DEFINABLE RELATIONS IN THE REAL FIELD WITH A DISTINGUISHED SUBGROUP OF THE UNIT CIRCLE

OLEG BELEGRADEK AND BORIS ZILBER

ABSTRACT. We describe definable relations in the real field augmented by a binary relation which is an arbitrary multiplicative group of complex numbers contained in the divisible hull of a finitely generated subgroup of the unit circle. We give a complete axiom system for this structure which admits quantifier elimination down to Boolean combinations od existential formulas of a special simple form.

1. INTRODUCTION

The goal of this paper is to describe definable relations in the field of reals augmented by a binary relation which is a subgroup of the multiplicative group of complex numbers, under certain assumptions about the subgroup.

We identify complex numbers with pairs of reals in a usual way. Let

$$\mathbb{S} = \{ (x, y) \in \mathbb{C} : x^2 + y^2 = 1 \}.$$

The set S, the unit circle on the complex plane, is a subgroup of \mathbb{C}^* , the multiplicative group of complex numbers. We consider subgroups Γ of S such that

- (i) Γ is countable;
- (ii) Γ/Γ^n is finite for each n > 0, where Γ^n denotes the subgroup $\{q^n : q \in \Gamma\}$;
- (iii) for every nonconstant polynomial $p(X_1, \ldots, X_n)$ over \mathbb{Z} there exist
 - a positive integer k,
 - elements g_1, \ldots, g_k of Γ , and
 - nonzero *n*-tuples of integers $(m_{i1}, \ldots, m_{in}), i = 1, \ldots, k$,

such that, whenever $z_1, \ldots, z_n \in \Gamma$, we have $p(z_1, \ldots, z_n) = 0$ if and only if $z_1^{m_{i1}} \ldots z_n^{m_{in}} = g_i$ for some $i = 1, \ldots, k$.

Proposition 1.1. Any infinite subgroup of the divisible hull of a finitely generated subgroup of \mathbb{C}^* has the properties (i)–(iii).

Here the divisible hull of a subgroup G of \mathbb{C}^* is the subgroup \overline{G} of all $z \in \mathbb{C}^*$ such that $z^m \in G$ for some positive integer m.

Proof. Let G be a finitely generated subgroup of \mathbb{C}^* , and $\Gamma \leq \overline{G}$.

The property (i) follows from countability of G and the fact that any element of G has exactly n complex roots of degree n.

We show (ii) by proving that $|\Gamma/\Gamma^n| \leq n^{k+1}$ if G is k-generated.

There is a homomorphism β from the additive group \mathbb{Z}^k , the kth direct power of \mathbb{Z} , onto the multiplicative group G. Since the group \overline{G} is divisible, β extends to

Date: January-March, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 03C60.

a homomorphism $\gamma : \mathbb{Q}^k \to \overline{G}$. Let $\delta : \mathbb{Q}^{k+1} \to \overline{G}$ be the homomorphism defined by $\delta(\mathbf{r}, r) = \gamma(\mathbf{r}) \exp(2\pi r i)$.

The map δ is surjective. Indeed, let $z \in \overline{G}$. Then $z^m \in G$ for some positive integer m. Let $z^m = \beta(l)$, where $l \in \mathbb{Z}^k$. There is $\mathbf{r} \in \mathbb{Q}^k$ with $m\mathbf{r} = l$. We have $z^m = \gamma(l) = \gamma(\mathbf{r})^m$. Hence $z\gamma(\mathbf{r})^{-1}$ is a complex root of unity, and so is $\exp(2\pi ri)$ for some $r \in \mathbb{Q}$. Then $z = \delta(\mathbf{r}, r)$.

Put $A = \delta^{-1}(\Gamma)$. As $A \leq \mathbb{Q}^{k+1}$, we have $|A/nA| \leq n^{k+1}$ (for a proof see [1], Proposition 0.5). Clearly, δ induces a homomorphism $a + nA \mapsto \delta(a)\Gamma^n$ from A/nA onto Γ/Γ^n . Therefore $|\Gamma/\Gamma^n| \leq n^{k+1}$.

The property (iii) is a deep result of diophantine geometry, see [4]. Since in the most general form it was first conjectured by S. Lang, we call (iii) Lang's property. \Box

The following is the main result of the paper.

Theorem 1.2. Let Γ be a subgroup of S with the properties (i)–(iii). The definable relations of the structure

$$(\mathbb{R},<,+,\cdot,0,1,\Gamma)$$

are exactly the Boolean combinations of relations of the form

$$\exists x_1 y_1 \dots x_n y_n \left(P(x_1, y_1, \dots, x_n, y_n, \boldsymbol{v}) \land \bigwedge_{i=1}^n (x_i, y_i) \in \Gamma \right),$$

where P is a semi-algebraic relation on \mathbb{R} , and n may be equal to 0.

A special case of the result, where Γ was the group of all complex roots of unity, had been proven by the second author in [5].

A more precise version of the result is as follows.

Theorem 1.3. Let Γ be a subgroup of S with the properties (i)–(iii), and Γ_{re} , Γ_{im} be the sets of real and imaginary components of all pairs in Γ , respectively. The 0-definable relations of the structure

$$M_0 = (\mathbb{R}, <, +, \cdot, 0, 1, \Gamma, a)_{a \in \Gamma_{\rm re} \cup \Gamma_{\rm in}}$$

are exactly the Boolean combinations of relations of the form

$$(\star) \qquad \exists x_1 y_1 \dots x_n y_n \left(P(x_1, y_1, \dots, x_n, y_n, \boldsymbol{v}) \land \bigwedge_{i=1}^n (x_i, y_i) \in \Gamma \right),$$

where P is quantifier-free definable in the ordered field \mathbb{R} with parameters in the set $\Gamma_{\rm re} \cup \Gamma_{\rm im}$, and n may be equal to 0.

The structure M^0 on \mathbb{R} whose atomic relations are all the relations of the form (\star) is definitionally equivalent to M_0 . Indeed,

- every atomic relation of M^0 is 0-definable in M_0 by an \exists -formula;
- every atomic relation of M_0 is an atomic relation in M^0 .

The first statement is obvious. The second one holds because n may be equal to 0, and, for any polynomials $s(\boldsymbol{u})$ and $t(\boldsymbol{v})$ over the subfield of \mathbb{R} generated by $\Gamma_{\rm re} \cup \Gamma_{\rm im}$, the relation $(s(\boldsymbol{u}), t(\boldsymbol{v})) \in \Gamma$ is equivalent to

$$\exists xy \, (x = s(\boldsymbol{u}) \land y = t(\boldsymbol{v}) \land (x, y) \in \Gamma).$$

Thus, Theorem 1.3 says exactly that M^0 admits quantifier elimination. Let M be the expansion of M_0 by all relations of the form (*). Then M and M^0 have the same atomic relations. So Theorem 1.3 is equivalent to

Theorem 1.4. The structure M admits quantifier elimination.

2. Preliminaries

In this section we introduce notation and collect some notions and facts we will use in the proofs. We assume the reader to be familiar with basic model theory, a good reference is e.g. [3].

Languages. Let L be the language of ordered rings, and

$$L^+ = L \cup \{a : a \in \Gamma_{\rm re} \cup \Gamma_{\rm im}\}, \qquad L^+(\Gamma) = L^+ \cup \{\Gamma\},$$

where Γ is considered as a binary relation symbol, and elements of $\Gamma_{\rm re} \cup \Gamma_{\rm im}$ as constant symbols. We denote by L^* the language of the structure M; here $\Gamma(M)$ is Γ , and $L^* \supseteq L^+(\Gamma)$.

Let N be an L^{*}-structure. For $a \in \Gamma_{\rm re} \cup \Gamma_{\rm im}$ we denote by a_N the interpretation of the constant symbol a in N. For $g = (a, b) \in \Gamma$ we denote $g_N = (a_N, b_N)$.

Algebraic closure. For a subset X of a structure N we denote by acl(X) the algebraic closure of X in N, that is, the set of all elements in N algebraic over X in the sense of model theory. Here an element of N is called algebraic over X if it belongs to a finite subset definable in N with parameters from X.

An element a of N is called *definable over* X if the set $\{a\}$ is definable in N with parameters from X. The set of all elements in N definable over X is called the *definable closure of* X in N.

For a subset X of a field F we denote by $\operatorname{acl}_F(X)$ the set of all elements in F algebraic over X in the sense of field theory. Clearly, if F is a subfield of a field K then for $X \subseteq F$ we have $\operatorname{acl}_F(X) = \operatorname{acl}_K(X) \cap F$.

Some known facts about real closed fields. Any real closed field can be uniquely expanded to an ordered field; the positive elements in that ordered field are the nonzero squares, and so it is a definitional expansion. It follows that

- in real closed fields algebraic closure coincides with definable closure,
- for real closed fields R and R', any elementary map β from R to R' uniquely extends to an elementary bijection

$$\beta : \operatorname{acl}(\operatorname{dom}(\beta)) \to \operatorname{acl}(\operatorname{rng}(\beta)).$$

• for real closed fields R and R', if β and γ are elementary maps from R to R' and $\beta \subseteq \gamma$ then $\bar{\beta} \subseteq \bar{\gamma}$.

The theory of ordered real closed fields is complete and admits quantifier elimination. This implies that

- the theory of ordered real closed fields is o-minimal;
- in real closed fields algebraic dependence in the sense of model theory is exactly algebraic dependence in the sense of field theory;
- elementary maps between two real closed fields are exactly partial isomorphisms of the ordered fields.

An algebraic closure of a real closed field. Let R be a real closed field, and C be R^2 equipped with the usual addition and multiplication

$$(x, y) + (x', y') = (x + x', y + y'),$$

$$(x, y) \cdot (x', y') = (xx' - yy', xy' + x'y)$$

Then $(C, +, \cdot)$ is a field, and $x \mapsto (x, 0)$ is an embedding of R into C. We will identify x and (x, 0). Then C is an algebraic closure of R. As usual, (x, y) can be written x + yi, where i = (0, 1). The set

$$S = \{(x, y) \in C : x^2 + y^2 = 1\}$$

is called the unit circle in C. It is a subgroup of the multiplicative group C^* of the field C, and for $z = (x, y) \in S$ we have $z^{-1} = (x, -y)$. For $z = (x, y) \in C$ put $z_{\rm re} = x$ and $z_{\rm im} = y$. We will repeatedly use the following observation:

if $z \in S$ then z, z_{re} , and z_{im} are pairwise inter-algebraic in C.

Indeed, suppose $z \in S$. Then $x^2 + y^2 = 1$ and so x and y are inter-algebraic in C. Also, z and x are inter-algebraic in C. Indeed, as z = x + yi and $i^2 = -1$, we have $(z - x)^2 + y^2 = 0$ and so $z^2 - 2xz + 1 = 0$.

For $Z \subseteq C$, we denote $Z_{re} = \{z_{re} : z \in Z\}$.

Translation from C to R. For any polynomial $p(Z_1, \ldots, Z_n)$ over \mathbb{Z} , there are polynomials

$$p_1(X_1, Y_1, \dots, X_n, Y_n)$$
 and $p_2(X_1, Y_1, \dots, X_n, Y_n)$

over \mathbb{Z} such that for any $z_1, \ldots, z_n \in C$ with $z_i = (x_i, y_i)$ we have

$$p(z_1,\ldots,z_n) = (p_1(x_1,y_1,\ldots,x_n,y_n), p_2(x_1,y_1,\ldots,x_n,y_n)).$$

Moreover, any formula $\phi(w_1, \ldots, w_n)$ in the language of rings can be translated to another formula $\phi^*(v_1, u_1, \ldots, v_n, u_n)$ in the language of rings such that for every $z_1, \ldots, z_n \in C$ with $z_i = (x_i, y_i)$ we have

$$C \models \phi(z_1, \ldots, z_n)$$
 iff $R \models \phi^*(x_1, y_1, \ldots, x_n, y_n)$.

The translations do not depend on R.

Elementary maps. Let R, R' be real closed fields, and C, C' their algebraic closures. Let β be an elementary map from R to R'. Then

$$\operatorname{dom}(\bar{\beta}) = \operatorname{acl}(\operatorname{dom}(\beta)) = \operatorname{acl}_R(\operatorname{dom}(\beta)).$$

The map

$$\hat{\beta}: \operatorname{dom}(\bar{\beta}) \times \operatorname{dom}(\bar{\beta}) \to C'$$

defined by

$$\beta(x,y) = (\beta(x),\beta(y))$$

is elementary as a map from C to $C^{\prime}.$ Therefore, whenever H is a subgroup of C^{\ast} with

 $H \subseteq \operatorname{acl}_R(\operatorname{dom}(\beta)) \times \operatorname{acl}_R(\operatorname{dom}(\beta)),$

the map $\hat{\beta}$ embeds the group H into the group C'^* .

It follows that if H is a subgroup of S such that $H_{\rm re} \subseteq \operatorname{dom}(\beta)$ then

 $H \subseteq \operatorname{dom}(\beta) \times \operatorname{acl}_R(\operatorname{dom}(\beta)) \subseteq \operatorname{dom}(\hat{\beta}),$

and the map $\hat{\beta}$ embeds the group H into the group S'.

Lemma 2.1. Let $Z \subseteq S$ and $H \leq S$. Suppose $Z_{re} \subseteq H_{re}$. Then $Z \subseteq H$.

Proof. Suppose $(x, y) \in Z$. Then $x \in Z_{re}$. Hence $x \in H_{re}$. Therefore $(x, u) \in H$ for some u. Since $Z, H \subseteq S$, we have $x^2 + y^2 = x^2 + u^2 = 1$ and so $y = \pm u$. Then $(x, y) = (x, u)^{\pm 1} \in H$.

We will repeatedly use the following

Lemma 2.2. Let β be an elementary map from R to R'. Let G be a subgroup of the group S generated by a subset Z, and G' a subgroup of S'. Suppose $Z_{re} \subseteq dom(\beta)$ and $\beta(Z_{re}) \subseteq G'_{re}$. Then

- (i) $G \subseteq \operatorname{dom}(\hat{\beta}),$
- (ii) $\hat{\beta}(G) \leq G'$,
- (iii) $\bar{\beta}(G_{\rm re}) = \hat{\beta}(G)_{\rm re}.$

Proof. (i) Since $Z_{\rm re} \subseteq \operatorname{dom}(\beta)$, we have $Z \subseteq \operatorname{acl}_C(\operatorname{dom}(\beta))$, and therefore $G \subseteq \operatorname{acl}_C(\operatorname{dom}(\beta))$. Then

$$G_{\rm re} \subseteq {\rm acl}_C({\rm dom}(\beta))$$
 and $G_{\rm im} \subseteq {\rm acl}_C({\rm dom}(\beta))$.

Hence

$$G_{\rm re} \subseteq {\rm acl}_R({\rm dom}(\beta))$$
 and $G_{\rm im} \subseteq {\rm acl}_R({\rm dom}(\beta))$,

and so $G \subseteq \operatorname{dom}(\hat{\beta})$.

(ii) We have $\hat{\beta}(Z)_{\rm re} \subseteq G'_{\rm re}$. Indeed, any element of $\hat{\beta}(Z)$ is of the form $(\bar{\beta}(x), \bar{\beta}(y))$ where $(x, y) \in Z$. Then any element of $\hat{\beta}(Z)_{\rm re}$ is $\bar{\beta}(x)$ for some $x \in Z_{\rm re}$ and hence belongs to $G'_{\rm re}$ by our assumption. By Lemma 2.1, $\hat{\beta}(Z) \subseteq G'$, because $Z \subseteq S$ and so $\hat{\beta}(Z) \subseteq S'$. Since the restriction of $\hat{\beta}$ on G is a homomorphism to C'^* , we have $\hat{\beta}(G) \leq G'$.

(iii) Suppose $x \in G_{re}$. Then $(x, y) \in G$, for some y. Let z = (x, y). Then $(\bar{\beta}(x), \bar{\beta}(y)) = \hat{\beta}(z) \in \hat{\beta}(G)$ and so $\bar{\beta}(x) \in \hat{\beta}(G)_{re}$.

Now suppose $x' \in \hat{\beta}(G)_{re}$. Then $(x', y') \in \hat{\beta}(G)$ for some y'. We have $(x', y') = \hat{\beta}(z)$ for some $z = (x, y) \in G$. Then $x \in G_{re}$ and $x' = \bar{\beta}(x)$.

Some abelian group theory. We will need some facts about abelian groups. For an abelian group A we denote by A_d its greatest divisible subgroup, and by A[n] the *n*-torsion subgroup of A. It is well-known that A_d has a direct complement in A (in general, not uniquely determined), which is a reduced group.

Proposition 2.3. Let A be an abelian group such that A[n] is finite for every positive integer n. Then

- (i) $A_d = \bigcap_{n>0} nA;$
- (ii) if A/nA is finite for all positive integers n then $|A:A_d| \leq 2^{\aleph_0}$.

Proof. (i) Clearly, $A_d \leq \bigcap_{n>0} nA$. It suffices to show that the subgroup $\bigcap_{n>0} nA$ is divisible. Let $a \in \bigcap_{n>0} nA$, and k be a positive integer. Then $a \in kA$ and so the set $\{b : kb = a\}$ is not empty. Therefore it is a coset of the finite subgroup A[k]; let it be $\{b_1, \ldots, b_s\}$. We show that one of the b_i belongs to $\bigcap_{n>0} nA$. Suppose not. For each i choose a positive integer n_i so that $b_i \notin n_i A$. There is b such that $a = kn_1 \ldots n_s b$. Then $n_1 \ldots n_s b$ is one of the b_i , contrary to $b_i \notin n_i A$.

(ii) Suppose A/nA is finite for all positive integers n. Using (i), we have

$$A/A_d = A/\bigcap_{n>0} nA \hookrightarrow \prod_{n>0} A/nA,$$

and the result follows.

We will apply Proposition 2.3 to subgroups of the multiplicative groups of fields; obviously, they satisfy the assumption of the proposition.

Proposition 2.4. Let A be a pure subgroup of an abelian group G, and $A \leq B \leq G$. Suppose $|A : nA| = |B : nB| < \infty$ for any positive integer n. Then B is a pure subgroup of G.

Proof. Let $b \in B \cap nG$. Let a_1, \ldots, a_k be representatives of all cosets of nA in A. Whenever $i \neq j$, we have $a_i - a_j \notin nA$ and hence $a_i - a_j \notin nG$ because A is pure in G; so $a_i - a_j \notin nB$. Then a_1, \ldots, a_k is a full system of representatives of the cosets of nB in B because |B : nB| = k. Then $b - a_i \in nB$ for some i. We have $a_i \in nG$ and so $a_i \in nA$, because A is pure in G. Therefore $b \in nB$.

An abelian group is called *pure-injective* if it has a direct complement in every its pure extension.

Fact 2.5 (see [3], Section 10.7). Every \aleph_1 -saturated abelian group is pure-injective.

Fact 2.6 (see [2], Theorem 38.1). A direct summand of a pure-injective abelian group is pure-injective.

3. Axioms for the theory of M

Our goal is to find a complete axiom system for the theory of the structure M introduced above and to show that it admits quantifier elimination.

Consider the class of all L^* -structures N satisfying the conditions (1)–(7) below.

(1) The L-reduct of N is an ordered real closed field R.

- (2) The set $\Gamma(N)$ is a subgroup of S.
- (3) The group $\Gamma(N)$ is elementarily equivalent to the group Γ .
- (4) The set $\Gamma(N)_{\rm re}$ is dense in the interval [-1, 1] of R.
- (5) Whenever f(X, Y, Z) is a polynomial over \mathbb{Z} of positive degree in X, for any tuple c in R every open interval in R contains an element a in R such that for every tuple b in $\Gamma(N)_{re}$ we have $f(a, b, c) \neq 0$.
- (6) Whenever
 - $p(X_1, \ldots, X_n)$ is a nonconstant polynomial over \mathbb{Z} ,
 - $(m_{11},\ldots,m_{1n}),\ldots,(m_{k1},\ldots,m_{kn})\in\mathbb{Z}^n-\{(0,\ldots,0)\},\$
 - $g_1,\ldots,g_k\in\Gamma$,
 - for all $z_1, \ldots, z_n \in \Gamma$

$$\mathbb{C} \models p(z_1, \dots, z_n) = 0 \leftrightarrow \bigvee_{i=1}^k z_1^{m_{i1}} z_2^{m_{i2}} \dots z_n^{m_{in}} = g_i,$$

we have for all $z_1, \ldots, z_n \in \Gamma(N)$

$$C \models p(z_1, \dots, z_n) = 0 \leftrightarrow \bigvee_{i=1}^k z_1^{m_{i1}} z_2^{m_{i2}} \dots z_n^{m_{in}} = (g_i)_N,$$

where C is the algebraic closure of R.

(7) N satisfies all the quantifier-free L^* -sentences that hold in M.

It is easy to see that there exists an infinite set T of first order L^* -sentences such that an L^* -structure N satisfies the conditions (1)–(7) if and only if N is a model of T.

Proposition 3.1. The structure M is a model of T.

Proof. Obviously, M satisfies Axioms 1–3 and 6–7.

To prove that Axiom 4 holds in M, it suffices to show that Γ is dense in \mathbb{S} , that is, whenever $0 \leq a < b < 2\pi$, there exists $z \in \Gamma$ with $a < \arg(z) < b$. Choose n so that $b - a \leq 2\pi/n$. As Γ is infinite, by the pigeon-hole principle there are $k \in \{0, \ldots, n-1\}$ and $z, v \in \Gamma$ such that

$$2\pi k/n \le \arg(z) < \arg(v) < 2\pi(k+1)/n.$$

Let $u = vz^{-1}$ and $\phi = \arg(u)$. Then $u \in \Gamma$ and $0 < \phi < 2\pi/n$. There is a positive integer l such that $(l-1)\phi \leq a < l\phi$. Clearly, $a < l\phi < b$. As $u^l \in \Gamma$, and $\arg(u) = l\phi$, the result follows.

Axiom 5 holds in M because any interval in \mathbb{R} is uncountable, but Γ is countable and so for any finite subset A of \mathbb{R} there are only countably many elements algebraic over $\Gamma_{\rm re} \cup A$.

We will prove

Theorem 3.2. The theory T admits quantifier elimination.

Since M is a model of T, Theorems 1.4 and 1.3 follow. Moreover, due to Axioms 7 and Theorem 3.2, a sentence holds in all models of T iff it holds in M. Therefore we will have

Corollary 3.3. The theory T is complete.

For any model N of T, let $f : \Gamma \to N \times N$ be the map defined by $f(g) = g_N$, where g_N is the element of $N \times N$ we defined in the first subsection of Section 2. As $g \in \Gamma$, we have $g_N \in \Gamma(N)$, by Axiom 7; so, in fact, $f : \Gamma \to \Gamma(N)$.

We will need later

Lemma 3.4. The map f is a pure monomorphism from the group Γ to the group $\Gamma(N)$.

Proof. For any quantifier-free formula $\phi(w_1, \ldots, w_n)$ in the language of multiplicative groups there is a quantifier-free formula $\phi'(v_1, u_1, \ldots, v_n, u_n)$ in the language of rings such that for any real closed field R and $z_1, \ldots, z_n \in C^*$ with $z_i = (x_i, y_i)$ we have

 $C^* \models \phi(z_1, \dots, z_n)$ iff $R \models \phi'(x_1, y_1, \dots, x_n, y_n)$.

Let R be the L-reduct of N, and C the algebraic closure of the real closed field R. For ϕ as above and $g_1, \ldots, g_n \in \Gamma$ with $g_i = (a_i, b_i)$, we have

$$\Gamma \models \phi(g_1, \dots, g_n) \Leftrightarrow$$
$$\mathbb{R} \models \phi'(a_1, b_1, \dots, a_n, b_n) \Leftrightarrow \quad \text{(by Axiom 7)}$$
$$\phi'(a_1, b_1, \dots, a_n, b_n) \in T \Leftrightarrow$$
$$R \models \phi'((a_1)_N, (b_1)_N, \dots, (a_n)_N, (b_n)_N) \Leftrightarrow$$
$$C^* \models \phi((g_1)_N, \dots, (g_n)_N) \Leftrightarrow$$
$$\Gamma(N) \models \phi((g_1)_N, \dots, (g_n)_N).$$

It follows that $f: \Gamma \to \Gamma(N)$ is a monomorphism. We show that f is pure. Let n be a positive integer, and ϕ be the formula $w_1^n = w_2$. For the corresponding $\phi'(v_1, u_1, v_2, u_2)$, whenever $g = (a, b) \in \Gamma$, we have

$$\Gamma \models \exists w(w^{n} = g) \Leftrightarrow$$

$$M \models \exists xy (\Gamma(x, y) \land \phi'(x, y, a, b)) \Leftrightarrow \quad \text{(by Axioms 7)}$$

$$\exists xy (\Gamma(x, y) \land \phi'(x, y, a, b)) \in T \Leftrightarrow$$

$$N \models \exists xy (\Gamma(x, y) \land \phi'(x, y, a_{N}, b_{N})) \Leftrightarrow$$

$$\Gamma(N) \models \exists w(w^{n} = g_{N}).$$

The lemma is proven.

We denote the pure subgroup $f(\Gamma)$ of $\Gamma(N)$ by Γ_N .

4. Submodel completeness of T

To prove Theorem 3.2, it suffices to show that any finite partial isomorphism α between any two models N and N' of T is an elementary map.

We may assume that N and N' are $(2^{\aleph_0})^+$ -saturated. Let N_0 and N'_0 be the $L^+(\Gamma)$ -reducts of N and N', respectively. Every elementary map from N_0 to N'_0 is an elementary map from N to N', because N and N' are definitional expansions of N_0 and N'_0 , respectively. Therefore it suffices to prove that α extends to an elementary map from N_0 to N'_0 . Thus, it suffices to prove the following

Proposition 4.1. Let N and N' be $(2^{\aleph_0})^+$ -saturated models of T. Then there exists a back-and-forth system S from N_0 to N'_0 such that any finite partial isomorphism from N to N' extends to a member of S.

Here a back-and-forth system from N_0 to N'_0 is defined to be a set \mathcal{S} of partial isomorphisms from N_0 to N'_0 such that for every $\beta \in \mathcal{S}$ and $a \in N$, $a' \in N'$ there exists $\gamma \in \mathcal{S}$ such that $\beta \subseteq \gamma$, $a \in \text{dom}(\gamma)$, and $a' \in \text{rng}(\gamma)$. It is well-known that any member of a back-and-forth system is an elementary map.

Proof. We construct S satisfying the conditions of Proposition 4.1.

Let R and R' denote the ordered real closed fields that are the L-reducts of N and N', respectively. Let C and C' be their algebraic closures.

Let \mathcal{E} be the set of all L^+ -elementary maps from N to N'. Let \mathcal{S}_0 be the set of all $\beta \in \mathcal{E}$ such that there exist

- a finite subset A of R, and a finite subset A' of R',
- a subgroup H of $\Gamma(N)$ of cardinality at most 2^{\aleph_0} , and a subgroup H' of $\Gamma(N')$ of cardinality at most 2^{\aleph_0}

satisfying the following conditions:

(a) dom $(\beta) = A \cup H_{re}$, rng $(\beta) = A' \cup H'_{re}$, $\beta(A) = A'$, $\beta(H_{re}) = H'_{re}$;

- (b) A is algebraically independent over $\Gamma(N)$ in C, and A' is algebraically independent over $\Gamma(N')$ in C';
- (c) $\Gamma_N \leq H$ and $\Gamma_{N'} \leq H'$;
- (d) H has a divisible torsion-free direct complement D in $\Gamma(N)$, and H' has a divisible torsion-free direct complement D' in $\Gamma(N')$.

Let $S = \{\bar{\beta} : \beta \in S_0\}$. Since $\beta \in \mathcal{E}$ implies $\bar{\beta} \in \mathcal{E}$, we have $S \subseteq \mathcal{E}$. It suffices to prove the following three lemmas.

Lemma 4.2. Any member of S is a partial isomorphism from N_0 to N'_0 .

Lemma 4.3. Every finite partial isomorphism from N to N' extends to a member of S.

Lemma 4.4. S is a back-and-forth system from N_0 to N'_0 .

Below we prove the lemmas. This completes the proof of Proposition 4.1 and hence of Theorem 3.2. $\hfill \Box$

Proof of Lemma 4.2. The following claim is crucial in the proof; it is where Lang's property of Γ and Axiom 6 of T is used.

Claim. Let N be a model of T. Suppose $\Gamma(N)$ is the direct product of subgroups H and D such that $\Gamma_N \leq H$, and D is torsion-free. Let A be a subset of C algebraically independent over $\Gamma(N)$ in the field C. Then

$$\operatorname{acl}_C(A, H) \cap \Gamma(N) = H.$$

Proof of the Claim. Clearly, $\operatorname{acl}_C(A, H) \cap \Gamma(N)$ contains H. We show that $z \in H$ assuming $z \in \operatorname{acl}_C(A, H) \cap \Gamma(N)$.

First we prove that $z \in \operatorname{acl}_{C}(H)$. Let A_{0} be a minimal subset of A such that z belongs to $\operatorname{acl}_{C}(A_{0}, H)$. Then $A_{0} = \emptyset$, because for $a \in A_{0}$ we would have $z \notin \operatorname{acl}_{C}(A_{0} - \{a\}, H)$, and, by the Exchange Property of the algebraically closed field C,

$$a \in \operatorname{acl}_C(A_0 - \{a\}, z, H) \subseteq \operatorname{acl}_C(A_0 - \{a\}, \Gamma(N)),$$

contrary to algebraic independence of A over $\Gamma(N)$ in C.

Thus $p(z, h_1, \ldots, h_n) = 0$ for some polynomial $p(X_0, X_1, \ldots, X_n)$ over \mathbb{Z} of positive degree in X_0 , and some $h_1, \ldots, h_n \in H$. By the property (iii) of the group Γ , there exist

- a positive integer k,
- elements g_1, \ldots, g_k of Γ , and

• nonzero (n+1)-tuples of integers $(m_{i0}, m_{i1}, \ldots, m_{in}), i = 1, \ldots, k,$

such that, whenever $z_0, z_1, \ldots, z_n \in \Gamma$, we have

$$\mathbb{C} \models p(z_0, z_1, \dots, z_n) = 0 \leftrightarrow \bigvee_{i=1}^k z_0^{m_{i0}} z_1^{m_{i1}} \dots z_n^{m_{in}} = g_i.$$

Then by Axioms (6), whenever $z_0, z_1, \ldots, z_n \in \Gamma(N)$,

$$C \models p(z_0, z_1, \dots, z_n) = 0 \leftrightarrow \bigvee_{i=1}^k z_0^{m_{i0}} z_1^{m_{i1}} \dots z_n^{m_{in}} = (g_i)_N.$$

The set of solutions in $\Gamma(N)$ of the equation $p(X_0, h_1, \ldots, h_n) = 0$ in X_0 is finite and nonempty. It follows that $m_{i0} \neq 0$ for at least one *i*, because otherwise this set would be either \emptyset or $\Gamma(N)$. Thus, we have

$$z^m h_1^{m_1} \dots h_n^{m_n} = g_N$$

for some $g \in \Gamma$ and integers m, m_1, \ldots, m_n , where $m \neq 0$. Since $g_N \in H$, it follows that $z^m \in H$. Let z = hd, where $h \in H$ and $d \in D$. So $h^m d^m \in H$, and therefore $d^m \in H \cap D = \{1\}$. Since D is torsion-free, we have d = 1 and hence $z \in H$, and we are done. The Claim is proven.

Now we are ready to prove Lemma 4.2. Let $\beta \in S_0$. We show that $\overline{\beta}$ is a partial isomorphism from N_0 to N'_0 . Since $\overline{\beta} \in \mathcal{E}$, we need to prove only that $z \in \Gamma(N)$ iff $\hat{\beta}(z) \in \Gamma(N')$, for any $z \in \operatorname{dom}(\hat{\beta})$. We have

$$\operatorname{dom}(\bar{\beta}) = \operatorname{acl}_R(A, H_{\operatorname{re}}), \quad \operatorname{dom}(\hat{\beta}) = \operatorname{dom}(\bar{\beta}) \times \operatorname{dom}(\bar{\beta}).$$

Since $\beta(H_{\rm re}) = H'_{\rm re}$ by (a), we have $H \subseteq \operatorname{dom}(\hat{\beta})$ and $\hat{\beta}(H) = H'$ by Lemma 2.2. Therefore it suffices to observe that $\operatorname{dom}(\hat{\beta}) \cap \Gamma(N) = H$ and $\operatorname{rng}(\hat{\beta}) \cap \Gamma(N') = H'$. We show the first; the second is similar. Clearly, H is contained in $\operatorname{dom}(\hat{\beta}) \cap \Gamma(N)$. Then the resulf follows from the Claim, because $\operatorname{dom}(\hat{\beta}) \subseteq \operatorname{acl}_C(A, H)$: if $z \in \operatorname{dom}(\hat{\beta})$ then

 $z_{\rm re}, z_{\rm im} \in \operatorname{dom}(\bar{\beta}) = \operatorname{acl}_R(A, H_{\rm re}) \subseteq \operatorname{acl}_C(A, H_{\rm re}) = \operatorname{acl}_C(A, H),$

and hence $z \in \operatorname{acl}_C(A, H)$. Lemma 4.2 is proven.

Proof of Lemma 4.3. Let α be a finite partial isomorphism from N to N'. We need to construct $\beta \in S_0$ such that $\alpha \subseteq \overline{\beta}$. We will use the following

Claim. For any $X \subseteq \Gamma(N)_{re}$ with $|X| \leq 2^{\aleph_0}$ there exists $\gamma \in \mathcal{E}$ such that $\alpha \subseteq \gamma$, $\operatorname{dom}(\gamma) = \operatorname{dom}(\alpha) \cup X$, and $\gamma(X) \subseteq \Gamma(N')_{re}$.

Proof of the Claim. Let $X = (a_i : i < 2^{\aleph_0})$. For each $i < 2^{\aleph_0}$ choose a'_i such that $(a_i, a'_i) \in \Gamma(N)$. Let p be the quantifier-free L^+ -type over dom (α) of the family $\{a_i, a'_i : i < 2^{\aleph_0}\}$, in the variables $\{x_i, x'_i : i < 2^{\aleph_0}\}$. Let αp stand for the quantifier-free L^+ -type over $\operatorname{rng}(\alpha)$ induced by the map α .

We show that the set of formulas

$$\Delta = \alpha p \cup \{ \Gamma(x_i, x'_i) : i < 2^{\aleph_0} \}$$

realizes in N'. Since N' is $(2^{\aleph_0})^+$ -saturated, it suffices to check that Δ is finitely satisfiable in N'. The latter is true because the map α preserves atomic L^* -formulas. Let $\{b_i, b'_i : i < 2^{\aleph_0}\}$ be a realization of Δ in N'. Put

et $\{0_i, 0_i : i < 2^{\circ}\}$ be a realization of $\Delta \ln N$. Pt

$$\gamma = \alpha \cup \{(a_i, b_i) : i < 2^{\aleph_0}\}.$$

Clearly, $\operatorname{dom}(\gamma) = \operatorname{dom}(\alpha) \cup X$, and $\gamma(a_i) = b_i \in \Gamma(N')_{\operatorname{re}}$ for all *i*. Moreover, γ is a partial L^+ -isomorphism and therefore is an L^+ -elementary map because the theory of ordered real closed fields admits quantifier elimination. The Claim is proven. \Box

Choose a subset A of dom (α) which is maximal among the subsets of dom (α) algebraically independent in the field C over $\Gamma(N)$. Then any element of dom (α) is algebraic over $\Gamma(N) \cup A$. Since dom (α) is finite, there is a finite subset Z of $\Gamma(N)$ such that any element of dom (α) is algebraic over $Z \cup A$.

Let U be a direct complement of $\Gamma(N)_d$ in $\Gamma(N)$. Since Z is finite, and Γ_N is countable, there is a countable divisible subgroup V of $\Gamma(N)_d$ such that $Z \cup \Gamma_N \subseteq$ UV. Clearly, H = UV is the direct product of the subgroups U and V. Let D be a direct complement of the divisible subgroup V in $\Gamma(N)_d$; clearly, D is divisible. Then $\Gamma(N)$ is the direct product of the subgroups U, V, and D, and so is the direct product of H and D.

Since $\Gamma \simeq \Gamma_N \leq \Gamma(N)$ by Lemma 3.4, $\Gamma(N) \equiv \Gamma$ by Axioms 3, and Γ has at most n elements of order n, it follows that all elements of finite order in $\Gamma(N)$ belong to Γ_N , and so to H. Therefore D a torsion-free divisible group.

As Γ/Γ^n is finite and $\Gamma(N) \equiv \Gamma$, the group $\Gamma(N)$ is finite modulo n, for any n > 0. Therefore, by Proposition 2.3(ii), $|U| \leq 2^{\aleph_0}$. Since V is countable,

$$|H| = |UV| \le 2^{\aleph_0}.$$

By the Claim applied to α and $X = H_{re}$, we obtain $\gamma \in \mathcal{E}$ such that $\gamma \supseteq \alpha$, dom $(\gamma) = dom(\alpha) \cup H_{re}$, and $\gamma(H_{re}) \subseteq \Gamma(N')_{re}$. We have

$$A \cup H_{\rm re} \subseteq \operatorname{dom}(\gamma) \subseteq \operatorname{acl}_R(A \cup H_{\rm re}).$$

Here the first inclusion is obvious. As $Z \subseteq H$, each element of dom (α) is algebraic over $A \cup H$ in C and so over $A \cup H_{\rm re}$ in R. Thus we have the second inclusion. Hence dom $(\bar{\gamma}) = \operatorname{acl}_R(\operatorname{dom}(\gamma)) = \operatorname{acl}_R(A \cup H_{\rm re})$.

Let β be the restriction of γ on $A \cup H_{\text{re}}$. Then $\beta \in \mathcal{E}$. As $\beta \subseteq \gamma$ we have $\bar{\beta} \subseteq \bar{\gamma}$; moreover, $\bar{\beta} = \bar{\gamma}$ because

$$\operatorname{dom}(\bar{\gamma}) = \operatorname{acl}_R(A \cup H_{\operatorname{re}}) = \operatorname{dom}(\bar{\beta}).$$

Hence $\alpha \subseteq \gamma \subseteq \overline{\gamma} = \overline{\beta}$. We show that $\beta \in \mathcal{S}_0$.

Applying Lemma 2.2 with H as G and $\Gamma(N')$ as G', we have

$$H \subseteq \operatorname{dom}(\hat{\beta}), \quad \hat{\beta}(H) \le \Gamma(N'), \quad \bar{\beta}(H_{\operatorname{re}}) = \hat{\beta}(H)_{\operatorname{re}}.$$

Then for $A' = \beta(A)$ and $H' = \hat{\beta}(H)$ the condition (a) holds.

The set A was chosen to be algebraically independent in C over Γ^N . Since α preserves atomic L^* -formulas, the set $A' = \alpha(A)$ is algebraically independent in C' over $\Gamma(N')$. So (b) holds.

By our construction $\Gamma_N \leq H$. Therefore for all $a \in \Gamma_{\rm re} \cup \Gamma_{\rm im}$ we have

$$a_N \in \operatorname{acl}_R(H_{\operatorname{re}}) \subseteq \operatorname{dom}(\bar{\beta}).$$

As $\bar{\beta} \in \mathcal{E}$, we have $\bar{\beta}(a_N) = a_{N'}$. It follows that $\Gamma_{N'} = \hat{\beta}(\Gamma_N) \leq H'$. Thus (c) holds.

It remains to check (d). We already checked that H has a divisible torsion-free direct complement D in $\Gamma(N)$. We prove that H' has a divisible torsion-free direct complement D' in $\Gamma(N')$.

First we show that H' is a pure subgroup of $\Gamma(N')$. By Lemma 3.4, $\Gamma_{N'}$ is a pure subgroup of $\Gamma(N')$. We have $\Gamma_{N'} \leq H' \leq \Gamma(N')$. Also, for any positive integer n we have

$$|H':H'^n| = |H:H^n| = |\Gamma(N):\Gamma(N)^n| = |\Gamma:\Gamma^n| = |\Gamma(N'):\Gamma(N')^n|.$$

Then the result follows from Proposition 2.4.

The group $\Gamma(N)$ is \aleph_1 -saturated and so is pure-injective, by Fact 2.5. Being a direct summand of $\Gamma(N)$, the group H is pure-injective, too, by Fact 2.6. Then H' is pure-injective. Therefore H' has a direct complement D' in $\Gamma(N')$.

Since $\Gamma(N') \equiv \Gamma \simeq \Gamma_{N'}$, and $\Gamma(N')$ has at most *n* elements of order *n* for each *n*, all elements of finite order in $\Gamma(N')$ belongs to the subgroup $\Gamma_{N'}$, and so to H'. Therefore the group D' is torsion-free. We show that D' is divisible. Let n > 0. We have

$$|\Gamma_{N'} : (\Gamma_{N'})^n| = |H' : H'^n| \cdot |D' : D'^n|$$

Since, as we already showed,

$$|\Gamma_{N'} : (\Gamma_{N'})^n| = |H' : H'^n|,$$

it follows that $|D': D'^n| = 1$ and so $D' = D'^n$. This completes the proof of Lemma 4.3.

Proof of Lemma 4.4. By symmetry, it suffices to prove that if $\beta \in S_0$ and $a \in N$ then there exists $\gamma \in S_0$ such that $\beta \subseteq \gamma$ and $a \in \text{dom}(\bar{\gamma})$.

Let A, A', H, H', D, and D' witness that $\beta \in S_0$.

If $a \in \operatorname{dom}(\overline{\beta})$, we can take β for γ ; so we assume that $a \notin \operatorname{dom}(\overline{\beta})$.

CASE 1. $a \in \Gamma(N)_{re}$.

In this case $a = c_{\rm re}$ for some $c \in \Gamma(N)$. Since $a \notin \operatorname{dom}(\overline{\beta}) = \operatorname{acl}_R(A \cup H_{\rm re})$, we have $c \notin \operatorname{acl}_C(A \cup H)$. Let c = hd, where $h \in H$ and $d \in D$. Then $d \notin \operatorname{acl}_C(A \cup H)$. As D is divisible, there exist d_0, d_1, \ldots in D such that

$$d_0 = d,$$
 $d_n^n = d_{n-1}$ for all $n > 0.$

Clearly, d_n is inter-algebraic with d in C, and so $d_n \notin \operatorname{acl}_C(A \cup H)$, for all n. Then for $e_n = (d_n)_{\operatorname{re}}$ we have $e_n \notin \operatorname{acl}_R(A \cup H_{\operatorname{re}})$, and the elements e_n pairwise inter-algebraic in R.

We will need the following

Claim. For any $e \in \Gamma(N)_{\rm re} \setminus \operatorname{acl}_R(A \cup H_{\rm re})$ there is $e' \in \Gamma(N')_{\rm re}$ such that $\beta \cup \{(e, e')\} \in \mathcal{E}$.

Proof of the Claim. Let p(x) be the L^+ -type of e over $A \cup H_{re}$ in R. We need to prove that the set of formulas

$$\beta p(x) \cup \{\exists y \Gamma(x, y)\}$$

is realized in N'. As N' is $(2^{\aleph_0})^+$ -saturated, and $|A \cup H_{\rm re}| \leq 2^{\aleph_0}$, it suffices to show that whenever $\phi \in p$ the formula

$$\beta \phi(x) \wedge \exists y \Gamma(x, y)$$

has a solution e'_{ϕ} in N'. Since the ordered real closed field R is o-minimal, and e is not algebraic over $A \cup H_{re}$ in R, there exist

$$b, b' \in \operatorname{acl}_R(A \cup H_{\operatorname{re}}) \cup \{\pm \infty\}$$

such that b < e < b' and

$$R \models \forall x (b < x < b' \to \phi(x))$$

It follows that

$$R' \models \forall x(\bar{\beta}(b) < x < \bar{\beta}(b') \to \beta \phi(x)).$$

Since $e \in \Gamma(N)_{re}$, we have $-1 \le e \le 1$; so we may assume that

$$-1 \le b < b' \le 1,$$

and hence

$$1 \le \bar{\beta}(b) < \bar{\beta}(b') \le 1$$

in R'. Since N' satisfies Axiom 4, there exists $e'_{\phi} \in \Gamma(N')_{\rm re}$ with

$$\bar{\beta}(b) < e'_{\phi} < \bar{\beta}(b').$$

Then e_{ϕ}' satisfies the required condition. The Claim is proven.

Let
$$p(x_0, x_1, ...)$$
 be the L^+ -type of $(e_0, e_1, ...)$ over $A \cup H_{re}$ in N , and

$$\Delta = (\beta p)(x_0, x_1, ...) \cup \{\exists y_n \Gamma(x_n, y_n) : n < \omega\}$$

Thus Δ is a set of formulas over $A' \cup H'_{re}$ with free variables $(x_i : i < \omega)$.

Claim. Δ is finitely satisfiable in N'.

Proof of the Claim. It suffices to check that Δ_n is realizable in N' for all n, where Δ_n is the set of formulas in Δ in which no x_i with i > n is involved.

Let Δ^n be the set of formulas in Δ in which no x_i with $i \neq n$ is involved. By the previous Claim Δ^n is realizable in N' by some element e'_n ; then

$$\delta = \beta \cup \{(e_n, e'_n)\} \in \mathcal{E}.$$

We have

$$(H \cup \{d_n\})_{\mathrm{re}} = H_{\mathrm{re}} \cup \{e_n\} \subseteq \mathrm{dom}(\delta),$$

$$\delta((H \cup \{d_n\}_{\mathrm{re}}) = H'_{\mathrm{re}} \cup \{e'_n\} \subseteq \Gamma(N')_{\mathrm{re}}.$$

Let G be the subgroup of $\Gamma(N)$ generated by $H \cup \{d_n\}$. Applying Lemma 2.2, we obtain $G \subseteq \operatorname{dom}(\hat{\delta})$ and $\hat{\delta}(G) \leq \Gamma(N')$. For $i \leq n$ we have $d_i \in G$. Hence $\hat{\delta}(d_i) \in \Gamma(N')$ and $e_i \in \operatorname{dom}(\bar{\delta})$. Put $e'_i = \bar{\delta}(e_i)$. Then $e'_i \in \Gamma(N')_{\operatorname{re}}$. Since $\bar{\delta} \in \mathcal{E}$, it follows that the tuple (e'_0, \ldots, e'_n) realizes Δ_n . The Claim is proven.

As the structure N' is $(2^{\aleph_0})^+$ -saturated and $|A' \cup H'_{re}| \leq 2^{\aleph_0}$, the set Δ is realized in N'; let (e'_0, e'_1, \ldots) be a realization. Then

$$T = \beta \cup \{(e_n, e'_n) : n < \omega\} \in \mathcal{E},$$

and $e'_n \in \Gamma_{\rm re}^{N'}$ for all *n*. Let *P* be the subgroup of *D* generated by all d_n . Clearly, $HP \subseteq {\rm acl}_C({\rm dom}(\tau))$ and so

$$A \cup (HP)_{\mathrm{re}} \subseteq \mathrm{acl}_R(\mathrm{dom}(\tau)) = \mathrm{dom}(\bar{\tau}).$$

Let γ be the restriction of $\overline{\tau}$ on $A \cup (HP)_{\text{re}}$. Clearly, $\beta \subseteq \gamma$ and $\gamma \in \mathcal{E}$. We have $a = e_0 \in P_{\text{re}} \subseteq \text{dom}(\gamma)$. We prove that $\gamma \in \mathcal{S}_0$, and A and HP witness this. Since P is countable, $|HP| \leq 2^{\aleph_0}$.

It is easy to see that the group P is divisible. Let D_0 be a direct complement of P in D. Clearly, $\Gamma(N)$ is the direct product of HP and D_0 , and D_0 is torsion-free and divisible. As

$$(HP)_{\rm re} \subseteq \operatorname{dom}(\gamma) \quad \text{and} \quad \gamma((HP)_{\rm re} \subseteq \Gamma_{\rm re}^{N'},$$

by Lemma 2.2 we have

$$HP \subseteq \operatorname{dom}(\hat{\gamma}), \quad H'P' \leq \Gamma(N'), \quad \gamma((HP)_{\operatorname{re}}) = (H'P')_{\operatorname{re}},$$

where $P' = \hat{\gamma}(P)$. It remains to show that H'P' has a torsion-free divisible direct complement D' in $\Gamma(N')$.

Remember that $\Gamma(N')$ is the direct product of H' and D'; we denote by P'_0 the D'-projection of P'. Then P'_0 is divisible and $H'P' = H'P'_0$. Let D'_0 be a direct complement of P'_0 in D'. Then $\Gamma(N')$ is the direct product of H', P'_0 , and D'_0 , and hence is the direct product of H'P' and D'_0 . As D' is torsion-free and divisible, so is D'_0 .

Thus, in Case 1 we are done. We reduce to this the following more general case.

CASE 2. $a \in \operatorname{acl}_R(A, \Gamma(N)_{\operatorname{re}}).$

In this case we have $a \in \operatorname{acl}_R(A, a_1, \ldots, a_n)$ for some $a_i \in \Gamma(N)_{\operatorname{re}}$. Repeating the arguments of Case 1 *n* times we can find $\gamma \in S_0$ such that $\beta \subseteq \gamma$ and all a_i belong to dom $(\bar{\gamma})$. As $A \subseteq \operatorname{dom}(\bar{\gamma})$ and the set dom $(\bar{\gamma})$ is algebraically closed, we have $a \in \operatorname{dom}(\bar{\gamma})$. It remains to consider

CASE 3. $a \notin \operatorname{acl}_R(A \cup \Gamma(N)_{\operatorname{re}}).$

Let a be an enumeration of the set A, and q(x) the set of all sentences θ_f of the form

$$\forall u_1 v_1 \dots u_n v_n (\bigwedge_{i=1}^n \Gamma(u_i, v_i) \to f(x, \boldsymbol{u}, \boldsymbol{a}) \neq 0),$$

where $f(X, \mathbf{Y}, \mathbf{Z})$ is a polynomial over \mathbb{Z} of positive degree in X. Clearly, a satisfies q(x) in N. Let p(x) be the L^+ -type of a over $A \cup H_{re}$ in R.

Claim. The set of formulas $\Delta = \beta p(x) \cup \beta q(x)$ is finitely satisfiable in N'.

Proof of the Claim. We show that if ϕ is a formula in p and $f_i(X, Y, Z)$ are polynomials over \mathbb{Z} of positive degree in X, where $i = 1, \ldots, k$, then the formula

$$\beta \phi(x) \wedge \beta \theta_{f_1}(x) \wedge \dots \wedge \beta \theta_{f_k}(x)$$

has a solution in N'. Let $f = f_1 \dots f_k$. It suffices to show that the formula $\beta \phi(x) \wedge \beta \theta_f(x)$ has a solution d' in N'.

As the ordered field R is o-minimal, and a is not algebraic over $A \cup \Gamma(N)_{\rm re}$ in R, there are $b, b' \in \operatorname{acl}(A \cup \Gamma(N)_{\rm re}) \cup \{\pm \infty\}$ such that b < a < b' and

$$R \models \forall x (b < x < b' \to \phi(x)).$$

It follows that $\bar{\beta}(b) < \bar{\beta}(b')$ in R', and

$$R' \models \forall x(\bar{\beta}(b) < x < \bar{\beta}(b') \to \beta \phi(x))$$

(where $\bar{\beta}(\pm \infty) = \pm \infty$). As N' satisfies Axiom 5, there is $d' \in N'$ such that $\bar{\beta}(b) < d' < \bar{\beta}(b')$ and $N' \models \beta \theta_f(d')$. Then d' satisfies the required condition. The Claim is proven.

Since N' is $(2^{\aleph_0})^+$ -saturated, and $|A \cup H_{\rm re}| \leq 2^{\aleph_0}$, the set of formulas Δ is realized in N' by some element a'. Since a' satisfies $\beta q(x)$, we have $a' \notin \operatorname{acl}_{R'}(A', \Gamma(N')_{\rm re})$. Put $\gamma = \beta \cup \{(a, a')\}$. As a' satisfies $\beta p(x)$, we have $\gamma \in \mathcal{E}$. Since $A \cup \{a\}$ is algebraically independent over $\Gamma(N)$ in C, and $A' \cup \{a'\}$ is algebraically independent over $\Gamma(N')$ in C', we have $\gamma \in \mathcal{S}_0$.

This completes the proof of Lemma 4.4.

References

- Oleg Belegradek, Semi-bounded relations in ordered modules, J. Symbol. Log. 69, no.2, 499– 517.
- [2] László Fuchs, Infinite abelian groups, vol. I, Academic Press, New York and London, 1970.
- [3] Wilfrid Hodges, Model Theory, Cambridge University Press, 1993.
- [4] Serge Lang, Survey of diophantine geometry, Springer, 1997.
- Boris Zilber, Complex roots of unity on the real plane, 2003, www.maths.ox.ac.uk/~zilber/ complexrootsonrealplane.dvi

Department of Mathematics, Istanbul Bilgi University, 80370 Dolapdere–Istanbul, Turkey

E-mail address: olegb@bilgi.edu.tr

Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford, OX1 3LB, United Kingdom

E-mail address: zilber@maths.ox.ac.uk