
POISSON PROCESSES REVISITEDJ.F.C. KingmanIn Memoriam Kazimierz UrbanikSummary The thesis of this paper is that a good basis for de�ning Poissonproesses on a general state spae is to assume that the mean measure satis�esa simple bisetion property, that every set of �nite measure an be divided intotwo disjoint subsets of equal measure. This assumption is weaker than thoseusually made, and leads to simple and onrete proofs of the basis results. Asan illustration, a very general version of R�enyi's haraterisation theorem isproved. The paper also gives a straightforward aount of the Poisson-Dirihletdistribution.2000 Subjet Classi�ation 60D05, 28A12Keywords Poisson proess, bisetion property, R�enyi's haraterisation, Poisson-Dirihlet distribution1 Poisson proesses on general spaesIn my 1993 book [6℄, I o�ered a treatment of the theory of Poisson proesses inwhih they were regarded as random ountable subsets of a state spae aboutwhih only minimal assumptions were made. The point of onsidering verygeneral state spaes was to avoid speial onsiderations suh as topology orordering, whih obsure the essential simpliity of the theory.Experiene in using the book for teahing postgraduate ourses has shownthat this general approah is sound. Students develop an intuition in whih theythink of the state spae as the plane R2 , but realise that the arguments applymuh more generally. They then have no diÆulty oping with Poisson pro-esses on, for instane, ompliated manifolds of the sort that arise in stohastigeometry [5℄.I have however also ome to realise that the partiular assumptions made in[6℄ are lumsy and lak intuitive appeal. They also lead to unneessarily omplexproofs, involving quite subtle uses of Fubini's theorem. There is a better way,whih it is the purpose of this paper to explain.The state spae of whih the Poisson proess is to be a random ountablesubset is a quite general measurable spae S. That is to say, S is equipped witha non-empty family of subsets alled measurable sets, and this family is losed1



under the formation of omplements, ountable unions and intersetions. Let �be a (positive) measure on S. For simpliity, � will be assumed �-�nite, althoughthis is not stritly neessary. A Poisson proess on S with mean measure � isthen de�ned to be a random ountable subset � � S suh that, if N(A) is thenumber of points of � in the measurable set A � S, then(i) N(A) is a random variable having the Poisson distribution with mean �(A),and(ii) for disjoint A1; A2; : : : ; Ak, the random variables N(A1); N(A2); : : : ; N(Ak)are independent.Suh a random set needs to be de�ned on some probability spae (
;F ;P)(and as usual the probability measure P is assumed to be omplete), so that� is a funtion from 
 into the set of all ountable subsets of S, and N(A) isan F-measurable funtion from 
 into f0; 1; 2; : : : ;1g. Condition (i) means ofourse that, if 0 < �(A) <1,P fN(A) = ng = �(A)ne��(A)=n! (1.1)for n = 0; 1; 2; : : :. If �(A) = 0 it means thatPfN(A) = 0g = 1 ; (1.2)while if �(A) =1 it is to be read asPfN(A) =1g = 1 : (1.3)Condition (ii) need only be veri�ed when 0 < �(Aj) <1 for j = 1; 2; : : : ; k.In order to prove the existene of � and to develop its properties, some mildondition must be imposed on S and �. In [6℄ it is assumed that the diagonalD = f(x; x);x 2 Sg (1.4)is a measurable subset of the produt spae S � S. This implies that everysingleton fxg is measurable in S, and the fat that N(fxg) 6 1 then requiresus to assume that �fxg = 0 (x 2 S) ; (1.5)that � has no point atoms. By Fubini's theorem, this is equivalent to thestatement that (�� �)(D) = 0 ; (1.6)where (�� �) is the unompleted produt measure on S � S.These onditions are quite easy to hek in partiular ases, but they annotbe said to be natural or transparent. A muh better approah will be desribedin the next setion.2 The bisetion propertyIn this alternative approah no assumptions at all are made about the measur-able spae S. The measure � is said to have the bisetion property if, for any2



measurable A � S with �(A) <1, there exists a measurable B � A with�(B) = 12�(A) : (2.1)This implies (1.5) if fxg is measurable, but is in general stronger. In fat,Halmos ([4℄, set. 41) has shown that the bisetion property is equivalent to amore general version of non-atomiity of �.However, the Halmos result lies rather deep, and is not really relevant tothe theory or appliation of Poisson proesses. The bisetion property has threegreat pedagogial advantages:(i) it is onrete and easy to visualise,(ii) it is easy to hek in partiular ases, and involves very little loss of gener-ality, and(iii) it leads to straightforward proofs.These assertions will be justi�ed below.The easiest way to prove the bisetion property for a measure � is to on-strut a heesewire. (The name omes from the devie used to ut a measuredportion of heese in old-fashioned shops.) A heesewire for � is a measurablefuntion f : S ! R with the property that, for any � 2 R, the measurable setf�1f�g = fx 2 S; f(x) = �g (2.2)has � �f�1f�g� = 0 : (2.3)If � admits suh a funtion, and A � S has �(A) <1, the funtion g : R ! Rde�ned by g(�) = �fx 2 A; f(x) 6 �g (2.4)is monotone inreasing, withlim�!�1 g(�) = 0 ; lim�!1 g(�) = �(A) : (2.5)Beause it is monotone, g has only jump disontinuities, and suh a disontinuityat � would ontradit (2.2). Thus g is ontinuous, and takes every value stritlybetween 0 and �(A). In partiular, there exists � withg(�) = 12�(A) ; (2.6)and B = fx 2 A ; f(x) 6 �g (2.7)then satis�es (2.1).Thus the existene of a heesewire implies the bisetion property (and it isan interesting exerise to prove the onverse for �-�nite �). It is usually possibleto write down a heesewire by inspetion of �. For instane, if S = Rd (withthe usual measurable struture) and � has a density with respet to Lebesguemeasure, any oordinate funtion is a heesewire. If S is a manifold embedded3



in Rd , it may be neessary to hoose f more arefully to ut aross S, but I knowof no signi�ant ase in whih the onstrution of f presents any real diÆulty.Nevertheless, it is important to understand just how strong is the restritionimposed by the bisetion property, and this is an issue to whih we shall returnin Setion 5.3 Uses of the bisetion propertyLet us now test assertion (iii), that the bisetion property leads to straightfor-ward proofs of the basi theorems about Poisson proesses. The �rst diÆultproof enountered by the reader of [6℄ is that of the Disjointness Lemma. Thisstates that if �1 and �2 are independent Poisson proesses on the same spaeS, and if their mean measures �1 and �2 are both �nite, then they are disjointwith probability 1: P f�1 \ �2 = ;g = 1 : (3.1)If �1 and �2 both have the bisetion property, proeed as follows. Let n =2� be any power of 2. Use (2.1) � times to express S as a disjoint union ofmeasurable sets S1; S2; : : : ; Sn with�1(Si) = n�1�1(S) (i = 1; 2; : : : ; n) : (3.2)Then apply (2.1) to �2 to express eah Si as a disjoint union of measurable Sijwith �2(Sij) = n�1�2(Si) (j = 1; 2; : : : ; n) : (3.3)Observe that f!; �1 \ �2 6= ;g � En ;where En = n[i;j=1 f!;N1(Sij) > 1 ; N2(Sij) > 1g
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belongs to F and has probabilityP(En) 6 nXi;j=1P fN1(Sij) > 1 ; N2(Sij) > 1g= nXi;j=1P fN1(Sij) > 1gP fN2(Sij) > 1g6 nXi;j=1�1(Sij)�2(Sij)= n�1 nXi;j=1�1(Sij)�2(Si)= n�1 nXi=1 �1(Si)�2(Si)= n�2 nXi=1 �1(S)�2(Si)= n�2�1(S)�2(S) :Letting n!1 shows that P( 1\n=1En) = 0 ;whih implies (3.1) sine P is omplete.A very similar argument proves the Mapping Theorem, whose proof in [6℄again involves a subtle Fubini argument. This theorem onerns a funtionf : S ! S�, where S� is another measurable spae and f is measurable. It givesonditions to ensure that, if � is a Poisson proess on S with �-�nite meanmeasure �, then f(�) = ff(x);x 2 �g (3.4)is a Poisson proess on S� whose mean measure �� is given by��(A) = �(f�1(A)) (A � S�) : (3.5)This will be true if, with probability 1, no two points of � map under f intothe same point of S�.This will be the ase if �� has the bisetion property. To see this, supposethat �� has that property, and let A � S� be measurable with ��(A) <1. Forn = 2� , disset A into disjoint A1; A2; : : : ; An with��(Ai) = n�1��(A) (i = 1; 2; : : : ; n) : (3.6)If two points of � map into the same point of A then there is a value of i withtwo points of f(�) in Ai, and soN [f�1(Ai)℄ > 2 : (3.7)5



Now the probability that a Poisson random variable with mean � is 2 or moreis at most 12�2, so that the probability that (3.6) holds for some i is at mostnXi=1 P ��N �f�1(Ai)� > 2	�6 12Pni=1 � �f�1(Ai)�2= 12Pni=1 n�2��(A)2= ��(A)2=2n :Letting n!1 gives the required result.These two examples should be enough to show the power of the bisetionproperty, but there is a third whih is glossed over in [6℄. In the proof of theExistene Theorem, it is neessary to know that a number of independent ran-dom variables take distint values with probability one. An obvious appliationof the bisetion property deals with this too.4 Poisson random measuresIt might be argued that the ompliations of the last setion ould be avoided byworking with the integer-valued random measure N(�) rather than the randomset �. Thus N(�) is a random measure on S whose values N(A) have Poissondistributions, and are independent on disjoint sets.In this approah the mean measure�(A) = EfN(A)g (4.1)may have point atoms. If fxg is measurable and �fxg > 0, the variable N(fxg)is greater than 1 with positive probability. The proofs of results like the MappingTheorem are almost trivial.There omes a point, however, when one needs to know whether or not N(�)does have multiple points. Under what onditions, in other words, is it truethat P fN(fxg) 6 1 for all x 2 Sg = 1 ? (4.2)Arguments just like those of Setion 3 show easily that a suÆient ondition isthat � be �-�nite and have the bisetion property.The two approahes are mathematially (but not pedagogially) equivalent,and a hoie between them is a matter of taste. It is true that random sets withmultiple points arise in applied probability (think of queues with bath arrivals)but the multipliities are not usually Poisson distributed. It is better to handlemultiple points by means of the theory of marked Poisson proesses, allowingmore general distributions.
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5 The fore of the bisetion propertyIt is natural to ask how the bisetion property ompares with the onditionsassumed in [6℄, measurability of the diagonal and absene of point atoms. Ifthe bisetion property were more restritive, this might outweigh its greatertranspareny. However, the opposite is the ase, as the next theorem shows.Theorem 1 Let � be a �-�nite measure on the measurable spae S. Then �has the bisetion property if and only if the diagonal D � S � S has zero outermeasure for the produt measure � � �. In partiular, if D is a measurablesubset of S � S and �fxg = 0 for all x, then � has the bisetion property.Proof Suppose �rst that � is �-�nite and has the bisetion property. DissetS into disjoint S1; S2; : : : with�(Si) = mi <1 (i = 1; 2; : : :) : (5.1)For any � > 0, let ni be a power of 2 withni > ��1m2i 2i ; (5.2)and use the bisetion property to disset Si into disjoint Sij(j = 1; 2; : : : ; ni)with �(Sij) = mi=ni (j = 1; 2; : : : ; ni) : (5.3)Then, sine D � 1[i=1 ni[j=1 (Sij � Sij) ; (5.4)the (�� �) outer measure of D is at most1Xi=1 niXj=1(�� �)(Sij � Sij)= 1Xi=1 niXj=1 �(Sij)2= 1Xi=1 niXj=1(mi=ni)2= 1Xi=1m2i =ni< 1Xi=1 �2�i = � :Thus the outer measure of D is 0.To prove the onverse, suppose that � does not have the bisetion property.The result of Halmos ited above shows that there is a measurable A � S with0 < �(A) = m <1 ; (5.5)7



and that every measurable B � A has either �(B) = 0 or �(B) = �(A) = m.Consider these families of subsets of A�A:A onsists of all sets of the form(N1 �A)[(A�N2) (5.6)with N1 and N2 measurable and�(N1) = �(N2) = 0 : (5.7)Clearly A is losed under ountable unions, and every set in A has (� � �)measure 0.B onsists of all subsets of A (measurable or not) whih are ontained in somemember of A; it is losed under ountable unions and intersetions, and everymember of B has (�� �) outer measure 0.C onsists of all sets in B and all sets whose omplements in A�A are in B. Itis easy, but not quite trivial, to hek that C is a �-algebra, and of ourseA � B � C : (5.8)If B and C are measurable subsets of A, thenB � C � (B �A)\(A� C) (5.9)is in B unless �(B) and �(C) are both non-zero. If this is so, �(B) = �(C) = m,and the omplements N1 and N2 of B and C in A satisfy (5.7). The omplementof B�C in A�A is then given by (5.6), so that this omplement is in B. HeneC ontains B �C for all measurable B;C and sine it is a �-algebra it ontainsevery measurable subset of A�A.Now suppose that E is any measurable subset of A�A whih ontainsDA = f(x; x);x 2 Ag : (5.10)Then E 2 C, and therefore either E or its omplement belongs to B. If E 2 B,there are sets N1 and N2 satisfying (5.4) withDA � E � (N1 �A)\(A�N2) : (5.11)This implies that �(A) = 0, ontraditing (5.5).Thus the omplement of E must belong to B, so that(�� �)(E) = (�� �)(A�A) = m2 : (5.12)Sine this holds for every measurable over of DA, the (� � �) outer measureof DA is m2 > 0, whih shows that D � DA has non-zero outer measure, asrequired.To omplete the proof, note that if D is measurable and � is �-�nite, thenthe bisetion property is equivalent to (1.6), whih is equivalent to (1.5) byFubini's theorem. 8



6 R�enyi's theoremIn [9℄ R�enyi proved a very surprising result about Poisson proesses in R. Let� be a random loally �nite subset of R with the property that the number ofpoints of � in any �nite union A of bounded intervals has a Poisson distributionwith mean �(A), � being a non-atomi measure �nite on bounded intervals.No independene assumption is made, but R�enyi proves that � is a Poissonproess. The fore of this theorem is emphasised by a ounterexample dueto Moran [8℄, whih shows that `�nite union of bounded intervals' annot bereplaed by `bounded interval'.Setion 3.4 of [6℄ generalises R�enyi's result to Rd , but the result is in fatmuh more general, depending only on the bisetion property of �.Theorem 2 Let � be a �-�nite measure on S with the bisetion property.Let � be a random subset of S, and denote by N(A) 61 the number of pointsof � in the measurable subset A of S. IfEfN(A)g = �(A) ; PfN(A) = 0g = e��(A) (6.1)for every A with �(A) �nite, then � is a Poisson proess with mean measure �.Proof Let A be any family of subsets of S with �nite measure, suh thatany two sets in A are disjoint. Then, by (6.1), if A1; A2; : : : ; An belong to A,PfN(A1) = N(A2) = : : : = N(An) = 0g= P fN ([nr=1Ar) = 0g= exp [�� ([nr=1Ar)℄ = exp"� nXr=1 �(Ar)#= nYr=1P fN(Ar) = 0g :Hene the events E(A) = fN(A) = 0g = f�\A = ;g ; (6.2)as A runs over A, are independent.Now �x a set A with �(A) = m < 1. Use the bisetion property to divideA into disjoint sets A0; A1 with�(A0) = �(A1) = 12m; (6.3)and think of A0 and A1 as the `hildren' of A. Divide eah of A0 and A1 intodisjoint `grandhildren' of measure 14m, so thatA0 = A00 [A01 ; A1 = A10 [ A11 ; (6.4)�(A00) = �(A01) = �(A10) = �(A11) = 14m: (6.5)Continue in this way, so that the sets of the kth generation, labelled by stringsof k binary digits, eah have measure 2�km.9



The 2k sets A::: of the kth generation are pairwise disjoint, and so the eventsE(A:::) (6.6)are independent, with equal probabilitiesexp(�2�km) : (6.7)Hene Nk(A), de�ned as the number of the kth generation sets that ontainpoints of �, has a binomial distribution withE fNk(A)g = 2k �1� exp ��2�km�� : (6.8)Clearly Nk(A) 6 Nk+1(A) 6 N(A) ; (6.9)so that N1(A) = limk!1Nk(A) (6.10)exists, and EfN1 (A)g = limk!1 EfNk (A)g = m (6.11)by (6.8). Sine N1(A) is the limit of binomial variables Nk(A), it has thePoisson distribution with mean m = �(A). The random variableN(A)�N1(A) (6.12)is non-negative by (6.9) and has zero expetation by (6.1), so thatPfN(A) = N1(A)g = 1 ; (6.13)and therefore N(A) has the Poisson distribution with mean �(A).Now let A1; A2; : : : ; An be disjoint sets of �nite measure. Carry out therepeated bisetion for eah Ar, and for a �xed value of k let Ak onsist ofall the kth generation subsets of all the Ar. The sets A::: in Ak are pairwisedisjoint, and so that events E(A:::) are independent. Thus, for any �xed valueof k, the random variables Nk(Ar)(r = 1; 2; : : : ; n) are independent. It followsfrom (6.10) that the N1(Ar) are independent, and (6.13) shows that the N(Ar)are independent. This ompletes the proof.7 Separating bisetorsTheorem 2 ontains R�enyi's theorem as a speial ase. It is stronger not onlybeause the state spae S is quite general, but also beause it only uses thetwo properties (6.1), rather than the full panoply of the Poisson distribution(1.1). However, the theorem proved in Setion 3.4 of [6℄ is still stronger (whenS = Rd ), beause it assumes only thatPfN(A) = 0g = e��(A) : (7.1)10



An examination of the proof of Theorem 2 shows that the only point wherewe need the other ondition of (6.1) is in proving that N1(A) = N(A) withprobability 1, and this is ahieved in a di�erent way in [6℄. Before explainingthis for general S, onsider what an be said if N1(A) an be stritly less thanN(A) with positive probability.If A is a set of �nite measure m, the repeated bisetion of A desribed inthe proof of Theorem 2 de�nes a funtion : A! 
 = f0; 1g1 (7.2)from A into the spae 
 of in�nite binary sequenes! = (!1; !2; : : : ; !k; : : :) ; (7.3)suh that the kth generation set ontaining x has label 1(x) ;  2(x) ; : : : ;  k(x) : (7.4)Beause eah kth generation set has measure 2�km, the restrition �A of � toA indues under  the measure �A �1 = m� ; (7.5)where � is the Bernoulli (oin tossing) probability measure on 
 whih makesthe !k independent random variables taking the values 0 and 1 with probability12 . The random subset �\A maps into a random subset� = f (x);x 2 �\Ag (7.6)of 
, and it is easy to see that, for B � 
, N1( �1B) is the number of pointsof � in B. The argument of Theorem 2 shows that, if (7.1) holds, then � is aPoisson proess on 
 with mean measure m�. If N1(A) < N(A), it is beausedistint points of �\A map into the same point of 
.The reason why this possibility an be exluded when S = Rd is that, atleast if � has a density, it is always possible to arry out the bisetion of Aso that the funtion  is an injetion. One has only to use as heesewires theoordinate funtions in rotation, the kth bisetion using the heesewire(x1; x2; : : : ; xd) 7�! xr(k) ; (7.7)where r(k) is the remainder of k when divided by d (or d if d divides k).More generally, Theorem 2 holds under the weaker assumption (6.1) if thereis an injetion (7.2) satisfying (7.5). If this holds for all A of �nite measure,we say that (S; �) admits separating bisetors. Thus (Rd ; �) admits separatingbisetors if � is �nite on bounded sets and has a density with respet to Lebesquemeasure.The onept has other appliations. For instane, Setion 8.3 of [6℄ ontains aversion of an argument of Blakwell [3℄ for proving that ertain randommeasures11



are purely atomi with probability 1. Blakwell makes topologial assumptionswhih imply the existene of an injetion (7.2), and then uses the sequentialstruture of 
 to bring to bear a tehnique from the theory of games. Theproof is onsiderably simpli�ed if one an ontrol the indued measure under  ,and if this is a multiple of � the simpli�ation is optimal. Thus the onept ofseparating bisetors is a powerful one.Although the proofs are similar, the ontents of the theorems in [3℄ and [6℄are distint. Blakwell is onerned with a Dirihlet random measure on S,whih is a random probability measure P suh that, for disjoint A1; A2; : : : ; Anwith union S, the vetor (P (A1) ; P (A2) ; : : : ; P (An)) (7.8)has the Dirihlet distribution with density�(�1 + �2 + : : :+ �n)�(�1)�(�2) : : :�(�n) x�1�11 x�2�12 : : : x�n�1n (7.9)on the simplex x1; x2; : : : ; xn > 0 ; x1 + x2 + : : :+ xn = 1 : (7.10)The parameters �r are given by �r = �(Ar) ; (7.11)where � is a �nite measure on S.On the other hand, Setion 8.3 of [6℄ deals with ompletely randommeasures,for whih the values on disjoint sets are independent. However, Blakwell'stheorem an be brought within this framework although Dirihlet measures arenot ompletely random. An argument used for a di�erent purpose in [7℄ showsthat, if Z is independent of P (�) and has a gamma distribution with parameter�(S), then ZP (�) (7.12)is a ompletely random measure.8 The Poisson-Dirihlet distributionChapter 9 of [6℄ is an introdution to the theory of the Poisson-Dirihlet distri-bution, a theory whih has developed signi�antly sine 1993. Arratia, Barbourand Tavar�e give in [1℄ an exhaustive aount of the theory and its appliations.A weakness of [6℄ is that the fundamental properties of the distribution areproved using deep results from the L�evy theory of subordinators. In fat, theelementary theory of Poisson proesses is all that is needed.Theorem 3 Let �� be a Poisson proess on (0;1) with density�y�1e�y ; (8.1)12



where � is a positive onstant. Then the points of �� may be written in desend-ing order as Y1 > Y2 > Y3 > : : : > 0 (8.2)and Yr ! 0 with probability one. The random variableZ = 1Xr=1 Yr (8.3)is almost ertainly �nite, and has the gamma distribution with probability density���1e��=�(�) (� > 0) : (8.4)The random variables Xr = Yr=Z (8.5)are independent of Z and satisfyX1 > X2 > : : : > 0 ; 1Xr=1Xr = 1 : (8.6)The joint distribution of the in�nite sequene(X1; X2; : : :) (8.7)is the Poisson-Dirihlet distribution PD(�). It �rst arose [10℄ as a limiting formof the Dirihlet distribution (7.9), when n is large and �j small. The onlydiÆult aspet of Theorem 3 is the independene property, but the advantageof the proof below is that it also establishes the limit theorem in full generality.Theorem 4 Suppose that, for any n > 1, the random variables �n1; �n2; : : : ; �nnhave joint distribution of the Dirihlet form (7.9), with parameters �n1; �n2; : : : ; �nn.Suppose that, as n!1, nXr=1�nr !1 2 (0;1) (8.8)and that max (�nr; r = 1; 2; : : : ; n)! 0 : (8.9)Denote by Xnr the rth largest of the �nr. Then the joint distribution of therandom sequene (Xn1; Xn2; : : : ; Xnn; 0; 0; : : :) (8.10)onverge as n!1 to those of PD(�).To prove these two theorems, we �rst onstrut a Poisson proess � on thepositive quadrant S = f(u; v);u; v > 0g (8.11)of R2 whose density u�1e�u (8.12)13



depends only on u. For any � > 0, the Mapping Theorem [6℄ shows that�� = fU ; (U; V ) 2 � ; V < �g (8.13)is a Poisson proess on (0;1) whose density is given by (8.1). This density is,for any � > 0, integrable on (�;1) but not on (0; �), so that �� has a limit pointat 0 but not at 1. Its points an therefore be written in the form (8.2), andYr ! 0 with probability 1. We an and shall take the proess �� of Theorem 3to have been onstruted in this way, so that Yr is the rth largest of the pointsU , where (U; V ) runs over those points of � with V < �.For any 0 6 a < b, onsider the random variableW (a; b) = X(U;V )2�a<V<bU : (8.14)Its distribution an be alulated by Campbell's Theorem [6℄: for t > 0,E ne�tW (a;b)o = exp(Z 10 Z ba �e�tu � 1�u�1e�ududv)= (1 + t)�(b�a) :This shows that W (a; b) is �nite with probability one, and has the gammadistribution (8.4) with parameter (b�a). Moreover, the independene propertyof � means that the W (a; b) for disjoint intervals (a; b) are independent randomvariables.In partiular, for �xed � > 0 and any n > 2, the variables�nr =W [(r � 1)�n�1; r�n�1℄; (r = 1; 2; : : : ; n) (8.15)are independent with the same gamma distribution with parameter �n�1, andaXr=1 �nr =W (�) : (8.16)A well known fat, easily proved by hange of variables, is that the variables�nr = �nr=W (�) (r = 1; 2; : : : ; n) (8.17)are independent of W (�) and have joint distribution of Dirihlet form (7.9) inwhih all the parameters �r are equal to �n�1.Let Ynr be the rth largest of the �ns(s = 1; 2; : : : ; n), so thatXnr = Ynr=W (�) (8.18)is the rth largest of the �ns. Then it is a matter of elementary, non-stohasti,analysis to show that limn!1Ynr = Yr : (8.19)14



To see this, �rst note that with probability 1, the points V for (U; V ) 2 �are distint (proof as in Setion 3). Hene for suÆiently large n, the pointsV orresponding to the u-values Y1; Y2; : : : ; Yr fall in di�erent intervals ((s �1)�n�1; s�n�1). Hene, for any r > 1,Ynr > Yr (n > N(r)) (8.20)for some N(r). On the other hand,nXr=1 Ynr = nXs=1 �ns =W (�) = 1Xr=1 Yr : (8.21)If (8.19) is false, there exist r > 1 and � > 0 suh thatYnr > Yr + � (8.22)for in�nitely many n. Choose k > r so large thatkXs=1 Ys > W (�)� � ; (8.23)and then hoose n > N(1); N(2); : : : ; N(k) to satisfy (8.22). ThenkXs=1 Yns > kXs=1 Ys + � > W (�) ; (8.24)whih ontradits (8.21).The ontradition proves (8.19), so that, for r > 1,limn!1Xnr = Yr=W (�) = Xr ; (8.25)in the notation of Theorem 3. Sine the Xnr are independent of W (�) = Z,their limits Xr are independent of Z, and Theorem 3 is proved.Notie that we have also proved the speial ase of Theorem 4 in whih�nr = �=n : (8.26)However, the only use we have made of the dissetion of (0; �) into equal subin-tervals has been to ensure that distint points are, for large enough n, in di�er-ent subintervals. For general �nr satisfying (8.8) and (8.9), the same argumentworks with (8.15) replaed by�nr =W (�n1 + �n2 + : : :+ �n;r�1; �n1 + �n2 + : : :+ �nr) : (8.27)This proves Theorem 4 in full generality.The independene property asserted in Theorem 3 is harateristi of thedensity (8.1) and its mean relatives. To see this, suppose that � is a Poissonproess on (0;1) with mean measure �. Suppose thatZ y�(dy) <1 ; (8.28)15



so that Z = XY 2�Y (8.29)is �nite with probability one. Suppose �nally that the (non-Poisson) randomset fY=Z ; Y 2 �g (8.30)is independent of Z. Colour the points of � red or green with equal probabilities,distint points oloured independently. Then the red points and the green pointsform independent Poisson proesses.Let Z1 be the sum ( 8.28) taken over the red points, and Z2 the same overthe green points. Then Z1 and Z2 are independent andZ = Z1 + Z2 :Moreover, Z1=Z2 an be expressed in terms of a olouring of (8.29) whih isindependent of Z. Thus Z1 and Z2 are independent positive random variableswith the property that Z1=Z2 and Z1 + Z2 are independent. It is easy toshow that this an only happen if, for some  > 0, Z1 and Z2 have gammadistributions (8.4), so that Z has that distribution for some � > 0.Campbell's Theorem then shows that, for t > 0,(1 + t)�� = E �e�tZ	= exp�Z �e�ty � 1��(dy)� ;so that Z �1� e�ty��(dy) = � log(1 + t) :and this inverts to give �(dy) = �y�1e�ydy : (8.31)9 The marginals of PD(�)For many purposes, Theorem 3 is an adequate desription of PD(�), but whatit does not give is expliit formulae for the marginal distributions of the in�niterandom sequene (X1; X2; X3; : : :). These were �rst alulated by Billingsley [2℄in the speial ase � = 1 whih arises in number theory (see [7℄ for the tangledhistory). The general ase is due to Watterson [10℄ in the ontext of populationgenetis. None of the derivations in the literature [1℄ is entirely transparent,and it seems worth giving a self-ontained alulation in the spirit of [6℄.Consider �rst a Poisson proess � on (0; 1) with density�u�1(0 < u < 1) (9.1)and let T =XU��U : (9.2)16



Campbell's Theorem shows that T is �nite with probability 1, and for t > 0,E �e�tT � = exp��� Z 10 �1� e�tu�u�1du� :By a well-known identity,Z 10 (1� e�tu)u�1du = Z t0 (1� e�v)v�1dv= Z 1t e�vv�1dv + log t+  ;where  is Euler's onstant, so thatE �e�tT � = e��t�� exp��� Z 1t e�vv�1dv� : (9.3)Expanding the exponential shows that the right hand side is the Laplaetransform of an integrable funtion, whih must be the probability density ofT . The proess � has now served its purpose and is disarded, retaining onlythe fat that, for any � > 0, there is a probability density p� on (0;1), de�nedby its Laplae transformZ 10 p�(u)e�tudu = exp��� Z t0 (1� e�v)v�1dv� (9.4)= e��t�� exp��� Z 1t e�vv�1dv� : (9.5)A great deal of information about p� an be found in [1℄.Returning to the Poisson proess�� = fY1; Y2; : : :gof Theorem 3, note �rst that, onditional on the values of Y1; Y2; : : : ; Yn, thepoints Yr(r > n) form a Poisson proess on (0; Yn) with density�y�1e�y (0 < y < Yn) :Campbell's Theorem an then be used to �nd the onditional distribution ofZn = Yn+1 + Yn+2 + : : : ;for t > 0,E �e�tZn jY1; Y2; : : : ; Yn	 = exp �� Z Yn� (1� e�ty)y�1e�ydy! : (9.6)17



Now Z Yn0 �1� e�ty� y�1e�ydy = Z (1+t)Yn0 (1� e�v)v�1dv� Z 1Yn e�vv�1dv � logYn � and Sn = Z � Zn = Y1 + Y2 + : : :+ Yn ; (9.7)so that E �e�tZ jY1; Y2; : : : ; Yn	= e�tSn Z 10 p�(u)e�(1+t)Ynudu exp�� Z 1Yn e�vv�1dv�Y �n e� :Regarded as a funtion of t, this equation is a Laplae transform identity, whihan be inverted to show that, given Y1; Y2; : : : ; Yn, Z has a onditional proba-bility densityg(� ;Y1 ; Y2 ; : : : ; Yn) = p� �� � SnYn � e�(��Sn)Y ��1n e� exp�� Z 1Yn e�vv�1dv�in � > Sn. The joint distribution of Y1; Y2; : : : ; Yn has densitynYr=1 ��y�1r e�yr� exp��� Z 1yn v�1e�vdv� :and multiplying this by g(�; y1; y2 ; : : : ; yn) gives the joint probability density ofZ; Y1; Y2; : : : ; Yn in the formp� �� � snyn � (y1y2 : : : yn)�1y��1n e��e��n (9.8)in � > sn = y1 + y2 + : : :+ yn.Now make the hange of variableXr = Yr=Z ; (9.9)to show that the joint distribution of Z;X1; X2; : : : ; Xn has densityp� �1� x1 � x2 � : : : xnxn � (x1x2 : : : xn)�1���1x��1n e��e��n= fn(x1; x2; : : : ; xn)���1e���(�) ;wherefn(x1; x2; : : : ; xn) = e��n�(�)x��1nx1x2 : : : xn p� �1� x1 � x2 � : : :� xnxn � (9.10)18



in x1 + x2 + : : :+ xn < 1 : (9.11)This shows that, as we already know, (X1; X2; : : : ; Xn) and Z are independent,and that Z has a gamma distribution. But it also shows that the joint distri-bution of X1; X2; : : : ; Xn is given by (9.10), onsistently with the alulationsof Billingsley and Watterson.The densities fn must of ourse satisfy the onsisteny onditionsZ xn�10 fn(x1; x2; : : : ; xn�1; �)d� = fn�1(x1; x2; : : : ; xn�1) (9.12)for n > 2, and Z 10 f1(�)d� = 1 : (9.13)Substituting (9.10) into these equations gives the equations�u��1 Z 1max(u;1) v��p�(v � 1)dv = p�(u) (9.14)and �e��(�) Z 11 v��p�(v � 1)dv = 1 : (9.15)Taking Laplae transforms we easily reover (9.4), so that p� is uniquely deter-mined by (9.14) and (9.15).Referenes[1℄ R. Arratia, A.D. Barbour & S. Tavar�e Logarithmi Combina-tional Strutures: a Probabilisti Approah (European Mathematial Soiety,Zurih, 2003).[2℄ P. Billingsley, On the distribution of large prime divisors, Period. Math.Hungar. 2 (1972) 283{289.[3℄ D. Blakwell, Disreteness of Ferguson seletions, Ann. Statist. 1 (1973)356{358.[4℄ P.R. Halmos, Measure Theory (van Nostrand, Prineton, 1950).[5℄ E.F. Harding & D.G. Kendall (ed.) Stohasti Geometry (Wiley, NewYork, 1974).[6℄ J.F.C. Kingman, Poisson Proesses (Oxford, 1993).[7℄ J.F.C. Kingman, The Poisson-Dirihlet distribution and the frequeny oflarge prime divisors(2004, http://www.newton.am.a.uk/preprints/NI04019.pdf).19
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