
ON EXISTENCE OF NON-SINGULAR, VACUUM,
STATIONARY SPACE-TIMES WITH A NEGATIVE

COSMOLOGICAL CONSTANT
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Abstract. We construct infinite dimensional families of non-singular
stationary space times, solutions of the vacuum Einstein equations with
a negative cosmological constant.
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1. Introduction

A class of space-times of interest is that of vacuum metrics with a negative
cosmological constant admitting a smooth conformal completion at infinity.
It is natural to seek for stationary solutions with this property. In this
paper we show that a large class of such solutions can be constructed by
prescribing the conformal class of a stationary Lorentzian metric on the
conformal boundary ∂M , provided that the boundary data are sufficiently
close to, e.g., those of anti-de Sitter space-time.
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2 P.T. CHRUŚCIEL AND E. DELAY

We mention the recent papers [4, 5], where we have constructed infinite
dimensional families of static, singularity free solutions of the vacuum Ein-
stein equations with a negative cosmological constant. The main point of
the current work is to remove the staticity restriction. This leads to new,
infinite dimensional families of non-singular, stationary solutions of those
equations.

We thus seek to construct Lorentzian metrics n+1g in any space-dimension
n ≥ 2, with Killing vector X = ∂/∂t. In adapted coordinates those metrics
can be written as

n+1g = −V 2(dt+ θidx
i︸ ︷︷ ︸

=θ

)2 + gijdx
idxj︸ ︷︷ ︸

=g

,(1.1)

∂tV = ∂tθ = ∂tg = 0 .(1.2)

Our main result reads as follows (see below for the definition of non-
degeneracy; the function ρ in (1.3) is a coordinate near ∂M that vanishes
at ∂M):
Theorem 1.1. Let n = dimM ≥ 2, k ∈ Nr {0}, α ∈ (0, 1), and consider a
static Lorentzian Einstein metric of the form (1.1)-(1.2) with strictly positive
V = V̊ , g = g̊, and θ = 0, such that the associated Riemannian metric
g̃ = V̊ 2dϕ2 + g̊ on S1 ×M is C2 compactifiable and non-degenerate, with
smooth conformal infinity. For every smooth θ̂, sufficiently close to zero in
Ck+2,α(∂M, T1), there exists a unique, modulo diffeomorphisms which are
the identity at the boundary, nearby stationary vacuum metric of the form
(1.1)-(1.2) such that, in local coordinates near the conformal boundary ∂M ,

(1.3) V − V̊ = O(ρ) , θi = θ̂i +O(ρ), gij − g̊ij = O(1) .

Theorem 1.1 is more or less a rewording of Theorem 5.3 below, taking
into account the discussion of uniqueness in Section 6.

The (n + 1)-dimensional anti-de Sitter metric is non-degenerate in the
sense above, so Theorem 1.1 provides in particular an infinite dimensional
family of solutions near that metric.

The requirement of strict positivity of V̊ excludes black hole solutions, it
would be of interest to remove this condition.

The decay rates in (1.3) have to be compared with the leading order
behavior ρ−2 both for V̊ and g̊ij . A precise version of (1.3) in terms of
weighted function spaces (as defined below) reads

(V − V̊ ) ∈ Ck+2,α
1 (S1 ×M) , (g − g̊) ∈ Ck+2,α

2 (S1 ×M,S2) ,(1.4)

θ − θ̂ ∈ Ck+2,α
2 (S1 ×M, T1) ,(1.5)

and the norms of the differences above are small in those spaces.
Note that our hypothesis that the metric g̃ is conformally C2 implies that

g̃ is Cn−1,α∩C3,α–conformally compactifiable and polyhomogeneous [9]. We
show in Section 7 that our solutions have complete polyhomogeneous expan-
sions near the conformal boundary, see Theorem 7.1 for a precise statement.
Since the Fefferman-Graham expansions are valid regardless of the signa-
ture of the boundary metric, the solutions are smooth in even space-time
dimensions. In odd space-time dimensions the obstruction to smoothness
is the non-vanishing of the Fefferman-Grahm obstruction tensor [13, 15] of
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the (Lorentzian) metric obtained by restricting −(dt + θ)2 + V −2g to the
conformal boundary at infinity.

Theorem 1.1 is proved by an implicit-function argument. This requires
the proof of isomorphism properties of an associated linearised operator.
This operator turns out to be rather complicated, its mapping properties
being far from evident. We overcome this by reinterpreting this operator
as the Lichnerowicz operator ∆̃L + 2n in one-dimension higher. Our non-
degeneracy condition above is then precisely the condition that ∆̃L+2n has
no L2–kernel. While this is certainly a restrictive condition, large classes of
Einstein metrics satisfying this condition are known [2,3, 5, 18].

Because of the V 2 multiplicative factor in front of θ in (1.1), for distinct
θ̂’s the resulting space-time metrics have distinct conformal metrics at the
conformal boundary at infinity. This makes it problematic to determine
the energy of the new solutions relative e.g. to the anti-de Sitter solution;
similarly for angular momentum. Now, each of our solutions n+1g comes
associated with a family of non-stationary solutions, which asymptote to
n+1g, and which can be constructed using e.g. a technique of Friedrich [14].
To each member of such a family one can then associate global Hamiltonian
charges relative to n+1g as in [8, 11]. In this approach our solutions define
the zero point of energy for each family, and there is no natural way of
comparing relative energies, angular momenta, and so on, of members of
distinct families.

2. Definitions, notations and conventions

Let N be a smooth, compact (n+1)-dimensional manifold with boundary
∂N . Let N := N\∂N , a non-compact manifold without boundary. In our
context the boundary ∂N will play the role of a boundary at infinity of
N . Let g be a Riemannian metric on N , we say that (N, g) is conformally
compact if there exists on N a smooth defining function ρ for ∂N (that
is ρ ∈ C∞(N), ρ > 0 on N , ρ = 0 on ∂N and dρ nowhere vanishing on
∂N) such that g := ρ2g is a C2,α(N) ∩ C∞0 (N) Riemannian metric on N ,
we will denote by ĝ the metric induced on ∂N . Our definitions of function
spaces follow [18]. Now if |dρ|g = 1 on ∂N , it is well known (see [19] for
instance) that g has asymptotically sectional curvature −1 near its boundary
at infinity, in that case we say that (N, g) is asymptotically hyperbolic. If
we assume moreover than (N, g) is Einstein, then asymptotic hyperbolicity
enforces the normalisation

(2.1) Ric(g) = −ng ,
where Ric(g) is the Ricci curvature of g.

We recall that the Lichnerowicz Laplacian acting on a symmetric two-
tensor field is defined as [7, § 1.143]

∆Lhij = −∇k∇khij +Rikh
k
j +Rjkh

k
j − 2Rikjlhkl .

The operator ∆L + 2n arises naturally when linearising (2.1). We will say
that g is non-degenerate if ∆L + 2n has no L2-kernel.
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While we seek to construct metrics of the form (1.1), for the purpose of
the proofs we will often work with manifolds N of the form

N = S
1 ×M,

equipped with a warped product, asymptotically hyperbolic metric

V 2dϕ2 + g,

where V is a positive function on M and g is a Riemannian metric on M .
By an abuse of terminology, such metrics will be said static.

The basic example of a non-degenerate, asymptotically hyperbolic, static
Einstein space is the Riemannian counterpart of the AdS space-time. In
that case M is the unit ball of Rn, with the hyperbolic metric

g0 = ρ−2δ ,

δ is the Euclidean metric, ρ(x) = 1
2(1− |x|2δ), and

V0 = ρ−1 − 1 .

We denote by T qp the set of rank p covariant and rank q contravariant
tensors. When p = 2 and q = 0, we denote by S2 the subset of symmetric
tensors. We use the summation convention, indices are lowered and raised
with gij and its inverse gij .

3. Isomorphism theorems

Some of the isomorphism theorems we will use are consequences of Lee’s
theorems [18], it is therefore convenient to follow his notation for the
weighted Hölder spaces Ck,αδ . As described in the second paragraph be-
fore proposition B of [18], a tensor in this space corresponds to ρδ times a
tensor in the usual Ck,α space as defined using the norm of the conformally
compact metric. This implies that, in local coordinates near the conformal
boundary, a function in Ck,αδ is O(ρδ), a one-form in Ck,αδ has components
which are O(ρδ−1), and a covariant two-tensor in Ck,αδ has components which
are O(ρδ−2).

We will often appeal to isomorphism theorems of [18] in weighted Ck,α

spaces, for k ∈ N. Under the regularity conditions on the metric in our
definition of asymptotically hyperbolic metric, those theorems apparenly
only apply to low values of k. However, under our hypotheses, one can use
those theorems for k = 2, and use scaling estimates to obtain the conclusion
for any value of k.

3.1. An isomorphism on two-tensors. We first recall a result of Lee
(see Theorem C(c) and proposition D of [18], there is no L2-kernel here by
hypothesis):
Theorem 3.1. Let S1×M be equipped with a non-degenerate asymptotically
hyperbolic metric g̃. For 0 < k+α 6∈ N and δ ∈ (0, n) the operator ∆̃L + 2n
is an isomorphism from Ck+2,α

δ (S1 ×M,S2) to Ck,αδ (S1 ×M,S2).
When the metric is static of the form g̃ = V 2dϕ2 + g we deduce
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Corollary 3.2. On (M, g) we consider the operator

(W,h) 7→ (l(W,h), L(W,h)) ,

where

l(W,h) = V
[
(∇∗∇+ 2n+ V −1∇∗∇V + V −2|dV |2)W + V −1∇jV∇jW

−V −1∇jV∇kV hkj + 〈Hessg V, h〉g
]
.

and

Lij(W,h) =
1
2

∆Lhij + nhij −
1
2
V −1∇kV∇khij

+
1
2
V −2(∇iV∇kV hkj +∇jV∇kV hki)

−1
2
V −1(∇i∇kV hkj +∇j∇kV hki)

+2V −2W (Hessg V )ij − 2V −3∇iV∇jVW.

Then (l, L) is an isomorphism from Ck+2,α
δ−1 (M) × Ck+2,α

δ (M,S2) to
Ck,αδ−2(M)× Ck,αδ (M,S2) when δ ∈ (0, n).

Proof. First, it is easy to see that the Laplacian commutes with the Lie
derivative operator in the Killing direction, so the operator ∆̃L + 2n re-
stricted to ϕ-independent tensor field is again an isomorphism. Now, from
Lemma A.2 below, if we define P to be the set of symmetric covariant two
tensors of the form

h̃ = 2VWdϕ2 + hijdx
idxj ,

and if we let T denote the collection of tensors of the form

h̃ = 2ξidxidϕ,

then the Lichnerowicz Laplacian preserves the decomposition P ⊕ T . In
particular the operator 1

2∆̃L+n restricted to P is an isomorphism, and this
operator is (l, L). �

3.2. Two isomorphisms on one-forms. The proof of Corollary 3.2 also
shows the following (note a shift in the rates of decay, as compared to the
previous section, due to the fact that a tensor field ξidxidϕ is in Cm,σρ if and
only if the one-form ξidx

i is in Cm,σρ−1):
Corollary 3.3. The operator on one-forms defined as

L : ξi 7→ −∇k∇kξi + V −1∇kV∇kξi + 3V −2∇iV∇kV ξk
+Rliξl − 3V −1∇i∇jV ξj + 2nξi ,

is an isomorphism from Ck+2,α
δ−1 (M, T1) to Ck,αδ−1(M, T1) when δ ∈ (0, n). If

we let ξ = V 2θ, we therefore obtain that the operator Q on one-forms defined
as V −2L(V 2θi)

Q : θi 7→ −∇k∇kθi − 3V −1∇kV∇kθi − 2V −1∇k∇kV θi + 3V −2∇iV∇kV θk
+Rliθl − 3V −1∇i∇jV θj + 2nθi ,

is an isomorphism from Ck+2,α
δ+1 (M, T1) to Ck,αδ+1(M, T1) when δ ∈ (0, n).
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We will appeal to yet another result of Lee (see [18] Theorem C(c), Propo-
sition F and Corollary 7.4, there is again no L2-kernel here because of the
Ricci curvature condition):
Theorem 3.4. On S1×M equipped with an asymptotically hyperbolic metric
g̃ with negative Ricci curvature, the operator ∇̃∗∇̃ − R̃ic acting on one-
forms is an isomorphism from Ck+2,α

δ (S1×M, T1) to Ck,αδ (S1×M, T1) when

|δ − n
2 | <

√
n2

4 + 1.

When the metric is static of the form g̃ = V 2dϕ2 + g we deduce:
Corollary 3.5. Under the hypotheses of the preceding theorem, on (M, g)
consider the operator

Ωi 7→ B(Ω)i +RijΩj − V −1∇i∇jV Ωj =: B(Ω)i ,

where

B(Ω)i := ∇k∇kΩi + V −1∇kV∇kΩi − V −2∇iV∇kV Ωk .

Then B is an isomorphism from Ck+2,α
δ (M, T1) to Ck,αδ (M, T1) when |δ−n

2 | <√
n2

4 + 1.

Proof. The argument is identical to the proof of Corollary 3.2 using
Lemma A.3 and the fact that, in the notation of Lemma A.3,

R̃icΩ̃c = RijΩj − V −1∇i∇jV Ωj .

�

3.3. An isomorphism on functions in dimension n. If we assume that
V 2dϕ2 + g is a static asymptotically hyperbolic metric on S1 × M , then
it is easy to check that at infinity V −2|dV |2 = 1 and V −1∇i∇iV = n.
In dimension n, we will need an isomorphism property for the following
operator acting on functions:

σ 7→ T σ := V −3∇i(V 3∇iσ) = ∇i∇iσ + 3V −1∇iV∇iσ .
From [6, Theorem 7.2.1 (ii) and Remark (i), p. 77] we obtain:

Theorem 3.6. Let (V, g) be close in Ck+2,α
−1 (M) × Ck+2,α

0 (M,S2) to an
asymptotically hyperbolic static metric. Then T is an isomorphism from
Ck+2,α
δ (M) to Ck,αδ (M) when 0 < δ < n+ 2.

Remark 3.7. Theorem 3.6 will be used with σ = O(ρ2), note that δ = 2
verifies the inequality above since n ≥ 2.

3.4. An isomorphism on functions in dimension 3. In dimension n =
3, we will also be interested in the following operator acting on functions:

ω 7→ Zω := V 3∇i(V −3∇iω) = ∇i∇iω − 3V −1∇iV∇iω .
The indicial exponents for this equation are µ− = −1 and µ+ = 0 (see [6,
Remark (i), p. 77]). As µ+ 6> 0 we cannot invoke [6, Theorem 7.2.1] to
conclude. Instead we appeal to the results of Lee [18]. For this we need to
have a formally self-adjoint operator, so we set ω = V

3
2 f , thus

(3.1) Zω = V
3
2

[
∇i∇if −

(
15
4
V −2|dV |2 − 3

2
V −1∇i∇iV

)
f

]
=: V

3
2Zf .



STATIONARY SPACE-TIMES WITH NEGATIVE Λ 7

At infinity V −2|dV |2 = 1 and V −1∇i∇iV = 3, leading to the following
indicial exponents

δ =
1
2
,
3
2
.

We want to show that Z satisfies condition (1.4) of [18],

(3.2) ‖u‖L2 ≤ C‖Zu‖L2 ,

for smooth u compactly supported in a sufficiently small open set U ⊂ M
such that U is a neighborhood of ∂M . We will need the following, well
known result; we give the proof for completeness:
Lemma 3.8. On an asympotically hyperbolic manifold (M, g) with boundary
definining function ρ we have, for all compactly supported C2 functions,∫

u∇∗∇u ≥
(
n− 1

2

)2 ∫
(1 +O(ρ))u2.

Proof. Let f be a smooth function to be chosen later, then∫
|f−1d(fu)|2 =

∫
|du|2 + f−2|df |2u2 + 2f−1u〈df, du〉 ≥ 0

An integration by parts shows that∫
2f−1u〈df, du〉 =

∫
u2f−2|df |2 + u2f−1∇∗∇f.

This leads to∫
u∇∗∇u =

∫
|du|2 ≥

∫
(−f−1∇∗∇f − 2f−2|df |2)u2 .

When f = ρ−
n−1

2 the last term equals (n − 1)2‖u(1 + O(ρ))‖2L2/4, which
concludes the proof. �

Lemma 3.8 combined with the fact that V −2|dV |2 = 1 + O(ρ) and that
V −1∇∗∇V = −3 +O(ρ) shows that

‖u‖L2‖Zu‖L2 ≥ −
∫
uZu ≥

((3− 1)2

4
+

15
4
− 9

2

)∫
(1 +O(ρ))u2,

which shows that Z satisfies the condition (3.2) with

C =
((3− 1)2

4
+

15
4
− 9

2

)−1/2
= 2 .

We recall that the critical weight to be in L2 is O(ρ1) so the function f =
V −3/2 = O(ρ3/2), corresponding to ω = 1, is in the L2-kernel of Z. We
prove now that this kernel equals

kerZ = V
−3
2 R .

Assume f is in the L2-kernel of Z, by elliptic regularity f is smooth on M .
Let ϕk ∈W 1,∞ be any function on M such that ϕk = 1 on the geodesic ball
Bp(k) of radius k centred at p, with ϕk = 0 on MrBp(k+1), and |∇ϕk| ≤ C
independently of k. Such functions can be constructed by composing the
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geodesic distance from p with a test function on R. Integrating by parts one
has

0 = −
∫
V 3ϕ2

kfZf = −
∫
ϕ2
kf∇i(V −3∇if)

=
∫
ϕ2
kV
−3|∇f |2 + 2V −3fϕk∇iϕk∇if

Using Hölder’s inequality, the second integral can be estimated from below
by

−2
(∫

ϕ2
kV
−3|∇f |2

)1/2(∫
f2V −3|∇ϕk|2

)1/2

,

leading to ∫
ϕ2
kV
−3|∇f |2 ≤ 4

∫
f2V −3|∇ϕk|2 .

By Lebesgue’s dominated convergence theorem, the right-hand side con-
verges to zero as k tends to infinity because f ∈ L2, while V −1 is uniformly
bounded, and ∇ϕk is supported in Bp(k + 1) r Bp(k). So f is a constant.
Using [18], Theorem C(c), we thus obtain

Theorem 3.9. Let (V, g) be close in Ck+2,α
−1 (M) × Ck+2,α

0 (M,S2) to an
asymptotically hyperbolic static metric. Then Z is an isomorphism from
Ck+2,α
δ (M)/V −3/2

R to{
f ∈ Ck,αδ (M) :

∫
M
V −3/2f = 0

}
.

when 1/2 < δ < 3
2 . Equivalently, Z is an isomorphism from Ck+2,α

δ (M)/R
to

(3.3)
{
f ∈ Ck,αδ (M) :

∫
M
V −3f = 0

}
.

when −1 < δ < 0.

4. The equations

Rescaling the metric to achieve a convenient normalisation of the cos-
mological constant, the vacuum Einstein equations for a metric satisfying
(1.1)-(1.2) read (see, e.g., [12])

V (∇∗∇V + nV ) = 1
4 |λ|

2
g ,

Ric(g) + ng − V −1 Hessg V = 1
2V 2λ ◦ λ ,

div(V λ) = 0 ,
(4.1)

where
λij = −V 2(∂iθj − ∂jθi) , (λ ◦ λ)ij = λi

kλkj .

In dimension n = 3 an alternative set of equations can be obtained by
introducing the twist potential ω. Writing dω = ωidx

i one sets

ωi =
V

2
εijkλ

jk ⇐⇒ λjk =
1
V
εjk`ω

` .
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This leads to (compare [17])
V (∇∗∇V + 3V ) = 1

2V 2 |dω|2 ,
Ric(g) + 3g − V −1 Hessg V = 1

2V 4 (dω ⊗ dω − |dω|2g) ,
∇∗(V −3∇ω) = 0 .

(4.2)

4.1. The linearised equation. We first consider the operator from the set
of functions times symmetric two tensor fields to itself, defined as(

V
g

)
7→
(
V (∇∗∇V + nV )
Ric(g) + ng − V −1 Hessg V

)
.

The two components of its linearisation at (V, g) are

p(W,h) = V
[
(∇∗∇+ 2n+ V −1∇∗∇V )W + 〈Hessg V, h〉g − 〈div grav h, dV 〉g

]
,

Pij(W,h) =
1
2

∆Lhij + nhij +
1
2
V −1∇kV (∇ihkj +∇jhkj −∇khij)− (div∗ div grav h)ij

+V −2W (Hessg V )ij − V −1(HessgW )ij .

We let Tr denote the trace and we set

grav h = h− 1
2

Trg hg, (div h)i = −∇khik, (div∗w)ij =
1
2

(∇iwj +∇jwi) ,

(note the geometers’ convention to include a minus in the definition of di-
vergence). It turns out to be convenient to introduce the one-form

wj = V −1∇kV hkj +∇khkj −
1
2
∇j(Trh)− V −1∇jW − V −2∇jVW ,

which allows us to rewrite P (W,h) as

P (W,h) = L(W,h) + div∗w ,

where L is as in Corollary 3.2. Similarly, p(W,h) can be rewritten as

p(W,h) = l(W,h) + V 〈w, dV 〉g .

4.2. The modified equation. We want to use the implicit function the-
orem to construct our solutions. As is well known, the linearisation of the
Ricci tensor does not lead to well behaved equations, and one adds “gauge
fixing terms” to take care of this problem. Our choice of those terms arises
from harmonic coordinates for the vacuum Einstein equations in one dimen-
sion higher.

In dimension 3, we start by solving the following system of equations

(4.3)


q(V, g) := V (∇∗∇V + 3V + 〈Ω, dV 〉)− 1

2V 2 |dω|2 = 0 ,
Q(V, g) := Ric(g) + 3g − V −1 Hessg V + div∗Ω

− 1
2V 4 (dωdω − |dω|2g) = 0 ,

∇∗(V −3∇ω) = 0 ,

with

−Ωj ≡ −Ω(V, g, U, b)j
:= ĝjµĝ

αβ(Γ̂µαβ − Γ̃µαβ)

= gjkg
`m(Γk`m − Γ̊k`m) + V −2gjk(U∇̊jU − V∇jV )

= g`m(∇̊mgj` −
1
2
∇̊jg`m) + V −2gjk(U∇̊jU − V∇jV )(4.4)
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where ∇̊-derivatives are relative to a fixed metric b with Christoffel symbols
Γ̊αβγ , U is a fixed positive function, latin indices run from 0 to n, and ĝ :=
V 2(dx0)2+g with Christoffel symbols Γ̂αβγ , while the Γ̃αβγ ’s are the Christoffel
symbols of the metric U2(dx0)2 + b, compare (A.1) below. The co-vector
field Ω has been chosen to contain terms which cancel the “non-elliptic
terms” in the Ricci tensor, together with some further terms which will
ensure bijectivity of the operators involved. The first line of the equation
above makes clear the relation of Ω to the n + 1-dimensional metric ĝ and
its (U, b)-equivalent.

In dimension n, as a first step we will solve the system
q(V, g) := V (∇∗∇V + nV + 〈Ω, dV 〉)− 1

4 |λ|
2
g = 0 ,

Q(V, g) := Ric(g) + ng − V −1 Hessg V + div∗Ω− 1
2V 2λ ◦ λ = 0 ,

div(V λ) = −V 3dσ ,
(4.5)

where Ω is as in dimension 3, while the “Lorenz-gauge fixing function” σ
equals

σ = V −3∇i(V 3θi) .
A calculation shows

div(V λ) + V 3dσ = V 3[−Q+ 2(V −1∇∗∇V + n)](θ) ,

where Q is as in Corollary 3.3, which makes clear the elliptic character of
the third equation in (4.5).

The derivative of Ω with respect to (V, g) at (U, b) is

D(V,g)Ω(U, b)(W,h) = −w,
where w is the one-form defined in Section 4.1 with (V, g) replaced with
(U, b). Thus, the linearisation of (q,Q) at (U, b) is

D(q,Q)(U, b) = (l, L) ,

where (l, L) is the operator defined in Section 4.1 with (V, g) replaced with
(U, b). We will show that, under reasonable conditions, solutions of (4.3)
(resp. (4.5)) are solutions of (4.2) (resp. (4.1)). If (ω, V, g) solves (4.3) (resp.
if (θ, V, g) solves (4.5)), we set

Φ := div∗Ω ,

a :=
{

1
2V 4 |dω|2 in the context of (4.3),

1
4V 2 |λ|2g when studying (4.5),

A :=
{

1
2V 4 (dωdω − |dω|2g) when studying (4.3),

1
2V 2λ ◦ λ when analysing (4.5).

With this notation, the first two equations in both (4.3) and (4.5) take the
form {

∇∗∇V + nV + 〈Ω, dV 〉 = V a ,
Ric(g) + ng − V −1 Hessg V + Φ = A ,

(4.6)

If we take the trace of the second equation in (4.6) we obtain

0 = R(g) + n2 + V −1∇∗∇V + Tr Φ− TrA
= R(g) + n2 − n− V −1〈Ω(V, g), dV 〉+ Tr Φ + a− TrA .
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Then

E(g) := gravg Ric(g)

= −ng + V −1 HessV − Φ− 1
2

(−n(n− 1) + V −1〈Ω(V, g), dV 〉 − Tr Φ)g

+ gravg A+
a

2
g .

As usual, we will use the vanishing of the divergence of E to obtain an
equation for Ω. For a solution to the modified equation, the negative of the
divergence of E(g) equals

divE(g)j = V −2∇iV∇i∇jV − V −1∇i∇j∇iV +∇iΦij −
1
2
∇j Tr Φ

+
1
2
∇j(V −1〈Ω(V, g), dV 〉) +

(
div(gravg A+

a

2
g)
)
j

= V −1∇iV (Rij + ngij + Φij −Aij)− V −1∇iV Rij

−V −1∇j(nV + 〈Ω(V, g), dV 〉+ V a) +∇iΦij −
1
2
∇j Tr Φ

+
1
2
∇j(V −1〈Ω(V, g), dV 〉) +

(
div(gravg A+

a

2
g)
)
j

= ∇iΦij + V −1∇iV Φij −
1
2
∇j Tr Φ− 1

2
V −1∇j〈Ω(V, g), dV 〉

−1
2
V −2∇jV 〈Ω(V, g), dV 〉+ V −1∇j(V a)− V −1∇iV Aij +

(
div(gravg A+

a

2
g)
)
j︸ ︷︷ ︸

=:βj

= ∇iΦij + V −1∇iV Φij −
1
2
∇j Tr Φ− 1

2
V −2∇j(V 〈Ω(V, g), dV 〉) + βj

=
1
2

[∇k∇kΩj + V −1∇iV∇iΩj − V −2∇jV∇iV Ωi +RijΩi − V −1∇j∇iV Ωi] + βj

=
1
2

[B(Ω)j +RijΩi − V −1∇j∇iV Ωi] + βj

=
1
2
B(Ω)j + βj .

We now claim that βj vanishes when σ does. For (4.3) this is a straightfor-
ward computation. For (4.5) we have

−βj =
1
2
V λj

k∇kσ −
1
2
V −3∇jV |λ|2 +

1
8
V −2∇j |λ|2

+
1
2
V −2λik∇iλkj + V −3∇iV λikλjk .

From the definition of λij one has

∇[i(V
−2λkj]) = 0 .

This gives
λik(2∇iλkj +∇jλik − 6V −1(∇[iV )λkj]) = 0 ,
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which can also be rewritten as

λik∇iλkj = −1
4
∇j |λ|2 + 2V −1∇iV λikλkj + V −1∇jV |λ|2 ,

and our claim follows.
We will see during the construction to follow that solutions of the third

equation in (4.5) which decay sufficiently fast satisfy σ = 0. The Bianchi
identity divE(g) = 0 shows then that Ω is in the kernel of B. It follows from
Corollary 3.5 that the only solution of this equation which decays sufficiently
fast is zero.

5. The construction

5.1. The n-dimensional case. We consider V̊ 2dϕ2 + g̊, an asymptoti-
cally hyperbolic Einstein static metric on S

1 × M . We prescribe θ̂ ∈
Ck+2,α(∂M, T1), and we seek a solution

θ = θ(θ̂, V, g) ∈ Ck+2,α
1 (M, T1)

of the problem

(5.1)
{

div(V λ) + V 3dσ ≡ V 3[−Q+ 2(V −1∇∗∇V + n)]θ = 0 ,
θ − θ̂ ∈ Ck+2,α

2 (M, T1) ;

recall that

(5.2) λij = −V 2(∂iθj − ∂jθi) and σ = V −3∇i(V 3θi) .

Such solutions can be obtained by solving the following equation for θ − θ̂:
[−Q+ 2(V −1∇∗∇V + n)](θ − θ̂) = −[−Q+ 2(V −1∇∗∇V + n)]θ̂ .

When V = V̊ in (5.1), then the term V −1∇∗∇V + n vanishes and the
operator is an isomorphism by Corollary 3.3 with δ = 1. Thus, the op-
erator appearing there is an isomorphism for all nearby V ’s. In fact,
for any Riemannian metric g on M , close to g̊ in Ck+2,α

0 (M,S2), with
g − g̊ ∈ Ck+2,α

1 (M,S2), and for any function V on M , close to V̊ in
Ck+2,α
−1 (M), with V − V0 ∈ Ck+2,α

0 (M) a unique solution exists. Moreover
the map (θ̂, V, g) 7→ θ − θ̂ is smooth.

Let us denote by θ̊ the solution of (5.1) with (V, g) = (V̊ , g̊).

Remark 5.1. θ̊ is polyhomogenous when V̊ and g̊ are by the results in [6].
Applying the second line of (5.1) twice we obtain

θ − θ̊ = θ − θ̂ + θ̂ − θ̊ ∈ Ck+2,α
2 (M, T1) .

Furthermore, one has directly that σ − σ̊ ∈ Ck+1,α
2 (M); σ̊ is in fact also in

Ck+1,α
2 (M) by expanding near the boundary.

Suppose that θ solves div(V λ) + V 3dσ = 0, then clearly

div[div(V λ) + V 3dσ] = 0.

Since the double divergence of any anti-symmetric tensor vanishes identically
it holds that div div(V λ) = 0, so that under (5.1) σ is in Ck+1,α

2 (M) and
verifies

∇i(V 3∇iσ) = 0.
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It follows from Theorem 3.6 that σ = 0 when n ≥ 2.
Let us define a map F , from one-forms on ∂∞M times functions on M

times symmetric two-tensor fields on M to functions on M times symmetric
two-tensor fields, which to (θ̂, V, g) associates(

V (∇∗∇V + nV + 〈Ω(V, g, V̊ , g̊), dV 〉)− 1
4 |λ|

2
g

Ric(g) + ng − V −1 Hessg V + div∗Ω(V, g, V̊ , g̊) + 1
2V 2λ ◦ λ

)
.

Proposition 5.2. Let V̊ 2dϕ2 + g̊ be an asymptotically hyperbolic static Ein-
stein metric on S1 ×M , k ∈ N, α ∈ (0, 1). The map F defined as

Ck+2,α(∂M, T1)× Ck+2,α
1 (M)× Ck+2,α

2 (M,S2) −→ Ck,α0 (M)× Ck,α2 (M,S2)
(θ̂,W, h) 7−→ F (θ̂, V̊ +W, g̊ + h)

is smooth in a neighborhood of zero.

Proof. The function V̊ ∈ Ck+2,α
−1 (M) is strictly positive, so the same is true

for V̊ +W if W is sufficiently small in Ck+2,α
1 (M) ⊂ Ck+2,α

−1 (M). Similarly,
the symmetric two-tensor field g̊ + h ∈ Ck+2,α

0 (M,S2) is positive definite
when h is small in Ck+2,α

2 (M,S2) ⊂ Ck+2,α
0 (M,S2). The map (θ̂, V, g) 7→ θ

is smooth. Now, for θ ∈ Ck+2,α
1 (M), by (5.2) and by Remark 5.1 we have

λij = O(ρ−2) ,

which further implies
1

2V 2
λ ◦ λ ∈ Ck,α2 (M,S2) .

The fact that the remaining terms in F (θ̂, V̊ + v, g̊ + h) are in the space
claimed, and that the map is smooth is standard (see [18] for instance). �

We can conclude now as follows:
Theorem 5.3. Let n ≥ 2, and let V̊ 2dϕ2 + g̊ be a polyhomogenous non-
degenerate asymptotically hyperbolic static Einstein metric on S1 ×M , k ∈
N\{0}, α ∈ (0, 1). For all θ̂ close to zero in Ck+2,α(∂M, T1), there exists a
unique solution

(θ, V, g) = (θ̊ + ϑ, V̊ +W, g̊ + h)

to (4.1) with θ̊ − θ̂ ∈ Ck+2,α
2 (M) and

(ϑ,W, h) ∈ Ck+2,α
3 (M)× Ck+2,α

1 (M)× Ck+2,α
2 (M,S2) ,

close to zero, satisfying the gauge conditions Ω = σ = 0. Moreover, the
maps θ̂ 7→ θ̊ − θ̂ and θ̂ 7→ (ϑ,W, h) are smooth maps of Banach spaces near
zero.

Proof. As already pointed out, the one-form θ = θ(θ̂, V, g) exists and is
unique when W and h are small. From Proposition 5.2 we know that the
map F is smooth. The linearisation of F at zero is

D(W,h)F(0, 0, 0) = D(V,g)F (0, V̊ , g̊) = (l, L) .
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From Corollary 3.2, with δ = 2, we obtain that D(W,h)F(0, 0, 0) is an iso-
morphism. The implicit function theorem shows that the conclusion of The-
orem 5.3 remains valid for the modified equation (4.5). Returning to Sec-
tion 4.2, we see that Ω = Ω(V, g, V̊ , g̊) ∈ Ck+1,α

2 (M,T1) and that B(Ω) = 0,
so from Corollary 3.5, we have Ω = 0, obtaining thus a solution to (4.1). �

5.2. The three-dimensional case. In three dimensions an alternative
construction can be given, as follows. We consider again an asymptotically
hyperbolic Einstein static metric V̊ 2dϕ2 + g̊ on S1 ×M . We consider Theo-
rem 3.9, with g — a Riemannian metric on M close to g̊ in Ck+2,α

0 (M,S2),
and V — a function on M close to V̊ in Ck+2,α

−1 (M). For our purposes there
is no preferred value of parameter δ there. It is convenient to set δ = s− 1,
and arbitrarily choose some s ∈ (0, 1). For any ω̂ ∈ Ck+1,α(∂M) satisfying

(5.3)
∫
∂M

ω̂ = 0 ,

there exists a unique, modulo constant, solution

ω = ω(ω̂, V, g) ∈ Ck+2,α
−1 (M)

to {
∇∗(V −3∇ω) = 0,
ω − ω̂ρ−1 ∈ Ck+2,α

s−1 (M) .
(This can be seen by writing Zδω = −Z(ω̂ρ−1), and checking that the
source term in the equation for δω satisfies the integrability condition (3.3)
when (5.3) holds.) Moreover, the map (ω̂, V, g) 7→ ω − ω̂ρ−1 is smooth in
the Ck+2,α

s−1 (M) topology.
We define a new map F , defined on the set of functions on ∂∞M times

functions on M times symmetric two-tensor fields, mapping to functions on
M times symmetric two-tensor fields, which to (ω̂, V, g) associates(

V (∇∗∇V + 3V + 〈Ω(V, g, V̊ , g̊), dV 〉)− 1
2V 2 |dω|2

Ric(g) + 3g − V −1∇i∇jV + div∗Ω(V, g, V̊ , g̊)− 1
2V 4 (dωdω − |dω|2g)

)
.

Proposition 5.4. Let V̊ 2dϕ2 + g̊ be an asymptotically hyperbolic static Ein-
stein metric on S1 ×M , k ∈ N, α ∈ (0, 1). The map F defined as

Ck+2,α(∂M)× Ck+2,α
1 (M)× Ck+2,α

2 (M,S2) −→ Ck,α0 (M)× Ck,α2 (M,S2)
(ω̂,W, h) 7−→ F (ω̂, V̊ +W, g̊ + h)

is smooth in a neighborhood of zero.

Proof. The proof is essentialy the same as that of Proposition 5.2. We simply
note that for all s ∈ (0, 1) we have, by direct estimations,

V −4(dωdω − |dω|2g) ∈ Ck,α2 (M,S2) .

�

We are ready to formulate now:
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Theorem 5.5. Let dimM = 3 and let V̊ 2dϕ2+g̊ be a non-degenerate asymp-
totically hyperbolic static Einstein metric on S1 × M , k ∈ N, α ∈ (0, 1),
s ∈ (0, 1). For all ω̂ close to zero in Ck+2,α(∂M) and satisfying (5.3) there
exists a unique solution

(ω, V, g) = (ω̂ρ−1 + w, V̊ +W, g̊ + h)

to (4.2) with

(w,W, h) ∈ Ck+2,α
s−1 (M)× Ck+2,α

1 (M)× Ck+2,α
2 (M,S2) ,

close to zero, satisfying the gauge condition Ω = 0. Moreover, the map
ω̂ 7→ (w,W, h) is a smooth map of Banach spaces near zero.

Proof. The proof is identical to that of Theorem 5.3, making use of Propo-
sition 5.4. �

6. Uniqueness

So far we have shown that solutions are unique in the gauge Ω = 0,
together with the condition σ = 0 in the context of (4.1). We claim that
any metrics satisfying the hypotheses of Theorem 1.1 can be brought to this
gauge.

First, consider σ; note that the one-form θ of (1.1) is defined modulo the
differential of a function f defined on M ; indeed, the replacement t→ t+ f
leads to θ → θ + df . We can then use Theorem 3.6 to find a unique f such
that the function σ associated with θ + df vanishes.

The vanishing of Ω requires a smallness hypothesis, as well as some work.
Suppose that we are given a couple (V, g) near to (V̊ , g̊). The second line
of (4.4) shows that, in the notation of [9], the condition Ω = 0 is exactly
the condition ∆g′g̃ Id = 0, where g′ = V 2dϕ2 + g. The proof that Ω can be
made to vanish is established by inspection of the arguments of Section 4
of [9]. We simply note that the implicit function theorem, as invoked there,
can be applied globally on M (rather than in a collar neighborhood of the
boundary, as in [9]) if we assume that (V̊ /V, V −2g) is close to (1, V̊ −2g̊)
in C2(M). Indeed, the linearised operator, denoted by L in [9], is again
an isomorphism by the results of [18], as follows from the fact that g̃ is
Einstein, with negative scalar curvature. (Actually, the Einstein equations
are irrelevant for the question of Ω = 0 gauge, as long as the Ricci tensor of
g̃ is negative definite.)

Uniqueness of solutions up-to-diffeomorphism (which is the identity on
the boundary) is a direct consequence of the above.

Somewhat more generally, without the smallness hypothesis, a variation
of an argument due to M. Anderson [1] applies: Suppose that we are given
two C2-compactifiable solutions, say (V, θ, g) and (V ′, θ′, g′), with identical
smooth boundary data. We can then bring θ and θ′ to the σ = σ′ = 0
gauge as above, and put both V 2dϕ3 + g and (V ′)2dϕ3 + g′ in the harmonic
gauge of Section 4 of [9] near a collar neighborhood of the boundary. Unique
continuation [21] shows that (V ′, θ′, g′) coincides with (V, θ, g) in this collar
neighborhood. But strict positivity of V implies the existence of an analytic
atlas for the interior of M in which the solutions are analytic, and as g and g′
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are complete we can conclude that the lifts of the solutions to the universal
cover of M coincide (compare [16, Vol. I, Corollary 6.4, p.256]).

We note the non-uniqueness of the conformal Dirichlet problem for the
(static) Horowitz-Myers metrics, which shows that the last result would be
wrong if one did not invoke the universal cover.

7. Polyhomogeneity

Let U0 ⊂ Rn be an open set, and let U = U0 × (0, ε) ⊂ Hn+1. For any
δ ∈ R, we denote by C δ the space of functions f ∈ C∞(U) that satisfy, on
any subset K × (0, ε0) with K ⊂ U0 compact and 0 < ε0 < ε, estimates of
the following form for all integers r ≥ 0 and all multi-indices α:

|(y∂y)r∂αx f(x, y)| ≤ Cr,αyδ.
(We use the multi-index notations α = (α1, . . . , αn) and ∂αx =
(∂x1)α1 . . . (∂xn)αn .)

A smooth function f : U → R is said to be polyhomogeneous (cf. [6,20]) if
there exists a sequence of real numbers si → +∞, a sequence of nonnegative
integers {qi}, and functions fij ∈ C∞(U0) such that

(7.1) f(x, y) ∼
∞∑
i=1

qi∑
j=0

ysi(log y)jfij(x)

in the sense that for any δ > 0, there exists a positive integer N such that

f(x, y)−
N∑
i=1

qi∑
j=0

ysi(log y)jfij(x) ∈ C δ.

A function or tensor field on M is said to be polyhomogeneous if its coor-
dinate representation in local coordinates near the conformal boundary is
polyhomogeneous. (We refer the reader to [10] for a discussion of equivalence
of alternative definitions of polyhomogeneity.)

In this section, we apply the theory of [6] to conclude that solutions to
(4.5) are polyhomogeneous. The key step in the proof is a regularity result
for the linearised operator (l, L,L). Following [6], we say that an interval
(δ−, δ+) ⊂ R is a (weak) regularity interval for a second-order linear operator
P on the spaces Ck,λδ (MR;S2) if whenever u is a locally C2 section of S2

such that u ∈ C0,0
δ0

(MR;S2) and Pu ∈ C0,λ
δ (MR;S2) with λ ∈ (0, 1) and

δ− < δ0 < δ < δ+, it follows that u ∈ C2,λ
δ (MR;S2). We use the notation

of [9].
Theorem 7.1. Solutions given by Theorems 5.3 and 5.5 are polyhomoge-
neous. Similarly, solutions of (4.1) and (4.2) with smooth boundary data
such that θ and ρ−2(V 2dϕ2 + g) are in C2(M) are polyhomogeneous.

Proof. We start by noting that metrics such that θ and ρ−2(V 2dϕ2 + g)
are in C2(M) can be brought, near the boundary, to a gauge in which
the equations are elliptic by setting σ to zero as in Section 6, and then
applying the results of Section 4 of [9] to the metric V 2dϕ2 + g. On the
other hand, solutions given by Theorems 5.3 and 5.5 are directly in the
closely related gauge Ω = 0; those two gauges do not coincide, but the proof
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works in both gauges. Alternatively one could use the analysis in Section 4
of [9] to transform a C2–compactifiable V 2dϕ2 + g to the gauge Ω = 0.
A polyhomogeneous approximate solution V̊ −2(dt + θ̊)2 + g̊ can then be
constructed using a Fefferman-Graham expansion up-to-not-including the
critical exponent.

For any φ = (0φ,2 φ,1 φ), function, two-tensor, one-form on M , define

F [φ] := (ρV̊ −1q, ρ2Q,Q)(V̊ + ρ−1 0φ, g̊ + ρ−2 2φ, θ̊ + 1φ)

with (q,Q,Q) as in (4.5), while for the solutions arising from Theorems 5.3
and 5.5 the one-form θ̊ can be taken as the solution of the third equation
in (4.5) with V = V̊ and g = g̊. (F should not be confused with the map
F of the previous section.) Then φ satisfies F [φ] = 0. One can apply [6,
Theorem 5.1.1] to F , and thereby conclude that φ is polyhomogeneous. The
argument proceeds as in [9, Section 5] and will not be repeated here. We
simply mention that the property, that the interval (0, n) is a regularity
interval for the operator F ′[φ0] on the spaces ACδk+λ(MR), is an immediate
consequence of Corollaries 3.2 and 3.3. �

Appendix A. “Dimensional reduction” of some operators

A.1. Lichnerowicz Laplacian on two-tensor for a warped product
metric. We shall use the following coordinate systems on S1 ×M :

(xa) = (ϕ, xi) = (x0, xi) = (x0, ..., xn).

Lemma A.1. Let (M, g) be a Riemannian manifold, let V,W be two functions
on M , let h be a symmetric covariant two-tensor on M and let θ be a one-
form on M . On S1×M we consider the Riemannian metric g̃ = V 2dϕ2 + g
and the symmetric covariant two-tensor

h̃ = 2VWdϕ2 + 2ξidϕdxi + hijdx
idxj

satisfying L∂ϕ h̃ = 0, where L denotes a Lie derivative. Then, in local
coordinates, the Laplacian of h̃ has the following components:

∇̃c∇̃ch̃00 = 2[V∇k∇kW −∇k∇kVW −∇kV∇kW − V −1|dV |2W +∇kV∇lV hkl] ,
∇̃c∇̃ch̃i0 = ∇k∇kξi − V −1∇k∇kV ξi − V −1∇kV∇kξi − 3V −2∇iV∇kV ξk ,
∇̃c∇̃ch̃ij = ∇k∇khij + V −1∇kV∇khij − V −2(∇iV∇kV hkj +∇jV∇kV hki)

+4V −3∇iV∇jVW .

Proof. The Christoffel symbols of the metric g̃ = V 2dϕ2 + g are
(A.1)

Γ̃0
00 = Γ̃0

ij = Γ̃k0j = 0 , Γ̃kij = Γkij , Γ̃0
i0 = V −1∇iV , Γ̃k00 = −V∇kV .

The covariant derivatives of h̃, in local coordinates, read

∇̃0h̃00 = 2V∇kV ξk ,
∇̃0h̃ij = −V −1(∇iV ξj +∇jV ξi) ,
∇̃kh̃i0 = ∇kξi − V −1∇kV ξi
∇̃0h̃i0 = V∇kV hki − 2∇iVW ,

∇̃kh̃00 = 2V∇kW − 2∇kVW ,

∇̃kh̃ij = ∇khij .
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The result is obtained by substition. �

We recall that the Lichnerowicz Laplacian is

(A.2) ∆̃Lh̃ab = −∇̃c∇̃chab + R̃ach̃
c
b + R̃bch̃

c
a − 2R̃acbdh̃cd .

The curvature tensor of the warped product metric g̃ = V 2dϕ2 + g has
the following components [22, Prop. 42, Chap. 7] (note, however, that our
curvature tensor is the negative of the one in [22]):

R̃lijk = Rlijk , R̃l0j0 = −V∇j∇lV , R̃0
ijk = 0 ,

R̃ik = Rik − V −1∇k∇iV, R̃0k = 0, R̃00 = −V∇i∇iV.
The zero order terms in (A.2) are thus

R̃0ch̃
c
0 = 2∇∗∇VW ,

2R̃0c0dh̃
cd = −2V∇i∇jV hij ,

R̃ich̃
c
0 + R̃0ch̃

c
i = Rliξl − V −1∇i∇lV ξl + V −1∇∗∇V ξi ,

2R̃ic0dh̃cd = 2V −1∇i∇jV ξj ,
R̃ich̃

c
j + R̃jch̃

c
i = Rikh

k
j +Rjkh

k
i − V −1∇i∇kV hkj − V −1∇j∇kV hki ,

2R̃icjdh̃cd = 2Rikjlhkl − 4V −2∇i∇jVW .

Lemma A.1 implies now:
Lemma A.2. Under the hypotheses of Lemma A.1, the Lichnerowicz Lapla-
cian of h̃ is

∆̃Lh̃00 = 2
[
−V∇k∇kW −∇k∇kVW +∇kV∇kW + V −1|dV |2W

−∇kV∇lV hkl + V∇i∇jV hij
]
,

∆̃Lh̃i0 = −∇k∇kξi + V −1∇kV∇kξi + 3V −2∇iV∇kV ξk
+Rliξl − 3V −1∇i∇jV ξj ,

∆̃Lh̃ij = ∆Lhij − V −1∇kV∇khij + V −2(∇iV∇kV hkj +∇jV∇kV hki)
−4V −3∇iV∇jVW − V −1(∇i∇kV hkj +∇j∇kV hki)
+4V −2∇i∇jVW .

�

A.2. The Laplacian on one-forms for a warped product metric.
Lemma A.3. Let (M, g) be a Riemannian manifold, let V, f be two functions
on M and let Ω be a one-form on M . Let us consider, on S1 × M , the
Riemannian metric g̃ = V 2dϕ2 + g and the one-form

Ω̃ = fdϕ+ Ωidx
i .

Then in local coordinates, the Laplacian of Ω̃ equals

∇̃c∇̃cΩ̃0 = ∇k∇kf − V −1f∇k∇kV − V −1∇kV∇kf,
∇̃c∇̃cΩ̃i = ∇k∇kΩi + V −1∇kV∇kΩi − V −2∇iV∇kV Ωk =: B(Ω)i .
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Proof. We have

∇̃0Ω̃0 = V∇kV Ωk , ∇̃0Ω̃i = −V −1∇iV f
∇̃iΩ̃0 = ∂if − V −1∇iV f , ∇̃jΩ̃i = ∇jΩi ,

and the result easily follows. �
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