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The boundary conditions for canonical vacuum general relativity is investigated at the quasi-local level. It is
shown that fixing the area element on the 2-surface S (rather than the induced 2-metric) is enough to have
a well defined constraint algebra, and a well defined Poisson algebra of basic Hamiltonians parameterized by
shifts that are tangent to and divergence free on S. The evolution equations preserve these boundary con-
ditions, and the value of the basic Hamiltonians gives 2+2–covariant, gauge-invariant 2-surface observables.
The meaning of these observables is also discussed.

1 Introduction

As is well known, in a spacetime that is asymptotically flat at spatial infinity the ten classical conserved
quantities, viz. the energy-momentum and relativistic angular momentum (i.e. including the centre-of-mass),
can be introduced in several different ways. One possibility is to use a canonical/Hamiltonian approach [1-
4]. However, to have a deeper understanding e.g. of the (geometrical or thermodynamical) properties of
black holes, for example their entropy, the conserved quantities, or, more generally, the observables of the
gravitational ‘field’ must be introduced at the quasi-local level. Such investigations lead to the so-called
surface degrees of freedom [5-8], and to the large variety of proposals for the quasi-local energy-momentum
and angular momentum [9]. A further motivation of searching for quasi-local observables is the remarkable
result that all the global observables for the vacuum gravitational field in a closed universe, built as spatial
integrals of local functions of the initial data and their derivatives, are necessarily vanishing [10,11]. Thus in
closed universes we can associate non-trivial, locally constructible observables only to subsystems, bounded
by some closed spacelike 2-surface.

The aim of the present note is to discuss certain quasi-local, 2-surface observables within the framework
of canonical vacuum general relativity. Although in the literature there is a nice and quite general analysis
using explicit background structures (see e.g. [12,13]), here we follow a more traditional (and perhaps more
‘pedestrian’) approach, and no such background structure will be used. In the subsequent analysis, in addition
to the functional differentiability of various functions on the phase space (due to Regge and Teitelboim [1]),
three new requirements, already appeared in the asymptotically flat context [2-4,14], will be expected to be
satisfied at the quasi-local level: a. The evolution equations should preserve the boundary conditions (i.e.
the boundary conditions should be compatible with the evolution equations); b. The Hamiltonians, and
hence, in particular, the constraints, should close to a Poisson algebra; c. The value of the Hamiltonian on
the constraint surface should be a 2+2–covariant, gauge invariant observable.

We show that the observables introduced in [5-8] are well defined even under much weaker boundary
conditions. It will be shown that 1. fixing the area element on the 2-surface S rather than the induced
2-metric is enough to have i. a well defined constraint algebra C, and ii. a well defined Poisson algebra H0

of basic Hamiltonians parameterized by shifts that are tangent to S and divergence free with respect to the
intrinsic Levi-Civita connection on S. 2. The evolution equations preserve these boundary conditions; and
3. the value of the basic Hamiltonians give 2+2–covariant, gauge-invariant 2-surface observables.

In the next section the basic variational formula of the constraints is recalled, and the variations of
the 3-metric near the boundary S is decomposed. Then, in Section 3, the boundary condition above is
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introduced and the constraints are discussed. The fourth section is devoted to the investigation of the basic
Hamiltonians and the 2-surface observables. In particular, we calculate its value in axi-symmetric spacetimes
and the small and large sphere limits.

Our notations and conventions are essentially those that used in [3,4,9]. In particular, we use the abstract
index formalism, and the curvature is defined by −Ra

bcdX
b := (DcDd−DdDc)Xa. Though primarily we are

interested in the physical 3+1 dimensional case, the analysis will be done in n+1 dimensions, n ≥ 2, and the
signature of the spacetime metric is 1− n (and hence the spatial metric is negative definite). Although here
we consider only the vacuum case (with cosmological constant λ), in our formulae we retain the gravitational
‘coupling constant’ κ = 8πG. The analysis is based on certain formulae given explicitly in [3].

2 Variation of the constraint function

Let Σ be any smooth n dimensional compact manifold with smooth (n − 1)-boundary S := ∂Σ. Then
the constraint function in the ADM phase space of the n + 1 dimensional vacuum general relativity with
cosmological constant λ, smeared by the function N and vector field Na on Σ, is

C
[
N, Na

]
:= −

∫

Σ

{ 1
2κ

[
R− 2λ +

4κ2

|h|
( 1
(n− 1)

p̃2 − p̃abp̃
ab

)]
N

√
|h|+ 2N chcaDbp̃

ab
}

dnx. (2.1)

Here the canonical variables are hab and p̃ab, De is the Levi-Civita covariant derivative determined by hab

and R is its curvature scalar. In spacetime this constraint function is just the integral
∫
Σ

ξa(Gab +λgab)tbdΣ,
where ta is the future pointing unit timelike normal to Σ in the spacetime, ξa := Nta + Na, and in the
momentum phase space their vanishing for all N and Na define the constraint surface Γ. The canonical
momentum in terms of the Lagrange variables, i.e. the metric and the extrinsic curvature χab of Σ in the
spacetime, is known to be p̃ab = 1

2κ

√
|h|(χab − χhab). Here χ is the hab-trace of χab, the velocity of hab is

ḣab = 2Nχab + ÃLNhab and N and Na play the role of the lapse and the shift, respectively, in the spacetime.
ÃLN denotes Lie derivative along Na.

Let N(u), Na(u), hab(u) and p̃ab(u), u ∈ (−ε, ε), be any smooth 1-parameter families of lapses, shifts,
metrics and canonical momenta, respectively, and define the corresponding variation of any function of
them, F = F (N,Na, hab, p̃

ab), as δF := (dF (N(u), Na(u), hab(u), p̃ab(u))/du)|u=0. Then the corresponding
variation of the constraint function C[N,Ne], taken from [3], is

δC
[
N,Ne

]
=C

[
δN, δNe

]
+

∫

Σ

(δC[N, Ne]
δhab

δhab +
δC[N,Ne]

δp̃ab
δp̃ab

)
dnx+

+
1
2κ

∮

∂Σ

{
N

(
habve(Deδhab)− va(Dbδhab)

)
+

(
vaDbN − habveDeN

)
δhab+

+
2κ√
|h|

(
2Navep̃

eb −Nevep̃
ab

)
δhab + 4κNavb

δp̃ab

√
|h|

}
dS.

(2.2)

Here dS is the induced volume n− 1-form on S, va is the outward pointing unit normal of S in Σ, and

δC[N,Ne]
δhab

:=
1
2κ

√
|h|

{
N

(
Rab −Rhab + 2λhab +

8κ2

|h|
(
p̃a

cp̃
cb − 1

(n− 1)
hcdp̃

cdp̃ab
))

+ (2.3.a)

+DaDbN − habDcD
cN

}
− ÃLNp̃ab +

1
4κ

Nhab
√
|h|

(
R− 2λ +

4κ2

|h|
( 1
(n− 1)

p̃2 − p̃cdp̃cd

))
,

δC[N,Ne]
δp̃ab

:=
4κ√
|h|N

(
p̃ab − 1

(n− 1)
p̃cdhcahdb

)
+ ÃLNhab. (2.3.b)
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Here Rab is the Ricci tensor of De. Thus C[N, Ne] is functionally differentiable (in the strict sense of [14,15])
with respect to the canonical variables only if the boundary integral in (2.2) is vanishing, whenever the
functional derivatives themselves are given by (2.3). Then the vacuum evolution equations with cosmological
constant are precisely the canonical equations

ḣab =
δC

[
N,Ne

]

δp̃ab
, ˙̃pab = −δC

[
N, Ne

]

δhab
, (2.4.a, b)

provided the constraint equations C[N, Ne] = 0 are satisfied. Our ultimate aim is to find appropriate
boundary conditions on the canonical variables (hab, p̃

ab) and an appropriate class of fields N , Na together
with a boundary integral B[N, Ne] such that C[N, Ne] + B[N, Ne] be functionally differentiable, and the
boundary conditions on the canonical variables be compatible with the evolution equations.

To find this boundary term and these conditions, it seems useful to split the variation of the metric hab

at the points of S with respect to the boundary. Thus let Πa
b := δa

b + vavb, the hab-orthogonal projection
to S, and define the induced metric qab := hcdΠc

aΠd
b , the corresponding Levi-Civita covariant derivative

δe and another derivative operator simply by ∆e := Πf
eDf . The extrinsic curvature of S in Σ will be

defined by νab := Πc
aΠd

bDcvd. At the points of S the splitting hab = qab − vavb implies the variation
δhab = δqab − vaδvb − vbδva. Since va is a normal 1-form of the submanifold S, for any Xa tangent
to S one has va(u)Xa = 0, implying that δvaΠa

b = 0. Taking the u-derivative of qab(u)va(u) = 0 we
obtain that δqabv

avb = 0 and δqabv
aΠb

c = −δvaqac, and taking the derivative of va(u)va(u) = 1 we obtain
δvava = −δvava. Thus, the various projections of the variation δhab are

δhcdΠc
aΠd

b = δqcdΠc
aΠd

b , δhcdv
cΠd

b = −δvaqad, δhcdv
cvd = 2vaδva = −2vaδva. (2.5)

Therefore, the independent variations can be represented by δqcdΠc
aΠd

b and δva.

3 The quasi-local constraint algebra

In this section we determine the boundary conditions under which the constraint functions are functional
differentiable with respect to the canonical variables. We will see that, as a bonus, this already ensures that
they form a Poisson algebra too. (In the asymptotically flat case it has been demonstrated that in vacuum
general relativity this differentiability implies the Poisson algebra structure [2]. Similar result has been proven
in a more general classical field theory context in [14]: Functional differentiability of functions together with
the requirement that the corresponding Hamiltonian vector fields preserve the boundary conditions also imply
the Poisson algebra structure.) Thus first let us determine the condition of the functional differentiability
of C[N, Na]. To do this, we decompose the boundary integral in (2.2) with respect to S. Clearly, C[N,Na]
is functionally differentiable with respect to N and Na, independently of the boundary conditions at S. A
tedious but straightforward calculation yields that the vanishing of the boundary integral in (2.2) is just the
condition

0 =
∮

S

( 1
2κ

N
(
va(Dbδhab)− habve(Deδhab)

)− 1
2κ

vaδhabq
bc∆cN +

1
2κ

ve(DeN)qabδhab−

−2ve
p̃ef

√
|h|N

dΠa
fΠb

dδhab + veN
e
( p̃ab

√
|h|δhab + 2ve

p̃ea

√
|h|Π

b
aδhbcv

c − 2vevf
p̃ef

√
|h|v

avbδhab

)
+

+2vevf
p̃ef

√
|h|v

aδhabΠb
cN

c
)
dS.

(3.1)
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Taking into account that the variation of the induced volume (n− 1)-form on the boundary is δεa1...an−1 =
1
2qcdδqcdεa1...an−1 = 1

2qcdδhcdεa1...an−1 , the boundary conditions N |S = 0, Na|S = 0 and εa1...an−1 = fixed
ensure the functional differentiability of the constraint functions C[N, Na] with respect to hab and p̃ab. Since
the last term of the integrand in (3.1) is proportional to 2κvavbp̃

ab =
√
|h|qabχab, which is not zero in

general, the boundary condition Na|S = 0 cannot be weakened to vaNa|S = 0 even if the induced metric qab

on S (rather than only the corresponding volume (n − 1)-form) is kept fixed. On the other hand, because
of the fourth term in (3.1), N |S = 0 and Na|S = 0 in themselves are not enough to ensure the functional
differentiability with respect to hab.

These boundary conditions are preserved by the evolution equations. Indeed, since the only condition
that we imposed on the canonical variables is δεa1...an−1 = 0, we should consider only (2.4.a), the evolution
equation for the metric hab. By N |S = 0 this yields on the boundary that ḣab|S = 2D(aNb), and hence, by
(2.5), qabq̇ab = qabḣab = 2qabDaNb = 2∆aNa = 0, where in the last step we used Na|S = 0. Therefore,
the evolution equations preserve the boundary conditions. Geometrically N |S = 0, Na|S = 0 correspond to
an evolution vector field ξa = taN + Na in the spacetime that is vanishing on S; i.e. the corresponding
diffeomorphism leaves S fixed pointwise. The one parameter family of diffeomorphisms generated by such
a ξa maps Σ into a family Σt of Cauchy surfaces for the same globally hyperbolic domain D(Σ) with the
same boundary ∂Σt = S, i.e. such a ξa is precisely a vector field that we would intuitively consider to be
the generator of a gauge motion in the spacetime.

By the functional differentiability of the constraint functions (with vanishing smearing fields N and
Na on S) we can take the Poisson bracket of any two constraint functions C[N, Na] and C[N̄ , N̄a]. These
brackets, keeping all the boundary terms, have already been calculated [3]. They are

{
C

[
0, Na

]
, C

[
0, N̄a

]}
=− C

[
0, [N, N̄ ]a

]
+

+
∫

Σ

De

(
Nep̃ab ÃLN̄hab − N̄ep̃ab ÃLNhab − 2p̃efhfa[N, N̄ ]a

)
dnx, (3.2.a)

{
C

[
0, Na

]
, C

[
N̄ , 0

]}
=− C

[
NeDeN̄ , 0

]
+

+
1
κ

∫

Σ

De

(
N̄

(
Re

f − 1
2
Rδe

f

)
Nf + λN̄Ne +

2κ2

|h| N̄Ne
(
p̃abp̃ab − 1

n− 1
p̃2

)
+

+
(
∆fNe

)(
∆f N̄

)− (
DeN̄

)(
∆fNf

))√
|h|dnx, (3.2.b)

{
C

[
N, 0

]
, C

[
N̄ , 0

]}
=C

[
0, NDaN̄ − N̄DaN

]
+ 2

∫

Σ

De

(
Np̃efDf N̄ − N̄ p̃efDfN

)
dnx. (3.2.c)

However, by the vanishing of the smearing fields on S all the boundary terms in (3.2) are vanishing, and the
Lie product can be summarized as

{
C

[
N, Na

]
, C

[
N̄ , N̄a

]}
= C

[
N̄eDeN −NeDeN̄ , NDaN̄ − N̄DaN − [N, N̄ ]a

]
. (3.3)

Furthermore, the new smearing fields N̄eDeN−NeDeN̄ and NDaN̄−N̄DaN−[N, N̄ ]a are also vanishing on
the boundary S. Therefore, the constraint functions with vanishing smearing fields on S close to a Poisson
algebra C, the so-called quasi-local constraint algebra, provided the induced volume (n − 1)-form εa1...an−1

is fixed on S. Clearly, this Lie algebra is isomorphic to that appearing in the asymptotically flat case [2-4].
The boundary condition yields the split of the quasi-local phase space T ∗Q(Σ) := {(hab, p̃

ab)} into the
disjoint union of sectors T ∗Q(Σ, εa1...an−1), labeled by the volume (n−1)-from εa1...an−1 on S: The constraint
functions are differentiable in the directions tangent to these sectors and form the familiar Poisson algebra,
and the evolution equations with lapse and shift vanishing on S also preserve this sector–structure.
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4 The basic Hamiltonian

4.1 The boundary conditions

Starting with the naive quasi-local Lagrange phase space TQ(Σ) := {(hab, ḣab)} and the traditional La-
grangian L : TQ(Σ) → R, given explicitly by L := 1

2κ

∫
Σ

N(R − 2λ + χabχab − χ2)
√
|h|dnx, the basic

Hamiltonian H0[N, Na] :=
∫
Σ

p̃abḣabdnx− L on T ∗Q(Σ) takes the form

H0

[
N,Ne

]
= C

[
N, Ne

]
+

∫

Σ

2Da

(
p̃abhbcN

c
)
dnx. (4.1)

Its total variation is

δH0

[
N, Ne

]
=C

[
δN, δNe

]
+

∫

Σ

(δC[N, Ne]
δhab

δhab +
δC[N, Ne]

δp̃ab
δp̃ab

)
dnx+

+
1
2κ

∮

∂Σ

{
N

(
habve(Deδhab)− va(Dbδhab)

)
+

(
vaDbN − habveDeN

)
δhab−

− 2κ√
|h|

(
veN

ep̃abδhab + 2vep̃
eahabδN

b
)}

dS.

(4.2)

Thus H0[N,Ne] is functionally differentiable with respect to N and the canonical momentum p̃ab, indepen-
dently of the boundary conditions at S.

The condition of the functional differentiability of H0[N, Ne] with respect to hab is the vanishing of
the boundary term in (4.2) involving δhab, provided the variations δhab and δNa are independent. We
decompose its integrand with respect to the boundary (n− 1)-surface, using spacetime quantities as well. In
particular, if ta is the future pointing unit timelike normal to Σ in spacetime and Ae := va∆et

a := vaΠf
e∇f ta,

the connection 1-form on the normal bundle of S, where now Πa
b := δa

b + vavb − tatb is the gab-orthogonal
projection to S (for the details see [9] and references therein), then a lengthy but direct calculation gives
that it is

0 =
∮

S

{
−Nve

(
Deδhab

)
qab + δhabv

avb
(
−N(∆ev

e) + vfNf (∆et
e)

)
+ δhabv

aqbc
(
−2∆cN − 2AcveN

e
)
+

+δhabq
acqbd

(
qcdv

e(DeN)−N(∆cvd) + veN
e(∆ctd)− qcdveN

e(∆f tf ) + qcdveN
evf (Df tg)vg

)}
dS.

(4.3)
The simplest way to make the first term vanishing is the condition that N be vanishing on S, whenever
veN

e|S = 0 and εa1...an−1 = fixed already ensure the functional differentiability of H0[N, Ne] with respect
to hab. Note that this condition is weaker than that we had for the constraint functions, because we should
require only that Na be tangent to S rather than vanishing on S. If we want (n−1)+2-covariant conditions
for N and Na at S, then by N |S = 0 we must impose vaNa|S = 0 too. Indeed, if we do not want to prefer
any timelike normal to S, then N and vaNa must be treated on an equal footing, because they are the two
components of ξa = taN + Na orthogonal to S. On the other hand, in the absence of additional conditions
we loose the functional differentiability with respect to Na.

By N |S = 0 the evolution equation for the metric gives qabq̇ab = qabḣab = 2qabDaNb = 2∆aNa = δaNa,
where in the last step we used vaNa|S = 0. Therefore, in addition, we must require that Na on S be
divergence-free with respect to the intrinsic geometry of S as well, otherwise the evolution equations do
not preserve the boundary condition εa1...an−1 = fixed. At first sight the requirement that Na on S be
δe-divergence-free yields that the variation of the metric on S produces a variation of Na on S, and hence
these variations on S are not quite independent. However, by δ(δaNa) = Neδe(1

2qabδqab) + δa(δNa) and the
boundary condition qabδqab = 0 the variation of the metric alone does not yield any variation of δaNa. In
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other words, if Na is any shift such that vaNa|S = 0 and Na is δe-divergence-free, then it will be divergence-
free with respect to the connection coming from any 1-parameter family qab(u) of metrics provided the
volume (n − 1)-form is kept fixed. Geometrically, N |S = 0 and vaNa|S = 0 correspond to an evolution
vector field ξa in the spacetime which is tangent to S, and hence, by δaNa|S = 0, it generates a volume
preserving diffeomorphism of S to itself.

4.2 The algebra of the basic Hamiltonians and 2-surface observables

Since the formal variational derivatives of the constraint functions and of the basic Hamiltonians are the
same, the Poisson bracket of two basic Hamiltonians, H0[N, Na] and H0[N̄ , N̄a], can be calculated eas-
ily by (3.2). By the boundary conditions vaNa|S = vaN̄a|S = 0 the boundary term in the Poisson
bracket {H0[0, Na],H0[0, N̄a]} is vanishing, and there is no boundary term at all in the Poisson bracket
{H0[N, 0],H0[N̄ , 0]}. On the other hand, the boundary term in the Poisson bracket {H0[0, Na],H0[N̄ , 0]} is
vanishing only if we use δaNa|S = 0 too. This gives an additional justification of the condition δaNa|S = 0.
Then the Lie product of the basic Hamiltonians can be summarized as

{
H0

[
N, Na

]
,H0

[
N̄ , N̄a

]}
= H0

[
N̄eDeN −NeDeN̄ ,NDaN̄ − N̄DaN − [N, N̄ ]a

]
. (4.4)

Furthermore, if Na and N̄a are any two shifts which are tangent to S and δa-divergence-free on S, then their
Lie bracket [N, N̄ ]a is also tangent to S and δa-divergence-free on S. Hence the new lapse N̄eDeN−NeDeN̄

and the new shift NDaN̄ − N̄DaN − [N, N̄ ]a also satisfy the boundary conditions. Therefore, the basic
Hamiltonians parameterized by lapses and shifts satisfying N |S = 0, vaNa|S = 0 and δaNa|S = 0 form a
Poisson algebra H0.

The value of the basic Hamiltonian on the constraint surface is

O
[
Na

]
:= H0

[
N, Na

]|Γ = − 1
κ

∮

S
NaAadS. (4.5)

Though Aa is not a gauge invariant object (namely, as we already mentioned, this is a connection 1-form
in the normal bundle of S in the spacetime, and under an SO(1, 1) boost gauge transformation of the two
normals, (ta, va) 7→ (ta cosh(w)+va sinh(w), va cosh(w)+ ta sinh(w)), it transforms as a vector potential), by
δaNa|S = 0 the integral O[Na] is indeed boost gauge invariant. This is the third justification of the condition
δaNa|S = 0. Clearly, the constraint functions form an ideal in the algebra of the basic Hamiltonians,
C ⊂ H0, and the quotient H0/C can be parameterized by the value O[Na]. By (4.4) this O[Na] defines a
Lie algebra anti-homomorphism of the Lie algebra of the divergence-free vector fields on S into H0/C: In
fact, let Na, N ′a and N̄a, N̄ ′a be shift vectors such that they are tangent to S and δe-divergence-free on
S, furthermore Na|S = N ′a|S and N̄a|S = N̄ ′a|S . Then O[Na] = O[N ′a] and {H0[0, Na],H0[0, N̄a]}|Γ =
{H0[0, N ′a],H0[0, N̄ ′a]}|Γ, i.e. both O[Na] and the Poisson bracket {H0[0, Na],H0[0, N̄a]} evaluated on the
constraint surface depend only on the restriction of the shifts to S, and independent of their part inside Σ.
Hence the Poisson bracket {O[Na], O[N̄a]} := {H0[0, Na],H0[0, N̄a]}|Γ of O[Na] and O[N̄a] is well defined
and, by (4.4), it is {O[Na], O[N̄a]} = −O[[N, N̄ ]a].

It might be worth noting that the δe-divergence free vector fields on S can be given explicitly by using
the Hodge decomposition (see e.g. [16]): If Na is divergence free, then it necessarily has the form δbN

ab+∗ωa,
where Nab = N [ab] is an arbitrary bi-vector and ∗ωa := 1

(n−2)!ε
aa1...an−2ωa1...an−2 denotes the Hodge dual

of a harmonic (n− 2)-form ωa1...an−2 . The latter is an arbitrary linear combination of finitely many linearly
independent harmonic forms ωα

a1...an−2
, α = 1, ..., b, where b := dim Hn−2(S), the (n − 2)th Betti number

of S. In terms of these the observable (4.5) takes the form − 1
κ

∮
S(NabδaAb + ∗ωaAa)dS. In the physically

important special case n = 3 the bi-vector can always be written as εabν with an arbitrary real function ν,
and the Betti number is b = 2g, twice the genus of S.
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Formally, O[Na] is just the observable OM [Na] of Balachandran, Chandar and Momen [5,6] (see also
[7,8]). However, the present boundary conditions for the canonical variables are definitely weaker than those
of them: They kept fixed the whole 3-metric hab on S. On the other hand, without the extra condition
δaNa|S = 0, the observable OM [Na] is not boost-gauge invariant. In addition, this extra condition on Na

ensures that the evolution equations preserve the weaker boundary conditions. Without this the evolution
equations would preserve neither the boundary conditions of [5,6,8] nor the present, weaker ones. Similarly,
the ‘natural’ boundary condition that the induced 2-metric qab is fixed is preserved by the evolution equation
(2.4.a) only if Na is vanishing on S or if (S, qab) admits Na as a Killing vector. It could be interesting to
note that the quasi-local quantity L(Na) of Yoon [17], obtained by following an (n− 1) + 2 analysis of the
vacuum Einstein equations, as well as the ‘(generalized) angular momentum’ of Brown and York [18], of
Liu and Yau [19], and of Ashtekar and Krishnan [20] are just the observable O[Na] provided Na on S is
restricted to be tangent to S and δe-divergence-free on S. Another (and quite obvious) observable is the
surface integral of any integrable ‘test’ function f on S: A[f ] :=

∮
S fdS.

In [5,6] a further ‘observable’ OH [T ] was introduced, where T is the (not necessarily vanishing) constant
value of the lapse on S, and this was interpreted as some (not renormalized) form of energy. However, it
depends on the choice for a preferred timelike normal to S too; i.e. not boost gauge invariant.

4.3 The various limits of the 2-surface observable

To clarify the meaning of the observable O[Na] it seems natural to consider various special 3+1 dimensional
spacetimes and limits, such as axi-symmetric spacetimes, and the small and large sphere limits.

• Axi-symmetric spacetimes
Let the spacetime be axi-symmetric with Killing vector Ka. Then the angular momentum is usually defined
by the 2-surface integral of the Komar superpotential built from Ka, and the value of this integral is well
known to be invariant with respect to the continuous deformations of the 2-surface through vacuum regions
(see e.g. [15]). To be able to compare the Komar expression and the observable, let us fix the 2-surface S
and a foliation Σt of an open neighbourhood of S by smooth spacelike hypersurfaces such that S is lying in
one leaf, e.g. in Σ0, and let va denote the outward pointing unit normal of S in Σ0. (This foliation should
not be confused with the foliation of the globally domain whose ‘edge’ is the 2-surface S: The former foliates
an open neighbourhood of S, whilst the latter collapses just on S.) Let ta be the future pointing unit normal
of the leaves of the foliation, P a

b := δa
b − tatb the orthogonal projection to the leaves and let M be the lapse

function of the foliation. Let us choose a shift vector Ma as well, i.e. specify an ‘evolution vector field’
ξa := Mta + Ma. Then let Ka =: Nta + Na define the 3+1 pieces of the Killing field Ka with respect to
the foliation. Then the time–space projection of the Killing operator acting on Ka is [3,4]

2MP c
a td∇(cKd) =

(
ÃLξNb

)
P b

a −
(
ÃLMNb

)
P b

a + MDaN −NDaM − 2MχabN
b, (4.6)

where hab = gab − tatb is the induced metric on and χab is the extrinsic curvature of the leaves. Using this,
Komar’s expression (normalized to get the correct value for the angular momentum in Kerr spacetime, see
[21]) can be written as

IS
[
Ka

]
: =

1
2κ

∮

S
∇[aKb] 1

2
εabcd =

1
κ

∮

S
vaP c

a td
(∇[cKd]

)
dS =

=
1
κ

∮

S
va

(
− 1

2M

(
ÃLξNb

)
P b

a +
1

2M

(
ÃLMNb

)
P b

a +
1

2M
Da

(
NM

))
dS =

=
1
κ

∮

S

(
vaDaN − vaχabN

b − vaP c
a td∇(cKd)

)
dS.

(4.7)
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Thus if the 2-surface S is chosen to be axi-symmetric (i.e. if Ka is tangent to S on S) and Ka is tangent
to Σ0, then by Ka = Na the first term of the integrand is vanishing, the second term is −NaAa, and
the third term is also zero because Ka is a Killing vector. Hence, in the special boost gauge defined by
the hypersurface Σ0 containing the integral curves of Ka, the observable O[Na] coincides with the Komar
integral. Since, however, O[Na] is boost gauge invariant, we obtained that the observable O[Na] for the
Killing vector of axi-symmetry Na and for the axi-symmetric 2-surface S coincides with the Komar integral
IS [Ka]. Since IS [Ka] is invariant with respect to continuous deformations of S through vacuum regions,
and in the definition of the Komar integral Ka is not required to be tangent to S, the 2-surface is not
required to be axi-symmetric. On the other hand, the observable O[Na] is well defined only for vector fields
Na tangent to the 2-surface, and hence S should be required to be axi-symmetric. Thus for axi-symmetric
surfaces the observable O[Na] reproduces Komar’s angular momentum, but for non-axi-symmetric surfaces
in an axi-symmetric spacetime, whenever Komar’s expression can still be calculated, O[Na] is not even well
defined.

• The small sphere limit
To calculate O[Na] for small spheres Sr of radius r about a point p ∈ M defined by the future pointing unit
timelike vector ta at p (for the standard definitions of all these limits see e.g. [9] and references therein), it
seems more convenient to use the expression of Na obtained form the application of the Hodge decomposition.
Since no non-trivial harmonic form exists on spheres, we can write Na = εabδbν and ν is an arbitrary real
function on Sr. Since the field strength −εabδaAb is half the imaginary part of the complex Gauss curvature
of Sr given in the well known GHP formalism by K = −ψ2− ρρ′ + σσ′ + φ11 + Λ, the observable (4.3) takes
the form

O
[
Na

]
=

i
κ

∮

Sr

ν
(
ψ2 − ψ̄2′ − σσ′ + σ̄σ̄′

)
dSr. (4.8)

Expanding the Weyl spinor component as ψ2 = ψ
(0)
2 + rψ

(1)
2 + r2ψ

(2)
2 + ... and substituting the solution of

the Ricci identities for σ and σ′ and the expression of dSr from [22] to (4.8), we obtain i
κ

∮
S1

ν(r2[ψ(0)
2 −

ψ̄
(0)
2′ ] + r3[ψ(1)

2 − ψ̄
(1)
2′ ] + r4([ψ(2)

2 − ψ̄
(2)
2′ ]− 1

3ψ
(0)
00 [ψ(0)

2 − ψ̄
(0)
2′ ] + 2

9φ
(0)
20 ψ

(0)
0 − 2

9φ
(0)
02 ψ̄

(0)
0′ ) + O(r5))dS1. (dS1 is,

of course, the unit sphere area element.) To have a definite expression, we must specify the function ν by
hand. Since O[Na] is usually expected to be something similar to spatial angular momentum, let us suppose
that Na is a linear combination of the three independent approximate spatial rotation Killing vectors in a
neighbourhood of p that vanish at p and tangent to Sr:

Na =
2
√

2r

1 + ζζ̄

(
m̄a

(
M00ζ

2 + 2M01ζ + M11

)
+ ma

(
M̄0′0′ ζ̄

2 + 2M̄0′1′ ζ̄ + M̄1′1′
))

+ O
(
r2

)
. (4.9)

Here MA B = M(A B ) = (M00,M01,M11) are complex constants satisfying M̄1′1′ = M00 and M01 is
purely imaginary. (In Minkowski spacetime the leading order part of Ne is precisely the 2(MA B K

A B
f +

M̄A ′B ′K̄
A ′B ′

f )Πf
e combination of the anti-self-dual boost-rotation Killing 1-forms K

A B
e that vanish at p.

For the details see [22].) Then the corresponding function ν is 4ir2(1+ ζζ̄)−1(M00ζ +2M01−M11ζ̄)+O(r3).
Substituting this into the general r4 accurate approximate formula above we obtain that O[Na] is vanishing
in the r4 order, and in non-vacuum the first non-vanishing order is r5. In vacuum O[Na] is vanishing in all
orders up to (and including) r6. Since here we considered only approximate rotation (but not boost) Killing
fields, this result is compatible with the expectations of [9,22]: Although in general non-vacuum spacetime
the leading term in the small sphere expression of any reasonable angular momentum expression must be
of order r4 and in vacuum it must be of order r6, but these correspond to the centre-of-mass part of the
relativistic angular momentum. The rotation part is expected to be only of order r5 and r7, respectively.
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• Large spheres near the future null infinity
If Sr is a large sphere of radius r near the future null infinity (see e.g. [23]), then we can write O[Na] into
the form (4.8). Taking into account the asymptotic form of the Weyl spinor component and the shears given
in [23], and writing the function ν as ν = r2ν(2) + rν(1) + ν(0) + O(r−1), (4.8) takes the form

O
[
Na

]
=

i
κ

∮

S1

{
rν(2)

(
0
′∂′2σ0 − 0

′∂2
σ̄0

)
+ (4.10)

+ν(2)
(

0
′∂
(
ψ̄0

1′ + σ̄0
0
′∂′σ0

)− 0
′∂′
(
ψ0

1 + σ0
0
′∂σ̄0

))
+ ν(1)

(
0
′∂′2σ0 − 0

′∂2
σ̄0

)}
dS1 + O

(
r−1

)
,

where 0
′∂ is the standard edth operator on the metric unit sphere. O[Na] has finite r →∞ limit precisely when

ν(2) ∈ ker0 ′∂
2 ∩ ker0 ′∂

′2, or, explicitly, if ν(2) = T a ta where T a are arbitrary real numbers, a = 0, ..., 3, and
t0 := 1, t1 := −(ζ̄+ζ)(1+ζζ̄)−1, t2 := −i(ζ̄−ζ)(1+ζζ̄)−1, and t3 := −(ζζ̄−1)(1+ζζ̄)−1. (These are precisely
the components of the independent BMS translations [24].) Then we have 0

′∂ν(2) = −2−
1
2 (1 + ζζ̄)−1T i ξi

and 0
′∂′ν(2) = −2−

1
2 (1 + ζζ̄)−1T i ξ̄i , where i = 1, 2, 3, and ξ1 := 1 − ζ2, ξ2 := i(1 + ζ2) and ξ3 := 2ζ.

Furthermore, direct calculation gives that 0
′∂0
′∂′ν(2) = 0

′∂′0 ′∂ν(2) = −T i ti holds. However, it is precisely the
functions ξi that appear in the BMS rotation vector fields. Indeed, in the standard Bondi-type coordinate
system (u, r, ζ, ζ̄) the general form of the BMS vector fields is

ka =
(
H +

(
bi + b̄i

)
ti u

)( ∂

∂u

)a + bi
√

2ξi
1 + ζζ̄

¯̂ma + b̄i
√

2ξ̄i
1 + ζζ̄

m̂a + O
(
r−1

)
, (4.11)

where H = H(ζ, ζ̄) is an arbitrary real function, and m̂a := 1√
2
(1+ζζ̄)(∂/∂ζ̄)a, the Newman–Penrose complex

null vector on the unit sphere normalized (with respect to the unit sphere metric) such that m̂a ¯̂ma = −1
(see e.g. [24,25]). Comparing the vector field Na determined by ν(2) and the BMS vector field above we
obtain that the vector field Na corresponding to the function ν(2) is the pure rotation BMS vector field with
parameters bi = 1

2 iT i . Thus it seems promising to calculate the observable O[Na] explicitly. It is

O
[
Na

]
=

1
κ

∮

S1

(
−kam̂a

(
ψ̄0

1′ + σ̄0
0
′∂′σ0

)−ka
¯̂ma(

ψ0
1 +σ0

0
′∂σ̄0

)
+iσ0

(
0
′∂′2ν(1)

)− iσ̄0
(
0
′∂2

ν(1)
))

dS1 +O
(
r−1

)
.

(4.12)
Though the first two terms of the integrand have some resemblance to several angular momentum expressions
at future null infinity (see e.g. [25,26] and references therein), without additional restrictions on ν(1) the last
two terms make the whole expression totally ambiguous.

On the other hand, if the spacetime is stationary then the asymptotic shear is purely electric: σ0 =
−0

′∂2
S for some real function S (see e.g. [24]). Bramson [27] showed that in this case 2σ̄0

0
′∂′σ0 +0

′∂′(σ0σ̄0) =
20

′∂′3Ā + 20
′∂B̄ for some functions A and B built from S and its 0

′∂ and 0
′∂′-derivatives. Furthermore, also

in the stationary case, elementary calculation gives that 0
′∂′2σ0 = 0

′∂2
σ̄0. Substituting these into (4.10) or

(4.12), and using kam̂a = i0 ′∂(T i ti ) and T i ti ∈ ker0 ′∂
2 ∩ ker0 ′∂

′2, by partial integration we obtain

O
[
Na

]
=

1
κ

∮

S1

(
− kam̂a

(
ψ̄0

1′ −
1
2 0

′∂′(σ0σ̄0) + 0
′∂′3Ā + 0

′∂B̄
)−

− ka
¯̂ma

(
ψ0

1 −
1
20

′∂(σ0σ̄0) + 0
′∂3

A + 0
′∂′B

))
dS1 + O

(
r−1

)
=

=
1
κ

∮

S1

(
− kam̂aψ0

1 − ka
¯̂maψ̄0

1′

)
dS1 + O

(
r−1

)
,

(4.13)

which is the standard spatial angular momentum expression at future null infinity [27,25]. Thus in stationary
spacetimes the ambiguities, coming from the arbitrariness of ν(1), are canceled.
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• Large spheres near the spatial infinity
Finally suppose that Sr is a large sphere of radius r near spatial infinity in an asymptotically flat slice. A
straightforward calculation gives that

O
[
Na

]
= − 1

κ

∮

Sr

NaΠb
a

(
χbc − χhbc

)
vcdSr = 2

∫

Σr

Da

(
p̃abNb

)
d3x = 2

∫

Σr

((
Dap̃ab

)
Nb + p̃abD(aNb)

)
d3x,

(4.14)
whose r →∞ limit is the standard expression of the spatial angular momentum for the asymptotic rotation
Killing vectors Na [1-3]. However, to have finite and functionally differentiable global Hamiltonian the only
Na which is not vanishing at infinity must be an asymptotic translation or rotation. Hence by the condition
vaNa|Sr

= 0 it must be a linear combination of the three independent asymptotic rotations. Therefore, at
spatial infinity O[Na] reduces to the standard spatial angular momentum.

Therefore, to summarize: The basic Hamiltonian H0[N, Na] is functionally differentiable with respect
to the canonical variables on each sector T ∗Q(Σ, εa1...an−1) provided N is vanishing and Na is tangent to
S on S. This condition is (n − 1) + 2-covariant. If, in addition, Na is required to be δa-divergence-free
on S, then the boundary conditions on the canonical variables are preserved by the evolution equations,
the basic Hamiltonians form a Poisson algebra in which the constraints form an ideal, and the value of the
basic Hamiltonian on the constraint surface defines a boost gauge-invariant, (n − 1) + 2-covariant quasi-
local observable associated with the closed spacelike (n − 1)-surface S. In axi-symmetric spacetimes for
axi-symmetric surfaces this observable coincides with the Komar angular momentum, at spatial infinity it
reduces to the spatial angular momentum, for small spheres (with the approximate rotation Killing fields
specified by hand) it is compatible with the expected behaviour of a reasonable quasi-local angular momentum
expression, and in stationary spacetimes it reproduces the standard ambiguity-free angular momentum at
null infinity. However, without additional restrictions on Na (or on the still freely specifiable function ν) it
is ambiguous at future null infinity of a radiative spacetime. Likewise, for general ν the integral O[Na] is
not vanishing in Minkowski spacetime: That reduces only to the smeared average i

κ

∮
S ν(σ̄σ̄′ − σσ′)dS of

the two shears of S. Thus the question arises whether we can find conditions on the function ν for which
the observable O[Na] defines ambiguity-free angular momentum at full infinity, and, at the quasi-local level,
O[Na] is vanishing in flat spacetime. This is still an open question.
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[4] L.B. Szabados, The Poincaré structure and the centre-of-mass of asymptotically flat spacetimes, in
Mathematical Relativity: New Ideas and Developments, Eds. J. Frauendiener, D. Giulini and V. Perlick,
Springer Lecture Notes in Physics, Springer, Berlin (to appear)

[5] A.P. Balachandran, A. Momen, L. Chandar, Edge states in gravity and black hole physics, Nucl. Phys.
B 46 581–596 (1996), gr-qc/9412019

[6] A.P. Balachandran, L. Chandar, A. Momen, Edge states in canonical gravity, gr-qc/9506006v2
[7] S. Carlip, Statistical mechanics and black hole thermodynamics, gr-qc/9702017
[8] V. Husain, S. Major, Gravity and BF theory defined in bounded regions, Nucl. Phys. B 500 381–401

(1997), gr-qc/9703043
[9] L.B. Szabados, Quasi-local energy-momentum and angular momentum in GR: A review article, Living

Rev. Relativity 7 (2004) 4, http://www.livingreviews.org/lrr-2004-4
[10] C.G. Torre, Gravitational observables and local symmetries, Phys. Rev. D 48 R2373–R2376 (1993),

gr-qc/9306030
[11] C.G. Torre, The problems of time and observables: Some mathematical results, gr-qc/9404029
[12] C.-M. Chen, J.M. Nester, A symplectic Hamiltonian derivation of quasi-local energy-momentum for GR,

Grav. Cosmol. 6 257–270 (2000), gr-qc/0001088
[13] J.M. Nester, General pseudotensors and quasi-local quantities, Class. Quantum Grav. 21 S261–S280

(2004)
[14] J.D. Brown, M. Henneaux, On the Poisson brackets of differentiable generators in classical field theory,

J. Math. Phys. 27 489–491 (1986)
[15] R.M. Wald, General Relativity, The University of Chicago Press, Chicago 1984
[16] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics

No 94, Springer, 1983
[17] J.H. Yoon, A new Hamiltonian formulation and quasilocal conservation equations of general relativity,

Phys. Rev. D 70 084037–1-20 (2004), gr-qc/0406047
[18] J.D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravitational action,

Phys. Rev. D 47 1407–1419 (1993)
[19] C.-C.M. Liu, S.-T. Yau, Positivity of quasi-local mass, Phys. Rev. Lett. 90 231102–1-4 (2003), gr-

qc/0303019
[20] A. Ashtekar, B. Krishnan, Dynamical horizons: Energy, angular momentum, fluxes, and balance laws,

Phys. Rev. Lett. 89 261101–1-4 (2002), gr-qc/0207080
[21] J. Katz, A note on Komar’s anomalous factor, Class. Quantum Grav. 2 423–425 (1985)
[22] L.B. Szabados, On certain quasi-local spin-angular momentum expressions for small spheres, Class.

Quantum Grav. 16 2889–2904 (1999), gr-qc/9901068
[23] W.T. Shaw, The asymptopia of quasi-local mass and momentum I. General formalism and stationary

spacetimes, Class. Quantum Grav. 3 1069–1104 (1986)
[24] E.T. Newman, K.P. Tod, Asymptotically flat space-times, in General Relativity and Gravitation: One

Hundred Years After the Birth of Albert Einstein, Vol 2, pp. 1–36, Ed. A. Held, Plenum Press, New
York 1980

[25] L.B. Szabados, On certain quasi-local spin-angular momentum expressions for large spheres near null
infinity, Class. Quantum Grav. 18 5487–5510 (2001), gr-qc/0109047, Corrigendum: Class. Quantum
Grav. 19 2333 (2002)

[26] O.M. Moreschi, Intrinsic angular momentum and centre of mass in general relativity, Class. Quantum
Grav. 21 5409–5425 (2004), gr-qc/0209097

[27] B.D. Bramson, The invariance of spin, Proc. Roy. Soc. Lond. A 364 383–392 (1978)

11


