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Abstract. We describe definable relations in the real field augmented by a
binary relation which is an arbitrary multiplicative group of complex numbers
contained in the divisible hull of a finitely generated subgroup of the unit circle.
We give a complete axiom system for this structure which admits quantifier
elimination down to Boolean combinations od existential formulas of a special
simple form.

1. Introduction

The goal of this paper is to describe definable relations in the field of reals
augmented by a binary relation which is a subgroup of the multiplicative group of
complex numbers, under certain assumptions about the subgroup.

We identify complex numbers with pairs of reals in a usual way. Let

S = {(x, y) ∈ C : x2 + y2 = 1}.
The set S, the unit circle on the complex plane, is a subgroup of C∗, the multiplica-
tive group of complex numbers. We consider subgroups Γ of S such that

(i) Γ is countable;
(ii) Γ/Γn is finite for each n > 0, where Γn denotes the subgroup {gn : g ∈ Γ};
(iii) for every nonconstant polynomial p(X1, . . . , Xn) over Z there exist

• a positive integer k,
• elements g1, . . . , gk of Γ, and
• nonzero n-tuples of integers (mi1, . . . , min), i = 1, . . . , k,

such that, whenever z1, . . . , zn ∈ Γ, we have p(z1, . . . , zn) = 0 if and only if
zmi1
1 . . . zmin

n = gi for some i = 1, . . . , k.

Proposition 1.1. Any infinite subgroup of the divisible hull of a finitely generated
subgroup of C∗ has the properties (i)–(iii).

Here the divisible hull of a subgroup G of C∗ is the subgroup Ḡ of all z ∈ C∗
such that zm ∈ G for some positive integer m.

Proof. Let G be a finitely generated subgroup of C∗, and Γ ≤ Ḡ.
The property (i) follows from countability of G and the fact that any element of

G has exactly n complex roots of degree n.
We show (ii) by proving that |Γ/Γn| ≤ nk+1 if G is k-generated.
There is a homomorphism β from the additive group Zk, the kth direct power

of Z, onto the muiltiplicative group G. Since the group Ḡ is divisible, β extends to
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a homomorphism γ : Qk → Ḡ. Let δ : Qk+1 → Ḡ be the homomorphism defined
by δ(r, r) = γ(r) exp(2πri).

The map δ is surjective. Indeed, let z ∈ Ḡ. Then zm ∈ G for some positive
integer m. Let zm = β(l), where l ∈ Zk. There is r ∈ Qk with mr = l. We have
zm = γ(l) = γ(r)m. Hence zγ(r)−1 is a complex root of unity, and so is exp(2πri)
for some r ∈ Q. Then z = δ(r, r).

Put A = δ−1(Γ). As A ≤ Qk+1, we have |A/nA| ≤ nk+1 (for a proof see [1],
Proposition 0.5). Clearly, δ induces a homomorphism a+nA 7→ δ(a)Γn from A/nA
onto Γ/Γn. Therefore |Γ/Γn| ≤ nk+1.

The property (iii) is a deep result of diophantine geometry, see [4]. Since in
the most general form it was first conjectured by S. Lang, we call (iii) Lang’s
property. ¤

The following is the main result of the paper.

Theorem 1.2. Let Γ be a subgroup of S with the properties (i)–(iii). The definable
relations of the structure

(R, <, +, ·, 0, 1, Γ)
are exactly the Boolean combinations of relations of the form

∃x1y1 . . . xnyn (P (x1, y1, . . . , xn, yn,v) ∧
n∧

i=1

(xi, yi) ∈ Γ),

where P is a semi-algebraic relation on R, and n may be equal to 0.

A special case of the result, where Γ was the group of all complex roots of unity,
had been proven by the second author in [5].

A more precise version of the result is as follows.

Theorem 1.3. Let Γ be a subgroup of S with the properties (i)–(iii), and Γre, Γim

be the sets of real and imaginary components of all pairs in Γ, respectively. The
0-definable relations of the structure

M0 = (R, <,+, ·, 0, 1,Γ, a)a∈Γre∪Γim

are exactly the Boolean combinations of relations of the form

(?) ∃x1y1 . . . xnyn (P (x1, y1, . . . , xn, yn,v) ∧
n∧

i=1

(xi, yi) ∈ Γ),

where P is quantifier-free definable in the ordered field R with parameters in the set
Γre ∪ Γim, and n may be equal to 0.

The structure M0 on R whose atomic relations are all the relations of the form
(?) is definitionally equivalent to M0. Indeed,

• every atomic relation of M0 is 0-definable in M0 by an ∃-formula;
• every atomic relation of M0 is an atomic relation in M0.

The first statement is obvious. The second one holds because n may be equal to 0,
and, for any polynomials s(u) and t(v) over the subfield of R generated by Γre∪Γim,
the relation (s(u), t(v)) ∈ Γ is equivalent to

∃xy (x = s(u) ∧ y = t(v) ∧ (x, y) ∈ Γ).

Thus, Theorem 1.3 says exactly that M0 admits quantifier elimination. Let M
be the expansion of M0 by all relations of the form (?). Then M and M0 have the
same atomic relations. So Theorem 1.3 is equivalent to
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Theorem 1.4. The structure M admits quantifier elimination.

2. Preliminaries

In this section we introduce notation and collect some notions and facts we will
use in the proofs. We assume the reader to be familiar with basic model theory, a
good reference is e.g. [3].

Languages. Let L be the language of ordered rings, and

L+ = L ∪ {a : a ∈ Γre ∪ Γim}, L+(Γ) = L+ ∪ {Γ},

where Γ is considered as a binary relation symbol, and elements of Γre ∪ Γim as
constant symbols. We denote by L? the language of the structure M ; here Γ(M)
is Γ, and L? ⊇ L+(Γ).

Let N be an L?-structure. For a ∈ Γre ∪Γim we denote by aN the interpretation
of the constant symbol a in N . For g = (a, b) ∈ Γ we denote gN = (aN , bN ).

Algebraic closure. For a subset X of a structure N we denote by acl(X) the
algebraic closure of X in N , that is, the set of all elements in N algebraic over X
in the sense of model theory. Here an element of N is called algebraic over X if it
belongs to a finite subset definable in N with parameters from X.

An element a of N is called definable over X if the set {a} is definable in N
with parameters from X. The set of all elements in N definable over X is called
the definable closure of X in N .

For a subset X of a field F we denote by aclF (X) the set of all elements in F
algebraic over X in the sense of field theory. Clearly, if F is a subfield of a field K
then for X ⊆ F we have aclF (X) = aclK(X) ∩ F.

Some known facts about real closed fields. Any real closed field can be
uniquely expanded to an ordered field; the positive elements in that ordered field
are the nonzero squares, and so it is a definitional expansion. It follows that

• in real closed fields algebraic closure coincides with definable closure,
• for real closed fields R and R′, any elementary map β from R to R′ uniquely

extends to an elementary bijection

β̄ : acl(dom(β)) → acl(rng(β)).

• for real closed fields R and R′, if β and γ are elementary maps from R to
R′ and β ⊆ γ then β̄ ⊆ γ̄.

The theory of ordered real closed fields is complete and admits quantifier elimi-
nation. This implies that

• the theory of ordered real closed fields is o-minimal;
• in real closed fields algebraic dependence in the sense of model theory is

exactly algebraic dependence in the sense of field theory;
• elementary maps between two real closed fields are exactly partial isomor-

phisms of the ordered fields.
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An algebraic closure of a real closed field. Let R be a real closed field, and
C be R2 equipped with the usual addition and multiplication

(x, y) + (x′, y′) = (x + x′, y + y′),

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + x′y).

Then (C, +, ·) is a field, and x 7→ (x, 0) is an embedding of R into C. We will
identify x and (x, 0). Then C is an algebraic closure of R. As usual, (x, y) can be
written x + yi, where i = (0, 1). The set

S = {(x, y) ∈ C : x2 + y2 = 1}
is called the unit circle in C. It is a subgroup of the multiplicative group C∗ of
the field C, and for z = (x, y) ∈ S we have z−1 = (x,−y). For z = (x, y) ∈ C put
zre = x and zim = y. We will repeatedly use the following observation:

if z ∈ S then z, zre, and zim are pairwise inter-algebraic in C.
Indeed, suppose z ∈ S. Then x2 + y2 = 1 and so x and y are inter-algebraic in C.
Also, z and x are inter-algebraic in C. Indeed, as z = x + yi and i2 = −1, we have
(z − x)2 + y2 = 0 and so z2 − 2xz + 1 = 0.

For Z ⊆ C, we denote Zre = {zre : z ∈ Z}.
Translation from C to R. For any polynomial p(Z1, . . . , Zn) over Z, there are
polynomials

p1(X1, Y1, . . . , Xn, Yn) and p2(X1, Y1, . . . , Xn, Yn)

over Z such that for any z1, . . . , zn ∈ C with zi = (xi, yi) we have

p(z1, . . . , zn) = (p1(x1, y1, . . . , xn, yn), p2(x1, y1, . . . , xn, yn)).

Moreover, any formula φ(w1, . . . , wn) in the language of rings can be translated to
another formula φ∗(v1, u1, . . . , vn, un) in the language of rings such that for every
z1, . . . , zn ∈ C with zi = (xi, yi) we have

C |= φ(z1, . . . , zn) iff R |= φ∗(x1, y1, . . . , xn, yn).

The translations do not depend on R.

Elementary maps. Let R, R′ be real closed fields, and C, C ′ their algebraic
closures. Let β be an elementary map from R to R′. Then

dom(β̄) = acl(dom(β) = aclR(dom(β)).

The map
β̂ : dom(β̄)× dom(β̄) → C ′

defined by
β̂(x, y) = (β̄(x), β̄(y))

is elementary as a map from C to C ′. Therefore, whenever H is a subgroup of C∗

with
H ⊆ aclR(dom(β))× aclR(dom(β)),

the map β̂ embeds the group H into the group C ′∗.
It follows that if H is a subgroup of S such that Hre ⊆ dom(β) then

H ⊆ dom(β)× aclR(dom(β)) ⊆ dom(β̂),

and the map β̂ embeds the group H into the group S′.
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Lemma 2.1. Let Z ⊆ S and H ≤ S. Suppose Zre ⊆ Hre. Then Z ⊆ H.

Proof. Suppose (x, y) ∈ Z. Then x ∈ Zre. Hence x ∈ Hre. Therefore (x, u) ∈ H
for some u. Since Z, H ⊆ S, we have x2 + y2 = x2 + u2 = 1 and so y = ±u. Then
(x, y) = (x, u)±1 ∈ H. ¤

We will repeatedly use the following

Lemma 2.2. Let β be an elementary map from R to R′. Let G be a subgroup of the
group S generated by a subset Z, and G′ a subgroup of S′. Suppose Zre ⊆ dom(β)
and β(Zre) ⊆ G′re. Then

(i) G ⊆ dom(β̂),
(ii) β̂(G) ≤ G′,
(iii) β̄(Gre) = β̂(G)re.

Proof. (i) Since Zre ⊆ dom(β), we have Z ⊆ aclC(dom(β)), and therefore G ⊆
aclC(dom(β)). Then

Gre ⊆ aclC(dom(β)) and Gim ⊆ aclC(dom(β)).

Hence
Gre ⊆ aclR(dom(β)) and Gim ⊆ aclR(dom(β)),

and so G ⊆ dom(β̂).
(ii) We have β̂(Z)re ⊆ G′re. Indeed, any element of β̂(Z) is of the form (β̄(x), β̄(y))

where (x, y) ∈ Z. Then any element of β̂(Z)re is β̄(x) for some x ∈ Zre and hence
belongs to G′re by our assumption. By Lemma 2.1, β̂(Z) ⊆ G′, because Z ⊆ S and
so β̂(Z) ⊆ S′. Since the restriction of β̂ on G is a homomorphism to C ′∗, we have
β̂(G) ≤ G′.

(iii) Suppose x ∈ Gre. Then (x, y) ∈ G, for some y. Let z = (x, y). Then
(β̄(x), β̄(y)) = β̂(z) ∈ β̂(G) and so β̄(x) ∈ β̂(G)re.

Now suppose x′ ∈ β̂(G)re. Then (x′, y′) ∈ β̂(G) for some y′. We have (x′, y′) =
β̂(z) for some z = (x, y) ∈ G. Then x ∈ Gre and x′ = β̄(x). ¤
Some abelian group theory. We will need some facts about abelian groups. For
an abelian group A we denote by Ad its greatest divisible subgroup, and by A[n]
the n-torsion subgroup of A. It is well-known that Ad has a direct complement in
A (in general, not uniquely determined), which is a reduced group.

Proposition 2.3. Let A be an abelian group such that A[n] is finite for every
positive integer n. Then

(i) Ad =
⋂

n>0 nA;
(ii) if A/nA is finite for all positive integers n then |A : Ad| ≤ 2ℵ0 .

Proof. (i) Clearly, Ad ≤
⋂

n>0 nA. It suffices to show that the subgroup
⋂

n>0 nA
is divisible. Let a ∈ ⋂

n>0 nA, and k be a positive integer. Then a ∈ kA and so the
set {b : kb = a} is not empty. Therefore it is a coset of the finite subgroup A[k];
let it be {b1, . . . , bs}. We show that one of the bi belongs to

⋂
n>0 nA. Suppose

not. For each i choose a positive integer ni so that bi /∈ niA. There is b such that
a = kn1 . . . nsb. Then n1 . . . nsb is one of the bi, contrary to bi /∈ niA.

(ii) Suppose A/nA is finite for all positive integers n. Using (i), we have

A/Ad = A/
⋂
n>0

nA ↪→
∏
n>0

A/nA,
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and the result follows. ¤

We will apply Proposition 2.3 to subgroups of the multiplicative groups of fields;
obviously, they satisfy the assumption of the proposition.

Proposition 2.4. Let A be a pure subgroup of an abelian group G, and A ≤ B ≤ G.
Suppose |A : nA| = |B : nB| < ∞ for any positive integer n. Then B is a pure
subgroup of G.

Proof. Let b ∈ B ∩ nG. Let a1, . . . , ak be representatives of all cosets of nA in A.
Whenever i 6= j, we have ai−aj /∈ nA and hence ai−aj /∈ nG because A is pure in
G; so ai− aj /∈ nB. Then a1, . . . , ak is a full system of representatives of the cosets
of nB in B because |B : nB| = k. Then b− ai ∈ nB for some i. We have ai ∈ nG
and so ai ∈ nA, because A is pure in G. Therefore b ∈ nB. ¤

An abelian group is called pure-injective if it has a direct complement in every
its pure extension.

Fact 2.5 (see [3], Section 10.7). Every ℵ1-saturated abelian group is pure-injective.

Fact 2.6 (see [2], Theorem 38.1). A direct summand of a pure-injective abelian
group is pure-injective.

3. Axioms for the theory of M

Our goal is to find a complete axiom system for the theory of the structure M
introduced above and to show that it admits quantifier elimination.

Consider the class of all L?-structures N satisfying the conditions (1)–(7) below.
(1) The L-reduct of N is an ordered real closed field R.
(2) The set Γ(N) is a subgroup of S.
(3) The group Γ(N) is elementarily equivalent to the group Γ.
(4) The set Γ(N)re is dense in the interval [−1, 1] of R.
(5) Whenever f(X, Y ,Z) is a polynomial over Z of positive degree in X, for

any tuple c in R every open interval in R contains an element a in R such
that for every tuple b in Γ(N)re we have f(a, b, c) 6= 0.

(6) Whenever
• p(X1, . . . , Xn) is a nonconstant polynomial over Z,
• (m11, . . . , m1n), . . . , (mk1, . . . , mkn) ∈ Zn − {(0, . . . , 0)},
• g1, . . . , gk ∈ Γ,
• for all z1, . . . , zn ∈ Γ

C |= p(z1, . . . , zn) = 0 ↔
k∨

i=1

zmi1
1 zmi2

2 . . . zmin
n = gi,

we have for all z1, . . . , zn ∈ Γ(N)

C |= p(z1, . . . , zn) = 0 ↔
k∨

i=1

zmi1
1 zmi2

2 . . . zmin
n = (gi)N ,

where C is the algebraic closure of R.
(7) N satisfies all the quantifier-free L?-sentences that hold in M .
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It is easy to see that there exists an infinite set T of first order L?-sentences such
that an L?-structure N satisfies the conditions (1)–(7) if and only if N is a model
of T .

Proposition 3.1. The structure M is a model of T .

Proof. Obviously, M satisfies Axioms 1–3 and 6–7.
To prove that Axiom 4 holds in M , it suffices to show that Γ is dense in S, that

is, whenever 0 ≤ a < b < 2π, there exists z ∈ Γ with a < arg(z) < b. Choose
n so that b − a ≤ 2π/n. As Γ is infinite, by the pigeon-hole principle there are
k ∈ {0, . . . , n− 1} and z, v ∈ Γ such that

2πk/n ≤ arg(z) < arg(v) < 2π(k + 1)/n.

Let u = vz−1 and φ = arg(u). Then u ∈ Γ and 0 < φ < 2π/n. There is a positive
integer l such that (l − 1)φ ≤ a < lφ. Clearly, a < lφ < b. As ul ∈ Γ, and
arg(u) = lφ, the result follows.

Axiom 5 holds in M because any interval in R is uncountable, but Γ is countable
and so for any finite subset A of R there are only countably many elements algebraic
over Γre ∪A. ¤

We will prove

Theorem 3.2. The theory T admits quantifier elimination.

Since M is a model of T , Theorems 1.4 and 1.3 follow. Moreover, due to
Axioms 7 and Theorem 3.2, a sentence holds in all models of T iff it holds in M .
Therefore we will have

Corollary 3.3. The theory T is complete.

For any model N of T , let f : Γ → N × N be the map defined by f(g) = gN ,
where gN is the element of N × N we defined in the first subsection of Section 2.
As g ∈ Γ, we have gN ∈ Γ(N), by Axiom 7; so, in fact, f : Γ → Γ(N).

We will need later

Lemma 3.4. The map f is a pure monomorphism from the group Γ to the group
Γ(N).

Proof. For any quantifier-free formula φ(w1, . . . , wn) in the language of multiplica-
tive groups there is a quantifier-free formula φ′(v1, u1, . . . , vn, un) in the language
of rings such that for any real closed field R and z1, . . . , zn ∈ C∗ with zi = (xi, yi)
we have

C∗ |= φ(z1, . . . , zn) iff R |= φ′(x1, y1, . . . , xn, yn).
Let R be the L-reduct of N , and C the algebraic closure of the real closed field

R. For φ as above and g1, . . . , gn ∈ Γ with gi = (ai, bi), we have

Γ |= φ(g1, . . . , gn) ⇔
R |= φ′(a1, b1, . . . , an, bn) ⇔ (by Axiom 7)

φ′(a1, b1, . . . , an, bn) ∈ T ⇔
R |= φ′((a1)N , (b1)N , . . . , (an)N , (bn)N ) ⇔

C∗ |= φ((g1)N , . . . , (gn)N ) ⇔
Γ(N) |= φ((g1)N , . . . , (gn)N ).
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It follows that f : Γ → Γ(N) is a monomorphism. We show that f is pure. Let
n be a positive integer, and φ be the formula wn

1 = w2. For the corresponding
φ′(v1, u1, v2, u2), whenever g = (a, b) ∈ Γ, we have

Γ |= ∃w(wn = g) ⇔
M |= ∃xy (Γ(x, y) ∧ φ′(x, y, a, b)) ⇔ (by Axioms 7)

∃xy (Γ(x, y) ∧ φ′(x, y, a, b)) ∈ T ⇔
N |= ∃xy (Γ(x, y) ∧ φ′(x, y, aN , bN )) ⇔

Γ(N) |= ∃w(wn = gN ).

The lemma is proven. ¤
We denote the pure subgroup f(Γ) of Γ(N) by ΓN .

4. Submodel completeness of T

To prove Theorem 3.2, it suffices to show that any finite partial isomorphism α
between any two models N and N ′ of T is an elementary map.

We may assume that N and N ′ are (2ℵ0)+-saturated. Let N0 and N ′
0 be the

L+(Γ)-reducts of N and N ′, respectively. Every elementary map from N0 to N ′
0 is

an elementary map from N to N ′, because N and N ′ are definitional expansions
of N0 and N ′

0, respectively. Therefore it suffices to prove that α extends to an
elementary map from N0 to N ′

0. Thus, it suffices to prove the following

Proposition 4.1. Let N and N ′ be (2ℵ0)+-saturated models of T . Then there exists
a back-and-forth system S from N0 to N ′

0 such that any finite partial isomorphism
from N to N ′ extends to a member of S.

Here a back-and-forth system from N0 to N ′
0 is defined to be a set S of partial

isomorphisms from N0 to N ′
0 such that for every β ∈ S and a ∈ N , a′ ∈ N ′ there

exists γ ∈ S such that β ⊆ γ, a ∈ dom(γ), and a′ ∈ rng(γ). It is well-known that
any member of a back-and-forth system is an elementary map.

Proof. We construct S satisfying the conditions of Proposition 4.1.
Let R and R′ denote the ordered real closed fields that are the L-reducts of N

and N ′, respectively. Let C and C ′ be their algebraic closures.
Let E be the set of all L+-elementary maps from N to N ′. Let S0 be the set of

all β ∈ E such that there exist
• a finite subset A of R, and a finite subset A′ of R′,
• a subgroup H of Γ(N) of cardinality at most 2ℵ0 , and a subgroup H ′ of

Γ(N ′) of cardinality at most 2ℵ0

satisfying the following conditions:
(a) dom(β) = A ∪Hre, rng(β) = A′ ∪H ′

re, β(A) = A′, β(Hre) = H ′
re;

(b) A is algebraically independent over Γ(N) in C, and A′ is algebraically
independent over Γ(N ′) in C ′;

(c) ΓN ≤ H and ΓN ′ ≤ H ′;
(d) H has a divisible torsion-free direct complement D in Γ(N), and H ′ has a

divisible torsion-free direct complement D′ in Γ(N ′).

Let S = {β̄ : β ∈ S0}. Since β ∈ E implies β̄ ∈ E , we have S ⊆ E . It suffices to
prove the following three lemmas.
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Lemma 4.2. Any member of S is a partial isomorphism from N0 to N ′
0.

Lemma 4.3. Every finite partial isomorphism from N to N ′ extends to a member
of S.

Lemma 4.4. S is a back-and-forth system from N0 to N ′
0.

Below we prove the lemmas. This completes the proof of Proposition 4.1 and
hence of Theorem 3.2. ¤

Proof of Lemma 4.2. The following claim is crucial in the proof; it is where
Lang’s property of Γ and Axiom 6 of T is used.

Claim. Let N be a model of T . Suppose Γ(N) is the direct product of subgroups H
and D such that ΓN ≤ H, and D is torsion-free. Let A be a subset of C algebraically
independent over Γ(N) in the field C. Then

aclC(A, H) ∩ Γ(N) = H.

Proof of the Claim. Clearly, aclC(A, H) ∩ Γ(N) contains H. We show that z ∈ H
assuming z ∈ aclC(A,H) ∩ Γ(N).

First we prove that z ∈ aclC(H). Let A0 be a minimal subset of A such that
z belongs to aclC(A0,H). Then A0 = ∅, because for a ∈ A0 we would have
z /∈ aclC(A0 − {a}, H), and, by the Exchange Property of the algebraically closed
field C,

a ∈ aclC(A0 − {a}, z,H) ⊆ aclC(A0 − {a}, Γ(N)),

contrary to algebraic independence of A over Γ(N) in C.
Thus p(z, h1, . . . , hn) = 0 for some polynomial p(X0, X1, . . . , Xn) over Z of pos-

itive degree in X0, and some h1, . . . , hn ∈ H. By the property (iii) of the group Γ,
there exist

• a positive integer k,
• elements g1, . . . , gk of Γ, and
• nonzero (n + 1)-tuples of integers (mi0,mi1, . . . , min), i = 1, . . . , k,

such that, whenever z0, z1, . . . , zn ∈ Γ, we have

C |= p(z0, z1, . . . , zn) = 0 ↔
k∨

i=1

zmi0
0 zmi1

1 . . . zmin
n = gi.

Then by Axioms (6), whenever z0, z1, . . . , zn ∈ Γ(N),

C |= p(z0, z1, . . . , zn) = 0 ↔
k∨

i=1

zmi0
0 zmi1

1 . . . zmin
n = (gi)N .

The set of solutions in Γ(N) of the equation p(X0, h1, . . . , hn) = 0 in X0 is finite
and nonempty. It follows that mi0 6= 0 for at least one i, because otherwise this set
would be either ∅ or Γ(N). Thus, we have

zmhm1
1 . . . hmn

n = gN

for some g ∈ Γ and integers m,m1, . . . ,mn, where m 6= 0. Since gN ∈ H, it follows
that zm ∈ H. Let z = hd, where h ∈ H and d ∈ D. So hmdm ∈ H, and therefore
dm ∈ H ∩D = {1}. Since D is torsion-free, we have d = 1 and hence z ∈ H, and
we are done. The Claim is proven. ¤
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Now we are ready to prove Lemma 4.2. Let β ∈ S0. We show that β̄ is a partial
isomorphism from N0 to N ′

0. Since β̄ ∈ E , we need to prove only that z ∈ Γ(N) iff
β̂(z) ∈ Γ(N ′), for any z ∈ dom(β̂). We have

dom(β̄) = aclR(A,Hre), dom(β̂) = dom(β̄)× dom(β̄).

Since β(Hre) = H ′
re by (a), we have H ⊆ dom(β̂) and β̂(H) = H ′ by Lemma 2.2.

Therefore it suffices to observe that dom(β̂)∩Γ(N) = H and rng(β̂)∩Γ(N ′) = H ′.
We show the first; the second is similar. Clearly, H is contained in dom(β̂)∩Γ(N).
Then the resulf follows from the Claim, because dom(β̂) ⊆ aclC(A, H): if z ∈
dom(β̂) then

zre, zim ∈ dom(β̄) = aclR(A,Hre) ⊆ aclC(A,Hre) = aclC(A, H),

and hence z ∈ aclC(A,H). Lemma 4.2 is proven.

Proof of Lemma 4.3. Let α be a finite partial isomorphism from N to N ′. We
need to construct β ∈ S0 such that α ⊆ β̄. We will use the following

Claim. For any X ⊆ Γ(N)re with |X| ≤ 2ℵ0 there exists γ ∈ E such that α ⊆ γ,
dom(γ) = dom(α) ∪X, and γ(X) ⊆ Γ(N ′)re.

Proof of the Claim. Let X = (ai : i < 2ℵ0). For each i < 2ℵ0 choose a′i such that
(ai, a

′
i) ∈ Γ(N). Let p be the quantifier-free L+-type over dom(α) of the family

{ai, a
′
i : i < 2ℵ0}, in the variables {xi, x

′
i : i < 2ℵ0}. Let αp stand for the quantifier-

free L+-type over rng(α) induced by the map α.
We show that the set of formulas

∆ = αp ∪ {Γ(xi, x
′
i) : i < 2ℵ0}

realizes in N ′. Since N ′ is (2ℵ0)+-saturated, it suffices to check that ∆ is finitely
satisfiable in N ′. The latter is true because the map α preserves atomic L?-formulas.

Let {bi, b
′
i : i < 2ℵ0} be a realization of ∆ in N ′. Put

γ = α ∪ {(ai, bi) : i < 2ℵ0}.
Clearly, dom(γ) = dom(α)∪X, and γ(ai) = bi ∈ Γ(N ′)re for all i. Moreover, γ is a
partial L+-isomorphism and therefore is an L+-elementary map because the theory
of ordered real closed fields admits quantifier elimination. The Claim is proven. ¤

Choose a subset A of dom(α) which is maximal among the subsets of dom(α)
algebraically independent in the field C over Γ(N). Then any element of dom(α) is
algebraic over Γ(N) ∪ A. Since dom(α) is finite, there is a finite subset Z of Γ(N)
such that any element of dom(α) is algebraic over Z ∪A.

Let U be a direct complement of Γ(N)d in Γ(N). Since Z is finite, and ΓN is
countable, there is a countable divisible subgroup V of Γ(N)d such that Z ∪ ΓN ⊆
UV . Clearly, H = UV is the direct product of the subgroups U and V . Let D be
a direct complement of the divisible subgroup V in Γ(N)d; clearly, D is divisible.
Then Γ(N) is the direct product of the subgroups U , V , and D, and so is the direct
product of H and D.

Since Γ ' ΓN ≤ Γ(N) by Lemma 3.4, Γ(N) ≡ Γ by Axioms 3, and Γ has at most
n elements of order n, it follows that all elements of finite order in Γ(N) belong to
ΓN , and so to H. Therefore D a torsion-free divisible group.
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As Γ/Γn is finite and Γ(N) ≡ Γ, the group Γ(N) is finite modulo n, for any
n > 0. Therefore, by Proposition 2.3(ii), |U | ≤ 2ℵ0 . Since V is countable,

|H| = |UV | ≤ 2ℵ0 .

By the Claim applied to α and X = Hre, we obtain γ ∈ E such that γ ⊇ α,
dom(γ) = dom(α) ∪Hre, and γ(Hre) ⊆ Γ(N ′)re. We have

A ∪Hre ⊆ dom(γ) ⊆ aclR(A ∪Hre).

Here the first inclusion is obvious. As Z ⊆ H, each element of dom(α) is algebraic
over A ∪ H in C and so over A ∪ Hre in R. Thus we have the second inclusion.
Hence dom(γ̄) = aclR(dom(γ)) = aclR(A ∪Hre).

Let β be the restriction of γ on A ∪Hre. Then β ∈ E . As β ⊆ γ we have β̄ ⊆ γ̄;
moreover, β̄ = γ̄ because

dom(γ̄) = aclR(A ∪Hre) = dom(β̄).

Hence α ⊆ γ ⊆ γ̄ = β̄. We show that β ∈ S0.
Applying Lemma 2.2 with H as G and Γ(N ′) as G′, we have

H ⊆ dom(β̂), β̂(H) ≤ Γ(N ′), β̄(Hre) = β̂(H)re.

Then for A′ = β(A) and H ′ = β̂(H) the condition (a) holds.
The set A was chosen to be algebraically independent in C over ΓN . Since α

preserves atomic L?-formulas, the set A′ = α(A) is algebraically independent in C ′

over Γ(N ′). So (b) holds.
By our construction ΓN ≤ H. Therefore for all a ∈ Γre ∪ Γim we have

aN ∈ aclR(Hre) ⊆ dom(β̄).

As β̄ ∈ E , we have β̄(aN ) = aN ′ . It follows that ΓN ′ = β̂(ΓN ) ≤ H ′. Thus (c)
holds.

It remains to check (d). We already checked that H has a divisible torsion-free
direct complement D in Γ(N). We prove that H ′ has a divisible torsion-free direct
complement D′ in Γ(N ′).

First we show that H ′ is a pure subgroup of Γ(N ′). By Lemma 3.4, ΓN ′ is a pure
subgroup of Γ(N ′). We have ΓN ′ ≤ H ′ ≤ Γ(N ′). Also, for any positive integer n
we have

|H ′ : H ′n| = |H : Hn| = |Γ(N) : Γ(N)n| = |Γ : Γn| = |Γ(N ′) : Γ(N ′)n|.
Then the result follows from Proposition 2.4.

The group Γ(N) is ℵ1-saturated and so is pure-injective, by Fact 2.5. Being a
direct summand of Γ(N), the group H is pure-injective, too, by Fact 2.6. Then H ′

is pure-injective. Therefore H ′ has a direct complement D′ in Γ(N ′).
Since Γ(N ′) ≡ Γ ' ΓN ′ , and Γ(N ′) has at most n elements of order n for each n,

all elements of finite order in Γ(N ′) belongs to the subgroup ΓN ′ , and so to H ′.
Therefore the group D′ is torsion-free. We show that D′ is divisible. Let n > 0.
We have

|ΓN ′ : (ΓN ′)n| = |H ′ : H ′n| · |D′ : D′n|.
Since, as we already showed,

|ΓN ′ : (ΓN ′)n| = |H ′ : H ′n|,
it follows that |D′ : D′n| = 1 and so D′ = D′n. This completes the proof of
Lemma 4.3.



12 OLEG BELEGRADEK AND BORIS ZILBER

Proof of Lemma 4.4. By symmetry, it suffices to prove that if β ∈ S0 and a ∈ N
then there exists γ ∈ S0 such that β ⊆ γ and a ∈ dom(γ̄).

Let A, A′, H, H ′, D, and D′ witness that β ∈ S0.
If a ∈ dom(β̄), we can take β for γ; so we assume that a /∈ dom(β̄).

Case 1. a ∈ Γ(N)re.
In this case a = cre for some c ∈ Γ(N). Since a /∈ dom(β̄) = aclR(A ∪Hre), we

have c /∈ aclC(A∪H). Let c = hd, where h ∈ H and d ∈ D. Then d /∈ aclC(A∪H).
As D is divisible, there exist d0, d1, . . . in D such that

d0 = d, dn
n = dn−1 for all n > 0.

Clearly, dn is inter-algebraic with d in C, and so dn /∈ aclC(A ∪ H), for all n.
Then for en = (dn)re we have en /∈ aclR(A ∪ Hre), and the elements en pairwise
inter-algebraic in R.

We will need the following

Claim. For any e ∈ Γ(N)re \ aclR(A ∪ Hre) there is e′ ∈ Γ(N ′)re such that β ∪
{(e, e′)} ∈ E.
Proof of the Claim. Let p(x) be the L+-type of e over A ∪Hre in R. We need to
prove that the set of formulas

βp(x) ∪ {∃yΓ(x, y)}
is realized in N ′. As N ′ is (2ℵ0)+-saturated, and |A∪Hre| ≤ 2ℵ0 , it suffices to show
that whenever φ ∈ p the formula

βφ(x) ∧ ∃yΓ(x, y)

has a solution e′φ in N ′. Since the ordered real closed field R is o-minimal, and e is
not algebraic over A ∪Hre in R, there exist

b, b′ ∈ aclR(A ∪Hre) ∪ {±∞}
such that b < e < b′ and

R |= ∀x(b < x < b′ → φ(x)).

It follows that
R′ |= ∀x(β̄(b) < x < β̄(b′) → βφ(x)).

Since e ∈ Γ(N)re, we have −1 ≤ e ≤ 1; so we may assume that

−1 ≤ b < b′ ≤ 1,

and hence
−1 ≤ β̄(b) < β̄(b′) ≤ 1

in R′. Since N ′ satisfies Axiom 4, there exists e′φ ∈ Γ(N ′)re with

β̄(b) < e′φ < β̄(b′).

Then e′φ satisfies the required condition. The Claim is proven. ¤

Let p(x0, x1, . . . ) be the L+-type of (e0, e1, . . . ) over A ∪Hre in N , and

∆ = (βp)(x0, x1, . . . ) ∪ {∃ynΓ(xn, yn) : n < ω}
Thus ∆ is a set of formulas over A′ ∪H ′

re with free variables (xi : i < ω).

Claim. ∆ is finitely satisfiable in N ′.
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Proof of the Claim. It suffices to check that ∆n is realizable in N ′ for all n, where
∆n is the set of formulas in ∆ in which no xi with i > n is involved.

Let ∆n be the set of formulas in ∆ in which no xi with i 6= n is involved. By
the previous Claim ∆n is realizable in N ′ by some element e′n; then

δ = β ∪ {(en, e′n)} ∈ E .

We have

(H ∪ {dn})re = Hre ∪ {en} ⊆ dom(δ),

δ((H ∪ {dn}re) = H ′
re ∪ {e′n} ⊆ Γ(N ′)re.

Let G be the subgroup of Γ(N) generated by H ∪ {dn}. Applying Lemma 2.2,
we obtain G ⊆ dom(δ̂) and δ̂(G) ≤ Γ(N ′). For i ≤ n we have di ∈ G. Hence
δ̂(di) ∈ Γ(N ′) and ei ∈ dom(δ̄). Put e′i = δ̄(ei). Then e′i ∈ Γ(N ′)re. Since δ̄ ∈ E , it
follows that the tuple (e′0, . . . , e

′
n) realizes ∆n. The Claim is proven. ¤

As the structure N ′ is (2ℵ0)+-saturated and |A′∪H ′
re| ≤ 2ℵ0 , the set ∆ is realized

in N ′; let (e′0, e
′
1, . . . ) be a realization. Then

τ = β ∪ {(en, e′n) : n < ω} ∈ E ,

and e′n ∈ ΓN ′
re for all n. Let P be the subgroup of D generated by all dn. Clearly,

HP ⊆ aclC(dom(τ)) and so

A ∪ (HP )re ⊆ aclR(dom(τ)) = dom(τ̄).

Let γ be the restriction of τ̄ on A ∪ (HP )re. Clearly, β ⊆ γ and γ ∈ E . We have
a = e0 ∈ Pre ⊆ dom(γ). We prove that γ ∈ S0, and A and HP witness this. Since
P is countable, |HP | ≤ 2ℵ0 .

It is easy to see that the group P is divisible. Let D0 be a direct complement of
P in D. Clearly, Γ(N) is the direct product of HP and D0, and D0 is torsion-free
and divisible. As

(HP )re ⊆ dom(γ) and γ((HP )re ⊆ ΓN ′
re ,

by Lemma 2.2 we have

HP ⊆ dom(γ̂), H ′P ′ ≤ Γ(N ′), γ((HP )re) = (H ′P ′)re,

where P ′ = γ̂(P ). It remains to show that H ′P ′ has a torsion-free divisible direct
complement D′ in Γ(N ′).

Remember that Γ(N ′) is the direct product of H ′ and D′; we denote by P ′0 the
D′-projection of P ′. Then P ′0 is divisible and H ′P ′ = H ′P ′0. Let D′

0 be a direct
complement of P ′0 in D′. Then Γ(N ′) is the direct product of H ′, P ′0, and D′

0, and
hence is the direct product of H ′P ′ and D′

0. As D′ is torsion-free and divisible, so
is D′

0.
Thus, in Case 1 we are done. We reduce to this the following more general case.

Case 2. a ∈ aclR(A, Γ(N)re).
In this case we have a ∈ aclR(A, a1, . . . , an) for some ai ∈ Γ(N)re. Repeating

the arguments of Case 1 n times we can find γ ∈ S0 such that β ⊆ γ and all ai

belong to dom(γ̄). As A ⊆ dom(γ̄) and the set dom(γ̄) is algebraically closed, we
have a ∈ dom(γ̄). It remains to consider

Case 3. a /∈ aclR(A ∪ Γ(N)re).
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Let a be an enumeration of the set A, and q(x) the set of all sentences θf of the
form

∀u1v1 . . . unvn(
n∧

i=1

Γ(ui, vi) → f(x, u, a) 6= 0),

where f(X, Y , Z) is a polynomial over Z of positive degree in X. Clearly, a satisfies
q(x) in N . Let p(x) be the L+-type of a over A ∪Hre in R.

Claim. The set of formulas ∆ = βp(x) ∪ βq(x) is finitely satisfiable in N ′.

Proof of the Claim. We show that if φ is a formula in p and fi(X, Y , Z) are poly-
nomials over Z of positive degree in X, where i = 1, . . . , k, then the formula

βφ(x) ∧ βθf1(x) ∧ · · · ∧ βθfk
(x)

has a solution in N ′. Let f = f1 . . . fk. It suffices to show that the formula
βφ(x) ∧ βθf (x) has a solution d′ in N ′.

As the ordered field R is o-minimal, and a is not algebraic over A ∪ Γ(N)re in
R, there are b, b′ ∈ acl(A ∪ Γ(N)re) ∪ {±∞} such that b < a < b′ and

R |= ∀x(b < x < b′ → φ(x)).

It follows that β̄(b) < β̄(b′) in R′, and

R′ |= ∀x(β̄(b) < x < β̄(b′) → βφ(x))

(where β̄(±∞) = ±∞). As N ′ satisfies Axiom 5, there is d′ ∈ N ′ such that
β̄(b) < d′ < β̄(b′) and N ′ |= βθf (d′). Then d′ satisfies the required condition. The
Claim is proven. ¤

Since N ′ is (2ℵ0)+-saturated, and |A∪Hre| ≤ 2ℵ0 , the set of formulas ∆ is realized
in N ′ by some element a′. Since a′ satisfies βq(x), we have a′ /∈ aclR′(A′, Γ(N ′)re).
Put γ = β ∪ {(a, a′)}. As a′ satisfies βp(x), we have γ ∈ E . Since A ∪ {a} is
algebraically independent over Γ(N) in C, and A′∪{a′} is algebraically independent
over Γ(N ′) in C ′, we have γ ∈ S0.

This completes the proof of Lemma 4.4.
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