
On Israel-Wilson-Perjés black holes

Piotr T. Chruściel∗
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Abstract

We show, under certain conditions, that regular Israel-Wilson-Perjés
black holes necessarily belong to the Majumdar-Papapetrou family.

1 Introduction

A classical result in general relativity is the bound on global charge of regular
electro-vacuum space-times, in absolute value, by the ADM mass, with equality
holding if and only if the metric is, locally, the Israel-Wilson-Perjés (IWP)
metric [13, 15, 27], see Theorem 2.1 below for a precise statement. It is therefore
of interest to classify all non-singular IWP solutions. A long standing conjecture
asserts that those necessarily belong to the Majumdar-Papapetrou family; for
partial results see [14], compare [8]. We prove that this is indeed the case in
electro-vacuum under supplementary hypotheses.

A key feature which singles out the IWP metrics is the existence of a “super-
covariantly constant” spinor field ψ [13, 27]. Each such spinor leads to a Killing
vector field X, which can only be timelike or null. Recall that in a regular black
hole space-time a Killing vector cannot be timelike on the event horizon. In
IWP space-times ergoregions1 do not exist, but null orbits away from the event
horizon could occur in principle. Assuming that there are no such orbits, we
prove that the metric has to be static.
∗Partially supported by a Polish Research Committee grant 2 P03B 073 24. E-mail Piotr.
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1By ergoregion we mean the set where a “stationary” Killing vector is spacelike.
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More precisely, our first main result is the following (see Section 2 for defi-
nitions):

Theorem 1.1 Let (M , 4g, F ) be a solution of the Einstein–Maxwell equations
with a non-trivial spinor field ψ which is parallel with respect to an F -modified
spinor connection as in (2.10)-(2.11). Suppose that M contains a connected
and simply connected space-like hypersurface2 S (with boundary), which is the
union of an asymptotically flat end and of a compact set, such that:

1. The Killing vector field X associated with ψ is timelike on the interior
int S of S .

2. The topological boundary ∂S ≡ S \ int S of S is a nonempty, two-
dimensional, topological manifold, with 4gµνX

µXν = 0 on ∂S .

Then, performing a duality rotation of the Maxwell field if necessary, there
exists a neighborhood of S in M which is isometrically diffeomorphic to an
open subset of a standard Majumdar-Papapetrou space-time.

For a complete understanding of the problem it is of some interest to look
for a corresponding result without the electro-vacuum condition. This is done
in Section 6.

Let us give an outline of the proof of Theorem 1.1; this also serves as a
guide to the structure of this paper. In Sections 3.1 and 3.2 we examine in
detail the space-time geometry near the event horizon. This allows us to show,
in Section 3.3, that horizons correspond to isolated singularities in space in the
usual local coordinate representation of IWP metrics. This part of our work is
purely local, except for the hypothesis of compactness of cross-sections of the
horizons; it follows closely the calculations in [10] and is inspired by the analysis
of supersymmetric black holes in [22]. In Section 4.1 we analyse the asymptotic
behavior of the fields involved in defining the metric. In Section 4.2 we show
that the local coordinates are global. In Section 4.3 we establish staticity of the
solutions.

The hypothesis in Theorem 1.1 that the set {gµνXµXν = 0} is a topological
manifold of co-dimension one is, essentially, the condition that all null orbits
of the Killing vector field X lie on the event horizon. This restriction is not
needed if we assume instead that there exists a maximal hypersurface in M ;
this is the second main result of our work:

Theorem 1.2 Let (M , 4g, F ) be an electrovacuum space-time with a super-
covariantly constant spinor field ψ 6≡ 0. Suppose that M contains a simply
connected maximal hypersurface S which is the union of a compact set with
an asymptotically flat region and with a finite number of “weakly cylindrical”
regions as in (5.12) below. Then S is totally geodesic and, up to a duality
rotation of the Maxwell field, there exists a neighborhood of S isometrically
diffeomorphic to a subset of a standard Majumdar–Papapetrou space-time.

2We use the geometers’ convention that a hypersurface with boundary contains its bound-
ary as a point set. The signature is (+,−,−,−).
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Theorem 1.2 is proved in Section 5.
The hypotheses of Theorems 1.1 and 1.2 do not suffice to obtain more in-

formation about the size of the set on which the metric is that of a standard
Majumdar–Papapetrou space–time (in the sense defined in Section 2). The
following version of Theorem 1.1 can be obtained when reasonably mild sup-
plementary hypotheses are made:

Theorem 1.3 Let (M , 4g, F ) be a solution of the Einstein–Maxwell equations
containing a connected space-like hypersurface S , with non-empty topological
boundary, which is the union of a finite number of asymptotically flat ends
and of a compact interior. Denote by Doc ≡ Doc(Mext) the domain of outer
communications in (M , g) associated with one of the asymptotically flat ends
of S . Let ψ be a non-trivial super-covariantly constant spinor field on M and
suppose that the associated Killing vector field X is timelike on Doc. Assume
morever that

1. The interior int S of S is a subset of the domain of outer communica-
tions Doc.

2. The topological boundary ∂S ≡ S \ int S of S is a nonempty, two-
dimensional, topological manifold such that ∂S = S ∩ ∂Doc.

3. X has complete orbits in Doc.

4. (Doc, g|Doc) is globally hyperbolic.

Then Doc is isometrically diffeomorphic to a domain of outer communications
of a standard extension of a standard Majumdar–Papapetrou space–time.

The proof of Theorem 1.3 follows from Theorem 1.1 by standard arguments
(compare [7]) and will be omitted. We simply note that the properties that S
is simply connected and has only one asymptotically flat end follow from [11].
The hypothesis of timelikeness of X in Doc can be replaced by that of existence
of a maximal surface with a finite number of asymptotically flat ends and of
weakly cylindrical ends, invoking Theorem 1.2.

2 Preliminaries

As we will be using two-index spinor fields it is convenient to use the signature
(+−−−). The space-time metric will be denoted by 4g, the associated Rieman-
nian metric induced on space-like hypersurfaces by g. In adapted coordinated
in which S = {t = 0} one thus has gij = −4gij . The symbol ∇ denotes the
space-time covariant derivative operator associated with 4g.

Recall that the Majumdar–Papapetrou (MP) metrics are, locally, of the
form [19, 21]

4g = u−2dt2 − u2(dx2 + dy2 + dz2) , (2.1)
A = u−1dt , (2.2)
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where A is the Maxwell potential, F = dA, with some nowhere-vanishing, say
positive, function u. A space–time will be called a standard MP space–time if
the coordinates xµ of (2.1)–(2.2) are global with range R × (R3 \ {~ai}) for a
finite set of points ~ai ∈ R3, i = 1, . . . , I, and if the function u has the form

u = 1 +
I∑
i=1

mi

|~x− ~ai|
, (2.3)

for some positive constants mi. It has been shown by Hartle and Hawking [14]
that every standard MP space–time can be analytically extended to an electro–
vacuum space–time with a non–empty black hole region, and with a domain of
outer communication which is non–singular in the sense of the theorems proved
here. Those extensions will be called the standard extensions of the standard
Majumdar–Papapetrou space–times.

A data set (Sext, g,K) with Maxwell initial data F = (E,B) will be called
an asymptotically flat end if Sext is diffeomorphic to R3 minus a ball and if the
fields (gij ,Kij) satisfy the fall–off conditions (ρ is the radial coordinate in R3)

|gij−δij |+ρ|∂`gij |+· · ·+ρk|∂`1···`kgij |+ρ|Kij |+· · ·+ρk|∂`1···`k−1
Kij | ≤ Ck,αρ−α ,

(2.4)
for some constants Ck,α, α > 0, k ≥ 1. We shall further require that in the local
coordinates as above on Sext the Maxwell field F satisfies the fall–off conditions

|Ei|+ρ|∂`Ei|+· · ·+ρk|∂`1···`kEi|+|Bi|+ρ|∂`Bi|+· · ·+ρ
k|∂`1···`kBi| ≤ Ĉk,αρ

−α−1 ,
(2.5)

for some constants Ĉk,α, α > 0, k ≥ 0. We will always assume α > 1/2, which
makes the ADM mass well defined in electro-vacuum.3 A hypersurface will be
said to be asymptotically flat if it contains an asymptotically flat end Sext.

A two-dimensional surface S ⊂ S will be called weakly outer trapped if it
separates S into two components, and if λ+habK

ab ≤ 0, or if λ−habKab ≤ 0,
where hab is the metric induced on S, and where λ is the mean curvature of S
within S , as measured with respect to a field of unit normals pointing towards
the component of S \ S which contains Sext.

We note a precise version of the charge bound mentioned in the Introduction
(compare [12, 13, 15]):

Theorem 2.1 Let (S , g,K) be a smooth three-dimensional initial data set, with
(S , g) complete, and with an asymptotically flat end Sext (in the sense of
Equation (2.4) with k ≥ 4 and α > 1/2), and with ∂S weakly outer trapped, if
not empty. Suppose, further, that we are given on S two smooth vector fields
E and B satisfying

4πρB := DiB
i ∈ L1(S ) , 4πρE := DiE

i ∈ L1(S ) .

Set
4πQE := lim

R→∞

∫
r=R

EidSi , 4πQB := lim
R→∞

∫
r=R

BidSi .

3It follows in any case from [6, Section 1.3] or from [17] that in stationary electro–vacuum
space–times there is no loss of generality in assuming α = 1, k – arbitrary.
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Let R be the Ricci scalar of g and assume

0 ≤ R− |K|2 + (trK)2 − 2g(E,E)− 2g(B,B) =: 16πρm ∈ L1(Sext) . (2.6)

If
ρ2
E + ρ2

B + |J |2g ≤ ρ2
m , (2.7)

where
16πJ i = 2Dj(Kij − trKgij)− 4εik`EkB` , (2.8)

then the ADM mass m of Sext satisfies

m ≥
√
|~p|2 +Q2

E +Q2
B . (2.9)

If the equality is attained in (2.9) then (2.7) is also an equality, and there exists
on S a spinor field satisfying (2.10)-(2.11) below. Furthermore, the associated
space-time metric is, locally, an IWP ( not necessarily electro-vacuum) metric.

The conditions (2.6) and (2.7) are clearly satisfied in electro-vacuum. This
theorem justifies the interest in IWP space-times; its hypotheses further serve
as a guiding principle for the hypotheses of our remaining results in this paper.

We sketch a proof of Theorem 2.1 in Appendix B.

2.1 IWP metrics

Consider a space-time that admits a “super-covariantly constant spinor” given
in two-component spinor notation by ψ = (αA, βA′) where the constituent
spinors αA and βA′ satisfy the coupled system of equations:

∇AA′αB +
√

2φABβA′ = 0 (2.10)
∇AA′βB′ −

√
2φA′B′αA = 0. (2.11)

Here φAB is the Maxwell spinor and φA′B′ is its complex conjugate, related to
the Maxwell tensor Fab in the standard way by

Fab = φABεA′B′ + φA′B′εAB.

(Strictly speaking, the system (2.10)-(2.11) has a two-complex-dimensional vec-
tor space of solutions, but we shall normalise the solution by choices made later.)

As is well known (and will be shown in any case below), the metric is
invariant under the flow of the following vector field4

X =
1√
2

(αAαA
′
+ β

A
βA
′
)

∂

∂xAA′
, (2.12)

It is known [27] that near any point at which X is timelike the metric can
locally be written in the IWP form

ds2 = V V (dt+ ω · dx)2 − (V V )−1dx · dx (2.13)
4The vector field X here equals K/

√
2 in [27]. The value of the normalisation constant k

of that last reference is a matter of convention, and here we take it to be equal to
√

2. Note
a factor of 2 missing in the first term at the right-hand-side of [27, (2.13)].
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To derive (2.13) from the system (2.10)-(2.11) one makes a sequence of defini-
tions. First, introduce

V = αAβ
A
,

note that V is a smooth function on space-time, vanishing only at those points
at which X is null or zero.5 Then introduce the coordinates x = (x1, x2, x3) by
solving:

dx1 + idx2 =
√

2αAβA′dxAA
′
, (2.14)

dx3 =
1√
2

(αAαA′ − βAβA′)dxAA
′
, (2.15)

where the one-forms on the right are closed by virtue of (2.10)-(2.11). Using a
time coordinate adapted to the vector field X,

X =
∂

∂t
, (2.16)

one writes
Xµdx

µ = V V (dt+ ω · dx)

where ω is a one-form, to be determined. Here, by definition

4g(X,X) = V V .

From (2.10)-(2.11) and definitions made so far one readily obtains

∇AA′V = −2φABXA′
B (2.17)

∇µXν = V φABεA′B′ + V φA′B′εAB. (2.18)

This leads to an Einstein-Maxwell space-time with sources which may be cal-
culated from the following:

∇µF νµ = 4πχEXν , (2.19)
∇µ(∗4F νµ) = 4πχBXν , (2.20)

Tµν = χXµXν + 1
4π

(
FµαFν

α − 1
4F

µνFµν
4gαβ

)
, (2.21)

χE + iχB = χV (2.22)

It follows from (2.17) and (2.18) that X is a Killing vector, while V −1 is related
to χ as follows

∆(V −1) :=

((
∂

∂x1

)2

+
(

∂

∂x2

)2

+
(

∂

∂x3

)2
)

(V −1) = −4πχ
V

, (2.23)

We note that it is easy to construct an infinite-dimensional family of solutions
of (2.23) with smooth real strictly positive V , and prescribed positive smooth

5It follows from (2.10)-(2.11) that, if αA and βA′ both vanish at a point p then they vanish
everywhere, so we may assume that they have no common zero. Consequently the Killing
vector X has no zeroes: X will be null where V vanishes but is time-like at all other points.
Space-times with V identically zero are pp-waves [27], which do not concern us here.
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χV −1. Thus, there exist many singularity-free non-vacuum solutions with pos-
itive energy density which saturate the bound of Theorem 2.1.

More generally, (2.22) and the physical requirement that there are no mag-
netic currents imposes the non-trivial restriction that V should be real on the
support of χ. This leads to ∆=(V −1) = 0. Similarly to our main Theorem 1.1,
we expect that this forces the space-time to be static (either with or without
black holes), but we have not attempted to prove that.

Finally ω satisfies the equation

curl ω = i(V−1∇V−1 −V−1∇V−1). (2.24)

Locally, the integrability condition for (2.24) is satisfied by virtue of (2.23) since
χ is real. However, there are global conditions if ω is to be well-defined and we
shall return to this point. We write Ω for the set of points in R3 at which V −1

is singular.
Except for Section 6, from now on we assume that χ ≡ 0, so that V −1 is

harmonic in the flat three-metric:

∆(V −1) = 0, (2.25)

The source-free Maxwell equations, which we assume hold, are equivalent to
the equation

∇AA′φAB = 0.

The space-time is electro-vacuum, so that the Ricci spinor is related to the
Maxwell spinor by Einstein’s equations which in this formalism take the form

ΦABA′B′ = 2φABφA′B′ (2.26)

in units with G = c = 1.

3 Local considerations

3.1 The near horizon geometry of IWP metrics

Now concentrate on one component of Ω which by assumption corresponds to
a component of the Killing horizon.

As in [9, 10, 22] we introduce Gaussian null coordinates near a component
N of the event horizon, with the signature chosen so that the metric is

4g = rφdu2 − 2dudr − 2rhadyadu− habdyadyb, (3.1)

where a, b range over {1, 2}.
In these coordinates, the Killing vector X is ∂/∂u with norm

4g(X,X) = rφ

and N is located at r = 0, where also V = 0. Using the metric (3.1) to lower
the index on X we find

Xµdx
µ = rφdu− dr − rhadya
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whence, at N ,
d(Xµdx

µ) = φdr ∧ du− dr ∧ (hadya).

However, from (2.18), we see that ∇µXν vanishes at V = 0. Two things follow
from this: the surface gravity κ = −∂r(rφ) at r = 0 vanishes, and so the horizon
is degenerate; and ha vanishes at r = 0. It follows that

φ = rA(r, yb) ; ha = rHa(r, yb)

for some function A and covector field Ha. We shall often use a circle over a
quantity to indicate its value at r = 0, e.g. Å = A|r=0.

We shall show the following:

Proposition 3.1 (i) The metric hab on the spheres S = (r = 0, u = u0)
has constant Gauss curvature K.

(ii) On N , A = K > 0, so that Ahab|r=0 is the unit round metric on S2.

(iii) The function V satisfies ∂rV = 2Q at N where Q is a complex constant
related to K by K = 4|Q|2.

Proof: V = 0 at r = 0 implies that

V = 2rQ+O(r2). (3.2)

for some smooth function Q independent of r, with Å = 4|Q|2. We start by
showing that Q is not identically zero. It is useful to invoke the near horizon
limit, as in [22], obtained by introducing new coordinates (r̂, û, ŷa) defined by
the formula

r = εr̂ , u = ε−1û , ŷa = ya ,

and letting ε go to zero. Assume, for contradiction, that Q vanishes identically.
By (2.17) the Maxwell field of an IWP solution satisfies

Xµ(Fµν+i∗4Fµν)dxν = (Fuν+i∗4Fuν)dxν = −dV = O(r)dr+O(r2)dya . (3.3)

This shows that 1
ε (Fuν + i ∗4 Fuν)dx̂ν vanishes in the limit ε → 0. Also the

term Fradr ∧ dya = εFradr̂ ∧ dŷa, vanishes in the limit, and it is now simple to
check that the whole F vanishes in the near-horizon limit. The near-horizon
geometry of such a solution is therefore a vacuum solution, with metric

4g = −2dûdr̂ − h̊abdŷadŷb. (3.4)

Since 4g is Ricci flat, and −2dûdr̂ is flat, one obtains that h̊abdŷadŷb is flat,
contradicting the fact that the horizon must have S2 topology. Hence Q cannot
vanish identically.

The IWP metric (2.13) includes a flat 3-metric dx · dx. This is invariantly
defined where V is non-zero by projecting the 4-metric orthogonally to X and
multiplying by V V . Calculating this in the Gaussian null coordinates gives

dx · dx =
(
dr + r2Hady

a
)2 + r2Ahabdy

adyb. (3.5)
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The left hand side is flat so if we multiply the right hand side by 1/ε2 we should
get another flat metric. Set r = εr′ in this new metric and now let ε → 0 to
obtain the metric

dr′
2 + 4r′2|Q|2̊habdyadyb. (3.6)

This must also be flat away from r′ = 0. By calculating the Ricci scalar of this
metric one finds that 4|Q|2̊hab has Ricci scalar equal to two, so it is the unit
round metric on S2. But h̊ab is also a metric on S2. Therefore Q cannot vanish
anywhere.

Finally, consider the equation ∆V −1 = 0. Writing this out using the metric
(3.5) we find that

∆̃Q−1 = lim
r→0

(
8r3|Q|2∆V −1

)
= 0, (3.7)

where ∆̃ is the Laplacian associated with the 2-metric h̊ab. Since Q−1 is globally
defined, this equation implies that Q must be constant. It then follows that h̊ab
must be a metric on S2 of constant curvature K = 4|Q|2 = Å. 2

3.2 The supercovariantly constant spinors near the horizon

In this section, our aim is to obtain the supercovariantly constant spinors near
the horizon in order to relate the two coordinate systems (t, xi) and (u, r, ya).
Following [10], in the metric (3.1), choose the coordinates ya so that they are
isothermal onN and then introduce ζ = y1+iy2. Choosingm to be proportional
to dζ̄ at r = 0, the metric becomes

4g = r2Adu2 − 2dudr − 2r2(Hdζ +Hdζ)du− 2mm (3.8)

where
m = −Z̊dζ̄ +O(r) ,

in terms of a complex function Z̊ of ζ and ζ.
We shall investigate the metric (3.8) in the spin-coefficient formalism [20].

We introduce the null tetrad (lµ, nµ,mµ,mµ) by

lµ∂µ = D = ∂u + r2A
2 ∂r ,

nµ∂µ = ∆ = −∂r ,
mµ∂µ = δ = 1

Z
∂ζ + r

Y
∂ζ −

(
r2H
Z

+ r3H
Y

)
∂r ,

where Z = Z̊ +O(r).
We follow the numbering of [20] to calculate the spin-coefficients and cur-

vature quantities. We may take the results from [10] by replacing h there by
rH, to give

α = − 1

2Z̊Z̊

∂Z̊

∂ζ
+O(r) , (3.9)

β =
1

2Z̊Z̊

∂Z̊

∂ζ
+O(r) , (3.10)
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γ = −1
4
∂

∂r
log

(
Z̊

Z̊

)
+O(r) , (3.11)

ε =
1
2
rÅ+O(r2) , (3.12)

µ = −1
2
∂

∂r
log(Z̊Z̊) +O(r) , (3.13)

together with π = −τ = O(r), ν = 0, λ = 1 + O(r), ρ = O(r2), κ = O(r2), and
σ = O(r2). In Appendix A we give an alternative proof of Proposition 3.1,
based on the above.

Expanding the spinor fields αA and βA′ in the spinor dyad as

αA = −α0ιA + α1oA ; βA′ = −β0′ιA′ + β1′oA′ , (3.14)

and substituting into (2.10) and (2.11), we obtain eight equations from (3.14)
as follows (compare [24] p. 219)

Dα0 − εα0 + κα1 +
√

2φ0β0′ = 0 (3.15)
Dα1 + εα1 − πα0 +

√
2φ1β0′ = 0 (3.16)

δα0 − βα0 + σα1 +
√

2φ0β1′ = 0 (3.17)
δα1 + βα1 − µα0 +

√
2φ1β1′ = 0 (3.18)

δα0 − αα0 + ρα1 +
√

2φ1β0′ = 0 (3.19)
δα1 + αα1 − λα0 +

√
2φ2β0′ = 0 (3.20)

∆α0 − γα0 + τα1 +
√

2φ1β1′ = 0 (3.21)
∆α1 + γα1 − να0 +

√
2φ2β1′ = 0 (3.22)

and the corresponding eight equations for βA′ , which can be obtained from
(3.15)-(3.22) by complex conjugation followed by the substitution of −αA for
βA and βA′ for αA′ .

We also have two expressions for the Killing vector (2.12):

Xµ =
1√
2

(αAαA
′
+ β

A
βA
′
)

= δµu = lµ +
r2A

2
nµ .

Substituting from (3.14) into this, we obtain

|α0|2 + |β0′ |2 =
√

2
2
r2A , (3.23)

α0α1′ + β1′β0 = 0 , (3.24)
|α1|2 + |β1′ |2 =

√
2 . (3.25)

Thus, near the horizon, α0 and β0′ are O(r) while α1 and β1′ are O(1). We
write

α1 = P̊ +O(r) ; α0 = rS̊+O(r2) ; β1′ = W̊ +O(r) ; β0′ = rT̊ +O(r2) , (3.26)
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and proceed to analyse the system (3.15)-(3.22), using what we know of the spin-
coefficients and curvature components. From Appendix A we have φ0 = O(r).
Equation (3.15) is already O(r2); equations (3.16), (3.17) and (3.19) are O(r);
from the rest, (3.18) and (3.20) and the corresponding equations for βA′ yield
the system:

(δ + β)α1 +
√

2φ1β1′ = O(r), (3.27)
(δ + β)β1′ −

√
2φ1α1 = O(r), (3.28)

(δ + α)α1 = O(r), (3.29)
(δ + α)β1′ = O(r). (3.30)

Substituting from (3.26) into (3.29) and (3.30) we obtain equations which can
be readily solved to give

P̊ = (Z̊)
1
2 f(ζ) , W̊ = (Z̊)

1
2 g(ζ) , (3.31)

for some holomorphic functions f and g. It is convenient now to take an explicit
form for Z̊. From Proposition 3.1 we know that 2ÅZ̊Z̊dζdζ is the unit round
metric, thus if we introduce L̊ by Å = L̊−2 then we may choose

Z̊ = Z̊ =
L̊
√

2
(1 + ζζ)

. (3.32)

The relation in Proposition 3.1 (iii) can now be written 4|Q|2L̊2 = 1, so that

2QL̊ = eiκ (3.33)

for some real constant κ. Appendix A shows that φ1 = Q + O(r). With the
choice (3.32) for Z̊, we substitute (3.31) into (3.27) and (3.28) to obtain

Z̊−2∂ζ(Z̊f) = −
√

2Qg ,

Z̊−2∂ζ̄(Z̊g) =
√

2Q̄f .

Differentiating the first equation with respect to ζ, and expanding, one obtains
an equation which can be solved for f ; inserting the result into the second, one
is led to

f = a+ bζ ; g = (aζ − b)e−iκ ,

for constant complex a and b. We can exploit a residual freedom in the choice
of ζ to simplify these expressions. Indeed, in view of the choice (3.32), the ζ’s
are defined now only up to a rigid SO(3) rotation of S2, which will transform
a and b. Without loss of generality, we may assume that b = 0 and then, to
satisfy (3.25), that a = L̊−

1
2 .

For S̊ and T̊ we go to (3.21), and the corresponding equation for β0′ , and
solve to find

S̊ =
√

2QW̊ ; T̊ = −
√

2QP̊ .

Now we have the supercovariantly constant spinors to the desired order, and
may proceed to define the coordinates xi from (2.14) and (2.15). This is a
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mechanical process, and we simply record the results. Introduce polar angles
via

ζ = tan(θ/2)e−iφ

then

dx1 + idx2 = d(−r sin θeiφ−iκ) +O(r)dr +O(r2)(dζ, dζ, du) (3.34)
dx3 = d(−r cos θ) +O(r)dr +O(r2)(dζ, dζ, du). (3.35)

If we introduce a set of Cartesian coordinates zi for i = 1, 2, 3 related to the
polar coordinates (r, θ, φ) by

z1 + iz2 = −r sin θeiφ−iκ , z3 = −r cos θ , (3.36)

then the system (3.34) and (3.35) implies, for z 6= 0,

∂xi

∂zj
= δij +O(|z|) , (3.37)

which will be important in the next section.

3.3 Horizons are isolated singularities

We equip S with the orbit space metric γ defined as

γ(Y, Z) = −4g(Y, Z) +
4g(X,Y ) 4g(X,Z)

4g(X,X)
, (3.38)

where X is the Killing vector field (2.12). Our main local result is the following:

Theorem 3.2 Every connected component of the horizon corresponds to an iso-
lated singular point6 x0 of the orbit space metric (3.38). Furthermore, there ex-
ists ρ > 0, a smooth (perhaps C-valued) harmonic function U0 ∈ C∞(B(x0, ρ)),
and real constants m0, n0 such that in the small punctured coordinate ball
B∗(x0, ρ) near x0 we have

1
V

=
m0 + in0

|x− x0|
+ U0 . (3.39)

Remark 3.3 This result provides an alternative proof of Proposition 2 of [8],
which is the key step of the argument there.

Proof: By the previous section there exists ε > 0 such that, in the punctured
z–cordinate ball B∗(0, ε), the following holds

∂xi

∂zj
= δij +O(|z|) . (3.40)

6By “isolated singular point” we mean here a point in local coordinates as in (2.13), with
an isolated singularity of V −1 there. We will see in Section 5 that the correct geometric
interpretation is that of “cylindrical ends”.
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We want to show that the limits lim|z|→0 x(z) exist. In order to do that, consider
any ray [λ, µ] 3 s→ sz, with 0 < λ ≤ µ < ε, by (3.40) we have

xk(µz)− xk(λz) =
∫ λ

µ

d
(
xk(sz)

)
ds

ds = (µ− λ)zk +O(|µz|2) . (3.41)

Let µn be any sequence converging to zero. Equation (3.41) with µ = µn and
λ = µn′ shows that xk(µnz) is Cauchy, therefore there exist numbers xk0(z)
such that limn→∞ x

k(µnz) = xk0(z). We similarly have, for any two points
z1, z2 ∈ B∗(0, ε), with z1 6= −z2,

xk(µnz1)−xk(µnz2) =
∫ 1

0

d
(
xk(sµnz1 + (1− s)µnz2)

)
ds

ds = µn(zk2−zk1 )+O(µ2
n) ,

(3.42)
and passing to the limit n→∞ we obtain

xk0(z1) = xk0(z2) .

Thus, the limits xk0(z) are in fact z-independent, we will write xk0 for those limits
from now on. Passing to the limit n→∞ in (3.41) with µ = 1 and λ = µn we
obtain now

xk(z)− xk0 = zk +O(|z|2) . (3.43)

This shows that lim|z|→0 x
k(z) = xk0, as claimed. It also follows from this

equation that the map
z 7→ x (3.44)

is differentiable at the origin, with (3.40) holding now both at the origin and in
B∗(0, ε). Consequently, the map (3.44) is continuously differentiable on B(0, ε).

The implicit function theorem shows that, decreasing ε if necessary, the
map (3.44) is a diffeomorphism near x0. Therefore 1/V is well-defined, as a
function of x, in a small punctured ball B∗(x0, ρ) near x0, and is harmonic
with respect to the Euclidean metric there by (2.25). By (3.43) we have |z| =
|x− x0|+O(|x− x0|2), and (A.6) gives, away from x0,

1
V

=
1

2Q|x− x0|
+O(1) .

Write 1/2Q = m0 + in0 and set

U0 =
1
V
− m0 + in0

|x− x0|
,

then U0 is a bounded harmonic function on B∗(x0, ρ). By Serrin’s removable
singularity theorem [28, Theorem 1.19, p. 30] U0 can be extended through x0

to a smooth harmonic function on B(x0, ρ). 2

For further reference we note the following: It follows from Theorem 3.2
that near each event horizon the metric can be written in the form (2.13), with
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V of the form (3.39). From (3.8) we have
4g = r2Adu2 − 2dudr − 2r2Hady

adu− habdyadyb

= r2A
(
du− dr

r2A
− Ha

A
dya︸ ︷︷ ︸

dt+ωidxi

)2

− 1
r2A

(
dr2 + 2r2Hady

adr + r2(Ahab + r2HaHb)dyadyb︸ ︷︷ ︸
dxidxi

)
, (3.45)

with r2A = V V̄ . The function t is defined up to the addition of a function
f = f(xi), which corresponds to the “gauge transformation” ωi → ωi + ∂if .
The simplest choice for t suggested by (3.45) is

dt = du− dr

r2Å
. (3.46)

An important consequence of (3.45) is that ωidxi is a well-defined one form in
a neighbourhood of each connected component of the horizon.

4 Global arguments

4.1 Asymptotics for large r

Consider an asymptotically flat end Sext. The decay of the Maxwell field
and a standard analysis of (2.10)-(2.11) show that the components of α and
β approach constant values as |x| tends to infinity in a δ-parallel spin frame
associated with the flat euclidean metric δ on Sext.

The global hypotheses of Theorem 1.1 show that the ADM four-momentum
of Sext is timelike. By [4, Section 3] the Killing vector X defined by (2.12)
is strictly timelike, g(X,X) > ε > 0. By boosting Sext within the Killing
development of S one can assume that X is asymptotically normal to Sext,
and a multiplicative normalisation of the spinors (α, β) leads to X → ∂t as r
goes to infinity.

Again a straightforward asymptotic analysis of (2.14)-(2.15) shows that,
performing a rigid coordinate rotation if necessary, the functions xi asymptote
to the asymptotically flat coordinates of (2.4), and in fact provide a coordinate
system outside a large compact set on Sext, for |x| large enough.

Now V , and therefore also V −1, tends to a pure phase at infinity, but V −1 is
harmonic so without loss of generality this phase is constant. Again adjusting
our choice of ψ we may suppose the phase to be zero. Now we have, for large
|x|,

V = 1 +
C

|x|
+O(|x|−2) (4.1)

for a (complex) constant C. The usual asymptotic expansion of stationary
initial data [23] gives

ω = O(|x|−2) , ∂ω = O(|x|−3) . (4.2)

Inserting (4.1) into (2.24), we see that this decay of the derivatives of ω is
possible only if C is real.
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4.2 Injectivity

The map which to a point of the space-time (M , 4g) assigns the functions (t, xi)
by solving the equations (2.14)-(2.15) may fail to provide a global coordinate
system on M . An example is provided by the usual maximal extension of the
degenerate Reissner-Nordström solutions: in this space-time each point (t, xi)
corresponds to an infinite number of distinct points pt,x lying in distinct asymp-
totically flat regions of M . We emphasise that in this example the functions
xi are smooth and globally defined throughout both M and M /R, where R is
the action of the flow of X, but the map which to a point in M /R assigns the
coordinates x fails to be injective.

Before proceeding further, recall that the Killing development (MK , gK )
of a hypersurface (S , g) with Killing initial data (N,Y ) is defined [4] as R×S
with the metric

gK := N2dt2 − gij(dxi + Y idt)(dxj + Y jdt) . (4.3)

If a space-time (M , 4g) contains S as a hypersurface with unit normal n, and
if we decompose a Killing vector X as X = Nn + Y , with Y tangent to S ,
then (MK , gK ) is isometrically diffeomorphic to the subset of M obtained
by moving S in the space-time (M , 4g) with the flow of X, when this flow is
complete, provided, e.g., that X is causal and S is acausal in (M , 4g).

We have the following:

Theorem 4.1 Under the hypotheses of Theorem 1.1, the coordinate represen-
tation (2.13) on the Killing development of S is global.

Proof: Consider the manifold Ŝ defined as follows: as a point set, Ŝ consists
of the interior int S of S with an abstract point xi added for each connected
component of the event horizon. The differentiable structure on Ŝ is the one
induced from int S away from the xi’s, and the one coming from the x coordi-
nates as in Theorem 3.2 around each point xi.

On int S , considered as a subset of Ŝ , we introduce the metric

γ̂ := V V̄ γ , (4.4)

where γ is the orbit space metric (3.38). The local coordinate representation
(2.13) shows that γ̂ is flat. By Theorem 3.2 the metric γ̂ extends by conti-
nuity to a smooth (flat) metric on Ŝ , still denoted by the same symbol γ̂.
Thus (Ŝ , γ̂) is a smooth, flat, Riemannian manifold. By construction Ŝ is the
union of a compact set and of an asymptotically flat region, and such mani-
folds are complete7. Again by construction, Ŝ is simply connected. By the
Hadamard-Cartan theorem (see, e.g., [18]) Ŝ is diffeomorphic to R3, with a
global manifestly flat coordinate system. This provides the global coordinate
representation (2.13). 2

As a corollary we obtain
7This can be established using, e.g., the arguments of Appendix B of [5].
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Corollary 4.2 Under the hypotheses of Theorem 1.1, there exist constants
mi, ni ∈ R such that

1
V

= 1 +
N∑
j=1

mj + inj
|x− xj |

. (4.5)

Proof: The hypotheses of Theorem 1.1 imply that S has a finite numbr of
boundary components, say N . By Theorems 3.2 and 4.1, there exist constants
mi, ni ∈ R such that the function

U =
1
V
− 1−

N∑
j=1

mj + inj
|x− xj |

approaches zero at infinity, and can be extended by continuity to a smooth
harmonic function on R3. By the maximum principle U ≡ 0. 2

4.3 Staticity

Suppose that V is given by (4.5). We introduce G and θ by

V −1 = Geiθ. (4.6)

Since V −1 is nowhere zero, θ is well-defined. Since C in (4.1) is real (see
Section 4.1) we have, for large |x|,

G = 1 +
M

|x|
+O(|x|−2) , (4.7)

θ = O(|x|−2) , (4.8)

where M is the ADM mass of Sext.
From (2.24) we now find

curl ω = 2G2∇θ (4.9)

which is divergence-free since χ is real.
Set U = R

3 \
⋃
j Bj , where Bj is a small ball around xj . By the divergence

theorem (with signs appropriately chosen)∫
U
G2|∇θ|2dV =

∮
S∞

G2θ∇θ · dS +
N∑
j=1

∮
Sj

G2θ∇θ · dS. (4.10)

Here S∞ is a sphere of large radius, and Sj = ∂Bj . We shall show that the
integrals at the right-hand-side vanish in the obvious limit, proving vanishing
of ∇θ.

As emphasised at the end of Section 3.3, ω is a well defined one-form near
each component of the horizon, thus no “Dirac string” singularities in the form
discussed in [14] arise near the punctures. Therefore any small topological
two-sphere S around a puncture we have∮

S
curl ω · dS = 0 . (4.11)

16



Near xj we have

G =
(m2

j + n2
j )

1/2

|x− xj |
+O(1)

sin θ =
nj

(m2
j + n2

j )1/2
+O(|x− xj |)

so that (4.9) and (4.11) entail∮
Sj

G2θ∇θ · dS = arcsin

(
nj

(m2
j + n2

j )1/2

)∮
Sj

G2∇θ · dS︸ ︷︷ ︸
=0

+
∮
Sj

G2O(|x− xj |)∇θ · dS = O(|x− xj |) ,

while, ∮
S∞

G2θ∇θ · dS = O(|x|−3).

It follows that the right-hand-side of (4.10) vanishes in the limit as the Bj
shrink onto the xj and S∞ recedes to infinity. Therefore so does the left and
θ is constant, but θ vanishes at infinity, so θ is everywhere zero and V is real.
Thus the metric is a standard Majumdar-Papapetrou metric. This completes
the proof of Theorem 1.1.

5 Solutions with maximal hypersurfaces

As first pointed out by Sudarsky and Wald [25, 26], maximal surfaces which
are Cauchy for the domain of outer communications provide a powerful tool to
study stationary black holes. The existence of such hypersurfaces in our context
is an open question, which we will not address here, but some comments are in
order.

We want to calculate the mean extrinsic curvature, say Hf , of the hyper-
surfaces {t = f(xi)}. For this, we note that, from (3.45),

4gµν∂µ∂ν = ((r2A)−1 − r2A|ω|2δ)∂2
t + 2r2A

∑
i ωi∂i∂t − r2A

∑
i ∂i∂i , (5.1)√

−det 4gµν = (r2A)−1 , (5.2)

where |ω|2δ =
∑

i ω
2
i , so that the field of unit normals n to the level sets of

{t = f(xi)} takes the form

nµdx
µ =

r
√
A√

1− r4A2|ω + df |2δ
(dt− df) ,

nµ∂µ = n0∂t +
r3A3/2√

1− r4A2|ω + df |2δ

∑
i

(ωi + ∂if)∂i , (5.3)
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where n0 equals

n0 =

(
1− r4A2

∑
i ωi(ωi + ∂if)

)
r
√
A
√

1− r4A2|ω + df |2δ
.

This leads to

Hf = ∇µnµ =
1√

−det 4gµν
∂α

(√
−det 4gµνn

α
)

= r2A
∑
i

∂i

 r
√
A(ωi + ∂if)√

1− r4A2|ω + df |2δ

 . (5.4)

The choice (3.46) leads to a one-form ω which, in the coordinates xi, satisfies
near x = 0

ωi = O(|x|−1) , ∂jωi = O(|x|−2) .

Equation (5.4) with f = 0 leads to H0 = O(r), in particular H0 vanishes in
the limit r → 0. A rough estimate leads one to expect that there should exist
a class of solutions of the equation Hf = 0 with the asymptotic behavior, for
small r,

f = O(ln2 r) . (5.5)

(This can probably be improved to O(ln r) by a more careful inspection of the
equation satisfied by ω, but we have not undertaken that analysis.) Solutions
with such an asymptotic behavior will lead to a geometry of the level sets of
f with decay rates worse than (5.10)-(5.11) below, but more than sufficient for
(5.12) to hold.

Now, we expect that the arguments in [11], concerning the global structure
of globally hyperbolic domains of outer communications, remain valid in the
current setting, but we have not checked this. Assuming this to be correct it
is then standard, using [2], to construct an edgeless maximal surface in M , as
a limit of a sequence of solutions of the Dirichlet problem on compact sets. In
view of the analysis in [1] it is not completely unreasonable to expect asymptotic
flatness of S , as well as “weakly cylindrical” behavior (as defined by (5.12)
below) near the horizons, but this remains to be proved. We are planning to
return to this question in a near future.

We continue with the analysis of the gravitational initial data near the
horizons. Let n be the field of future directed unit normals to S = {t = f},
and decompose the Killing vector field X as X = Nn+ Y , where Y is tangent
to S . From (5.3) we obtain

X = ∂t =
r
√
A
√

1− r4A2|ω + df |2δ(
1− r4A2

∑
i ωi(ωi + ∂if)

)
︸ ︷︷ ︸

N

nµ∂µ

− r4A2(
1− r4A2

∑
i ωi(ωi + ∂if)

)∑
i

(ωi + ∂if)

︸ ︷︷ ︸
Y i

∂i . (5.6)
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By inspection of (3.45) and (5.6), the gravitational initial data induced on
{t = 0} behave, for small r, as

gij = O1(r−2) , gij = O1(r2) , (5.7)
N = O1(r) , Y i = O1(r3) , Yi = O1(r) , Kij = O(1) , (5.8)

where the equality h = Ok(rσ) means that ∂i1 · · · ∂i`f = O(rσ−`) for 0 ≤ ` ≤ k.
Here the estimate on Kij can be obtained from the equation NKij = −1

2LY gij .
To understand the geometry of the level sets of t it is convenient, near each

puncture xi, to return to spherical coordinates centred at xi, replacing |x− xi|
by a new radial coordinate ρ defined as

ρ = − ln |x− xi| .

We then obtain

g := gijdx
idxj = A−1dρ2 + 2gabdy

adyb , (5.9)

where the metrics 2gab(ρ, ·)dyadyb asymptote exponentially fast to the round
metric on the sphere as ρ tends to infinity. This shows that for ρ large enough
the space-metric is uniformly equivalent to a fixed, ρ–independent, product
metric

g̊ := dρ2 + g̊abdy
adyb .

Such metrics will be called weakly cylindrical.
Using the variable ρ, (5.8) can be rewritten as

N = O(e−ρ) , |dN |g = O(e−ρ) , (5.10)
|Y |g = O(e−2ρ) , |DY |g = O(e−2ρ) , |K|g = O(e−ρ) . (5.11)

For the purposes of Theorem 1.2 we will need the following two hypotheses:

1. the metric induced on S is weakly cylindrical, and
2. |K|g|Y |g approaches zero as ρ tends to infinity.

(5.12)

The analysis above shows that this is clearly satisfied on the level sets of t.
Next, consider the Maxwell field. Equation (2.17) is equivalent to

∇µ(<V ) = FµνX
ν , ∇µ(=V ) = ∗4FµνXν , (5.13)

where ∗4 is the space-time Hodge dual. As in Section 4.1, we choose V so
that V → 1 in the asymptotically flat region, in particular =V approaches zero
there.

Let E = Eidx
i be the electric field on S defined as Ei = Fiµn

µ, similarly
let the magnetic field B = Bidx

i on S be defined as Bi = ∗4Fiµnµ. (As
usual, when performing 3 + 1 decompositions, the index i refers to a coordinate
systems so that S = {t = 0}; this does not necessarily coincide with the
t-coordinate of (2.13).) As already pointed out, we denote by g the positive
definite metric induced by the space-time metric 4g on S (so, in our current
signature convention, gij = −4gij). Furthermore, we let D denote the covariant
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derivative operator associated with g (not to be confused with D in Section 3.1).
Then

Bi = 1
2εi

jkFjk ⇐⇒ Fij = εijkB
k ,

∗4Fij = εijk0F
k0 = εijkE

k ,

where εijk is completely antisymmetric and equals
√

det g for ijk = 123. Fur-
ther, indices on three dimensional objects are raised and lowered with g. From
(5.13) we obtain

Di(<V ) = NEi + FijY
j , Di(=V ) = NBi + ∗4FijY j . (5.14)

Assume, now, that S is maximal. We then have the equations

DiK
i
j = 2FjkEk = 2εjk`EkB` , D(iYj) = −NKij , DiB

i = 0 ,

which together with the second equation in (5.14) lead to the divergence iden-
tity8

Di

(
Ki

jY
j − 2(=V )Bi

)
= −(|K|2 + 2|B|2)N . (5.15)

One integrates (5.15) over a set which consists of S from which coordinate
balls Si(ε) of radius ε around the punctures have been removed. The boundary
integral at infinity vanishes by the asymptotic flatness conditions. Consider the
integrals

QBi =
∮
Si(ε)

BidSi ,

then QBi does not depend upon ε, at least for ε small enough, since B has
vanishing divergence. This implies that the boundary term involving =V Bi

gives a vanishing contribution in the limit ε → 0 (recall that V , and hence
also =V , approaches zero at the punctures by Theorem 3.2). Similarly, the
boundary contribution from the extrinsic curvature term vanishes in the limit
by (5.11). Hence ∫

S
(|K|2 + 2|B|2)N = 0 .

Note that N is strictly positive on the interior of S since X is causal, which
shows that K ≡ B ≡ 0. In particular the Killing development of S is static.
We now have LY g = 0, so that Y is a Killing vector of g which approaches
zero in the asymptotic region. By [4] Y ≡ 0, so X = Nn, hence the Killing
vector is strictly timelike in the domain of outer communications (understood
as a subset of the Killing development) so that Theorem 1.1 applies.

6 Theorem 1.1 and sources

In this section we relax the hypothesis that the space-time is electrovacuum. It
turns out to be straightforward to obtain a version of Theorem 1.1 assuming

8The calculations here allow one to simplify considerably the arguments in [25, 26]. This
will be discussed elsewhere.
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instead that magnetic currents vanish, so that =V −1 is harmonic. We thus
consider a space-time with a non-trivial super-covariantly constant spinor field
ψ, and assume again that there are no null orbits of the associated Killing vector
X.

Suppose, first, that there are no black holes. As already pointed out in
Section 2.1, the (then globally defined) imaginary part of V −1 is harmonic in
the (globally defined) metric |V |2γ, where γ is the orbit space-metric (3.38),
hence =V = 0, then curl ω = 0 and the space-time is static. This leads to a
Majumdar-Papapetrou solution, either non-empty or flat.

Both the proof and the statement of Proposition 3.1 remain unchanged. In-
deed, the only difference is the need to analyse the supplementary contribution
χXµXν to the energy-momentum tensor. But

χX ⊗X = χ∂u ⊗ ∂u = ε2χ∂û ⊗ ∂û →ε→0 0 ,

which shows that the near-horizon space-time remains vacuum. The limit in
(3.7) is not affected by source fields which are smooth functions in the physical
space-time, and one concludes as before.

One finds by inspection that none of the equations of Section 3.2 is affected
by a non-vanishing χ.

The non-harmonicity of <V −1 might result in a somewhat different behavior
of the function <U0 appearing in Theorem 3.2, which now will be the sum of
a constant and of a contribution of the form rχ , for some function χ(r, ya)
which is smooth in spacetime (but not necessarily smooth with respect to the
coordinates xi). Note that =U0 remains smooth, as before. This will lead to
a correction O(r) (with somewhat worse differentiability: bounded derivatives,
and second derivatives O(r−1)) in the real part of V −1 in (4.5), the imaginary
part of this last equation remaining of the same form as before.

The staticity argument in Section 4.3 applies without changes. As a con-
sequence, one is led to a Majumdar-Papapetrou space-time with a potential V
such that V −1 is a finite sum of monopoles and of a bounded function.

A An alternative proof of Proposition 3.1

Here we give an alternative spinor proof of Proposition 3.1. ¿From (3.9)-(3.13),
we calculate the curvature components, setting the scalar curvature to zero. For
the Weyl spinor, we find Ψ0 = O(r2),Ψ1 = O(r),Ψ3 = O(1), and Ψ4 = O(1)
together with two expressions for Ψ2. One forces Ψ2 = O(r) while the other is

Ψ2 =
1
4

(A−K) +O(r) (A.1)

where K = − 1

Z̊Z̊
∂ζ∂ζ

(
log(Z̊Z̊)

)
, which is the Gauss curvature of S. Thus

A = K +O(r).
For the Ricci spinor, we find Φ00 = O(r2),Φ01 = O(r) and the remaining

components are O(1). In particular we have

Φ11 =
1
4

(A+K) +O(r). (A.2)
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It follows from (2.26) that Φ00 = 2φ0φ0 and Φ11 = 2φ1φ1. Thus the component
φ0 of the Maxwell field is O(r), while φ1 is O(1); φ1 is also constrained by the
Maxwell equations, specifically by (A.5b) of [20] which here becomes

δφ1 = O(r) ,

or
∂ζφ1 = O(r) .

This integrates at once to give φ1 = Q+O(r) where Q is holomorphic in ζ on
S. It is also bounded (since it is the contraction of the self-dual part of the
Maxwell field with the volume form of S), and so it must be constant (the value
of this constant is proportional to the charge of the black hole). Now from (A.1)
and (A.2)

Å = K = 4|Q|2

which establishes (i) and (ii).
For (iii) return to (2.17). Taking components along the null tetrad, we find

∂V

∂r
= 2φ1 (A.3)

δV = −2φ0 (A.4)
δV = r2Aφ2. (A.5)

Thus δV and δV vanish at S while ∂V
∂r = 2Q, so that

V = 2Qr +O(r2). (A.6)

2

B The mass-charge inequality

Consider the following spinor covariant derivative on S :

∇i = Di +Ai , (B.1)

where Di is the standard spin connection for spinor fields, and

Ai =
1
2
Kijγ

jγ0−
1
2
Ekγkγiγ0−

1
4
εjk`B

jγkγ`γi . (B.2)

Here the γµ’s are local sections of a bundle of spinor-endomorphisms which,
in an ON-frame for the Riemannian metric g on S , satisfy the usual relation
γµγν + γνγµ = 2diag(1,−1,−1,−1). By construction, constancy of a spinor ψ
in this connection is the projection into S of the equations (2.10, 2.11).

The identity which lies at the heart of the mass-charge inequality reads

Di〈φ, (∇i + γiγj∇j)φ〉 = |∇φ|2 − |γi∇iφ|2

+
1
4
〈φ,
{
µ+ (νiγi + 4div(E))γ0 − 4div(B)γ1γ2γ3

}
φ〉 , (B.3)
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where

µ = R− |K|2g + (trgK)2 − 2|E|2g − 2|B|2g , (B.4)

νj = 2Di(Kij − trgKgij)− 4εjk`EkB` . (B.5)

The matrix appearing in the second line of (B.3) is of the form

A := aµγ0γµ + bγ0 + cγ1γ2γ3 . (B.6)

We note the inequality

〈ψ,Aψ〉 ≥
(
a0 −

√
|~a|2δ + b2 + c2

)
|ψ|2 , (B.7)

with equality if and only if both sides vanish, in particular the quadratic form
〈ψ,Aψ〉 is non-negative if and only if

a0 ≥
√
|~a|2δ + b2 + c2 . (B.8)

This shows that the second line of (B.3) will be non-negative when (2.6)-(2.7)
hold. Furthermore, the vanishing of the left-hand-side of (B.7) with a non-trivial
ψ implies equality in (B.8). Under the conditions of Theorem 2.1, standard
arguments (see, e.g., [3, 15]) give existence of a solution of the equation γi∇iψ =
0 (with appropriate boundary conditions [12, 15] at a weakly trapped boundary,
if relevant), which in turn leads to the inequality (2.9). The case of equality
leads to the existence of a spinor field ψ satisfying

∇iψ = 0 . (B.9)

We set
N = 〈ψ,ψ〉 , Y i = 〈ψ, γ0γiψ〉 , (B.10)

and we consider the Killing development (MK , gK ) of (S , g,N, Y ) as in (4.3).
The electromagnetic field Fµν can be constructed out of E and B on S in the
obvious way, and we extend F to MK by requiring LXF = 0.

We need to show that ψ extends to a super-covariantly constant Killing
spinor on MK .

Splitting the (Dirac) spinor ψ into a pair of 2-component spinors (αA, βA′),
we write (B.9) as the projection into S of (2.10, 2.11) as

Pµ
ν(∇NN ′αB +

√
2φNBβN ′) = 0 (B.11)

Pµ
ν(∇NN ′βB′ −

√
2φN ′B′αN ) = 0, (B.12)

where Pµν is the projection orthogonal to n (thus Pµν = 4gµν − nµnν).
Following (B.10), the Killing vector X = Nn+ Y is given at S by

X =
1√
2

(αAαA
′
+ β

A
βA
′
)

∂

∂xAA′
, (B.13)
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compare (2.12). We extend the spinors (αA, βA′) off of S by requiring their
Lie-derivative along X to vanish. (Recall that the Lie-derivative of a spinor
field αA along a Killing vector Xa is defined as

LXαA := Xµ∇µαA + ΦA
MαM (B.14)

where the symmetric spinor ΦMN is defined by

∇µXν = ΦMN εM ′N ′ + ΦM ′N ′εMN .

See e.g. [16, p. 40]).
Then (B.13) holds throughout MK . We define V = αAβ

A as in Section 2.1
and then we can calculate the derivative of X at S and in directions tangent
to S from (B.11) and (B.12) as

Pµ
ν∇νXβ = Pµ

ν(V φNBεN ′B′ + V φN ′B′εNB). (B.15)

However, in MK , X is a Killing vector so that ∇(µXν) = 0. It follows that,
at S , we can omit the Pµν in (B.15). Then both sides have vanishing Lie-
derivative along X and we recover equation (2.18) for the derivative of X
throughout MK .

By (B.13) we have

XAA′βA′ = − V̄√
2
αA , XAA′αA =

V√
2
βA
′
.

We may use (B.14) and the above to write the constancy of αA and βA′ along
X in the form

Xµ(∇MM ′αA +
√

2φAMβM ′) = 0
Xµ(∇MM ′βA′ −

√
2φA′M ′αM ) = 0.

Taken with (B.11) and (B.12), and since X has a nonzero component along n,
this shows that (2.10) and (2.11) hold at S .

To complete the proof we need a result from spinor calculus: for a Killing
vector X and any spinor field χ

(LX∇µ −∇µLX)χ = 0.

To prove this, observe that it is true for any tensor in place of χ, so all that
is necessary is to check it for the spinors εAB, εA′B′ ; this property follows
immediately from (B.14).

Now all quantities in (2.10) and (2.11) have vanishing Lie-derivative along
X so that, by virtue of holding at S , these equations hold throughout MK :
there is therefore a supercovariantly constant spinor in MK .

The case V = 0 leads to metrics which, locally, are pp-waves [13, 27] (not
necessarily electro-vacuum). Asymptotically flat pp-waves do not satisfy the
regularity hypotheses set forth here, except if the space-time metric is flat [4].
As flat metrics belong to the IWP family, Theorem 2.1 is proved.
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