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The aim of this paper is to prove that, if R is a commutative regular ring in which 2 is a unit, then
the reduced theory of quadratic forms with invertible coefficients in R, modulo a proper preorder T ,
satisfies Marshall’s signature conjecture and Milnor’s Witt ring conjecture (for precise statements, see
Section 1 below). For that purpose we use the theory of special groups (abbreviated SG), presented
in [DM2] (see also Section 2 of [DM1]), and the K-theory of those structures, developed in [DM3] and
[DM6].

To a pair 〈R, T 〉 as above, we associate a reduced special group (RSG), GT (R) = R×/T× (R× =
units of R). A result from [DM5] (Thm. 3.16, pp. 17-18) shows that, under these conditions —in
fact, even under considerably more general conditions— GT (R) faithfully reflects the reduced theory
of quadratic forms modulo T , over free R-modules.

The technique used to prove the stated result can be summarized as follows:

1) Marshall’s signature conjecture was proved in [DM1] for Pythagorean fields, and in [DM3] for formally
real fields modulo an arbitrary (proper) preorder. For this kind of fields, modulo sums of squares, the
problem was posed by Lam in 1976. Our proofs use the theory of SGs, but depend on results of
Voevodsky (and of Orlov-Vishik-Voevodsky in the latter case), to conclude.

2) For fields of characteristic zero, Milnor’s Witt ring conjecture is a celebrated result of Voevodsky’s.

3) An analysis of our proofs shows that, in fact, we establish the validity of a powerful K-theoretic
property —the [SMC] property— which implies Marshall’s signature conjecture. This property was
explicitly formulated in [DM3] (Definition 4.3, p. 168), but occurs without a name already in [DM1]
(Corollary 6.5, p. 275). The [SMC] property asserts, in the abstract context of RSGs, the analog of
injectivity of Milnor’s “multiplication by `(−1)” map at each level of the graded mod 2 K-theory ring.
It follows from results in [DM1] and [DM3] that the [SMC] property is equivalent, for arbitrary RSGs,
to the conjunction of Marshall’s signature conjecture and Milnor’s Witt ring conjecture (see Lemma
1.2 below).

4) In view of the foregoing observations, our efforts are directed at proving the [SMC] property for
the RGS GT (R) associated to a pair 〈R, T 〉 as above. In order to achieve this we use the well-known
representation (originally due to Pierce ([Pi])) of a von Neumann-regular ring (hereafter a vN-ring) R
as the ring of global sections of a (pre-)sheaf of rings over the Boolean space Spec(R) whose stalks are
fields (this representation is just the Grothendieck structure sheaf of R). The presence of a (proper)
preorder T on R forces at least one of the stalks to be preordered by the corresponding image of T .
By considering a suitable quotient of R the situation gets reduced to the case where all the stalks are
(properly) preordered (Proposition 6.15). By Theorem 6.4ff of [DM3] the [SMC] property holds, then,
at the RSG associated to each stalk of the sheaf representation of R. Having previously established
(Theorem 6.14) that the RSG construction induces a (pre-)sheaf of RSGs on Spec(R) and that the
K-theory functor of special groups is geometrical (Proposition 2.7(1)) we conclude (Theorems 7.1(c)
and 7.2) that its SG of global sections —which is just GT (R)— also has the [SMC] property.

Some ingredients of our proof are valid in more general contexts, and so it seemed appropriate to
register them, with moderate extra effort, at that level of generality.

∗First version : January, 2005

1



In sections 2 and 3 we review a number of results that, though most are generally considered
folklore, either are not immediately accessible in the literature or our use of them is at variance with
that (unwritten) folklore (for example, the notion of a geometrical formula in 2.1(d)).

In section 4 we are concerned with rings with many units, a class of rings previously considered
in the literature, larger than that of vN-rings. Under mild additional assumptions —namely that 2
is a unit and that all residue fields have cardinality > 7— quadratic form theory via special groups
faithfully reflects, for this class of rings, quadratic form theory over free modules ([DM5], Theorem
3.16). Furthermore, under these conditions, we adapt the K-theory in [Gu] to our setting, showing that
the ensuing mod 2 K-theory is isomorphic to the K-theory of the associated SG (Theorem 4.12).

In section 5 we deal with the presheaf representation of vN-rings and study the elementary properties
of preorders in rings of this type, especially in connection with that representation.

Besides results mentioned above, section 6 includes a proof that the functor assigning to each
preordered ring a (suitable fragment of a) reduced special group is a geometrical functor (Proposition
6.11). The notion of a proto-SG singles out those axioms satisfied by the SG construction as applied
to arbitrary preordered rings (cf. 6.3).

Finally, in section 7 we show that, under fairly general circumstances, the SG of sections of a presheaf
of SGs whose stalks verify the property [SMC], is also [SMC] (Theorem 7.1). This yields Theorem 7.2,
proving our main result.

1 Preliminaries : The [SMC] Property for Special Groups

1.1 Notation and Remarks. Let G = 〈G,≡G,−1 〉 be a special group (SG) and write DG for the
representation relation in G.

(1) TheK-theory of G, introduced in [DM3], is the graded F2-algebra, k∗G = 〈F2, k1G, . . . , knG, . . . 〉,
constructed as follows :

∗ k1G is G written additively, that is, we fix an isomorphism

λ : G −→ k1G, with λ(ab) = λ(a) + λ(b).

In particular, λ(1) is the zero of k1G and k1G has exponent 2, i.e., for a ∈ G, λ(a) = −λ(a);

∗ k∗G is the quotient of the graded tensor algebra 〈F2, k1G, . . . , k1G⊗ · · · ⊗k1G︸ ︷︷ ︸
n times

, . . . 〉 over F2, by the

ideal generated by {λ(a)λ(ab) : a ∈ DG(1, b)}. Thus, for each n ≥ 2, knG is the quotient of the n-fold
tensor product k1G ⊗ · · · ⊗ k1G over F2, by the subgroup consisting of finite sums of elements of the
type λ(a1) · · ·λ(an), where for some 1 ≤ i ≤ n− 1 and b ∈ G, we have ai+1 = aib and ai ∈ DG(1, b).
An element of the type λ(x1) · · ·λ(xn) is called a generator of knG;

∗ There is a graded ring morphism of degree 1, λ(−1) (·) : knG −→ kn+1G, taking η ∈ knG to
λ(−1)η ∈ kn+1G. A special group is [SMC] if for all n ≥ 1, multiplication by λ(−1) is an injection.
Any [SMC] special group must be reduced;

∗ A SG-morphism, f : G −→ H, induces a morphism of degree 0 of graded F2-algebras 1

f∗ : k∗G −→ k∗H,

f∗ = {fn : n ≥ 0}, where f0 = IdF2 and for n ≥ 1, fn : knG −→ knH is the unique group morphism
whose value on generators is given by fn(λ(a1) · · ·λ(an)) = λ(f(a1)) · · ·λ(f(an)).

(2) Let W (G) be the Witt ring of G and let I(G) be the fundamental ideal in W (G). For n ≥ 0, set

In(G) = In(G)/In+1(G),

where I0(G) = W (G). The sequence, Wg(G) = 〈F2, . . . , In(G), . . . 〉 is, as usual, the graded Witt
ring of G. In [DM3] we constructed a graded ring morphism

s∗ = (sn)n≥0 : k∗(G) −→ Wg(G),

1That is, for η ∈ knG, ξ ∈ kmG, fn+m(ηξ) = fn(η)fm(ξ).
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such that for each n ≥ 0, the following diagram is commutative, where ⊗ 2 indicates product by the
Pfister form 2 = 〈 1, 1 〉 :

In(G)

kn(G)

?

- kn+1(G)

sn

⊗ λ(−1)

In+1(G)

sn+1

⊗ 2

?
-

(D)

The special group G is [MWRC], i.e., satisfies Milnor’s Witt Ring Conjecture, if sn is an isomor-
phism for all n ≥ 0; it is shown in [DM3] that this holds for n ≤ 2.

(3) G is [MC] if it satisfies Marshall’s signature conjecture, that is, for all n ≥ 1 and all forms, ϕ,
over G, if the total signature of ϕ is congruent to zero mod 2n, then ϕ ∈ In(G); any such group must
be reduced. For a detailed account of this property, see [DM1] and [DM4]. ♦

The relation between properties [SMC], [MC] and [MWRC] is described by

Lemma 1.2 If G is a reduced special group, then

G is [SMC] iff G is [MC] and [MWRC].

Proof. By Theorem 5.1 in [DM1], G is [MC] iff the map “multiplication by 2 = 〈 1, 1 〉” from In(G)
to In+1(G) is injective. Hence, if G is [MWRC] and [MC], the commutative diagram (D) above entails
that multiplication by λ(− 1 ) is injective in all degrees, that is, G is [SMC]. Conversely, by Corollary
4.2 in [DM3], every [SMC]-group is [MWRC] and once again the commutativity of diagram (D) above
entails that multiplication by 〈 1, 1 〉 in the graded Witt ring of G is injective in all degrees. Another
application of Theorem 5.1 in [DM1] guarantees that G is [MC]. ♦

2 Geometric Theories and Functors

We assume the reader is familiar with first-order languages, their structures and morphisms. Standard
references are [CK] and [Ho]. For the convenience of the reader, we recall the following

Definition 2.1 Let L be a first-order language with equality.

Let A, B be L-structures, let f : A −→ B be a map and let ϕ(v1, . . . , vn) be a formula of L, in the
free variables v = 〈 v1, . . . , vn 〉. For a = 〈 a1, . . . , an 〉 ∈ An, write f(a) for 〈 f(a1), . . . , f(an) 〉 ∈ Bn.

a) (1) f preserves ϕ if for all a ∈ An, A |= ϕ[a] ⇒ B |= ϕ[f(a)];

(2) f reflects ϕ is for all a ∈ An, B |= ϕ[f(a)] ⇒ A |= ϕ[a].

Thus,

∗ f is a L-morphism if it preserves atomic formulas; by induction on complexity, it will also preserve
positive existential formulas, i.e., those of the form ∃vϕ(v), where ϕ is positive 2 and quantifier-free;

∗ f is a L-embedding if it preserves and reflects all atomic formulas. By induction, an embedding
will preserve and reflect all quantifier-free formulas 3; and it will preserve formulas of the type ∃vϕ(v),
where ϕ is quantifier-free, called existential formulas;

∗ f is an elementary embedding if it preserves and reflects all formulas.

b) If f is a L-morphism, we say that A is positively existentially closed in B along f if f reflects
all positive existential L-formulas. Whenever A is a substructure of B, we say that A is existentially
closed in B.

2Constructed from atomic formulas using only conjunction (∧) and disjunction (∨).
3Constructed from atomic formulas using all propositional connectives, including implication (→) and negation (¬ ).
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c) Let L-mod be the category of L-structures and L-morphisms. If Σ is a set of sentences in L, write
Σ-mod for the subcategory of L-mod whose objects are the models of Σ.

d) A formula of L is geometrical if it is the negation of an atomic formula or a formula of the form
∀v (ϕ1(v) −→ ∃w ϕ2(v; w)), where ϕ1, ϕ2 are positive and quantifier-free. A geometrical theory in
L is a theory possessing a set of geometrical axioms.

e) A formula in L is positive primitive (pp-formula) if it is of the form ∃v ϕ(v), where ϕ is a
conjunction of atomic formulas.

2.2 We assume familiarity with the notions of inductive systems of first-order structures over a right-
directed partially ordered set 4 (hereafter called a rd-poset) and of colimits (a.k.a. inductive limits) of
such a system. Our notation for these objects is standard and we write

M = lim
−→

M = lim
−→ i∈I

Mi

to indicate that M is an inductive limit of M. If M, N : 〈 I,≤〉 −→ L-mod are inductive systems of
first-order structures, M = 〈Mi; {µij : i ≤ j in I} 〉, N = 〈N i; {νij : i ≤ j in I} 〉, then :

∗ A dual cone over M is a system 〈A, {αi : i ∈ I} 〉, where A is a L-structure and αi : Mi −→ A
are L-morphisms, such that for all i ≤ j in I, αj ◦ µij = αi;

∗ A morphism, η : M −→ N , is a family of L-morphisms, η = {Mi
ηi−→ N i : i ∈ I}, such that for

all i ≤ j in I, we have ηj ◦ µij = νij ◦ ηi. ♦

The following result is essentially folklore. Item (e).(2), is a (slight) generalization of Tarski’s union
of chains theorem.

Theorem 2.3 Let M : 〈 I,≤〉 −→ L-mod be an inductive system of L-structures.

a) lim
−→

M exists in L-mod and is unique up to isomorphism. Moreover, if J ⊆ I is cofinal in I, then
lim
−→

M|J
5 is naturally isomorphic to lim

−→
M.

b) A dual cone over M, 〈M, µi : i ∈ I} 〉, is (isomorphic to) lim
−→

M iff it verifies :

(1) M =
⋃
i∈I µi(Mi);

(2) If ϕ(v1, . . . , vn) is an atomic formula in L, i ∈ I and 〈 s1, . . . , sn 〉 ∈ Mn
i , then

M |= ϕ[µi(s1), . . . , µi(sn)] ⇔
{ ∃ k ∈ I such that k ≥ i and
Mk |= ϕ[µik(s1), . . . , µik(sn)].

Since the maps µij and µi are L-morphisms, the significant implication above is (⇒).

c) Suppose that L is a language of algebras, that is, structures with operations of arbitrary finite arity,
but whose only relation is equality. Assume that each Mi has, besides additional structure, that of a
group, written additively and that the morphisms µij preserve the group structure. Then, a dual cone
over M, 〈M, µi : i ∈ I} 〉, is (isomorphic to) lim

−→
M iff it verifies (1) in item (b) above and

(2∗) For all i ∈ I and all x ∈ Mi, µi(x) = 0 ⇒ ∃ j ≥ i such that µij(x) = 0.

d) Let ψ(v1, . . . , vn) be a disjunction of geometric formulas in L and let M = lim
−→

M. For i ∈ I, let
s ∈ Mn

i and set Sψ = {k ∈ I : k ≥ i and Mk |= ψ[µik(s)]}. If Sψ is cofinal in I, then M |= ψ[µi(s)].

e) Suppose that lim
−→

M = 〈M, {µi : i ∈ I} 〉. Then,

(1) If for all i ≤ j, µij is a L-embedding, then µi is an L-embedding.

(2) (Tarski) If for i ≤ j, µij is an elementary embedding, then µi is an elementary embedding.

f) (Colimit of morphisms) Let N = 〈N i; {νij : i ≤ j in I} 〉 be an inductive system of L-structures
over I and let η = {ηi : i ∈ I} be a morphism from M to N . Then, there is a unique L-morphism,
lim
−→

η : lim
−→

M −→ lim
−→

N , satisfying the following conditions :

4I.e., ∀ i, j ∈ I, ∃ k ∈ I such that i, j ≤ k.
5M|J is the functor obtained by restricting M to the poset J .
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(1) For all i ∈ I, (lim
−→

η) ◦ µi = νi ◦ ηi;

(2) If each ηi is a L-embedding, the same is true of lim
−→

η.

Proof. We comment only on item (d). Since a finite union of subsets of I is cofinal in I iff at least one
of them is cofinal in I, it is enough to verify the statement for a geometrical formula. For instance, if
ψ is the negation of an atomic formula, ϕ(v), assume that S¬ϕ is cofinal in I, but that M |= ϕ[µi(s)];
by 2.3.(b).(2), there is k ≥ i such that Mk |= ϕ[µik(s)]. But then, there is j ∈ S¬ϕ with j ≥ k and so
Mj |= ¬ϕ[µij(s)]. Since µkj(µik(s)) = µij(s) and µkj is an L-morphism, we also have Mk |= ϕ[µij(s)],
a contradiction. The case in which ψ is of the form ∀v(ϕ1(v) −→ ∃w ϕ2(v; w))) is straightforward. ♦

Example 2.4 a) The theory of groups of exponent 2 is geometrical. Write 2-Grp for the category of
groups of exponent 2.

b) The theory of unitary commutative rings (1 6= 0) is geometrical. Write UCR for the category of
unitary commutative rings.

c) The theory of special groups and of reduced special groups are both geometrical theories. The axioms
for special groups (see Definition 1.2, [DM2], for details) include, besides those of π-SGs (see 6.7, below),
the sentences

[SG 4] : ∀ a, b, c, d ((〈 a, b 〉 ≡G 〈 c, d 〉) −→ (〈 a,−c 〉 ≡G 〈−b, d 〉));
[SG 6] : The isometry of forms of dimension 3 is transitive,

all geometrical sentences. For reducibility, we add

∗ 1 6= − 1 ; [red] : ∀a ((〈 a, a 〉 ≡G 〈 1, 1 〉) −→ a = 1). ♦

Remark 2.5 a) By 2.3.(d), the colimit of models of a geometrical theory are also models of that
theory. Moreover, it is easily established that a geometrical theory is preserved under the product of a
non-empty family of its models.

b) The empty product in L-mod is its final object, that is, the structure {0}, wherein all n-ary
predicates are interpreted as {0}n, all n-ary function are interpreted as the only possible map from
{0}n to {0} and all constants are interpreted by 0. This structure is a model of any sentence of the
form ∀x(ϕ1 → ∃yϕ2), with ϕi positive and quantifier-free, but, in general, it will not model the negation
of atomic sentences. ♦

Definition 2.6 Let L, L] be a first-order languages with equality. Let Σ, Σ] be sets of sentences in
L and L], respectively. A covariant functor, F : Σ-mod −→ Σ]-mod, is geometrical if it preserves
finite products and right-directed colimits 6.

Here are some examples of geometrical functors. Others will arise in the sections that follow.

Proposition 2.7 The following are geometrical functors :

(1) The K-theory functor of special groups, that is, for each n ≥ 0, the functor from SG to 2-Grp,
the category of groups of exponent 2, given by{

G 7−→ knG;
f : G −→ H 7−→ fn : knG −→ knH;

(2) The Witt-ring functor, W : SG −→ UCR;

(3) The graded Witt-ring functor, i.e., for each n ≥ 0, the functor from SG to 2-Grp, given by{
G 7−→ InG;

f : G −→ H 7−→ Wn(f) : InG −→ InH,

where, for ϕ =
∑m

i=1

⊗n
j=1〈 1, aij 〉 ∈ In(G), Wn(f)(ϕ mod In+1(G)) =(∑m

i=1

⊗n
j=1 〈 1, f(aij) 〉

)
mod In+1(H).

6That is, if these constructions exists in Σ-mod, then they exist in Σ]-mod and F takes one to the other.
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Proof. For (1), Theorems 4.5 and 5.1 in [DM6] guarantee the preservation of right-directed colimits
and of finite products, respectively. The preservation of products and inductive limits in (2) and (3)
follow from the results in [DM4], especially Proposition 3.1, Theorem 3.3 and Proposition 3.5. ♦

3 Presheaves of First-Order Structures

In this section we follow the lead set by [El]. General references on sheaf of algebraic structures are
[Te], [Go], [GR] and [KS].

3.1 Notation. Let X be a topological space.

a) Ω(X) be the collection of opens of X, while B(X) is the Boolean algebra (BA) of clopens in X.

b) A subset B of Ω(X) is a basis for X if it is closed under finite intersections and all opens in X are
the union of elements of B. Whenever convenient, we assume that ∅, X ∈ B.

c) Any partially ordered set (poset), 〈 I,≤〉, can be seen as a category, whose set of objects is I and
whose morphisms are given, for i, j ∈ I, by

MorI(i, j) =

{
∅ if i 6≤ j;
{∅} if i ≤ j.

in particular, a basis for X, which is a poset under inclusion, can be treated as a category.

d) Write U ⊆o V to mean that V ∈ Ω(X) and U is an open subset of V . ♦

Definition 3.2 (Essentially in [El]) Let X be a topological space and let L be a first-order language
with equality. Let B be a basis for X.

a) A presheaf basis of L-structures over B, is a contravariant functor, A : B −→ L-mod,

U 7−→ A(U) and U ⊆o V 7−→ αV U : A(V ) −→ A(U),

satisfying the following separation or extensionality condition

[ext]
If s ∈ A(U)n, R is a n-ary relation in L, U ∈ B, and {Ui ⊆o U : i ∈ I} ⊆ B is a covering
of U , then, ∀ i ∈ I, A(Ui) |= R[αUUi(s1), . . . , αUUi(sn)] ⇒ A(U) |= R[s].

For U ∈ B, the L-structure A(U) is the L-structure of sections of A over U and the L-morphism
αV U : A(V ) −→ A(U), U ⊆o V in B, is the restriction morphism; when no confusion is extant,
this morphism, is written as ·|U . In this notation, condition [ext] may be expressed as

∀ i ∈ I, A(Ui) |= R[s|Ui
] ⇒ A(U) |= R[s] (s|Ui

= 〈 s1|Ui
, . . . , sn|Ui

〉).
We shall assume that :

(1) The L-structures A(U) are pairwise disjoint 7;

(2) A(∅) = {0}, the final object in L-mod (as in 2.5.(b)).

The set |A| =
⋃
U∈B A(U) is the domain of A and an element of |A| is called a section of A. For

each s ∈ |A|, let

Es = the unique U ∈ B such that s ∈ A(U),

called the extent of s. A section whose extent is X is a global section of A. We say that s, t ∈ |A|
are compatible, if s|Es∩Et = t|Es∩Et. In view of (2), sections with disjoint extents are compatible.

b) If Σ is a set of sentences in L, a presheaf basis of models of Σ over B is a presheaf basis of
L-structures over B, such that for all U 6= ∅ in B, A(U) is a model of Σ.

c) A presheaf of L-structures over X is a presheaf basis such that B = Ω(X).

d) Let A be a presheaf basis of L-structures over B and let U ∈ B.
7There is no loss in generality; for U ∈ B, substitute A(U) by an isomorphic copy with domain {U} × A(U).
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(1) A is finitely complete (fc) over U if for all finite S ⊆ |A| such that U =
⋃
s∈S Es, if the

elements of S are pairwise compatible, then there is t ∈ A(U) such that s = t|Es, for all s ∈ S;
because the extensionality condition [ext] applies to equality, this t is unique and is called the
gluing of S in A;

(2) A is complete over U , if the condition in (1) holds for arbitrary subsets S of |A|, satisfying
U =

⋃
s∈S Es.

e) A is complete or finitely complete (fc) over B if it is complete or fc over every U ∈ B,
respectively.

f) A sheaf of L-structures over X is a presheaf over X that is complete over all U ∈ Ω(X).

g) If A, B are presheaf bases over B, a morphism, f : A −→ B, is a natural transformation of

contravariant functors, that is, a family of L-morphisms, f = {A(U)
fU−→ B(U) : U ∈ B}, such that

for U ⊆o V in B and x ∈ A(V ), fV (x)|U = fU (x|U ).

Remark 3.3 a) Notation as in 3.2, if U ∈ B is compact, condition [ext] in 3.2.(a) is equivalent to

[extc]
If s ∈ A(U)n, R is a n-ary relation in L and {U1, . . . , Um} ⊆ B is a covering of U , then

∀ 1 ≤ j ≤ m, A(Uj) |= R[s|Uj
] ⇒ A(U) |= R[s].

If equality is the only relation symbol in L, that is, L is a language of algebras, then extensionality
applies only to it. In particular, if U ∈ B is compact, then [extc] takes the form, for s, t ∈ |A|,
[ext=] If {U1, . . . , Um} is a covering of Es = Et such that s|Uj

= t|Uj
, then s = t.

b) It is straightforward that the extensionality condition [ext] in Definition 3.2.(a) holds for a conjunction
of atomic formulas, i.e., if ϕ(v1, . . . , vn) is a conjunction of atomic L-formulas, then for all U ∈ B, all
s = 〈 s1, . . . , sn 〉 ∈ A(U)n and all coverings {Ui : i ∈ I} ⊆ B of U ,

[ext] ∀ i ∈ I, A(Ui) |= ϕ[s1|Ui
, . . . , sn|Ui

] ⇒ A(U) |= ϕ[s1, . . . , sn].

If U ∈ B is compact, item (a) above applies to show that it suffices to consider finite coverings of U . ♦

Presheaf bases are important because frequently the data for a sheaf are given only on a basis for
the topology of X, as in the case of the affine scheme of a commutative ring, e.g., in section 5 below.

The following result gives, among other things, a useful criterion for a contravariant functor from
the Boolean algebra of clopens of a Boolean space to L-mod to be a fc and extensional presheaf basis.

Proposition 3.4 Let X be a Boolean space and let B be the Boolean algebra of clopens in X. Let
A : B −→ L-mod be a contravariant functor.

a) The following are equivalent :

(1) A is an extensional, finitely complete presheaf basis over B;

(2) For all U ∈ B, if V = 〈V1, . . . , Vn 〉 is a clopen partition of U , then, the L-morphism
αA(U ;V ) : A(U) −→

∏n
j=1 A(Vj), given by s 7−→ 〈 s|V1

, . . . , s|Vn
〉, where

∏n
j=1 A(Vj) has

the product structure, is an isomorphism, making the following diagram commutative

A(U) - A(V )

·|Vj
pj

A(Vj)

αA(U ;V )

A
A
A
A
AAU

�
�

�
�

���

(1 ≤ j ≤ n)

where pj : A(V ) −→ A(Vj) is the canonical coordinate projection.
b) If A is a fc presheaf basis over B, then :

(1) For all U ⊆ V in B, the restriction L-morphism from A(V ) to A(U) is surjective;

(2) For all x ∈ X and all U ∈ Bx, the stalk L-morphism, s ∈ A(U) 7−→ sx ∈ Ax, is surjective
(see Definition 3.6 below).
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Proof. a) Write A(V ) for the product structure
∏n
j=1 A(Vj) and α(U ; V ) for αA(U ; V ).

(1) ⇒ (2) : Since A is fc and extensional with respect to equality, the L-morphism α(U , V ) is bijective;
hence, to show it is an isomorphism it suffices to check that α reflects atomic formulas, that is, if
ϕ(v1, . . . , vm) is an atomic formula in L and s = 〈 s1, . . . , sm 〉 ∈ A(U)m, then

A(V ) |= ϕ[〈 s1|V1
, . . . , sm|V1

〉, . . . , 〈 s1|Vn
, . . . , sm|Vn

〉] ⇒ A(U) |= ϕ[s]. (I)

The antecedent in (I) means A(Vj) |= ϕ[s1|Vj
, . . . , sm|Vj

], 1 ≤ j ≤ n, and hence Remark 3.3.(b) entails
A(U) |= ϕ[s], as needed. It is clear that the displayed diagram in (2) is commutative for all 1 ≤ j ≤ n.

(2) ⇒ (1) : We fix U ∈ B and a clopen covering, C, of U , whose elements are all contained in U . Let
ϕ(v1, . . . , vm) be an atomic formula in L, let s = 〈 s1, . . . , sm 〉 ∈ A(U)m and assume that for O ∈ C,
A(O) |= ϕ[s|O], where s|O = 〈 s1|O, . . . , sm|O 〉; since U is compact, there is {U1, . . . , Un} ⊆ C that is
also a covering of U . Now consider

V1 = U1 and, for 2 ≤ j ≤ n, Vj = Uj \
(⋃

i<j Vi

)
.

Then, {V1, . . . , Vn} is a pairwise disjoint clopen covering of U , subordinate to {U1, . . . , Un}. Since
A(Uj) |= ϕ[s|Uj

] and restriction is an L-morphism, we get that A(Vj) |= ϕ[s|Vj
], 1 ≤ j ≤ n. Therefore,

α(U ; V ) : A(U) −→ A(V ) being a L-isomorphism, we conclude that A(U) |= ϕ[s], establishing the
extensionality of A.

For finite completeness, let {s1, . . . , sn} be a set of pairwise compatible sections in |A|, with U =⋃n
j=1 Esj . The disjointing procedure used above yields a disjoint clopen covering of U , {W1, . . . ,Wn},

subordinate to the covering {Es1, . . . , Esn}. Since α(U ; W ) is an L-isomorphism, there is t ∈ A(U)
such that

For all 1 ≤ j ≤ n, t|Wj
= sj |Wj

. (II)

Fix j between 1 and n; then, if Aji = Esj ∩ Wi, Aj = {Aj1, . . . , Ajn} is a disjoint clopen covering of
Esj ; moreover, since Aji = Esj ∩ Wi ∩ Esi and the collection {s1, . . . , sn} is compatible, (II) yields,
for 1 ≤ i ≤ n,

sj |Aji
= (sj |Esi∩Esj

)|Wi
= (si|Esi∩Esj

)|Wi
= si|Aji

= (si|Wi
)|Aji

= (t|Wi
)|Aji

= t|Aji
.

Thus, since U =
⋃
j,i Aji, the extensionality of A with respect to equality entails t|Esj

= sj , completing
the proof of (a).

b) Item (1) follows from (a) because the map s ∈ A(V ) 7−→ 〈 s|U , s|V \U 〉 is a L-isomorphism. For (2),
fix x ∈ U and let ξ ∈ Ax. Then, for some W ∈ Bx, with W ⊆ U , there is s ∈ A(W ) such that ξ = sx.
By (1), there is t ∈ A(U) such that t|W = s, and so tx = sx = ξ, as needed. ♦

A presheaf basis on X can always be extended to a sheaf on X. Usually this construction involves
taking projective limits (see [Te], Lemma 4.2.6, pp. 83-84), although there are better methods. It is
important know when the extension process does not change the structure of sections originally given
over a basis of X; this question is treated in item (4) of the next result, whose proof will be omitted.

Theorem 3.5 Let B be a basis for the space X and let A, B be presheaf bases of L-structures over B.

a) There is a unique sheaf over X, cA, the completion or sheafification of A, together with an
injective map, cA : |A| −→ |cA|, satisfying the following conditions, for s ∈ |A| and U ∈ B :

(1) EcA(s) = Es and cA(s|U ) = cA(s)|U .

(2) If t ∈ |cA|, there is S ⊆ |A| such that t is the gluing of cA(S) = {cA(s) ∈ |cA| : s ∈ S};
(3) The restriction of cA to A(U) is a L-embedding of A(U) into cA(U), that is, if ϕ(v1, . . . , vn) is a
positive, quantifier-free formula in L and s = 〈 s1, . . . , sn 〉 ∈ A(U)n, then

A(U) |= ϕ[s] ⇔ cA(U) |= ϕ[cA(s1), . . . , cA(sn)].

(4) The following are equivalent :

(i) A is complete over U ∈ B; (ii) cA|A(U) : A(U) −→ cA(U) is a L-isomorphism.
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If U ∈ B is compact 8, (i) and (ii) are equivalent to A being finitely complete over U .

b) If f : A −→ B is a morphism of presheaf basis of L-structures over B, then there is a unique
morphism of sheaves of L-structures, cf : cA −→ cB, such that cf ◦ cA = cB ◦ f . ♦

By Theorem 3.5.(a).(3), a presheaf basis, A, is embedded in the sheaf cA it generates. Since the
spaces of interest to us here have a natural basis of compact opens, item (a).(4) in 3.5 will be particularly
useful. Whenever A is clear from context, write c for the morphism cA of 3.5.(a).

An important construct associated to presheaves is that of stalk at a point.

Let B be a basis for the topological space X. Let A be a presheaf basis of L-structures over B.
Write νx for the filter of open neighborhoods of x ∈ X and define Bx = νx ∩ B. Note that :

∗ Since B and νx are closed under finite intersections, both νx and B, are rd-posets (cf. 2.2) under the
opposite of the partial order of inclusion, ⊆op; whence, the same is true of Bx;
∗ Because B is a basis for the topology of X, Bx is cofinal in 〈 νx, ⊆op 〉;
∗ Since A is a contravariant functor from 〈 B,⊆〉, it yields, by restriction to 〈 Bx, ⊆op 〉, a covariant
functor from this rd-poset to L-mod, that is, an inductive system of L-structures over 〈 Bx, ⊆op 〉.

Definition 3.6 With notation as above, for x ∈ X, the stalk of A at x is defined as

Ax = lim
−→

A|Bx
.

For U ∈ Bx, let αUx : A(U) −→ Ax be the L-morphism given by the inductive limit construction. If
U ⊆o V are in Bx, then diagram (D) below is commutative :

A(V ) - A(U)

αV x αUx

Ax

(D)

αV U

A
A
A
A
A
AAU

�
�

�
�

�
���

A(V ) - A(W ) A(U)�

���
���

���
����

αUW

αUx
αV x αWx

Ax

αVW

A
A
A
A
A
AAU

�
�

�
�

�
���

If s ∈ |A|, x ∈ Es and U ∈ Bx is such that U ⊆o Es 9, we define the germ of s at x to be the value

sx = αUx(s|U ). (∗)

Remark 3.7 Given any other V ∈ Bx such that V ⊆ Es, let W = U ∩ V . Commutativity of the
diagram above right shows : αUx(s|U ) = αWx(αUW (s|U )) = αWx(s|W ) = αV x(s|V ), i.e., (∗) is
independent of the choice of U ∈ Bx contained in Es. In this notation, the commutativity of diagram
(D) is expressed as

[germ] For all U ⊆o V in Bx and all s ∈ A(V ), sx = (s|U )x. ♦

Lemma 3.8 Let B be a basis for a topological space X and let A be a presheaf basis over B.

a) If 〈 s1, . . . , sn 〉 ∈ |A|n, ϕ(v1, . . . , vn) is a positive quantifier-free formula in L, and x ∈
⋂n
i=1 Esi,

then

Ax |= ϕ[s1x, . . . , snx] ⇔

{
∃ V ∈ Bx such that V ⊆

⋂n
i=1 Esi

and A(V ) |= ϕ[s1|V , . . . , sn|V ].

In particular, this applies to equality, that is, if s, t ∈ |A| and x ∈ Es ∩ Et, then

sx = tx ⇔
{
∃ U ∈ Bx such that U ⊆ Es ∩ Et
and s|U = t|U .

8Not necessarily Hausdorff, usually called quasi-compact.
9Es might not be in B.

9



b) Let A
c−→ cA be the completion of A, as in Theorem 3.5.(a). For each x ∈ X, the map c induces a

L-isomorphism, cx : Ax −→ cAx, given by sx ∈ Ax 7−→ c(s)x ∈ cAx.

c) A morphism of presheaf bases over B, f : A −→ B = 〈B(U); βV U : U ⊆ V in B 〉, induces, for
each x ∈ X, a L-morphism, fx : Ax −→ Bx, such that for all U ∈ B, βUx ◦ fU = fx ◦ αUx.

Proof. a) Since a positive quantifier-free formula is constructed from atomic formulas using the con-
nectives ∧, ∨, and B is closed under finite intersections, it is enough to verify the stated equivalence for
atomic formulas. But this follows readily from Theorem 2.3.(b).(2).

b) Fix x ∈ X; if s, t ∈ |A| are such that x ∈ Es ∩ Et and sx = tx, by (a) there is U ∈ Bx contained in
Es ∩ Et such that s|U = t|U . Since c preserves extent and commutes with restriction, we have

U = Ec(s|U ) = Ec(t|U ), and c(s)|U = c(s|U ) = c(t|U ) = c(t)|U ,

and another application of (a) yields c(s)x = c(t)x, showing that the map cx is well-defined. The
equivalence in (a), together with item (3) in Theorem 3.5.(a), entail that cx is a L-embedding. It
remains to check that cx is surjective. This follows from Theorem 3.5.(a).(2). Indeed, given tx ∈ cAx,
there is S ⊆ |A|, such that t is the gluing of {c(s) : s ∈ S}, whence, Et =

⋃
s∈S Ecs =

⋃
s∈S Es. Thus,

there is s ∈ S such that x ∈ Es; since c(s) = t|Es, it follows that for all U ∈ Bx such that U ⊆ Es,
c(s|U ) = c(s)|U = t|U , which in turn implies, by (a), c(s)x = tx, as needed.

c) The morphism f induces a morphism of inductive systems,

fBx = {fU : U ∈ Bx} : 〈A(U); αV U : U ⊆ V in B 〉 −→ 〈B(U); βV U : U ⊆ V in B 〉.
Then, with fx = lim

−→
fBx , all conclusions follow from Theorem 2.3.(f), ending the proof. ♦

Definition 3.9 Let B be a basis for the topological space X and let A be a presheaf basis of L-structures
over B. If ϕ(v1, . . . , vn) is a formula of L and s = 〈 s1, . . . , sn 〉 ∈ |A|n, define

vA(ϕ(s)) = {x ∈
⋂n
i=1 Esi : Ax |= ϕ[s1x, . . . , snx]},

called the Feferman-Vaught value of ϕ at s. Whenever A is clear from context, its mention will be
omitted from the notation. In general, v(ϕ(s)) is not an open set in X. Moreover, in view of 3.8.(b),
for all s ∈ |A|n, vA(ϕ(s)) = vcA(ϕ(c(s)), where cA is the completion of A over X and c(s) =
〈 c(s1), . . . , c(sn) 〉.

Proposition 3.10 Let B be a basis for the space X and let A be a presheaf basis of L-structures over
B. Let ϕ(v1, . . . , vn) be a L-formula and let s = 〈 s1, . . . , sn 〉 ∈ |A|n. Set Es =

⋂n
i=1 Esi.

a) If ϕ is positive and quantifier free, then

v(ϕ(s)) =
⋃
{V ∈ B : V ⊆ Es and A(V ) |= ϕ[s1|V , . . . , sn|V ]}.

In particular, v(ϕ(s)) is an open set in X (not necessarily in B).

b) If ϕ is a conjunction of atomic formulas, then for all U ∈ B,

U ⊆ v(ϕ(s)) ⇒ A(U) |= ϕ[s1|U , . . . , sn|U ].

c) For U ∈ B, define Γ(U) =
∏
x∈U Ax and consider the map

γU : A(U) −→ Γ(U), given by γU (s) = 〈 sx 〉x∈U .

If Γ(U) is endowed with the product L-structure, then γU is a L-embedding, and hence preserves and
reflects all quantifier-free L-formulas.

d) Suppose X is Hausdorff and that B is a Boolean algebra of clopens in X. If U ∈ B is compact and
A is finitely complete over U , then γU reflects geometric sentences with parameters in A(U) 10.

Proof. a) If ψ1(v1, . . . , vn) and ψ2(v1, . . . , vn) are L-formulas and s ∈ |A|n, it is clear that

v([ψ1 ∧ ψ2](s)) = v(ψ1(s)) ∩ v(ψ2(s)) and v([ψ1 ∨ ψ2](s)) = v(ψ1(s)) ∪ v(ψ2(s)), (v)

and so, it is enough to verify the statement for atomic formulas. Suppose ϕ(v1, . . . , vn) is an atomic
L-formula and s ∈ |A|n. By 3.8.(a), if Ax |= ϕ[s1x, . . . , snx], there is V ∈ Bx with V ⊆ Es and

10As in Definition 2.1.(c).
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A(V ) |= ϕ[s1|V , . . . , sn|V ]. For y ∈ V , the germ maps, αV y : A(V ) −→ Ay are L-morphisms, and
hence preserve atomic formulas. But this entails the displayed equality in (a), as needed.

b) By the first equality in (v) above, it suffices to verify the statement for an atomic L-formula, ϕ.
Suppose U ⊆o v(ϕ(s)), with U ∈ B. Then, for each x ∈ U , Ax |= ϕ[s1x, . . . , snx]. By Lemma 3.8.(a),
there is V ∈ Bx, with V ⊆ Es, such that A(V ) |= ϕ[s1|V , . . . , sn|V ]. Let Vx = V ∩ U ; note that
Vx ∈ Bx. Moreover, since the restriction maps are L-morphisms, we also have

A(Vx) |= ϕ[s1|Vx
, . . . , sn|Vx

]. (I)

Thus, we get a covering of U in B, {Vx : x ∈ U}, with the property in (I). It now follows from the
extensionality condition [ext] in Definition 3.2.(a), that A(U) |= ϕ[s|U ], as desired.

c) This is a consequence of item (b), upon verifying that γU reflects and preserves atomic L-formulas.
Indeed, if ψ(v1, . . . , vn) is an atomic L-formula and t = 〈 t1, . . . , tn 〉 ∈ A(U)n, then the fact that the
maps αUx, x ∈ U , are L-morphisms, immediately entails, because Γ(U) has the product L-structure,
that Γ(U) |= ϕ[γU (t)]; conversely, if this relation holds, then v(ϕ(t)) = U ∈ B , and item (b) then
guarantees that A(U) |= ϕ[t1|U , . . . , tn|U ].

d) We first show that γU reflects positive existential LA(U)-sentences. It is well-known that positive
existential formulas are logically equivalent to a disjunction of pp-formulas (as in 2.1.(e)). Hence, it
suffices to verify the statement for pp-sentences in LA(U). To simplify exposition, we shall also assume
that such a pp-sentence has only one existential quantifier, i.e., it is of the form ∃vψ(v; t1, . . . , tn),
where ψ is a conjunction of atomic formulas in LA(U), whose parameters from A(U) are t1, . . . , tn. The
reader will readily realize that the method extends, straightforwardly, to the general case. Moreover,
write γ for the L-embedding γU (see (c)) .

Suppose Γ(U) |= ∃vϕ(v)[γ(t)]; because Γ(U) has the product L-structure, for every x ∈ U ,
Ax |= ∃vϕ(v)[t1x, . . . , tnx]. Therefore, for each x ∈ U , there is zx ∈ Ax such that

Ax |= ϕ[zx; t1x, . . . , tnx].

By Lemma 3.8.(a), there is Vx ∈ Bx ⊆ U and z(x) ∈ A(Vx) such that

A(Vx) |= ϕ[z(x); t1|Vx
, . . . , tn|Vx

]. (II)

Since U is compact, there is a finite collection, {x1, . . . , xm} ⊆ U such that {Vxj : 1 ≤ j ≤ m} cover
U . By a standard disjointing argument 11, there are disjoint clopens, Vj ∈ B, 1 ≤ j ≤ n, such that

Vj ⊆ Vxj and U =
⋃m
j=1 Vj . (III)

Let Z = {z(xj)|Vj
: 1 ≤ j ≤ m}; since their extents are disjoint, with union U , and A(U) is finitely

complete, there is z ∈ A(U) such that z|Vj
= z(xj)|Vj

, 1 ≤ j ≤ m. Moreover, since Vj ⊆ Vxj , (II) and
the fact that ϕ is a conjunction of atomic formulas entail

For all 1 ≤ j ≤ m, A(Vj) |= ϕ[z|Vj
; t1|Vj

, . . . , tn|Vj
]. (IV)

Now (III), (IV) and Remark 3.3.(b) imply that A(U) |= ϕ[z; t1, . . . , tn], i.e., ∃vϕ(v; t1, . . . , tn) holds
in A(U), as needed. To complete the proof, suppose that σ(t1, . . . , tn) is a geometric LA(U)-sentence.
If σ is the negation of an atomic sentence, reflection follows immediately from the fact that γ is
an L-embedding. Let σ(t) is a LA(U)-sentence of the form ∀v(ϕ1(v; t) → ∃yϕ2(v, y; t)), with ϕ1,
ϕ2 positive and quantifier-free. Let s = 〈 s1, . . . , sn 〉 ∈ A(U)n and suppose A(U) |= ϕ1[s; t]. Since
γ is a L-embedding, we have Γ(U) |= ϕ1[γ(s); γ(t)]; since σ(t) holds in Γ(U), it follows that Γ(U) |=
∃y ϕ2[γ(s), y; γ(t)] and so, the fact that A(U) is positively existentially closed in Γ(U) along γ guarantees
that ∃y ϕ2(s, y; t) holds in A(U), as needed. ♦

We now have

Theorem 3.11 Let L, L] be first-order languages with equality and let Σ, Σ] be theories in L and
L], respectively. Let X be a Boolean space and let B be the Boolean algebra of clopens in X. Let
A : B −→ Σ-mod be a finitely complete presheaf basis of models of Σ, with restriction L-morphisms
{ρV U : U ⊆ V in B}. If F : Σ-mod −→ Σ]-mod is a geometrical functor, then

a) F ◦ A : B −→ Σ]-mod is a finitely complete presheaf basis of models of Σ].
11By induction, set V1 = Vx1 and Vk = Vxk \ (

S
i<k Vxi); it is here that it is crucial that B be a BA.
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b) For all x ∈ X, the stalk of F ◦ A at x is (F ◦ A)x = 〈F (Ax); {F (ρUx) : U ∈ Bx} 〉.

Proof. Item (b) follows immediately from (a) and the fact that F preserves right-directed colimits.
For (a), let U ∈ B and let V = {V1, . . . , Vn} be a disjoint clopen covering of U . Since A is extensional
and fc, Proposition 3.4.(a) guarantees that the diagram below left is commutative, with α(U ; V ) a
L-isomorphism, 1 ≤ j ≤ n :

A(U) -
∏n
j=1 A(Vj)

·|Vj
pj

A(Vj)

α(U ;V )

A
A
A
A
A
AAU

�
�

�
�

�
���

F (A(U)) -
∏n
j=1 F (A(Vj))

·|F (Vj) F (pj)

F (A(Vj))

F (α(U ;V ))

A
A
A
A
A
AAU

�
�

�
�

�
���

Since F preserves finite products, F (pj) is the j-th coordinate projection and the diagram above right
is commutative, 1 ≤ j ≤ n. Moreover, F (α(U ; V )) is clearly a L]-isomorphism. By the equivalence in
Proposition 3.4.(a), F ◦ A is an extensional, finitely complete presheaf basis of models of Σ], as needed.

♦

4 Rings with Many Units

In this section we first give a model-theoretic criterion for a subring to inherit the property of having
many units and then show that if A is a ring with many units, the mod 2 counterpart of Milnor’s
K-theory of rings, introduced in [Gu], is canonically isomorphic to the K-theory of a special group
naturally associated to A in [DM5]. To begin, we recall

Definition 4.1 Let R be a ring.

a) A polynomial f ∈ R[X1, . . . , Xn] has local unit values relative to maximal ideals if for all
maximal ideals m in R, there is u ∈ Rn such that f(u) 6∈ m. Similarly, one defines the notion f having
local unit values relative to prime ideals in R.

b) R is a ring with many units if for all f ∈ R[X1, . . . , Xn], if f has local unit values relative to
maximal ideals, then there is y ∈ Rn such that f(y) is a unit in R.

Remark 4.2 Since every maximal ideal is prime and all (proper) prime ideals are contained in a
maximal ideal, a ring R has many units iff for all f(X1, . . . , Xn) ∈ R[X1, . . . , Xn],

f has local unit values relative
to all prime ideals in R

⇒ ∃ z = 〈 z1, . . . , zn 〉 ∈ Rn such
that f(z) is a unit in R.

Examples of rings with many units are semi-local rings, arbitrary products of rings with many units
and more generally, the ring of global sections of a sheaf of rings over a partitionable space, whose
stalks are rings with many units. In particular, the ring of global sections of a sheaf of rings over a
Boolean space, whose stalks are rings with many units, is a ring with many units. The reader can find
more information, as well as the proof of these results in [DM5], where it is also shown that, under mild
assumptions, the RSGs associated to rings of this type faithfully represent the quadratic form theory
over free modules (Theorems 3.15 and 3.16, [DM5]). ♦

Proposition 4.3 Let R be a ring with many units. If S is a positively existentially closed subring of
R, then S is also a ring with many units.

Proof. We shall use the equivalence noted in Remark 4.2. Let f(X1, . . . , Xn) be a polynomial with
coefficients in S, that has local unit values relative to all prime ideals in S. If P is a prime ideal in
R, then Q = P ∩ S is a prime ideal in S and so there is x ∈ Sn such that f(x) 6∈ Q. Because f has
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coefficients in S, it is clear that f(x) ∈ S. Hence, f(x) cannot be in P . Thus, f has local unit values
relative to all prime ideals in R. Since R has many units, there is r ∈ Rn, such that f(r) is a unit in
R. Now consider the sentence ϕ given by

∃x1 · · ·xn ∃u (u · f(x1, . . . , xn) = 1).

Because f has coefficients in S, ϕ is a pp-sentence of the language of rings with parameters in S. Since
S is positively existentially closed in R and R |= ϕ, the same is true in S and so f has unit values in
S, as needed. ♦

We now adapt to our purposes a condition introduced in [Gu] (page 29) :

Definition 4.4 Let A be a ring and let m ≥ 1 be an integer. We say that

a) A satisfies [H1-m] (A |= [H1-m]) if for all n ≥ 2 and all 1 ≤ k ≤ m, if {f1, . . . , fk} is a family of
surjective linear forms over the free A-module An, there is v ∈ An such that fj(v) ∈ A∗, 1 ≤ j ≤ k.

b) A satisfies [H1] if A |= [H1-m] for all m ≥ 1.

It is mentioned in the Examples given on page 33 of [Gu] that all semilocal rings whose residue
fields are infinite verify [H1]. In particular, all infinite fields satisfy [H1]. Generalizing this observation
we have

Proposition 4.5 Let m ≥ 2 be an integer. If A is a ring with many units, whose residue fields all
have cardinality ≥ m, then A |= [H1-m].

Proof. We start with the following

Fact 4.6 If F is a field of cardinality ≥ m, then F |= [H1-m]. In particular, infinite fields verify [H1].

Proof. By induction on m ≥ 1. Clearly, any ring verifies [H1-1]. Assume the result true for m, that
F has at least m + 1 elements and that {f1, . . . , fk}, 1 ≤ k ≤ m + 1, are surjective linear forms from
Fn to F . If k ≤ m, the induction hypothesis immediately implies the desired result. So, assume k =
m+ 1. The induction hypothesis yields v ∈ Fn such that fj(v) 6= 0 (i.e., fj (v) ∈ F ∗), 1 ≤ j ≤ m. If
fm+1(v) 6= 0, we are done. Otherwise, select w such that fm+1(w) 6= 0 and consider the set

A = {fj(w)/fj(v) : 1 ≤ j ≤ m}.
Since A has at most m elements and F has at least m+ 1 elements, there is λ ∈ F \ A. Now consider
x = w − λv ∈ Fn; then,

fm+1(x) = fm+1(w) 6= 0 and, for 1 ≤ j ≤ m, fj(x) = fj(w) − λfj(v) 6= 0,

because λ 6∈ A, establishing Fact 4.6.

Now let A be a ring with many units, whose residue fields all have more than m elements, and let
{f1, . . . , fk} be surjective linear forms from An to A (k ≤ m). Let {e1, . . . , en} be the canonical basis
of An and set, for 1 ≤ j ≤ k and 1 ≤ l ≤ n, ajl =def fj(el). Now, let

p(X1, . . . , Xn) =
∏k
j=1

∑n
l=1 ajlXl =

∏k
j=1 fj . (I)

If m is a maximal ideal in A and 1 ≤ j ≤ k, the form fj naturally induces a surjective linear form,
fj/m, from (A/m)n to A/m, given by

x/m = (x1/m, . . . , xn/m) 7−→ fj(x)/m.

Indeed, if xl − yl ∈ m, 1 ≤ l ≤ n, then, with notation as in (I),

fj(x) − fj(y) = fj(x − y) =
∑n

l=1 ajl(xl − yl) ∈ m,

and fj/m is well defined. It is clear that fj/m is surjective. By Fact 4.6, there is v/m ∈ (A/m)n such
that [fj/m](v/m) 6= 0, that is, fj(v) 6∈ m, for all 1 ≤ j ≤ k. Since m is a prime ideal, (I) entails

p(v) =
∏k
j=1 fj(v) 6∈ m,

and thus p(X1, . . . , Xn) has local unit values in A. Hence, there is x ∈ An such that p(x) ∈ A∗. But
this immediately implies that fj(x) ∈ A∗, 1 ≤ j ≤ k, ending the proof. ♦
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We now wish to present a mod 2 K-theory of rings, patterned after the construction in section 3
of [Gu]. Let A be a ring. We set K0A = Z and let K1A be A∗ written additively, that is, we fix an
isomorphism

l : A∗ −→ K1A, such that l(ab) = l(a) + l(b), ∀ a, b ∈ A∗.

Then, Milnor’s K-theory of A is the graded ring (Definition 3.2, p. 47, [Gu])

K∗A = 〈Z,K1A, . . . ,KnA, . . . 〉,
obtained as the quotient of the graded tensor algebra over Z,

〈Z,K1A, . . . ,K1A⊗ . . . ⊗K1A︸ ︷︷ ︸
n times

, . . . 〉

by the ideal generated by {l(a) ⊗ l(b) : a, b ∈ A∗ and a + b = 1 or 0}. Hence, for each n ≥ 2, KnA is
the quotient of the n-fold tensor product over Z, K1A ⊗ . . .⊗ K1A, by the subgroup consisting of sums
of generators l(a1) ⊗ . . .⊗ l(an), such that for some 1 ≤ i ≤ n − 1, ai + ai+1 = 1 or 0. As usual, we
shall write the generators in KnA as l(a1)· · · l(an), omitting the tensor operation. As a consequence
of (the proof of) Proposition 3.2.3 in [Gu] (p. 48) and Proposition 4.5 we have

Lemma 4.7 Let A be a ring with many units whose residue fields all have more than 7 elements.
Then, K∗A is the graded ring obtained as the quotient of the graded tensor algebra over Z,

〈Z,K1A, . . . ,K1A⊗ . . . ⊗K1A︸ ︷︷ ︸
n times

, . . . 〉

by the graded ideal generated by {l(a)l(b) : a, b ∈ A∗ and a+ b = 1}.

Proof. By Prop. 3.2.3 in [Gu], the result holds for rings satisfying [H1] in 4.4.(b). However, an analysis
of the proof shows that what is needed is [H1-6], and the desired conclusion follows from 4.5. ♦

Definition 4.8 If A is a ring, we define the mod 2 K-theory of A, as the graded ring

k∗A = 〈 k0A, k1A, . . . , knA, . . . 〉 =def K∗A/2K∗A,

that is, for each n ≥ 0, knA is the quotient of KnA by the subgroup {2η ∈ KnA : η ∈ KnA}.

We have k0A = F2 and k1A ≈ A∗/A∗2, via an isomorphism still denoted by l. A generator in knA will
be written l(a1) · · · l(an). Clearly, knA is a group of exponent 2, i.e., η + η = 0, for all η ∈ knA.

Lemma 4.9 If A is a ring verifying [H1-6], then for all b, a, a1, . . . , an ∈ A∗ and all permutations σ
of {1, . . . , n}
a) In k2A, l(a)l(−a) = 0.

b) In k2A, l(a)l(−1) = l(a)2.

c) In k2A, l(a)l(b) = l(b)l(a).

d) In knA, l(a1) · · · l(an) = l(aσ(1) · · · l(aσ(n)).

e) If t1, . . . , tn ∈ A∗, then in knA, l(t21a1) · · · l(t2nan) = l(a1) · · · l(an).

Proof. a) The proof of Prop. 3.2.3 in [Gu] shows that if A verifies [H1-6], then l(a)l(−a) = 0 in K2A
and so the same is true in k2A.

b) From (a) we get 0 = l(a)l(−a) = l(a)[l(−1) + l(a)] = l(a)l(−1) + l(a)2. Since k2A is a group
of exponent two, the conclusion follows.

c) From (a) and (b) we get

0 = l(−ab)l(ab) = [l(−a) + l(b)][l(a) + l(b)] = l(b)l(a) + l(−a)l(b) + l(b)2

= l(b)l(a) + [l(−1) + l(a)]l(b) + l(b)2 = l(b)l(a) + l(a)l(b),

and so, since k2 is a group of exponent two, we obtain l(a)l(b) = l(b)l(a), as needed. Item (c) implies
that the conclusion in (d) holds for all transpositions. Since the symmetric group is generated by
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transpositions, the full statement in (d) follows immediately. For item (e), note that for t, a ∈ A∗,
l(t2a) = 2l(t) + l(a) = l(a), since 2l(t) = 0 in k1A. ♦

Our next order of business is to connect the mod 2 K-theory of a ring with many units satisfying
certain conditions with the K-theory of a special group naturally associated to it. With this purpose
we set down the following

4.10 Construction. Let A be a ring. For a, b ∈ A∗ define

DA(a, b) = {c ∈ A∗ : ∃ s, t ∈ A such that c = s2a + t2b},
called the set of units represented modulo squares by a, b. Now let

G(A) = A∗/A∗2 = {a : a ∈ A∗}
be the group of exponent two of the square classes of elements of A∗. For u, v ∈ A∗,

u = v iff uv ∈ A∗2 iff ∃ t ∈ A∗ such that u = t2v. (I)

It follows straightforwardly from (I) that for u, v, w, z ∈ A∗,

u = w and v = z ⇒ DA(u, v) = DA(w, z). (II)

We abuse notation and write 1, −1 both for the elements in A∗ and for 1, −1, respectively.

Define the relation of binary isometry in G(A) by the following clause : for u, v, x, y ∈ A∗

〈u, v 〉 ≡ 〈x, y 〉 iff u v = xy and DA(u, v) = DA(x, y).

Relation (II) above shows that ≡ is well-defined, i.e., is independent of representatives in the square
classes of u, v, x and y. ♦

Lemma 4.11 Let A be a ring with many units, whose residue fields all have more than 7 elements.
Let a, b, a1, . . . , an ∈ A∗, with a ∈ DA(1, b). If ai = a and aj = ab for some 1 ≤ i 6= j ≤ n, then
l(a1) · · · l(an) = 0 in knA.

Proof. Let A be a ring as in the statement. It is noted in the proof of Theorem 3.16 in [DM5] that A
satisfies the following property (therein called [w2t], cf. 3.11, p. 16) :

∀ u, v, w ∈ A∗, w ∈ DA(u, v) ⇒ ∃ p, q ∈ A∗ such that w = p2u + q2v. (\)

Hence, since a ∈ DA(1, b), there are p, q ∈ A∗ such that a = p2 + q2b. Hence,

1 = (p2/a2) a + (q2/a2) ba = (p/a)2a + (q/a)2ab,

and so, the definition of k∗A and 4.9.(e) yield l(a)l(ab) = 0 in k2A. The general statement follows
immediately from 4.9.(d). ♦

Theorem 4.12 Let A be a ring with many units such that 2 ∈ A∗ and whose residue fields all
have more than 7 elements. Then, G(A) = 〈G(A), ≡, −1 〉 (as in 4.10) is a special group. Moreover,
the rules α0 = IdF2 and αn : knA −→ knG(A), defined on generators by αn(l(a1) · · · l(an)) =
λ(a1) · · ·λ(an), for n ≥ 1, determine a graded ring isomorphism between the mod 2 K-theory of A and
the K-theory of the special group G(A).

Proof. The fact that G(A) is a special group is established in Theorem 3.16 of [DM5]. Now, the proof
of Theorem 2.5 in [DM3], yielding an analogous result for fields of characteristic 6= 2, with Lemma 4.11
in the role of Lemma 2.4 of [DM3], applies, ipsis litteris, to show that α = {αn : n ≥ 0} is a graded
ring isomorphism between k∗A and k∗G(A). ♦

5 Presheaf Representation and Preorders of vN-Rings

5.1 Notation and Remarks. Let R be a ring.

a) For a1, . . . , an in R, (a1, . . . , an) is the ideal generated by a1, . . . , an in R. As usual, an ideal is
principal if it is of the form (a) = Ra, for a ∈ R.
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b) Spec(R) = {P ⊆ R : P is a (proper) prime ideal in R} is the Zariski spectrum of R. For a ∈ R, set
Z(a) = {P ∈ Spec(R) : a 6∈ P}. The collection Z = {Z(a) : a ∈ R} has the following properties :

(1) Z(0) = ∅, Z(1) = Spec(R); (2) Z(ab) = Z(a) ∩ Z(b);

(3) (a) ⊆ (b) ⇒ Z(a) ⊆ Z(b);

(4) Z(a) ⊆ Z(b) iff ∃ n ≥ 1 such that an ∈ (b);

(5) Z(a+ b− ab) ⊆ Z(a) ∪ Z(b). If b2 = b, then Z(a+ b− ab) = Z(a) ∪ Z(b).

Items (1) and (2) above guarantee that Z is a basis for a topology on Spec(R), the Zariski topology,
that is (well-) known to be spectral and in which Z(a) is open and compact, for all a ∈ R.

c) For a ∈ R, let Ra be the ring of fractions of R with respect to a, that is, Ra = RM−1
a , where

Ma = {1} ∪ {an : n ≥ 1}. Note that if a is nilpotent, then Ra = {0}, the zero ring. ♦

5.2 The Boolean Algebra of Idempotents. Let R, S be rings.

a) Let B(R) = {e ∈ R : e2 = e} be the set of idempotents in R. With the operations

e ∧ f = ef and e ∨ f = e + f − ef ,

〈B(R),∧,∨, 0, 1 〉 is a Boolean algebra (BA), where the complement of e is 1 − e. Note that for
e, f ∈ B(R), e ≤ f ⇔ ef = e ⇔ e ∨ f = f .

If f : R −→ S is a ring-morphism, then B(f) =def f|B(R) is a BA-morphism from B(R) to B(S);
it is clear that this correspondence preserves composition and identity. Hence, we have a covariant
functor from UCR to BA, the category of BAs.

If e ∈ B(R), the principal ideal (e) = Re is a ring, whose unit is e.

b) For e ∈ B(R), let ϕ1e : R −→ Re, be the ring morphism given by ϕ1e(a) = ae. If f ≤ e, write ϕef
for (ϕ1f )|Re : Re −→ Rf ; since ef = f , we have ϕef (ae) = af . Note that

(1) ϕee = IdRe; (2) For h ≤ f ≤ e, ϕeh = ϕfh ◦ ϕef .
c) e, f ∈ B(R) are disjoint or orthogonal if ef = 0; thus, ef = 0 ⇔ f ≤ 1 − e ⇔ e ≤ 1 − f .
Clearly, if e and f are disjoint, then e ∨ f = e + f .

d) A family {f1, . . . , fn} ⊆ B(R) is

(1) A covering of e ∈ B(R) if e =
∨n
i=1 fi;

(2) An orthogonal decomposition of e if the fj are pairwise disjoint and

e =
∑n

j=1 fj =
∨n
j=1 fj .

e) An orthogonal decomposition of e ∈ B(R), {hj ∈ B(R) : 1 ≤ j ≤ n} induces a decomposition into a
direct sum of rings, Re =

⊕n
j=1 Rfj , defined by ae 7−→

∑n
j=1 afj . Hence, R = Re ⊕ R(1− e) and

the map αe : R/(1− e) −→ Re given by αe(a/(1− e)) = ae is an isomorphism, with ϕ1e = αe ◦ q1−e,
where q1−e : R −→ R/(1− e) is the canonical quotient map and ϕ1e is as in (b) above. ♦

Proposition 5.3 If R is a ring and e ∈ B(R), let {fj ∈ B(R) : 1 ≤ j ≤ n} be a covering of e.

a) There is an orthogonal decomposition of e, {ej ∈ B(R) : 1 ≤ j ≤ n}, so that ej ≤ fj, 1 ≤ j ≤ n.
Such an orthogonal decomposition is said to be subordinate to the covering {fj : 1 ≤ j ≤ n}.
b) If a, b ∈ R, then ae = be ⇔ ∀ 1 ≤ j ≤ n, afi = bfi.

c) Let a1, . . . , an ∈ R be such that for all 1 ≤ j, k ≤ n, akfkfj = ajfjfk. Then, there is a ∈ R such
that afj = ajfj, for all 1 ≤ j ≤ n.

d) If Re is the ring of fractions of R with respect to e (as in 5.1.(c)), then

(1) The map λe : Re −→ Re, given by λe(re) = re/1 is a ring isomorphism;
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(2) For f ≤ e, the map γef : Re −→ Rf , given by γef (re/1) = rf/1, is a ring morphism, such
that the following diagram is commutative

Rf

Re

?

- Re

ϕef

λe

Rf

γef

λf

?
-

where ϕef : Re −→ Rf is as in 5.2.(b).

e) If R is a ring with many units, the same is true of Re.

Proof. a) Set e1 = f1 and for 2 ≤ j ≤ n, define ej = fj(1−f1)(1−f2) · · · (1−fj−1); it is straightforward
that the ej ≤ fj are pairwise orthogonal and that for all 1 ≤ k ≤ n,

∑k
j=1 ej =

∨k
j=1 fj . In particular,

{ej : 1 ≤ j ≤ n} is a orthogonal decomposition of e, subordinate to the covering {fj : 1 ≤ j ≤ n}.
b) It suffices to verify (⇐). Let {ej : 1 ≤ j ≤ n} be an orthogonal decomposition of e, subordinate to
{fj : 1 ≤ j ≤ n}. For 1 ≤ j ≤ n, aej = aejfj = bfjej = bej , and so ae = a

∑n
j=1 ej = b

∑n
j=1 ej =

be, as needed.

c) Let {ej : 1 ≤ j ≤ n} be an orthogonal decomposition of e, subordinate to {fj : 1 ≤ j ≤ n} and set
a =

∑n
j=1 ajej . Then, for 1 ≤ k ≤ n, afk =

∑n
j=1 ajejfk =

∑n
j=1 ajejfjfk =

∑n
j=1 akejfjfk

= akfk
∑n

j=1 ej = akfke = akfk,

as desired.

d) (1) Clearly, λe is an injective ring morphism. For x ∈ R, since e(x − xe) = 0, in Re we have

x/e = x/1 = xe/1, ([)

and λe is also surjective, whence an isomorphism. Item (2) is straightforward.

e) Let α(X) ∈ Re[X1, . . . , Xn] be a polynomial. Observe that for a ∈ Rn

eα(a) = α(a) = α(a1e, . . . , ane), (I)

since for a monomial (cνe)Xν1
1 · · ·Xνn

n in α, (cνe)aν11 · · · aνn
n = (cνe)(a1e)ν1 · · · (ane)νn . Suppose α has

local unit values with respect to all prime ideals in Re (cf. 4.2), and consider

β(X) = α(X) + (1− e) ∈ R(X1, . . . , Xn).

Let Q be a (proper) prime ideal in R; since e(1− e) = 0, we have two possibilities :

(i) e ∈ Q : In view of (I), for all b ∈ Rn, β(b) = eα(b) + (1− e) 6∈ Q (otherwise 1− e ∈ Q and Q
would not be a proper ideal);

(ii) e 6∈ Q : P = Q ∩ Re is a proper prime ideal in Re and so there is a ∈ Rn such that α(a) =
α(a1e, . . . , ane) 6∈ P . Because 1− e ∈ Q, we conclude that β(a) = α(a) + (1− e) 6∈ Q, otherwise α(a)
would belong to Q ∩ Re = P .

We have just shown that β has local unit values with respect to all prime ideals in R. Since R has
many units, there is u ∈ Rn and c ∈ Rn such that

1 = uβ(c) = u(α(c) + (1− e)) = uα(c1e, . . . cne) + u(1− e).

Multiplying this equation by e, we get e = (ue) α(c1e, . . . , cne), and α(c) is a unit in Re, as needed. ♦
Item (d) in Proposition 5.3 yields the following generalization of Proposition 4.3 :

Corollary 5.4 Let R, T be rings and let f : R −→ T be a map that preserves addition, multiplication
and 0 12. If T has many units and R is positively existentially closed in T along f , then R has many
units.

12So f is a morphism with respect to the language of rings without identity.
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Proof. First note that e = f(1) ∈ B(T ) and that f identifies S with a positively existentially closed
subring of Te. The conclusion follows immediately from 4.3 and 5.3.(e). ♦

Definition 5.5 A ring R is von Neumann regular (vN-ring) if every principal ideal is generated
by an idempotent. Thus, if a ∈ R, there is e ∈ B(R) such that (a) = (e). Equivalently,

∀ a ∈ R ∃ e ∈ B(R) and ∃ b ∈ R such that ae = a and ab = e. [vN]

We refer to e as the idempotent associated to a (clearly,it is unique). Yet another formulation of
von Neumann regularity of a ring R, is to require that every element of R be divisible by its square. A
vN-ring is also called absolutely flat, being precisely the rings with the property that all modules are
flat. Write vN for the category of vN-rings and ring morphisms.

Lemma 5.6 Let R be a vN-ring and let e ∈ B(R).

a) All prime ideals in R are maximal and the map P ∈ Spec(R) r7−→ P ∩ B(R) is a natural bijective
correspondence between Spec(R) and the maximal ideals in the Boolean algebra B(R).

b) Let P be a prime ideal in R and let RP be the localization of R at P . If P ∈ Z(e), let

(1) λeP : Re −→ RP , be given by λeP (x/e) = x/e;

(2) ϕeP : Re −→ R/P , be given by ϕeP (re) = r/P ;

(3) λP : R/P −→ RP , be given by λP (x/P ) = x/1.

Then, λeP , ϕeP are surjective ring morphisms, λP is an isomorphism and diagram (I) below is com-
mutative,

R/P

Re

(I)

?

- Re

ϕeP

λe

RP

λeP

λP

?
-

Re

(II)

- Rf

ϕeP ϕfP

R/P

ϕef

A
A
A
A
A
AAU

�
�

�
�

�
���

where λe is the isomorphism in 5.3.(d).(1). Moreover, if f ∈ B(R) is such that P ∈ Z(f) and f ≤ e,
then diagram (II) above is commutative.

c) With the Zariski topology, Spec(R) is a Boolean space, with a basis of clopens,

Z = {Z(e) ⊆ Spec(R) : e ∈ B(R)}
that is a Boolean algebra isomorphic to B(R) by the map e ∈ B(R) 7−→ Z(e) ∈ Z. Moreover,

(1) The map r in (a) is a homeomorphism between Spec(R) and (maximal ideal version of ) the
Stone space of B(R);

(2) For all P ∈ Spec(R), the filter ZP = {Z(e) ∈ Z : P ∈ Z(e)} of clopen neighborhoods of P
is order-isomorphic to the ultrafilter {e ∈ B(R) : e 6∈ P} in B(R).

d) If I is an ideal of R, then R/I is a vN-ring and Spec(R/I) is naturally homeomorphic to the set
V (I) =def {P ∈ Spec(R) : I ⊆ P}, with the topology induced by Spec(R). In particular, Re is a
vN-ring, with Spec(Re) = Z(e).

Proof. a) If P ∈ Spec(R) and a 6∈ P , then condition [vN] in 5.5 yields e ∈ B(R) and b ∈ R such that
ab = e and ae = a, whence, e 6∈ P . But then, 1 = e + (1 − e) = ab + (1 − e), and the ideal
generated by P and a is not proper. Hence, P is maximal in R. Note that

∀ e ∈ B(R), ∀ P ∈ Spec(R), e 6∈ P ⇔ e/P = 1/P in the quotient ring R/P . (])

If P ∈ Spec(R), it is clear that P ∩ B(R) is a prime ideal in the Boolean algebra B(R), hence a
maximal ideal of B(R). If P 6= Q in Spec(R), then [vN] in 5.5 entails that there is e ∈ B(R) such that,
say, e ∈ P and e 6∈ Q, and r is injective. It is straightforward to check that if m is a maximal ideal in
B(R) and M is the ideal generated by m in R, then M ∩ B(R) = m, establishing that r is bijective.
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b) Clearly, λeP and λP are ring morphisms, while (]) above implies not only that ϕeP is a ring morphism,
but also that it is the natural quotient projection, Re −→ Re/Pe 13, being, therefore, surjective. That
λeP is also surjective will follow from the commutativity of diagram (I), once λP is shown to be an
isomorphism. For x ∈ R, since P is prime, we have

x/1 = 0/1 ⇔ ∃ u 6∈ P such that ux = 0 ⇒ x ∈ P ⇔ x/P = 0,

and λP is injective. To prove it is onto, note that for all x ∈ R and q 6∈ P there is y ∈ R such that, in
RP , x/q = xy/1. Indeed, let e ∈ B(R) and y ∈ R be such that yq = e and qe = q. Then, y, e 6∈ P
and, since e(x − xyq) = ex(1 − e) = 0, we have x/q = xy/1, as needed. The commutativity of the
diagrams displayed in the statement is straightforward.

c) As remarked in 5.1.(b), Spec(R) with the Zariski topology is a T0 compact space, having Z =
{Z(a) : a ∈ R} as a basis of compact opens. In view of 5.1.(b.3), we have

Z = {Z(e) : e ∈ B(R)},
with Z(e) clopen in Spec(R) (its complement is Z(1− e)). Since a T0 space with a basis of clopens is
Hausdorff, Spec(R) is a Boolean space. For all e, f ∈ B(R), we have, in view of the above and items
(2) and (5) in 5.1, that{

Z(e)c = Z(1− e), Z(e ∧ f) = Z(ef) = Z(e) ∩ Z(f) and

Z(e ∨ f) = Z(e+ f − ef) = Z(e) ∪ Z(f),
(Z)

and so Z is a BA and the map e ∈ B(R) 7−→ Z(e) ∈ Z is a BA-isomorphism. The remaining
statements in (c) are now clear.

d) If I is an ideal in R, a ∈ R and e is the idempotent associated to a (as in 5.5), then (a/I) = (e/I),
and R/I is a vN-ring. If qI : R −→ R/I is the canonical projection, then

qI∗ : Spec(R/I) −→ Spec(R), given by qI∗(Q) = q−1
I (Q),

is a continuous bijection between Spec(R/I) and V (I); it is straightforward that for P ∈ V (I),
qI(P ) ∈ Spec(R/I) and so the Fundamental Theorem of morphism of rings guarantees bijectivity, while
continuity stems from the fact that for all a ∈ R, (qI∗)−1(Z(a)) = Z(a/I). Since Spec(R/I) and
V (I) are Boolean spaces, any continuous bijection is a homeomorphism. The last assertion follows from
the fact that Re ≈ R/(1− e), noted in 5.2.(e), ending the proof. ♦

With these preliminaries, we state

Proposition 5.7 Let R be a vN-ring and let Z be the Boolean algebra of clopens in Spec(R).

a) The assignments

(R)

{
Z(e) ∈ Z 7−→ Re

Z(f) ⊆ Z(e) 7−→ ϕef : Re −→ Rf ,

constitute a presheaf basis of vN-rings over Z, R, with the following properties :

(1) R is finitely complete over all Z(e) ∈ Z;

(2) Notation as in 5.2.(b) and 5.6.(b).(3), for each P ∈ Spec(R), let
ZP = {Z(e) ∈ Z : P ∈ Z(e)} ≈ {e ∈ B(R) : e 6∈ P}.

Then, the colimit of the inductive system 〈Z(e); {ϕef : f ≤ e, f 6∈ P} 〉, is
〈R/P ; {ϕeP : e 6∈ P} 〉. In other words, the stalk of R at P is the field R/P , i.e.,

RP = R/P = lim
−→ e6∈P

Re.

b) The completion of R, cR, is (naturally isomorphic to) the affine scheme of R. Moreover, for all
e ∈ B(R), we have cR(Z(e)) = Re; in particular, the ring of global sections of cR is precisely R.

Proof. a) Item (d) in Lemma 5.6, together with relations (1) and (2) in 5.2.(b), show that R is a
contravariant functor from 〈Z,⊆op 〉 to the category of vN-rings. Since each Z(e) is compact clopen,
the extensionality of R and its finite completeness over Z(e) follow immediately from items (b) and (c)

13Note that Pe = P ∩ Re.
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of Proposition 5.3, respectively. It remains to prove (2). By 2.3.(c), it must be shown, in view of the
definition of the maps ϕef and ϕeP in 5.6.(b), that :

∗ R/P =
⋃
e6∈P ϕeP (Re), which is clear from from 5.6.(b);

∗ For all e 6∈ P and xe ∈ Re, x/P = 0 ⇒ ∃ f ≤ e such that f 6∈ P and xf = 0.

Let h be the idempotent associated to x; since x ∈ P , the same is true of h, whence, 1 − h 6∈ P . Set
f = e(1− h); then, f ≤ e, f 6∈ P and xf = xe(1− h) = xhe(1− h) = 0, as needed.

b) If R is a ring, the classical presheaf basis associated to R, whose completion is its affine scheme, is
the contravariant functor from Z = {Z(a) : a ∈ R} to UCR, defined by

(i) Z(a) ∈ Z 7−→ Ra, the ring of fractions of R with respect to a;

(ii) If Z(a) ⊆ Z(b), then (by 5.1.(b).(4)) an = ub, for some n ≥ 1 and u ∈ R, whence, b is invertible
in Ra, 1/b = u/an. By the universal property of rings of fractions, there is a unique ring morphism,
ρba : Ra −→ Rb, given, for r ∈ R, by ρab(r/bm) = run/anm, and this definition is independent of the
parameters n ≥ 1 and u. The presheaf basis so defined is complete over any Z(a), a ∈ R. Now, if R is
a vN-ring, then

(iii) For all a ∈ R, Z(a) = Z(e), where e is the idempotent associated to a;

(iv) For f ≤ e, the ring morphisms ρef are precisely the γef of Proposition 5.3.(d).(2). Indeed, in this
case we have ef = f and so, recalling equality ([) in the proof of (d).(1) of 5.3 (page 17), we obtain,
for r ∈ R, ρef (r/em) = ρef (re/1) = rf/e = ref/1 = rf/1 = γef (re/1).

(v) For all e ≤ f in B(R), the maps λe of 5.3.(d).(1) are isomorphisms, making the diagram displayed
in 5.3.(d).(2) commutative.

From (i) − (v), we conclude that the presheaf basis constructed in part (a) above is isomorphic to
the classical presheaf basis associated to the affine scheme of R, and so their completions must also be
isomorphic. That cR(Z(e)) = Re follows immediately from item (a).(4) of Theorem 3.5. ♦

Proposition 5.7 shows that every vN-ring is represented as the ring of global sections of a sheaf of
vN-rings over a Boolean space, whose stalks are fields, in fact, the residue fields at its maximal ideals.
The converse of this statement is also true : the ring of global sections of any sheaf of rings over a
Boolean space, whose stalks are fields, is a vN-ring. This correspondence, originally due to Pierce, can
be found in [Pi]. We shall now deal with preorders in vN-rings.

5.8 Definition and Notation. Let R be a ring and let S be a subset of R.

a) Write

∗ S∗ for the set of units in S. In particular, R∗ is the (multiplicative) group of units in R;

∗ R2 for the set of squares in R; ∗ ΣR2 for the set of sums of squares in R.

b) As usual, a preorder in a ring R is a set T ⊆ R closed under addition and multiplication and
containing R2. T is proper if T 6= R; if 2 ∈ Ṙ, this is equivalent to − 1 6∈ T . In fact, if − 1 ∈ T and
r ∈ R, then

r =
(
r + 1

2

)2

+ (− 1 )
(
r − 1

2

)2

∈ T .

If P ∈ Spec(R), and T is a preorder of R, let T/P =def {a/P ∈ R/P : a ∈ T} be the preorder
induced by T on the quotient R/P .

c) A ring is real if for all a1, . . . , an ∈ R,
∑n

i=1 a
2
i = 0 ⇒ ai = 0, 1 ≤ i ≤ n.

d) A vN-ring, R, is strongly formally real if for all P ∈ Spec(R), R/P is a formally real field.

e) A preorder T of a vN-ring R is strict if for all P ∈ Spec(R), T/P is a proper preorder of the residue
field R/P . ♦

Lemma 5.9 Let R be a vN-ring and let T be a preorder of R.

a) 2 is a unit in R ⇔ all residue fields of R have characteristic 6= 2.

b) If 2 is a unit in R, then for all f ∈ B(R), the following are equivalent :
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(1) For all 0 6= e ≤ f , Te is a proper preorder of Re;

(2) For all P ∈ Z(f), T/P is a proper preorder of R/P .

c) If 2 is a unit in R, e ∈ B(R) and a ∈ R, the following are equivalent :

(1) For all P ∈ Z(e), a/P ∈ T/P ; (2) ae ∈ T .

Proof. a) It suffices to prove (⇐). Let 2 ∈ R(Z(1)) = R; by assumption, for each P ∈ Spec(R), 2P
is a unit in the stalk RP = R/P . Hence, for each P ∈ Spec(R), there is aP ∈ RP such that 2PaP =
1P . By Theorem 2.3.(b).(1) and Lemma 3.8.(a), there are fP ∈ B(R) and zP ∈ RfP = R(Z(fP )),
such that (zP )P = aP and 2|Z(fP ) · zP = 1|Z(fP ). Since {Z(fP ) : P ∈ Spec(R)} is a clopen covering
of Spec(R), there are P1, . . . , Pn in Spec(R), such that, with fi = fPi and zi = zPi , 1 ≤ i ≤ n, we have∨n

i=1 fi = 1 14 and 2|Z(fi) · zi = 1|Z(fi), 1 ≤ i ≤ n.

Let {ei : 1 ≤ i ≤ n} be an orthogonal decomposition of 1, subordinate to {fi : 1 ≤ i ≤ n}, as in 5.3.(a),
and set z =

∑n
i=1 ziei. For each 1 ≤ i ≤ n, since ei ≤ fi, we get

2|Z(ei) · z|Z(ei) = (2ei) · (zei) = (2ei) · (ziei) = 2ziei = (2zifi)ei = (2|Z(fi) · zi)|Z(ei)

= 1|Z(ei) = ei,

wherefrom it follows, summing over i, that 2z = 1 in R, as desired.

b) (1) ⇒ (2) : Assume that (2) is false, and let P ∈ Z(f) be so that − 1 ∈ T/P , i.e., there is t ∈ T ,
such that (t+ 1)P = 0. By Lemma 3.8.(a), there is e ≤ f such that e 6∈ P and

(t+ 1)|Z(e) = (t + 1)e = te + e = 0.

But this means that −e ∈ Te, and so Te is not proper in Re (e is the identity of Re).

(2) ⇒ (1) : If for some ∅ 6= Z(e) ⊆ Z(f), Te is improper, then, since 2|Z(e) is a unit in Re (by (a)), we
have −e ∈ Te, or equivalently, (t + 1)e = 0, for some t ∈ T . If P ∈ Z(e), then, t + 1 ∈ P , that is,
− 1 ∈ T/P , violating (2).

c) One should keep in mind that B(R) ⊆ T , since every idempotent is a square.

(1) ⇒ (2) : By (1), for each P ∈ Z(e), there is tP ∈ T such that (tP )/P = a/P holds in R/P . Hence,
just as in the proof of item (a) above, compactness will lead to the existence of f1, . . . , fn ≤ e and
t1, . . . , tn ∈ T , such that ∨n

i=1 fi = 1 and tifi = afi, 1 ≤ i ≤ n.

Let {ei : 1 ≤ i ≤ n} be a orthogonal decomposition of 1, subordinate to {fi : 1 ≤ i ≤ n} and set x
=

∑n
i=1 tiei. Since ti, ei ∈ T , it is clear that x ∈ T . Moreover, for 1 ≤ i ≤ n, we have tiei = tifiei

= afiei = aei, wherefrom it follows, summing over i, that ae = x ∈ T , as needed.

(2) ⇒ (1) : Since ae ∈ T , (]) in page 18 and the fact that e 6∈ P entail ae/P = a/P ∈ T/P . ♦

Corollary 5.10 If R is a vN-ring in which 2 is a unit, the following are equivalent :

(1) For all e ∈ B(R), Re is a real ring;

(2) For every P ∈ Spec(R), R/P is a formally real field.

Proof. Just apply Lemma 5.9.(b) to the preorder T = ΣR2. ♦

Lemma 5.11 Let R be a vN-ring in which 2 is a unit and let T be a proper preorder of R. With
notation as in Proposition 5.7, the assignments

(T)

{
Z(e) ∈ Z 7−→ Te

Z(f) ⊆ Z(e) 7−→ (ϕef )|Te : Te −→ Tf ,

constitute a finitely complete presheaf basis of preorders over Z, T, such that for all P ∈ Spec(R),

lim
−→

〈Z(e); {(ϕef )|Te : f ≤ e, f 6∈ P} 〉 = 〈T/P ; {(ϕeP )|Te : e 6∈ P} 〉, (TP )

that is, TP is the preorder T/P of field R/P .
14By 5.6.(c), this is equivalent to

Sn
i=1 Z(fi) = Spec(R) = Z(1); see also the equalities (Z) on page 19.
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Proof. Clearly, T is a contravariant functor from Z to the category of sets. The extensionality of T

follows immediately from that of R, because for all e ∈ B(R), T(Z(e)) = Te ⊆ R(Z(e)). To check
finite completeness, let {f1, . . . , fn} ⊆ B(R) and let {ajfj ∈ Tfj : 1 ≤ j ≤ n} be a compatible set of
sections in T. This means that

For all 1 ≤ i, j ≤ n, ajfjfi = aififj . (I)

Let {e1, . . . , en} be a orthogonal decomposition of f =
∨n
i=1 fj , subordinate to {f1, . . . , fn}, as in

5.3.(a), and consider

z =
∑n

i=1 aiei.

Then, z = zf ∈ Tf and for all 1 ≤ j ≤ n, (I) and the fact that ekfk = ek, yield

zfj =
∑n

i=1 aieifj =
∑n

i=1 aieififj =
∑n

i=1 ajeififj = ajfj
∑n

i=1 ei = ajfjf = ajfj ,

and so z is the gluing of {ajfj ∈ Tfj : 1 ≤ j ≤ n} in T. To establish (TP ), we have to show :

(A) T/P =
⋃
e6∈P ϕeP (Te);

(B) For e 6∈ P , ϕeP (ae) = a/P ∈ T/P ⇒ ∃ f ≤ e such that ϕef (ae) = af ∈ Tf .

(A) is clear, since T/P = ϕ1P (T ) and, by (]) (page 18), for e 6∈ P , ϕeP (re) = r/P = ϕ1P (r),
for all r ∈ R. The argument for (B) is similar to that in the proof of 5.7.(a). Given a ∈ R such that
ae = a, assume that for some t ∈ T , (a − t) ∈ P . Let h be the idempotent associated to (a− t); then
h ∈ P and so (1− h) 6∈ P . Take f = e(1− h); then, e ≥ f 6∈ P and (a − t)f = (a − t)he(1− h) =
0, showing that af = tf ∈ Tf , as needed. ♦

6 The Presheaf of Special Groups of a Preordered vN-ring

Before presenting the presheaf basis of the title we shall make some general observations, that will
simplify the exposition and may apply to more general situations.

Definition 6.1 a) A (proper) preordered ring (p-ring) is a pair 〈A, T 〉 such that

[pr 1] : A is a ring, such that 2 ∈ A∗;

[pr 2] : T is a proper preorder of A, i.e., − 1 6∈ T (cf. 5.8).

To avoid having to discuss trivial cases, as well as because this can effectively happen in practice, the
pair 〈A,A 〉 will also be consider a p-ring, the trivial p-ring.

b) A morphism of p-rings, f : 〈A, T 〉 −→ 〈A′, T ′ 〉, is a ring morphism, f : A −→ A′, such that
f(T ) ⊆ T ′. Let p-Ring be the category of p-rings and their morphisms.

Remark 6.2 The language of p-rings is L = 〈=,+, ·, 0, 1,− 1 , T 〉, i.e., the first-order language of
unitary rings, with an additional unary predicate, T , interpreted as a preorder. Besides atomic formulas
of the type τ1 = τ2, where τi are terms (i = 1, 2), we also have τ1 ∈ T . ♦

6.3 A Construction. If 〈A, T 〉 is a p-ring, T ∗ = T ∩ A∗ is a subgroup of the multiplicative group
A∗. Indeed, if t ∈ T ∗, then 1/t = t · (1/t)2 ∈ T because T is closed under products and contains A2.

Given a p-ring 〈A, T 〉, let GT (A) = A∗/T ∗ and qT : A∗ −→ GT (A) be the quotient group and
canonical projection, respectively; to ease notation, write aT for qT (a). Thus, for a, b ∈ A∗,

aT = bT ⇔ ab ∈ T ∗ ⇔ ∃ t ∈ T ∗ such that b = at (*)

and GT (A) = {aT : a ∈ A∗}. We also abuse notation, denoting by 1 and − 1 both the elements of
A∗, and 1T , (−1)T , respectively. Because A2 ⊆ T , GT (A) is a group of exponent 2; moreover,{

GT (A) = {1} ⇔ 〈A, T 〉 is the trivial p-ring;

1 6= − 1 in GT (A) ⇔ 〈A, T 〉 is a proper p-ring.
(pp)

For x, y ∈ A∗, define

DT (x, y) = {z ∈ A∗ : ∃ t1, t2 ∈ T such that z = t1x + t2y}, (DT )
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called the set of elements represented by x and y in A∗. Since 0, 1 ∈ T , it is clear that
{x, y} ⊆ DT (x, y). The basic properties of these sets are contained in the following Fact; the proofs of
Lemma 1.30 and Proposition 1.31 of [DM2] (pp. 22-23), done for fields of characteristic 6= 2, transfer
straightforwardly to the case of p-rings.

Fact 6.4 With notation as above, let x, y, u, v ∈ A∗ and t ∈ T ∗.

a) uDT (x, y) = DT (ux, uy) and DT (x, y) = DT (tx, ty).

b) u ∈ DT (x, y) and uT = vT ⇒ v ∈ DT (x, y).

c) xT = uT and yT = vT ⇒ DT (x, y) = DT (u, v).

d) DT (1, x) is a subgroup of A∗.

e) x ∈ DT (1, y) ⇒ DT (x, xy) = xDT (1, y) = DT (1, y).

f) u ∈ DT (x, y) ⇔ DT (u, uxy) = DT (x, y).

g) The following are equivalent :

(1) (xy)T = (uv)T and DT (x, y) = DT (u, v);

(2) (xy)T = (uv)T and DT (x, y) ∩ DT (u, v) 6= ∅. ♦

Since the representation sets, DT (x, y), are invariant (or saturated) with respect to the equivalence
generated by the subgroup T ∗ of A∗ (6.4.(b), (c)), they can be seen in GT (A), that is,

DT (xT , yT ) = DT (x, y)/T ∗ = {zT ∈ GT (A) : ∃ t1, t2 ∈ T such that z = t1x + t2y},
with q−1

T (DT (xT , yT )) = DT (x, y). Hence, for x, y, u, v ∈ A∗{
u ∈ DT (x, y) ⇔ uT ∈ DT (xT , yT );

DT (u, v) = DT (x, y) ⇔ DT (uT , vT ) = DT (xT , yT ).
(rep)

It is important to observe that DT (1, xT ) is a subgroup of GT (A).

Define a binary relation, ≡T , called binary isometry mod T on GT (A)×GT (A), as follows : for
a, b, c, d ∈ A∗

〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇔ aT bT = cTdT and DT (a, b) = DT (c, d). (≡T )

Fact 6.4 yields

Fact 6.5 (cf. [DM2], Definition 1.2, p.2) a) The relation ≡T satisfies the following properties, for all
a, b, c, d, x ∈ A∗ :

[SG 0] : ≡T is an equivalence relation on GT (A)×GT (A).

[SG 1] : 〈 aT , bT 〉 ≡T 〈 bT , aT 〉; [SG 2] : 〈 aT , −aT 〉 ≡T 〈 1,−1 〉;
[SG 3] : 〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇒ aT bT = cTdT ;

[SG 5] : 〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇒ 〈xTaT , xT bT 〉 ≡T 〈xT cT , xTdT 〉.

b) (Reducibility) 〈 aT , aT 〉 ≡T 〈 1, 1 〉 ⇔ aT = 1 ⇔ a ∈ T ∗.

Proof. We comment only on [SG 2] and (b). For [SG 2], since 2 ∈ A∗, it was noted in 5.8.(b) that any
element in A is a difference of two squares. Hence, if a ∈ A∗, we have a ∈ DT (a, −a) ∩ DT (1, − 1 ).
Since aT (−a)T = (−1)T , 6.4.(g) guarantees that 〈 aT , −aT 〉 ≡T 〈 1,−1 〉.
b) Since (aT )2 = 1, the isometry in the antecedent is equivalent to DT (a, a) = DT (1, 1); in particular,
a ∈ DT (1, 1), which is clearly equivalent to a ∈ T ∗. ♦

Remark 6.6 Under the very general conditions in 6.3, axiom [SG 4] in Definition 1.2 of [DM2] may
fail. The point is that all known proofs of this axiom resort to an analogue, for preorders, of the
transversality condition (\), stated at the beginning of the proof of Lemma 4.11 (p. 15) : if 〈A, T 〉 is
a p-ring and u, v, w ∈ A∗

[T] w ∈ DT (u, v) ⇒ ∃ p, q ∈ T ∗ so that w = up + vq.
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A large class of rings with many units satisfy [T], which follows, in fact, from a more general transver-
sality principle (see, [Wa], Propositions 3.6.1, p. 25, and 4.1.8, pp. 32-33). ♦

The construction above suggests the following

Definition 6.7 a) A proto special group (π-SG), is a triple, G = 〈G, ≡G, −1 〉, consisting of

∗ A group, G, of exponent two, written multiplicatively (and so its identity is 1);

∗ A distinguished element, − 1 , in G; (we write −x for −1 · x, ∀ x ∈ G);

∗ A binary relation ≡G on G×G, satisfying the axioms [SG 0] − [SG 3] and [SG 5] in 6.5.(a).

G is reduced (π-RSG) if 1 6= − 1 and it satisfies the first equivalence in 6.5.(b).

For a, b, c ∈ G, write c〈 a, b 〉 for 〈 ca, cb 〉. The product ab is the discriminant of 〈 a, b 〉.
If G = 〈G,≡G,−1 〉 is a π-SG and x, y ∈ G, define

DG(x, y) = {z ∈ G : 〈 z, zxy 〉 ≡G 〈x, y 〉},
the set of elements represented by x and y in G. Since G has exponent two (x2 = 1, ∀ x)
(i) By [SG 3], 〈 z, u 〉 ≡G 〈x, y 〉 entails u = zxy;

(ii) [SG 0] implies 〈x, y 〉 ≡G 〈x, y 〉 and so {x, y} ⊆ DG(x, y);

(iii) For x ∈ G, DG(1, x) = {z ∈ G : z〈 1, x 〉 ≡G 〈 1, x 〉}.
b) If Gi = 〈Gi, ≡Gi , −1 〉 are π-SGs, i = 1, 2, a morphism of π-SGs, h : G1 −→ G2, is a
morphism of the underlying groups, such that h(− 1 ) = − 1 and

∀ a, b, c, d ∈ G1, 〈 a, b 〉 ≡G1 〈 c, d 〉 ⇒ 〈h(a), h(b) 〉 ≡G 〈h(c), h(d) 〉.
Write π-SG and π-RSG for the categories of π-SGs and π-RSGs, respectively.

Lemma 6.8 If G = 〈G,≡G,−1 〉 is a π-SG and a, b, c, d ∈ G, then

a) DG(1, a) is a subgroup of G.

b) 〈 a, b 〉 ≡G 〈 c, d 〉 ⇔ ab = cd and ac ∈ DG(1, cd).

c) If H = 〈H,≡H ,−1 〉 is a π-SG and G h−→ H is a group morphism, such that h(− 1 ) = − 1 , then
h is a π-SG morphism iff for all a, b ∈ G, a ∈ DG(1, b) ⇒ f(a) ∈ DH(1, h(b)).

d) If 〈A, T 〉 is p-ring, then GT (A) is a π-SG, which is reduced iff 〈A, T 〉 is a non-trivial p-ring.
Moreover, for all a, b, c, d ∈ A∗

〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇔ aT bT = cTdT and ac ∈ DT (1, cd).

Proof. Item (a) is straightforward. The proof of Lemma 1.5.(a) of [DM2] (p. 3) uses only [SG 3] and
[SG 5] and yields (b). Item (c) is an immediate consequence of (b) and the definition of morphism in
6.7.(b), while (d) follows from Fact 6.5.(b), item (b) and the relations [pp] (page 22) and [rep] in 6.3
(page 23). ♦

Definition 6.9 If 〈A, T 〉 is a p-ring, GT (A) = 〈GT (A), ≡T , −1 〉 is the π-SG associated to
〈 A, T 〉. Note that

∗ If 〈A, T 〉 is non-trivial, then GT (A) is a π-RSG;

∗ If 〈A, T 〉 is trivial, then GT (A) is the trivial special group, {1}.
In the case that T = ΣA2, write Gred(A) for GT (A).

Lemma 6.10 A p-ring morphism, h : 〈A1, T1 〉 −→ 〈A2, T2 〉, induces a morphism of π-SGs,

(∗) hπ : GT1(A1) −→ GT2(A2), given by hπ(aT1) = h(a)T2.

Furthermore, IdπA1
= IdGT1

(A1) and if g : 〈A2, T2 〉 −→ 〈A3, T3 〉 is a morphism of p-rings, then
(g ◦ h)π = gπ ◦ hπ.
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Proof. Since h is a p-ring morphism, h∗ = h|A∗1 : A∗
1 −→ A∗

2 is a group morphism, with h∗(− 1 ) =
− 1 . In particular, h∗(T ∗1 ) ⊆ T ∗2 . Hence h∗ induces a group morphism given by (∗), such that hπ(− 1 )
= − 1 . By 6.8.(c), hπ will be π-SG morphism if for a, b ∈ A∗

1,

aT1 ∈ DT1(1, bT1) ⇒ hπ(aT1) = h(a)T2 ∈ DT2(1, h(bT1)) = DT2(1, h(b)T2). (I)

The antecedent in (I) means that there are t1, t2 ∈ T1 such that a = t1 + t2b; thus,

h(a) = h(t1) + h(t1)h(b). (II)

Since h(T1) ⊆ T2, (II) implies h(a) ∈ DT2(1, h(b)), which by the relations [rep] in 6.3 (page 23) is
equivalent to the consequent in (I). The preservation of identity and composition is clear. ♦

Proposition 6.11 The π-SG functor from p-Ring to π-SG, given by, 〈A, T 〉 7−→ GT (A)

〈A1, T1 〉
h−→ 〈A2, T2 〉 7−→ GT1(A1)

hπ

−→ GT2(A2)

is a geometrical functor.

Proof. Regarding products, it is enough to check that the π-SG functor preserves binary products.
If 〈Ai, Ti 〉, i = 1, 2 are p-rings, then their product is the p-ring 〈A, T 〉 = 〈A1 ×A2, T1 × T2 〉; note
that 〈A, T 〉 is trivial iff both components are trivial. Clearly, pi : 〈A, T 〉 −→ 〈Ai, Ti 〉, the canonical
coordinate projections, are p-ring morphisms. Moreover, we have A∗ = A∗

1 ×A∗
2, T

∗ = T ∗1 × T ∗2 and

〈x, y 〉 ∈ DT (〈 1, 1 〉, 〈u, v 〉) iff x ∈ DT1(1, u) and y ∈ DT2(1, v).

It is then straightforward to check that GT (A) = GT1(A1)×GT2(A2), as well as that the projections
are precisely pπi , i = 1, 2, as needed. It remains to check that the π-SG functor preserves right-directed
colimits. This is the content of the following

Fact 6.12 Let 〈 I,≤〉 be a rd-poset and let A = 〈 〈Ai, Ti 〉; hij : i ≤ j in I} 〉 be an inductive system
of p-rings and p-ring morphisms. Let G = 〈GTi(Ai); {hπij : i ≤ j in I} 〉 be the associated inductive
system of π-SGs.

a) Let 〈A; {hi : i ∈ I} 〉 = lim
−→

Ai in the category of rings and set T =
⋃
i∈I hi(Ti). Then, 〈A, T 〉

is a p-ring, hi : 〈Ai, Ti 〉 −→ 〈A, T 〉 is a morphism of p-rings and

〈 〈A, T 〉; {hi : i ∈ I} 〉 = lim
−→

A in the category of p-rings.

Moreover, 〈A, T 〉 is a trivial p-ring iff t = {i ∈ I : 〈Ai, Ti 〉 is a trivial p-ring} is cofinal in I

iff {i ∈ I : 〈Ai, Ti 〉 is a proper p-ring} is not cofinal in I.

b) 〈GT (A); {hπi : i ∈ I} 〉 = lim
−→

G.

Proof. Since A = lim
−→ i∈I

Ai in the category of rings, by 2.3.(c) we know that

(1) A =
⋃
i∈I hi(Ai);

(2∗) ∀ i ∈ I and x ∈ Ai, hi(x) = 0 ⇒ ∃ k ≥ i such that hik(x) = 0.

We first verify that T is a preorder of A. If x, y ∈ T , there are i, j ∈ I, together with u ∈ Ti and
v ∈ Tj such that hi(u) = x and hj(v) = y. Select q ≥ i, j, and consider wx = hiq(u) and wy = hjq(v),
both in Tq (the hij are p-ring morphisms). Then, hq(wx) = x and hq(wy) = y, wx +· wy ∈ Tq and
x +· y = hq(wx +· wy) ∈ T , showing that T +· T ⊆ T . Similarly, one verifies that A2 ⊆ T , and
that − 1 ∈ T ⇔ t = {i ∈ I : 〈Ai, Ti 〉 is the trivial p-ring} is cofinal in I. Hence, if t is cofinal in
I, Theorem 2.3.(a) guarantees that items (a) and (b) in the statement hold true 15. If t is not cofinal
in I, then the fact that 〈 I,≤〉 is rd immediately implies that its complement is cofinal in I. Thus, by
2.3.(a), we may, from now on, assume that for all i ∈ I, 〈Ai, Ti 〉 is a proper p-ring, which entails that
〈A, T 〉 is also a proper p-ring. The very definition of T guarantees that hi is a p-ring morphism and
that (1) above holds for T . By 2.3.(b), to finish the proof that 〈A, T 〉 = lim

−→ i∈I
〈Ai, Ti 〉 it suffices

to check that
15For all i, j, hπ

ij and hπ
i are the only possible map from {1} to {1}.
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∀ i ∈ I, ∀ x ∈ Ai, hi(x) ∈ T ⇒ ∃ k ≥ i such that hik(x) ∈ Tk, (I)

corresponding to 2.3.(b).(2) for (the predicate) T . If hi(x) ∈ T , then there is j ∈ I and y ∈ Tj such
that hj(y) = hi(x). Select q ≥ i, j and consider wx = hiq(x) ∈ Aq and wy = hjq(y) ∈ Tq. Note
that, hq(wx) = hq(hiq(x)) = hi(x) = hj(y) = hq(hjq(y)) = hq(wy) ∈ Tq and so (2∗) above
guarantees that there is k ≥ q such that hqk(wx) = hqk(wy) ∈ Tq. But then

hik(x) = hqk(hiq(x)) = hqk(wx) = hqk(wy) ∈ Tk,

as needed to establish (I) and to complete the proof of (a).

b) Recall our working hypothesis that all 〈Ai, Ti 〉 are proper p-rings. To ease notation write

∗ Gi = 〈Gi, ≡i, −1 〉 for the π-RSGs GTi(Ai) = 〈GTi(Ai), ≡Ti , −1 〉;
∗ G = 〈G,≡T ,−1 〉 for GT (A) = 〈GT (A), ≡T ,−1 〉.
∗ The elements of Gi and G will still be denoted by aTi and aT , respectively.

By Lemma 6.10, G = 〈Gi; {hπij : i ≤ j in I} 〉 is an inductive system of π-RSGs, hπi : Gi −→ G is
a π-SG morphism and the following diagram is commutative, for i ≤ j :

Gi - Gj

hπi hπj

G

hπij

A
A
A
A
A
AAU

�
�

�
�

�
���

that is, G = 〈G; {hπi : i ∈ I} 〉 is a dual cone over G. By items (b) and (c) in Theorem 2.3, to show
that G = lim

−→
G we must verify the following conditions :

(A) G =
⋃
i∈I h

π
i (Gi);

(B) For all i ∈ I and x, y, u, v ∈ A∗
i ,

(B1) hπi (x
Ti) = 1 ⇒ ∃ k ≥ i such that hπik(x

Ti) = 1;

and by Lemma 6.8.(d),

(B2)


hi(xy)T = hπi ((xy)

Ti) = hπi ((uv)
Ti) = hi(uv)T and hi(xu) ∈ DT (1, hi(uv))

⇓

∃ k ≥ i such that hik(xyuv) ∈ Tk and hik(xu) ∈ DTk
(1, hik(uv)).

To establish (A) it suffices to verify that A∗ =
⋃
i∈I hi(A

∗
i ); once this is shown, we get T ∗ = T ∩ A∗

=
⋃
i∈I hi(T

∗
i ), and so, G = A∗/T ∗ =

⋃
i∈I h

π
i (A

∗
i /T

∗
i ). Since any ring morphism preserves units, it is

enough to check that A∗ ⊆
⋃
i∈I hi(A

∗
i ). Suppose x ∈ A∗, i.e., there is y ∈ A such that xy = 1. By (1)

(at the beginning of the proof), there are i, j ∈ I and a ∈ Ai, b ∈ Aj such that hi(a) = x and hj(b)
= y. Select q ≥ i, j and set c = hiq(a), d = hjq(b). Then, hq(c) = x, hq(d) = y and we have hq(cd)
= xy = 1 = hq(1). Item (2∗) (at the beginning of the proof) applied to cd − 1 yields k ≥ q such that
hqk(cd) = hqk(1) = 1, that is, hqk(c) ∈ A∗

k. Since, hk(c) = x, the needed inclusion is proven.

The implication (B1) is immediate from (I), because for all a ∈ A∗
i , h

π
i (a

Ti) = 1 iff hi(a) ∈ T .
Note that we have just shown that G = lim

−→ i∈I
Gi in the category of groups. It remains to verify (B2);

its antecedent means

hi(xyuv) ∈ T and ∃ t1, t2 ∈ T such that hi(xu) = t1 + t2hi(uv).

Since T =
⋃
j∈I hj(Tj) and I is right-directed, a standard argument yields k ≥ i and representatives

bl of tl (l = 1, 2) and a of hi(xyuv) in Tk (i.e., hl(bl) = tl) so that hik(xu) = b1 + b2hik(uv). Hence,
a = hik(xyuv) ∈ Tk and hik(xu) ∈ DTk

(1, hik(uv)), as required. ♦
We now discuss presheaf bases of p-rings over Boolean spaces and the presheaf bases of π-SGs that

arise from them. We begin with the following
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Remark 6.13 Let B be a basis for the topological space X and let P : B −→ p-Ring,{
U ∈ B 7−→ 〈P(U), T (U) 〉;

U ⊆o V 7−→ pV U : P(U) −→ P(V ),

be presheaf basis of p-rings over B. The extensionality condition (2) in Definition 3.2 applies also to
the predicate T , that is interpreted as the preorder on each ring of sections. Since the restriction maps
are p-ring morphisms, the assignments{

U ∈ B 7−→ T (U);

U ⊆o V 7−→ (pV U )|T (V ) : T (V ) −→ T (U),
constitute a presheaf basis of preorders, T. Hence :

(1) Every presheaf basis of p-rings, P, comes equipped with a presheaf basis of preorders, T;

(2) The language of presheaves applies to T. For instance, for U ∈ B, we may require that T

be finitely complete over U , defined in 3.2.(c).(1). Note that this does not imply that
P is finitely complete over U , since a finite set of compatible sections in |P|, outside |T|,
may not have a gluing in P. ♦

Theorem 6.14 Let B be the BA of clopens of the Boolean space X. With notation as in 6.13, let
P : B −→ p-Ring be presheaf basis of p-rings over B, with associated presheaf of preorders, T, both of
which are assumed to be finitely complete over all U ∈ B. Let G : B −→ π-SG be the composition of
P with the π-SG functor, i.e.,{

U ∈ B 7−→ G(U) = GT (U)(P(U));

U ⊆o V 7−→ pπV U : G(V ) −→ G(U).
Then,

a) G is a finitely complete presheaf basis of π-SGs over B. For x ∈ X, let Bx = {U ∈ B : x ∈ U}
be the filter of clopen neighborhoods of x in X. If Px = 〈 〈Px, Tx 〉; {pUx : U ∈ Bx} 〉 is the stalk of
P at x, then Gx = 〈GTx(Px); {pπUx : U ∈ Bx} 〉 is the stalk of G at x.

b) The set τprop = {x ∈ X : Tx is a proper preorder in Px} is closed in X. Moreover,

(1) For all U ∈ B, U ∩ τprop 6= ∅ ⇔ G(U) is a proper p-ring. In particular, if T (X) is
a proper preorder in P(X), then τprop 6= ∅;

(2) For all x ∈ τprop , Gx is a π-RSG.

Proof. Since the theories of p-rings and of π-SGs are geometrical and the π-SG functor from p-
Ring to π-SG is geometrical (Proposition 6.11), all statements in (a) are immediate consequences of
Theorem 3.11. As for (b), with notation as in Definition 3.9, observe that 5.8.(b) implies that τ cprop is
the Feferman-Vaught value of the atomic sentence − 1 ∈ T (Proposition 3.10.(a)) :

τ cprop = vP(− 1 ∈ T ) =
⋃
{U ∈ B : P(U) |= − 1 ∈ T (U)},

which guarantees that τ cprop is open and implies (1). If x ∈ τprop, (1) entails that for all U ∈ Bx, T (U)
is a proper preorder of the ring P(U) and (2) follows from the equivalences in item (a) of Fact 6.12,
completing the proof. ♦

Being the ring of global sections of a sheaf of rings whose stalks are fields, Theorem 2.10 in [DM5]
guarantees that any vN-ring, R, is a ring with many units and so, by Proposition 5.3.(e), for all
0 6= e ∈ B(R), the ring Re is also a ring with many units.

By Theorems 3.15 and 3.16 of [DM5], if A is a ring with many units where 2 ∈ A∗ and all residue
fields of A have more than 7 elements, then if T is a proper preorder of A, the π-SG associated to 〈A, T 〉,
GT (A), is, in fact, a reduced special group, that faithfully represents the reduced theory, modulo T , of
quadratic forms over free A-modules, with coefficients in A∗. If R is a vN-ring in which 2 is a unit and
T is a strict preorder of R, then for all P ∈ Spec(R), T/P is a proper preorder of the residue field R/P ,
and so all residue fields of R are formally real. Hence, the results in [DM5] apply, yielding, in particular,
that, GT (R) is a reduced special group whenever T is a strict preorder of R. Proposition
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6.15 below, one of main reduction steps in our argument, will show that, in fact, if T is any proper
preorder of a vN-ring R in which 2 is a unit, then GT (R) is a reduced special group.

Henceforth in this section, fix a proper preordered vN-ring, 〈 R, T 〉, where 2 ∈ R∗. Note
that item (1) in Theorem 6.14.(b), together with relation (TP ) in Lemma 5.11, guarantee that

τprop = {P ∈ Spec(R) : T/P is a proper preorder in R/P}
is a non-empty closed set in Spec(R). Define I =

⋂
τprop; clearly, I is an ideal in R. Let

qI : R −→ R/I be the canonical quotient morphism. Clearly, 2 is a unit in the vN-ring R/I (5.6.(d)).
We now have

Proposition 6.15 With notation as above,

a) For all P ∈ Spec(R), I ⊆ P ⇔ P ∈ τprop. Moreover, if τprop is endowed with the topology
induced by Spec(R), then, Q ∈ Spec(R/I) 7−→ q−1

I (Q) ∈ τprop is a homeomorphism.

b) T/I is a strict preorder on R/I.

c) For a ∈ R, the following are equivalent :

(1) a/I ∈ T/I; (2) There is x ∈ T such that for all P ∈ Spec(R), a/P = x/P ;

(3) a ∈ T .

d) qπI : GT (R) −→ GT/I(R/I) is an isomorphism of reduced special groups.

Proof. a) For the first assertion, it suffices to verify (⇒). Suppose e ∈ B(R) is such that e 6∈ P ; hence,
e 6∈ I, and its definition yields Q ∈ τprop such that e 6∈ Q. Hence, every clopen neighborhood of P has
non-empty intersection with τprop; since it is closed, we get P ∈ τprop, as needed. The equivalence just
proven shows, with notation as in 5.6.(d), that V (I) = τprop; the remaining assertion follows from that
same result.

b) Clearly, T/I is a preorder of R/I; since τprop 6= ∅, T/I is a proper preorder of R/I 16. By (a), we
may identify Spec(R/I) with τprop ; if P ∈ τprop, then

(R/I)/(P/I) = R/P and (T/I)/(P/I) = T/P .

Since T/P is a proper of preorder of R/P , the contention is established.

c) (1) ⇒ (2) : If a/I ∈ T/I, there is t ∈ T such that a/I = t/I and so, a − t ∈ P , for all P ∈ τprop.
Let e be the idempotent associated to a− t. Then,

(i) From e(a− t) = a− t, it follows that (a− t)(1− e) = 0, i.e., a(1− e) = t(1− e).

(ii) For all P ∈ τprop, e ∈ P , that is, Z(e) ∩ τprop = ∅. If Q ∈ Z(e), then T/Q = R/Q, whence
a/Q ∈ T/Q. Since this holds for all Q ∈ Z(e), Lemma 5.9.(c) guarantees that ae ∈ T .

Set x = t(1− e) + ae; because t, (1− e), ae ∈ T , we get x ∈ T . Now, for P ∈ Spec(R) :

∗ If P ∈ Z(e), i.e., e 6∈ P , then 1− e ∈ P and so, recalling (]) (page 18),

x/P = t(1− e)/P + (ae)/P = (ae)/P = a/P ;

∗ If P ∈ Z(1− e), then 1− e 6∈ P and e ∈ P , whence, in view of (i) and (]),

x/P = t(1− e)/P + (ae)/P = t(1− e)/P = a(1− e)/P = a/P ,

as required. For (2) ⇒ (3), just observe that (2) implies that the Feferman-Vaught value of the atomic
formula (v1 = v2) at the pair 〈 a, x 〉 of global sections is Spec(R). By Proposition 3.10.(b), this implies
a = x ∈ T . That (3) implies (1) is obvious.

d) Since qI : 〈R, T 〉 −→ 〈R/I, T/I 〉 is a morphism p-rings, Lemma 6.10 guarantees that qπI is a
morphism of π-SGs; since it is clearly surjective, it will be an isomorphism iff it reflects representation,
that is, for a, b ∈ R∗,

(a/I)T/I ∈ DI(1, (b/I)T/I) ⇒ aT ∈ DT (1, bT ), (I)

where DI denotes representation in GT/I(R/I). Because the π-groups in question are reduced (6.5.(b)),
(I) implies that qπI is injective. The antecedent means that a/I = (x + yb)/I, for some x, y ∈ T ;

16If for t ∈ T , t + 1 ∈ I ⊆ P ∈ τprop, then T/P is not proper in R/P .
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consequently, a − (x + yb) ∈ T/I and item (c) entails a − (x + yb) ∈ T . Setting t = a − (x + yb),
we have a = (x + t) + yb, with (x + t), y ∈ T , establishing (I). As observed in the paragraphs
preceding the statement of this Proposition, since T/I is a strict preorder on R/I, GT/I(R/I) is, in
fact, a reduced special group, and so the same must be true of GT (R), ending the proof. ♦

Summarizing, we can state

Corollary 6.16 Let R be a vN-ring where 2 is a unit and let T be a proper preorder of R. With
notation as in 5.7, 5.11, 6.14 and 6.15, let 〈R,T 〉 be the presheaf basis of p-rings over Z, associated to
〈R, T 〉. Then,

a) G = GT(R) is a finitely complete presheaf basis of special groups, such that

(1) For all P ∈ Spec(R), the stalk of G at P , GP , is the special group GT/P (R/P ), associated to
the preorder T/P of the field R/P ;

(2) τprop = {P ∈ Spec(R) : GT/P (R/P ) is a non-trivial RSG} is closed and non-empty in Spec(R).

b) If T is a strict preorder of R, then for all e ∈ B(R), G(Z(e)) = GTe(Re) is a reduced special group
and for all P ∈ Spec(R), GP is the reduced special group GT/P (R/P ).

Proof. a) We comment only on the first assertion in (a), since the others follow directly from the
preceding discussion. If 0 6= e is an idempotent in R, we have two possibilities :

∗ Te is a proper preorder of Re : In this case, since Re is a vN-ring in which 2 is a unit, it follows from
Proposition 6.15 that G(Z(e)) = GTe(Re) is a reduced special group;

∗ Te = Re : Here we get GTe(Re) = {1}, the trivial special group.

In any case, G is a presheaf of special groups, as stated. ♦

7 The [SMC] property for properly preordered vN-rings

In this section we apply the K-theory of special groups developed in [DM3] and [DM6] to associate to
a presheaf basis of special groups, G, a graded ring of presheaf bases of groups of exponent two

k∗G = 〈 k0G, k1G, . . . , knG, . . . 〉
together with a sequence ω = 〈ω1, . . . , ωn, . . . 〉 of morphisms of presheaf bases of groups,

ωn : knG −→ kn+1G, (n ≥ 1)

corresponding to multiplication by λ(− 1 ). K-theoretic notation is as in 1.1.(1).

Theorem 7.1 Let X be a Boolean space and let B be the Boolean algebra of clopens in X. Let G be a fi-
nitely complete presheaf basis of special groups over B, with restriction morphisms {ρV U : U ⊆ V in B}.

a) For each n ≥ 0, the assignments

{
U ∈ B 7−→ knG(U);

U ⊆o V 7−→ (ρUV )n : knG(V ) −→ knG(U),
constitute a finitely complete presheaf basis of groups, knG, such that

(1) For all n, m ≥ 0 and U ∈ B, η ∈ knG(U) and ξ ∈ kmG(U) ⇒ ηξ ∈ kn+mG(U);

(2) For all x ∈ X, the map defined on generators by
(λ(a1) · · ·λ(an))x ∈ (knG)x 7−→ λ(a1x) · · ·λ(anx) ∈ knGx

extends to a (natural ) isomorphism from (knG)x to knGx, by which these groups will be
identified.

b) For n ≥ 1, define ωn = {ωnU : U ∈ B} : knG −→ kn+1G by

For each U ∈ B and η ∈ G(U), ωnU (η) = λ(−1|U )η.

Then, ωn is a morphism of presheaf bases of groups and for each x ∈ X, ωnx : knGx −→ kn+1Gx is
precisely multiplication by λ(−1x), where −1x ∈ Gx.

c) For U ∈ B, if Gx is [SMC] for all x∈ U , then G(U) is [SMC]. In particular, if every stalk of G is
[SMC], then G(X), the SG of global sections of G, is [SMC].
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Proof. a) By item (1) in Proposition 2.7, the K-theory functor from SG to 2-Gr is geometrical,
connecting the geometrical theories of special groups and groups of exponent 2. Hence, Theorem 3.11
applies to yield the desired conclusions.

b) It is clear that for U ∈ B, ωnU is a group morphism and that, for U ⊆ V in B and η ∈ knG(V ),
ωnV (η)|U = ωnU (η|U ); hence, ωn is a morphism of presheaf bases, as in 3.2.(f). For x ∈ X, let
ωnx = lim

−→ U∈Bx
ωnU ; by (a).(2), given ξ ∈ knGx, there is U ∈ Bx and η ∈ knG(U) such that ηx = ξ.

Then, Theorem 2.3.(f).(1) and another application of (a).(2) yield

ωnx(ξ) = ωnx(ηx) = (ωn(η))x = (λ(−1|U )η)x = λ(−1)xηx = λ(−1x)ξ,

showing that ωnx is multiplication by λ(−1x), as claimed.

c) If n ≥ 1, since knG is a presheaf basis over B, (a).(2) and Proposition 3.10.(c) imply that the map

γUn : knG(U) −→ Γn(U) =
∏
x∈U knGx

is a group embedding, where Γn(U) has the product structure, defined coordinatewise. By item (b),
the following diagram commutes :

kn+1G(U)

knG(U)

?

- Γn(U)

ωnU

γUn

Γn+1(U)

Πx∈U ωnx

γUn+1

?
-

Now let η ∈ knG(U) be such that ωnU (η) = λ(−1|U )η = 0 in kn+1G(U). By the commutativity
of the diagram above, we get that for all x ∈ U , ωnx(ηx) = λ(−1x)ηx = 0 in kn+1Gx; since Gx is
[SMC], we conclude that ηx = 0 in knGx, for all x ∈ U . But then, the extensionality of knG entails
η = 0 in knG(U), as needed to verify that G(U) is [SMC]. ♦

We now have

Theorem 7.2 If R is a vN-ring in which 2 is a unit and T is a proper preorder of R, then GT (R) is
[SMC]. In particular, if R is a formally real vN-ring, Gred(R) is [SMC].

Proof. By Proposition 6.15.(b) it suffices to show that the result holds for a strict preorder on R.
Indeed, with notation as in 6.15, since k∗ is a functor, the map (qπI )∗ : k∗GT (R) −→ k∗GT/I(R/I) is
an isomorphism, and one of these groups will be [SMC] iff the same is true of the other.

Assume that T is a strict preorder on R. By Corollary 6.16.(b), the stalk at each P ∈ Spec(R) of
the presheaf basis, G, of RSGs associated to 〈R, T 〉, is the RSG corresponding to the proper preorder
T/P on the field R/P , i.e., GT/P (R/P ). Since R/P is a formally real field, it follows from Theorem
6.4 and (the proof of) Theorem 6.9 in [DM3] that GT/P (R/P ) is [SMC]. Hence, for all x ∈ X, Gx is
[SMC] and the desired conclusion follows from item (c) of Theorem 7.1. ♦
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