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esses on general spa
esIn my 1993 book [6℄, I o�ered a treatment of the theory of Poisson pro
esses inwhi
h they were regarded as random 
ountable subsets of a state spa
e aboutwhi
h only minimal assumptions were made. The point of 
onsidering verygeneral state spa
es was to avoid spe
ial 
onsiderations su
h as topology orordering, whi
h obs
ure the essential simpli
ity of the theory.Experien
e in using the book for tea
hing postgraduate 
ourses has shownthat this general approa
h is sound. Students develop an intuition in whi
h theythink of the state spa
e as the plane R2 , but realise that the arguments applymu
h more generally. They then have no diÆ
ulty 
oping with Poisson pro-
esses on, for instan
e, 
ompli
ated manifolds of the sort that arise in sto
hasti
geometry [5℄.I have however also 
ome to realise that the parti
ular assumptions made in[6℄ are 
lumsy and la
k intuitive appeal. They also lead to unne
essarily 
omplexproofs, involving quite subtle uses of Fubini's theorem. There is a better way,whi
h it is the purpose of this paper to explain.The state spa
e of whi
h the Poisson pro
ess is to be a random 
ountablesubset is a quite general measurable spa
e S. That is to say, S is equipped witha non-empty family of subsets 
alled measurable sets, and this family is 
losed1



under the formation of 
omplements, 
ountable unions and interse
tions. Let �be a (positive) measure on S. For simpli
ity, � will be assumed �-�nite, althoughthis is not stri
tly ne
essary. A Poisson pro
ess on S with mean measure � isthen de�ned to be a random 
ountable subset � � S su
h that, if N(A) is thenumber of points of � in the measurable set A � S, then(i) N(A) is a random variable having the Poisson distribution with mean �(A),and(ii) for disjoint A1; A2; : : : ; Ak, the random variables N(A1); N(A2); : : : ; N(Ak)are independent.Su
h a random set needs to be de�ned on some probability spa
e (
;F ;P)(and as usual the probability measure P is assumed to be 
omplete), so that� is a fun
tion from 
 into the set of all 
ountable subsets of S, and N(A) isan F-measurable fun
tion from 
 into f0; 1; 2; : : : ;1g. Condition (i) means of
ourse that, if 0 < �(A) <1,P fN(A) = ng = �(A)ne��(A)=n! (1.1)for n = 0; 1; 2; : : :. If �(A) = 0 it means thatPfN(A) = 0g = 1 ; (1.2)while if �(A) =1 it is to be read asPfN(A) =1g = 1 : (1.3)Condition (ii) need only be veri�ed when 0 < �(Aj) <1 for j = 1; 2; : : : ; k.In order to prove the existen
e of � and to develop its properties, some mild
ondition must be imposed on S and �. In [6℄ it is assumed that the diagonalD = f(x; x);x 2 Sg (1.4)is a measurable subset of the produ
t spa
e S � S. This implies that everysingleton fxg is measurable in S, and the fa
t that N(fxg) 6 1 then requiresus to assume that �fxg = 0 (x 2 S) ; (1.5)that � has no point atoms. By Fubini's theorem, this is equivalent to thestatement that (�� �)(D) = 0 ; (1.6)where (�� �) is the un
ompleted produ
t measure on S � S.These 
onditions are quite easy to 
he
k in parti
ular 
ases, but they 
annotbe said to be natural or transparent. A mu
h better approa
h will be des
ribedin the next se
tion.2 The bise
tion propertyIn this alternative approa
h no assumptions at all are made about the measur-able spa
e S. The measure � is said to have the bise
tion property if, for any2



measurable A � S with �(A) <1, there exists a measurable B � A with�(B) = 12�(A) : (2.1)This implies (1.5) if fxg is measurable, but is in general stronger. In fa
t,Halmos ([4℄, se
t. 41) has shown that the bise
tion property is equivalent to amore general version of non-atomi
ity of �.However, the Halmos result lies rather deep, and is not really relevant tothe theory or appli
ation of Poisson pro
esses. The bise
tion property has threegreat pedagogi
al advantages:(i) it is 
on
rete and easy to visualise,(ii) it is easy to 
he
k in parti
ular 
ases, and involves very little loss of gener-ality, and(iii) it leads to straightforward proofs.These assertions will be justi�ed below.The easiest way to prove the bise
tion property for a measure � is to 
on-stru
t a 
heesewire. (The name 
omes from the devi
e used to 
ut a measuredportion of 
heese in old-fashioned shops.) A 
heesewire for � is a measurablefun
tion f : S ! R with the property that, for any � 2 R, the measurable setf�1f�g = fx 2 S; f(x) = �g (2.2)has � �f�1f�g� = 0 : (2.3)If � admits su
h a fun
tion, and A � S has �(A) <1, the fun
tion g : R ! Rde�ned by g(�) = �fx 2 A; f(x) 6 �g (2.4)is monotone in
reasing, withlim�!�1 g(�) = 0 ; lim�!1 g(�) = �(A) : (2.5)Be
ause it is monotone, g has only jump dis
ontinuities, and su
h a dis
ontinuityat � would 
ontradi
t (2.2). Thus g is 
ontinuous, and takes every value stri
tlybetween 0 and �(A). In parti
ular, there exists � withg(�) = 12�(A) ; (2.6)and B = fx 2 A ; f(x) 6 �g (2.7)then satis�es (2.1).Thus the existen
e of a 
heesewire implies the bise
tion property (and it isan interesting exer
ise to prove the 
onverse for �-�nite �). It is usually possibleto write down a 
heesewire by inspe
tion of �. For instan
e, if S = Rd (withthe usual measurable stru
ture) and � has a density with respe
t to Lebesguemeasure, any 
oordinate fun
tion is a 
heesewire. If S is a manifold embedded3



in Rd , it may be ne
essary to 
hoose f more 
arefully to 
ut a
ross S, but I knowof no signi�
ant 
ase in whi
h the 
onstru
tion of f presents any real diÆ
ulty.Nevertheless, it is important to understand just how strong is the restri
tionimposed by the bise
tion property, and this is an issue to whi
h we shall returnin Se
tion 5.3 Uses of the bise
tion propertyLet us now test assertion (iii), that the bise
tion property leads to straightfor-ward proofs of the basi
 theorems about Poisson pro
esses. The �rst diÆ
ultproof en
ountered by the reader of [6℄ is that of the Disjointness Lemma. Thisstates that if �1 and �2 are independent Poisson pro
esses on the same spa
eS, and if their mean measures �1 and �2 are both �nite, then they are disjointwith probability 1: P f�1 \ �2 = ;g = 1 : (3.1)If �1 and �2 both have the bise
tion property, pro
eed as follows. Let n =2� be any power of 2. Use (2.1) � times to express S as a disjoint union ofmeasurable sets S1; S2; : : : ; Sn with�1(Si) = n�1�1(S) (i = 1; 2; : : : ; n) : (3.2)Then apply (2.1) to �2 to express ea
h Si as a disjoint union of measurable Sijwith �2(Sij) = n�1�2(Si) (j = 1; 2; : : : ; n) : (3.3)Observe that f!; �1 \ �2 6= ;g � En ;where En = n[i;j=1 f!;N1(Sij) > 1 ; N2(Sij) > 1g
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belongs to F and has probabilityP(En) 6 nXi;j=1P fN1(Sij) > 1 ; N2(Sij) > 1g= nXi;j=1P fN1(Sij) > 1gP fN2(Sij) > 1g6 nXi;j=1�1(Sij)�2(Sij)= n�1 nXi;j=1�1(Sij)�2(Si)= n�1 nXi=1 �1(Si)�2(Si)= n�2 nXi=1 �1(S)�2(Si)= n�2�1(S)�2(S) :Letting n!1 shows that P( 1\n=1En) = 0 ;whi
h implies (3.1) sin
e P is 
omplete.A very similar argument proves the Mapping Theorem, whose proof in [6℄again involves a subtle Fubini argument. This theorem 
on
erns a fun
tionf : S ! S�, where S� is another measurable spa
e and f is measurable. It gives
onditions to ensure that, if � is a Poisson pro
ess on S with �-�nite meanmeasure �, then f(�) = ff(x);x 2 �g (3.4)is a Poisson pro
ess on S� whose mean measure �� is given by��(A) = �(f�1(A)) (A � S�) : (3.5)This will be true if, with probability 1, no two points of � map under f intothe same point of S�.This will be the 
ase if �� has the bise
tion property. To see this, supposethat �� has that property, and let A � S� be measurable with ��(A) <1. Forn = 2� , disse
t A into disjoint A1; A2; : : : ; An with��(Ai) = n�1��(A) (i = 1; 2; : : : ; n) : (3.6)If two points of � map into the same point of A then there is a value of i withtwo points of f(�) in Ai, and soN [f�1(Ai)℄ > 2 : (3.7)5



Now the probability that a Poisson random variable with mean � is 2 or moreis at most 12�2, so that the probability that (3.6) holds for some i is at mostnXi=1 P ��N �f�1(Ai)� > 2	�6 12Pni=1 � �f�1(Ai)�2= 12Pni=1 n�2��(A)2= ��(A)2=2n :Letting n!1 gives the required result.These two examples should be enough to show the power of the bise
tionproperty, but there is a third whi
h is glossed over in [6℄. In the proof of theExisten
e Theorem, it is ne
essary to know that a number of independent ran-dom variables take distin
t values with probability one. An obvious appli
ationof the bise
tion property deals with this too.4 Poisson random measuresIt might be argued that the 
ompli
ations of the last se
tion 
ould be avoided byworking with the integer-valued random measure N(�) rather than the randomset �. Thus N(�) is a random measure on S whose values N(A) have Poissondistributions, and are independent on disjoint sets.In this approa
h the mean measure�(A) = EfN(A)g (4.1)may have point atoms. If fxg is measurable and �fxg > 0, the variable N(fxg)is greater than 1 with positive probability. The proofs of results like the MappingTheorem are almost trivial.There 
omes a point, however, when one needs to know whether or not N(�)does have multiple points. Under what 
onditions, in other words, is it truethat P fN(fxg) 6 1 for all x 2 Sg = 1 ? (4.2)Arguments just like those of Se
tion 3 show easily that a suÆ
ient 
ondition isthat � be �-�nite and have the bise
tion property.The two approa
hes are mathemati
ally (but not pedagogi
ally) equivalent,and a 
hoi
e between them is a matter of taste. It is true that random sets withmultiple points arise in applied probability (think of queues with bat
h arrivals)but the multipli
ities are not usually Poisson distributed. It is better to handlemultiple points by means of the theory of marked Poisson pro
esses, allowingmore general distributions.
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5 The for
e of the bise
tion propertyIt is natural to ask how the bise
tion property 
ompares with the 
onditionsassumed in [6℄, measurability of the diagonal and absen
e of point atoms. Ifthe bise
tion property were more restri
tive, this might outweigh its greatertransparen
y. However, the opposite is the 
ase, as the next theorem shows.Theorem 1 Let � be a �-�nite measure on the measurable spa
e S. Then �has the bise
tion property if and only if the diagonal D � S � S has zero outermeasure for the produ
t measure � � �. In parti
ular, if D is a measurablesubset of S � S and �fxg = 0 for all x, then � has the bise
tion property.Proof Suppose �rst that � is �-�nite and has the bise
tion property. Disse
tS into disjoint S1; S2; : : : with�(Si) = mi <1 (i = 1; 2; : : :) : (5.1)For any � > 0, let ni be a power of 2 withni > ��1m2i 2i ; (5.2)and use the bise
tion property to disse
t Si into disjoint Sij(j = 1; 2; : : : ; ni)with �(Sij) = mi=ni (j = 1; 2; : : : ; ni) : (5.3)Then, sin
e D � 1[i=1 ni[j=1 (Sij � Sij) ; (5.4)the (�� �) outer measure of D is at most1Xi=1 niXj=1(�� �)(Sij � Sij)= 1Xi=1 niXj=1 �(Sij)2= 1Xi=1 niXj=1(mi=ni)2= 1Xi=1m2i =ni< 1Xi=1 �2�i = � :Thus the outer measure of D is 0.To prove the 
onverse, suppose that � does not have the bise
tion property.The result of Halmos 
ited above shows that there is a measurable A � S with0 < �(A) = m <1 ; (5.5)7



and that every measurable B � A has either �(B) = 0 or �(B) = �(A) = m.Consider these families of subsets of A�A:A 
onsists of all sets of the form(N1 �A)[(A�N2) (5.6)with N1 and N2 measurable and�(N1) = �(N2) = 0 : (5.7)Clearly A is 
losed under 
ountable unions, and every set in A has (� � �)measure 0.B 
onsists of all subsets of A (measurable or not) whi
h are 
ontained in somemember of A; it is 
losed under 
ountable unions and interse
tions, and everymember of B has (�� �) outer measure 0.C 
onsists of all sets in B and all sets whose 
omplements in A�A are in B. Itis easy, but not quite trivial, to 
he
k that C is a �-algebra, and of 
ourseA � B � C : (5.8)If B and C are measurable subsets of A, thenB � C � (B �A)\(A� C) (5.9)is in B unless �(B) and �(C) are both non-zero. If this is so, �(B) = �(C) = m,and the 
omplements N1 and N2 of B and C in A satisfy (5.7). The 
omplementof B�C in A�A is then given by (5.6), so that this 
omplement is in B. Hen
eC 
ontains B �C for all measurable B;C and sin
e it is a �-algebra it 
ontainsevery measurable subset of A�A.Now suppose that E is any measurable subset of A�A whi
h 
ontainsDA = f(x; x);x 2 Ag : (5.10)Then E 2 C, and therefore either E or its 
omplement belongs to B. If E 2 B,there are sets N1 and N2 satisfying (5.4) withDA � E � (N1 �A)\(A�N2) : (5.11)This implies that �(A) = 0, 
ontradi
ting (5.5).Thus the 
omplement of E must belong to B, so that(�� �)(E) = (�� �)(A�A) = m2 : (5.12)Sin
e this holds for every measurable 
over of DA, the (� � �) outer measureof DA is m2 > 0, whi
h shows that D � DA has non-zero outer measure, asrequired.To 
omplete the proof, note that if D is measurable and � is �-�nite, thenthe bise
tion property is equivalent to (1.6), whi
h is equivalent to (1.5) byFubini's theorem. 8



6 R�enyi's theoremIn [9℄ R�enyi proved a very surprising result about Poisson pro
esses in R. Let� be a random lo
ally �nite subset of R with the property that the number ofpoints of � in any �nite union A of bounded intervals has a Poisson distributionwith mean �(A), � being a non-atomi
 measure �nite on bounded intervals.No independen
e assumption is made, but R�enyi proves that � is a Poissonpro
ess. The for
e of this theorem is emphasised by a 
ounterexample dueto Moran [8℄, whi
h shows that `�nite union of bounded intervals' 
annot berepla
ed by `bounded interval'.Se
tion 3.4 of [6℄ generalises R�enyi's result to Rd , but the result is in fa
tmu
h more general, depending only on the bise
tion property of �.Theorem 2 Let � be a �-�nite measure on S with the bise
tion property.Let � be a random subset of S, and denote by N(A) 61 the number of pointsof � in the measurable subset A of S. IfEfN(A)g = �(A) ; PfN(A) = 0g = e��(A) (6.1)for every A with �(A) �nite, then � is a Poisson pro
ess with mean measure �.Proof Let A be any family of subsets of S with �nite measure, su
h thatany two sets in A are disjoint. Then, by (6.1), if A1; A2; : : : ; An belong to A,PfN(A1) = N(A2) = : : : = N(An) = 0g= P fN ([nr=1Ar) = 0g= exp [�� ([nr=1Ar)℄ = exp"� nXr=1 �(Ar)#= nYr=1P fN(Ar) = 0g :Hen
e the events E(A) = fN(A) = 0g = f�\A = ;g ; (6.2)as A runs over A, are independent.Now �x a set A with �(A) = m < 1. Use the bise
tion property to divideA into disjoint sets A0; A1 with�(A0) = �(A1) = 12m; (6.3)and think of A0 and A1 as the `
hildren' of A. Divide ea
h of A0 and A1 intodisjoint `grand
hildren' of measure 14m, so thatA0 = A00 [A01 ; A1 = A10 [ A11 ; (6.4)�(A00) = �(A01) = �(A10) = �(A11) = 14m: (6.5)Continue in this way, so that the sets of the kth generation, labelled by stringsof k binary digits, ea
h have measure 2�km.9



The 2k sets A::: of the kth generation are pairwise disjoint, and so the eventsE(A:::) (6.6)are independent, with equal probabilitiesexp(�2�km) : (6.7)Hen
e Nk(A), de�ned as the number of the kth generation sets that 
ontainpoints of �, has a binomial distribution withE fNk(A)g = 2k �1� exp ��2�km�� : (6.8)Clearly Nk(A) 6 Nk+1(A) 6 N(A) ; (6.9)so that N1(A) = limk!1Nk(A) (6.10)exists, and EfN1 (A)g = limk!1 EfNk (A)g = m (6.11)by (6.8). Sin
e N1(A) is the limit of binomial variables Nk(A), it has thePoisson distribution with mean m = �(A). The random variableN(A)�N1(A) (6.12)is non-negative by (6.9) and has zero expe
tation by (6.1), so thatPfN(A) = N1(A)g = 1 ; (6.13)and therefore N(A) has the Poisson distribution with mean �(A).Now let A1; A2; : : : ; An be disjoint sets of �nite measure. Carry out therepeated bise
tion for ea
h Ar, and for a �xed value of k let Ak 
onsist ofall the kth generation subsets of all the Ar. The sets A::: in Ak are pairwisedisjoint, and so that events E(A:::) are independent. Thus, for any �xed valueof k, the random variables Nk(Ar)(r = 1; 2; : : : ; n) are independent. It followsfrom (6.10) that the N1(Ar) are independent, and (6.13) shows that the N(Ar)are independent. This 
ompletes the proof.7 Separating bise
torsTheorem 2 
ontains R�enyi's theorem as a spe
ial 
ase. It is stronger not onlybe
ause the state spa
e S is quite general, but also be
ause it only uses thetwo properties (6.1), rather than the full panoply of the Poisson distribution(1.1). However, the theorem proved in Se
tion 3.4 of [6℄ is still stronger (whenS = Rd ), be
ause it assumes only thatPfN(A) = 0g = e��(A) : (7.1)10



An examination of the proof of Theorem 2 shows that the only point wherewe need the other 
ondition of (6.1) is in proving that N1(A) = N(A) withprobability 1, and this is a
hieved in a di�erent way in [6℄. Before explainingthis for general S, 
onsider what 
an be said if N1(A) 
an be stri
tly less thanN(A) with positive probability.If A is a set of �nite measure m, the repeated bise
tion of A des
ribed inthe proof of Theorem 2 de�nes a fun
tion : A! 
 = f0; 1g1 (7.2)from A into the spa
e 
 of in�nite binary sequen
es! = (!1; !2; : : : ; !k; : : :) ; (7.3)su
h that the kth generation set 
ontaining x has label 1(x) ;  2(x) ; : : : ;  k(x) : (7.4)Be
ause ea
h kth generation set has measure 2�km, the restri
tion �A of � toA indu
es under  the measure �A �1 = m� ; (7.5)where � is the Bernoulli (
oin tossing) probability measure on 
 whi
h makesthe !k independent random variables taking the values 0 and 1 with probability12 . The random subset �\A maps into a random subset� = f (x);x 2 �\Ag (7.6)of 
, and it is easy to see that, for B � 
, N1( �1B) is the number of pointsof � in B. The argument of Theorem 2 shows that, if (7.1) holds, then � is aPoisson pro
ess on 
 with mean measure m�. If N1(A) < N(A), it is be
ausedistin
t points of �\A map into the same point of 
.The reason why this possibility 
an be ex
luded when S = Rd is that, atleast if � has a density, it is always possible to 
arry out the bise
tion of Aso that the fun
tion  is an inje
tion. One has only to use as 
heesewires the
oordinate fun
tions in rotation, the kth bise
tion using the 
heesewire(x1; x2; : : : ; xd) 7�! xr(k) ; (7.7)where r(k) is the remainder of k when divided by d (or d if d divides k).More generally, Theorem 2 holds under the weaker assumption (6.1) if thereis an inje
tion (7.2) satisfying (7.5). If this holds for all A of �nite measure,we say that (S; �) admits separating bise
tors. Thus (Rd ; �) admits separatingbise
tors if � is �nite on bounded sets and has a density with respe
t to Lebesquemeasure.The 
on
ept has other appli
ations. For instan
e, Se
tion 8.3 of [6℄ 
ontains aversion of an argument of Bla
kwell [3℄ for proving that 
ertain randommeasures11



are purely atomi
 with probability 1. Bla
kwell makes topologi
al assumptionswhi
h imply the existen
e of an inje
tion (7.2), and then uses the sequentialstru
ture of 
 to bring to bear a te
hnique from the theory of games. Theproof is 
onsiderably simpli�ed if one 
an 
ontrol the indu
ed measure under  ,and if this is a multiple of � the simpli�
ation is optimal. Thus the 
on
ept ofseparating bise
tors is a powerful one.Although the proofs are similar, the 
ontents of the theorems in [3℄ and [6℄are distin
t. Bla
kwell is 
on
erned with a Diri
hlet random measure on S,whi
h is a random probability measure P su
h that, for disjoint A1; A2; : : : ; Anwith union S, the ve
tor (P (A1) ; P (A2) ; : : : ; P (An)) (7.8)has the Diri
hlet distribution with density�(�1 + �2 + : : :+ �n)�(�1)�(�2) : : :�(�n) x�1�11 x�2�12 : : : x�n�1n (7.9)on the simplex x1; x2; : : : ; xn > 0 ; x1 + x2 + : : :+ xn = 1 : (7.10)The parameters �r are given by �r = �(Ar) ; (7.11)where � is a �nite measure on S.On the other hand, Se
tion 8.3 of [6℄ deals with 
ompletely randommeasures,for whi
h the values on disjoint sets are independent. However, Bla
kwell'stheorem 
an be brought within this framework although Diri
hlet measures arenot 
ompletely random. An argument used for a di�erent purpose in [7℄ showsthat, if Z is independent of P (�) and has a gamma distribution with parameter�(S), then ZP (�) (7.12)is a 
ompletely random measure.8 The Poisson-Diri
hlet distributionChapter 9 of [6℄ is an introdu
tion to the theory of the Poisson-Diri
hlet distri-bution, a theory whi
h has developed signi�
antly sin
e 1993. Arratia, Barbourand Tavar�e give in [1℄ an exhaustive a

ount of the theory and its appli
ations.A weakness of [6℄ is that the fundamental properties of the distribution areproved using deep results from the L�evy theory of subordinators. In fa
t, theelementary theory of Poisson pro
esses is all that is needed.Theorem 3 Let �� be a Poisson pro
ess on (0;1) with density�y�1e�y ; (8.1)12



where � is a positive 
onstant. Then the points of �� may be written in des
end-ing order as Y1 > Y2 > Y3 > : : : > 0 (8.2)and Yr ! 0 with probability one. The random variableZ = 1Xr=1 Yr (8.3)is almost 
ertainly �nite, and has the gamma distribution with probability density���1e��=�(�) (� > 0) : (8.4)The random variables Xr = Yr=Z (8.5)are independent of Z and satisfyX1 > X2 > : : : > 0 ; 1Xr=1Xr = 1 : (8.6)The joint distribution of the in�nite sequen
e(X1; X2; : : :) (8.7)is the Poisson-Diri
hlet distribution PD(�). It �rst arose [10℄ as a limiting formof the Diri
hlet distribution (7.9), when n is large and �j small. The onlydiÆ
ult aspe
t of Theorem 3 is the independen
e property, but the advantageof the proof below is that it also establishes the limit theorem in full generality.Theorem 4 Suppose that, for any n > 1, the random variables �n1; �n2; : : : ; �nnhave joint distribution of the Diri
hlet form (7.9), with parameters �n1; �n2; : : : ; �nn.Suppose that, as n!1, nXr=1�nr !1 2 (0;1) (8.8)and that max (�nr; r = 1; 2; : : : ; n)! 0 : (8.9)Denote by Xnr the rth largest of the �nr. Then the joint distribution of therandom sequen
e (Xn1; Xn2; : : : ; Xnn; 0; 0; : : :) (8.10)
onverge as n!1 to those of PD(�).To prove these two theorems, we �rst 
onstru
t a Poisson pro
ess � on thepositive quadrant S = f(u; v);u; v > 0g (8.11)of R2 whose density u�1e�u (8.12)13



depends only on u. For any � > 0, the Mapping Theorem [6℄ shows that�� = fU ; (U; V ) 2 � ; V < �g (8.13)is a Poisson pro
ess on (0;1) whose density is given by (8.1). This density is,for any � > 0, integrable on (�;1) but not on (0; �), so that �� has a limit pointat 0 but not at 1. Its points 
an therefore be written in the form (8.2), andYr ! 0 with probability 1. We 
an and shall take the pro
ess �� of Theorem 3to have been 
onstru
ted in this way, so that Yr is the rth largest of the pointsU , where (U; V ) runs over those points of � with V < �.For any 0 6 a < b, 
onsider the random variableW (a; b) = X(U;V )2�a<V<bU : (8.14)Its distribution 
an be 
al
ulated by Campbell's Theorem [6℄: for t > 0,E ne�tW (a;b)o = exp(Z 10 Z ba �e�tu � 1�u�1e�ududv)= (1 + t)�(b�a) :This shows that W (a; b) is �nite with probability one, and has the gammadistribution (8.4) with parameter (b�a). Moreover, the independen
e propertyof � means that the W (a; b) for disjoint intervals (a; b) are independent randomvariables.In parti
ular, for �xed � > 0 and any n > 2, the variables�nr =W [(r � 1)�n�1; r�n�1℄; (r = 1; 2; : : : ; n) (8.15)are independent with the same gamma distribution with parameter �n�1, andaXr=1 �nr =W (�) : (8.16)A well known fa
t, easily proved by 
hange of variables, is that the variables�nr = �nr=W (�) (r = 1; 2; : : : ; n) (8.17)are independent of W (�) and have joint distribution of Diri
hlet form (7.9) inwhi
h all the parameters �r are equal to �n�1.Let Ynr be the rth largest of the �ns(s = 1; 2; : : : ; n), so thatXnr = Ynr=W (�) (8.18)is the rth largest of the �ns. Then it is a matter of elementary, non-sto
hasti
,analysis to show that limn!1Ynr = Yr : (8.19)14



To see this, �rst note that with probability 1, the points V for (U; V ) 2 �are distin
t (proof as in Se
tion 3). Hen
e for suÆ
iently large n, the pointsV 
orresponding to the u-values Y1; Y2; : : : ; Yr fall in di�erent intervals ((s �1)�n�1; s�n�1). Hen
e, for any r > 1,Ynr > Yr (n > N(r)) (8.20)for some N(r). On the other hand,nXr=1 Ynr = nXs=1 �ns =W (�) = 1Xr=1 Yr : (8.21)If (8.19) is false, there exist r > 1 and � > 0 su
h thatYnr > Yr + � (8.22)for in�nitely many n. Choose k > r so large thatkXs=1 Ys > W (�)� � ; (8.23)and then 
hoose n > N(1); N(2); : : : ; N(k) to satisfy (8.22). ThenkXs=1 Yns > kXs=1 Ys + � > W (�) ; (8.24)whi
h 
ontradi
ts (8.21).The 
ontradi
tion proves (8.19), so that, for r > 1,limn!1Xnr = Yr=W (�) = Xr ; (8.25)in the notation of Theorem 3. Sin
e the Xnr are independent of W (�) = Z,their limits Xr are independent of Z, and Theorem 3 is proved.Noti
e that we have also proved the spe
ial 
ase of Theorem 4 in whi
h�nr = �=n : (8.26)However, the only use we have made of the disse
tion of (0; �) into equal subin-tervals has been to ensure that distin
t points are, for large enough n, in di�er-ent subintervals. For general �nr satisfying (8.8) and (8.9), the same argumentworks with (8.15) repla
ed by�nr =W (�n1 + �n2 + : : :+ �n;r�1; �n1 + �n2 + : : :+ �nr) : (8.27)This proves Theorem 4 in full generality.The independen
e property asserted in Theorem 3 is 
hara
teristi
 of thedensity (8.1) and its mean relatives. To see this, suppose that � is a Poissonpro
ess on (0;1) with mean measure �. Suppose thatZ y�(dy) <1 ; (8.28)15



so that Z = XY 2�Y (8.29)is �nite with probability one. Suppose �nally that the (non-Poisson) randomset fY=Z ; Y 2 �g (8.30)is independent of Z. Colour the points of � red or green with equal probabilities,distin
t points 
oloured independently. Then the red points and the green pointsform independent Poisson pro
esses.Let Z1 be the sum ( 8.28) taken over the red points, and Z2 the same overthe green points. Then Z1 and Z2 are independent andZ = Z1 + Z2 :Moreover, Z1=Z2 
an be expressed in terms of a 
olouring of (8.29) whi
h isindependent of Z. Thus Z1 and Z2 are independent positive random variableswith the property that Z1=Z2 and Z1 + Z2 are independent. It is easy toshow that this 
an only happen if, for some 
 > 0, 
Z1 and 
Z2 have gammadistributions (8.4), so that 
Z has that distribution for some � > 0.Campbell's Theorem then shows that, for t > 0,(1 + t)�� = E �e�t
Z	= exp�Z �e�t
y � 1��(dy)� ;so that Z �1� e�t
y��(dy) = � log(1 + t) :and this inverts to give �(dy) = �y�1e�
ydy : (8.31)9 The marginals of PD(�)For many purposes, Theorem 3 is an adequate des
ription of PD(�), but whatit does not give is expli
it formulae for the marginal distributions of the in�niterandom sequen
e (X1; X2; X3; : : :). These were �rst 
al
ulated by Billingsley [2℄in the spe
ial 
ase � = 1 whi
h arises in number theory (see [7℄ for the tangledhistory). The general 
ase is due to Watterson [10℄ in the 
ontext of populationgeneti
s. None of the derivations in the literature [1℄ is entirely transparent,and it seems worth giving a self-
ontained 
al
ulation in the spirit of [6℄.Consider �rst a Poisson pro
ess � on (0; 1) with density�u�1(0 < u < 1) (9.1)and let T =XU��U : (9.2)16



Campbell's Theorem shows that T is �nite with probability 1, and for t > 0,E �e�tT � = exp��� Z 10 �1� e�tu�u�1du� :By a well-known identity,Z 10 (1� e�tu)u�1du = Z t0 (1� e�v)v�1dv= Z 1t e�vv�1dv + log t+ 
 ;where 
 is Euler's 
onstant, so thatE �e�tT � = e�
�t�� exp��� Z 1t e�vv�1dv� : (9.3)Expanding the exponential shows that the right hand side is the Lapla
etransform of an integrable fun
tion, whi
h must be the probability density ofT . The pro
ess � has now served its purpose and is dis
arded, retaining onlythe fa
t that, for any � > 0, there is a probability density p� on (0;1), de�nedby its Lapla
e transformZ 10 p�(u)e�tudu = exp��� Z t0 (1� e�v)v�1dv� (9.4)= e�
�t�� exp��� Z 1t e�vv�1dv� : (9.5)A great deal of information about p� 
an be found in [1℄.Returning to the Poisson pro
ess�� = fY1; Y2; : : :gof Theorem 3, note �rst that, 
onditional on the values of Y1; Y2; : : : ; Yn, thepoints Yr(r > n) form a Poisson pro
ess on (0; Yn) with density�y�1e�y (0 < y < Yn) :Campbell's Theorem 
an then be used to �nd the 
onditional distribution ofZn = Yn+1 + Yn+2 + : : : ;for t > 0,E �e�tZn jY1; Y2; : : : ; Yn	 = exp �� Z Yn� (1� e�ty)y�1e�ydy! : (9.6)17



Now Z Yn0 �1� e�ty� y�1e�ydy = Z (1+t)Yn0 (1� e�v)v�1dv� Z 1Yn e�vv�1dv � logYn � 
and Sn = Z � Zn = Y1 + Y2 + : : :+ Yn ; (9.7)so that E �e�tZ jY1; Y2; : : : ; Yn	= e�tSn Z 10 p�(u)e�(1+t)Ynudu exp�� Z 1Yn e�vv�1dv�Y �n e
� :Regarded as a fun
tion of t, this equation is a Lapla
e transform identity, whi
h
an be inverted to show that, given Y1; Y2; : : : ; Yn, Z has a 
onditional proba-bility densityg(� ;Y1 ; Y2 ; : : : ; Yn) = p� �� � SnYn � e�(��Sn)Y ��1n e
� exp�� Z 1Yn e�vv�1dv�in � > Sn. The joint distribution of Y1; Y2; : : : ; Yn has densitynYr=1 ��y�1r e�yr� exp��� Z 1yn v�1e�vdv� :and multiplying this by g(�; y1; y2 ; : : : ; yn) gives the joint probability density ofZ; Y1; Y2; : : : ; Yn in the formp� �� � snyn � (y1y2 : : : yn)�1y��1n e��e
��n (9.8)in � > sn = y1 + y2 + : : :+ yn.Now make the 
hange of variableXr = Yr=Z ; (9.9)to show that the joint distribution of Z;X1; X2; : : : ; Xn has densityp� �1� x1 � x2 � : : : xnxn � (x1x2 : : : xn)�1���1x��1n e��e
��n= fn(x1; x2; : : : ; xn)���1e���(�) ;wherefn(x1; x2; : : : ; xn) = e
��n�(�)x��1nx1x2 : : : xn p� �1� x1 � x2 � : : :� xnxn � (9.10)18



in x1 + x2 + : : :+ xn < 1 : (9.11)This shows that, as we already know, (X1; X2; : : : ; Xn) and Z are independent,and that Z has a gamma distribution. But it also shows that the joint distri-bution of X1; X2; : : : ; Xn is given by (9.10), 
onsistently with the 
al
ulationsof Billingsley and Watterson.The densities fn must of 
ourse satisfy the 
onsisten
y 
onditionsZ xn�10 fn(x1; x2; : : : ; xn�1; �)d� = fn�1(x1; x2; : : : ; xn�1) (9.12)for n > 2, and Z 10 f1(�)d� = 1 : (9.13)Substituting (9.10) into these equations gives the equations�u��1 Z 1max(u;1) v��p�(v � 1)dv = p�(u) (9.14)and �e
��(�) Z 11 v��p�(v � 1)dv = 1 : (9.15)Taking Lapla
e transforms we easily re
over (9.4), so that p� is uniquely deter-mined by (9.14) and (9.15).Referen
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