x′) with τµ′
α (x, x′) the transport bitensor (parallel prop-

agator) for one-forms and the source fµ(x) is now given by

fµ(x) = −4πµ;µ(x). (39)

The tail field (V +)µ′
α (x, x′) now satisfies the self-adjoint, homogeneous wave equation

(V +)µ′;γ′
α;γ′ (x, x′) −Rµ′

ν′ (x′)(V +)ν′
α (x, x′) = 0 (40)

with initial data on the light cone Cp determined by Friedlander’s transport equation

(5.5.23).

As in the electromagnetic case, we identify the tail contribution to Λα(x) as the
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collection of integrals involving (V +)µ′
α (x, x′),

Λtail
α (x) :=

1
2π

∫

Dp

(V +)µ′
α (x, x′)fµ′ (x′)µ(x′)

+
1
2π

∫

Sp

∗[(V +)µ′
α (x, x′)∇γ′

Λµ′(x′) (41)

− Λµ′(x′)∇γ′
(V +)µ′

α (x, x′)]

− 1
2π

∫
σp

{〈∇t(x′),∇′Γ(x, x′)〉(V +)µ′
α (x, x′)Λµ′(x′)}µt,Γ(x′).

Reducing this with exactly the same techniques we applied in the previous section, we

arrive at the simplified formula

Λtail
α (x) =

1
2π

∫

Cp

µΓ(x′)(Λµ′(x′)PUµ′
α (x, x′)) (42)

where P is the operator acting (at x′) on (V +)µ′
α (x, x′) on the left hand side of Eq.

(40) As in the previous problem, one can imagine evaluating Λtail
α (x) numerically from

the (numerically produced) total field Λµ′(x′) of the moving charge or, alternatively

(and approximately), by truncating the analogue of Friedlander’s Liénard-Wiechert

expression for Λµ′(x′) to its direct, explicitly computable contribution.
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