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Abstract. 
We investigate the possibilities of inverting the VMPC one-way function, which was proposed 

at FSE 2004. First, we describe the function using the language of permutation theory. Next, 

easily invertible instances of VMPC are derived. We also show that no VMPC function is one-

to-one. Implications of these results for cryptographic applications of VMPC conclude the 

paper.    
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1. Introduction 

  In 2004 at the 11
th
 Fast Software Encryption workshop Bartosz Zoltak proposed a candidate 

for a one-way function that he named VMPC  ([1]). The name is an acronym for Variably 
Modified Permutation Composition, which nicely captures the main idea behind construction 

of the family of the functions concerned. In [1] the VMPC  is defined as follows (original 
wording): 

   Definition 1 [Zoltak 2004] 

A k -level VMPC function, referred to as kVMPC , is such a transformation of n -element 

permutation P  into n -element permutation Q , where 

:]]] : : [P[x]]][P : : [:[PP[P][ 11-kk== xQVMPCk                   

}1,...,1,0{ −∈ nx , nk < , 

iP   is the n -element permutation such that ])[(][ xPfxP ii = , where if  is any function such 

that ][][][ xPxPxP ji ≠≠  for },...,2,1{ ki∈ ,  },...,2,1{ kj∈ , ji ≠ . 

For simplicity of further references if  is assumed to be ixxf i +=)(                                     � 

After stating the general definition, the paper describes a few particular instances of the 

functions: 1VMPC , 2VMPC , 3VMPC . In [1] these functions have the following form: 

      1]  P[P[P[x]] 1 +=VMPC                                         (1.1) 

        2]  1]  ]P[P[P[P[x] 2 ++=VMPC                                        (1.2) 

        3]  2]  1]  x]]P[P[P[P[P[ 3 +++=VMPC                              (1.3) 

The VMPC  function is easy to compute, since it requires only three basic MOV instructions 
on Intel 80x86 processors.  

Zoltak [1] claims that the VMPC  function is difficult to invert for permutations of sufficiently 
many elements.  Permutations of degree 256 are proposed as appropriate for cryptographic 

applications. The VMPC ’s author claims that the most efficient inverting method has a 

complexity of about 2602  for 256-element permutations.  This refers to the 1VMPC , with much 

greater complexities for higher-level functions.    

This difficulty in inverting attracted our attention and motivated the work below. 

In this work, following the original paper [1], we focus mainly on the 1VMPC , making 
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occasional references to the 2VMPC , 3VMPC .  From now on, when we refer to a VMPC 

function, we actually mean the 1VMPC  function, unless stated otherwise.  

The paper is organized as follows: Section 2 is devoted to mathematical notation and 

description of the VMPC   using the language of permutation theory. In Section 3 we present 

instances for which the VMPC  function can be easily inverted (so-called “weak keys”).  Next, 
we describe results on finding the general solution to the problem and comment on the 

inverting algorithm. Section 4 describes computational results concerning the image of the 

permutation group under the VMPC . We summarize the paper in Section 5; we indicate 

possible directions of further research and final conclusions. 

  

2. VMPC in the language of permutation theory   

First, we write the VMPC  using permutation theory terms, in order to benefit from it’s 
powerful toolbox. In this paper we follow the most popular notation in the field, which can be 

traced back at least to Herstein’s works, see [2]. For more detailed treatment of permutation 

theory, the interested reader is referred to appendix A. Let: 

nS  be the symmetric group of degree n ; 

nS  be the cardinality of nS ; 

A  be an element of nS , nSA∈ ; 

I  be the identity permutation; 
1−A  be the inverse of permutation A ; 
mA is multiplication of m  permutations A ; 

nA  is alternating group of degree n  (a normal subgroup of  nS ). 

There are many ways to represent the permutation A . In this paper we use the short matrix 

notation: 







=

xba

n
A

...

...21
, where letters in the lower row are assigned different numbers 

from the set },...,2,1{ n . For instance, consider a permutation of degree 4: 







=

2413

4321
A .                              

In the short matrix notation the left-shift of A ’s lower row by one element ( 1<< ) can be 

described using multiplication by the permutation 







=

1...2

...21

n

n
Q . For instance, consider 

the permutation A  from above example, then the left-shift by one can be written as: 









=
















=

3241

4321

2413

4321

1432

4321
QA .  

Using letter Q  to denote above operation may at first create some confusion with Zoltak 

definition ([1]). However, Q  has been associated with such a permutation long before the 

VMPC  paper.   

Left-shift of A ’s lower row by m ( m<< )
•
 elements can be described using multiplication by 

the permutation mQ .  

Recall that every permutation can be written as a product of disjoint cycles. 

Finally, cycles of length 2 are called transpositions.   

Having all notations in place it is the time to write down the equations for the kVMPC . Let 

kk DAVMPC =)( , then the following equations correspond to equations 1.1-1.3: 

                                                
•
 For simplicity we consider nm < . 



QAAD 2

1 =                                                                 (2.1) 

  AQDAQAQAD 2

1

22

2 ==                                                    (2.2) 

AQDAAQQAQAD 3

2

322

3 ==                                               (2.3) 

The kVMPC  problem can be formulated as follows: given kD  which was computed from the 

permutation A  using the kVMPC  find A . 

 

3. Inverting VMPC  

In this section we concentrate on the 1VMPC . First, we show cases where given D , A  can be 

quickly calculated analytically. Following convention from Section 1 we can write the 

equation 2.1 as: AAQAD = . 

 

3.1 Special cases (a.k.a. weak keys) 

1. Consider the situation when  

IA =2 .                                                                       (3.1) 

 In such a case: 

QAD = ,                                                                      (3.2) 

which yields: 

ADQ =−1 .                                                                  (3.3) 

In order to test whether A  meets condition from the equation 3.1, one has to check whether 
the following equation holds: 

( ) IDQ =− 21
.                                                               (3.4) 

If this is the case, the permutation A  can be calculated from the equation 3.3. The question is 
how often such a solution happens. 

The equation 3.1 holds when A  consists exclusively of transpositions and cycles of length 1. 

Let 1∆  be the number of permutations that meet this condition. It holds that: 

( )∑
=









−








+=∆

n

m

m

m
m

n

2/

2
1 !!11 ,                                                  (3.5) 

where m  is the number of elements that form transpositions in a permutation of degree n . 

For sufficiently large n  (but still much lower than 256) , it can be seen that: 

 )!1(1 −=<∆ n
n

Sn
.       (3.6) 

2. Consider the situation when  
13 += rQD ,                                                                   (3.7) 

where nr < . Then the following solution always exist:  

 rQA = .                                                                      (3.8)  

PermutationsD  of the type described by the equation 3.7 are easy to spot, because they 

correspond to a left-shift by m -elements, where 13 += rm . Let’s denote the number of such 

D ’s, which are unique by 2∆ . Then 12 −<∆ n . 

 

3.2 General solution - theoretical considerations   

Special cases, which are described above, apply to no more than the th
n

1
 of all elements 

from nS . The remaining ones are not so easy to handle. Searching for a general solution 



 requires  examining properties of the symmetric group nS .  

When searching for a general solution the first idea that comes to one’s mind is to commute 

permutations Q  and A  in equations for the VMPC  (eq. 2.1-2.3). If this were possible,  

equation 2.1 would have the following form: 

 QAD 3= ,                                                                   (3.9) 

Similary, the equation for the kVMPC  would have the form: 

xk

k QAD 2+= ,                                                           (3.10) 

where ∑
=

=
k

m

mx
1

.  

Equations of such a type are relatively easy to solve by a deterministic polynomial time 

algorithm. We named such a method of solving the VMPC  problem as an “abelian” solution.  

However, it will not work in a general case because nS  is non-abelian for all 2>n . 

Although, the above fact eliminates an “abelian” solution for a general case, one may still be 

interested in some particular cases:  

1. Checking the center of nS  ( ( )nSZ ), since all elements belonging to ( )nSZ  would commute 

with Q . Unfortunately, it is trivial for all 2>n  ( ( ) }{ISZ n = for 2>n ). 

2. Checking normal subgroups of nS  which contains Q . Let’s call such a subgroup QH .  

Then for some QHX ∈  the equation 2.1 can be written as: 

 XAD 3= .                                                    (3.11) 

Equations for the kVMPC  would be treated in a similar way, leading to expressions analogous 

to the equation 3.10. Solving such equations requires checking QHX ∈  and solving for A , 

very much like in case of equations 3.9 and 3.10. Such a procedure could be feasible provided 

that QH  is small. Unfortunately, the only normal subgroup of nS  containing Q  is nA  (for 

odd n ). Since 
2

n

n

S
A = , this approach is not practical.  

All of the above show that properties of nS  are not of great help.  So, maybe it would be 

possible to find a homomorphism from nS  to some more useful group? 

 For instance, homomorphism from nS  to an abelian group would allow us to “transport the 

equation” to an abelian group, solve it in such a group and map solutions back to the relevant 

elements of nS . Unfortunately, the only such homomorphism for 2>n  is (up to the 

representation) the homomorphism from nS  to 2Z . All that can be obtained using this is the 

parity of A . However, A ’s parity can be calculated in an easier way, which will be described 
in Section 3.3.1.  

Using methods from classical permutation theory we have not been able to obtain a general 

solution for the VMPC . However, we have checked tools from the classical toolbox and 
eliminated those as possible candidates. Still, there are situations where classical group theory 

is useful.  

 

3.3 In search of a general solution – what can be done? 
In this section we describe what can be done using existing tools. 

 

3.3.1 A ’s parity 

Consider the equation 2.1, multiplying both sides of the equation by Q , to yield  



QAQADQ 2= ,                                                         (3.12) 

which can be written as: 

 2)(AQADQ = .                                                       (3.12a) 

Since 2)(AQ  is always even, the parity of A  is the same as the parity of DQ . 

Similar reasoning, together with the known parity of Q  (which is always opposite to n ’s 

parity), allows us to find A ’s parity for other functions from the VMPC  family. 
Knowing A ’s parity is important, since it reduces the number of possible candidates by a 
factor of 2.  

 

3.3.2 n -cycle solutions 

Recall the idea of commuting Q  and A  in equations for the VMPC . The idea presented in 

this section is very much the same as the one that was behind an “abelian” solution. It amends 

to finding some X  such that: 

AXQA = .                                                     (3.13) 

Now, the question is whether we can say anything about X  assuming that any nSA∈  can be 

used in the equation. It turns out that this is the case. 

Consider 







=

xba

n
A

...

...21
, the equation 3.13 can be written as: 

             X
xba

n

xba

nn
QA 








=
















=

...

...21

...

...21

1...32

...21
.                              (3.14) 

Solving equation 3.14 for X  yields: 

     







=

axb

xba
X

...

...
.                                                (3.15) 

Next, observe that the permutation X  is made of only one cycle of length n . Such a 

permutation is called an n -cycle. There is whole family of n -cycles (e.g., Q  belongs to it). 

One of the interesting properties of such permutations is that the inverse of an n -cycle is also 

an n -cycle. The cardinality of the set of n -cycles is )!1( −n . By substituting equation 3.13 

into equation 2.1 one obtains: 

XAD 3= ,                                                                 (3.16) 

which can be written as: 

 31 ADX =− .                                                            (3.16a) 

Again, solving such equations requires checking all n -cycles and solving for A .  Although it 
is not feasible for a head-on attack, it significantly reduces number of possible candidates to 

search (by factor n ). In this capacity it can be useful for some algorithmic constructions. 

It is interesting to note that the same result, as presented above, can obtained by considering 

orbits of the group generated by Q ([3]).   

 

3.3.3 Special cases applied in a more general situation 

The cases described in Section 3.1 have a very useful feature that, given the permutation of 

D , it is possible to decide quickly whether it belongs to a special case. In addition, positive 

outcome immediately yields the solution to the VMPC  problem.   
It should be observed that the conditions stated in the equations 3.1 or 3.7 need not apply to a 

whole permutation A  in order to be valid. In such a situation, one will not obtain immediate 
solution for whole permutation A , but may quickly uncover its parts which meet one of these 
conditions. For this mechanism to work at least two elements from A  (preferably at least 3) 
should form a block in the short matrix notation. 



A block in the short matrix notation is a sequence of m  index elements (upper row) such that 

corresponding permutation elements (lower row) contain only elements from m  index 
element sequence (possibly permuted). For instance consider: 

  







=

72153486

87654321
A .                                        (3.17) 

The block is formed by index elements 3,4,5 with corresponding permutation elements 4,3,5. 

Given a permutation A , its elements that form a block can be found as described in Section 

3.1. When block consists m  elements, then at least 1−m  of them can be uncovered. Elements 

that belong to the block form cycles, which are disjoint with all other cycles in that 

permutation. Hence, remaining A ’s elements can be considered separately, as a permutation 

on 1+−mn  elements. This observation allows to decrease size of the problem being solved. 

As a result, in some cases problem might be vulnerable to attack by available algorithms. 

Let’s denote: 

y   as the degree of permutation which can be feasibly attacked with available algorithms; 

      3∆  as the number of permutations which can be feasibly attacked by using block method   

           outlined above.  

Recall that n  is the degree of permutation A  and assume ny < . Then taking into account 

number of weak keys (see Section 3.1) the value of 3∆  can be described as follows: 

      !)( 213 y⋅∆+∆=∆                                                     (3.18) 

Substituting values for 1∆  and 2∆  yields: 

  !)]1()!1[(3 ynyn ⋅−+−−<∆                                               (3.19) 

 

3.3.4 Comments on an original inverting algorithm 

Zoltak [1] provided only a rough estimate for the computational complexity of the inverting 

algorithm. The algorithm was based on phenomenological observation that when certain 

number of A ’s elements are known, the function can be inverted. This number depends upon 

the level of the VMPC  function and the degree of permutation concerned (n ). For instance, 

for 256=n  and the first level function, the number of known elements should be around 34. 

In [1], the inverting method for above parameters has the complexity of about 2602 . After 

going through reasoning presented, we found that the estimate provided concerned the 

complexity of guessing sufficient  number of permutation elements, rather then the algorithm 

itself.   

In the absence of any further information we tried to assess the complexity of the inverting 

algorithm and also to implement it. Unfortunately, the description provided was insufficient to 

complete any of these tasks. As a results, we ended up with the program which we believe is 

close to what the VMPC  author described. We ran some numerical experiments for the first 

level VMPC  function and 256=n  in order to check results on a number of known elements. 

Experiments were carried out on randomly selected permutations.  Because of quite limited 

computing power our sample cannot be considered statistically significant (having in mind 

nS ), so original results were neither definitely proved or disproved. We observed a wide 

range for numbers of known elements required in the individual cases. In addition, many 

permutations could not be successfully inverted with less then 42 elements and some required 

even 50. 

While working on the inverting algorithm, we designed our own inverting procedure. Let’s 

start its brief description from the observation that equation 2.1 can be rewritten as the 

following set of equations:  







=

=
2AB

BQAD
.                                                               (3.20) 

Next, the set of equations has to be solved for A .  
The main ideas behind our procedure are: 

1. Observe that in the set of equations (3.20) the equation for D  is very easy to solve. If 

we assign any value to the particular element of the permutation B  we immediately 
obtain a corresponding value for an element from the permutation A .  

2. Apply the second equation (for B ) to test whether such a value of the element from 
the permutation A  is valid.  

3. If value is not valid, we add it to the list of forbidden values for the element 
concerned. 

4. If value is valid, it will provide the element in B  with which it is linked. 
This routine is applied to all elements in A  in order to build the list of forbidden values for 
every element (see, 3 above), which narrows the space of possible permutations A . 

In addition, for every valid value of an element from A , the list of linked elements from B  is 
created (see, 4 above).  

For every element of the permutation of degree n , n  values have to be tested. Hence, the 

complexity of this operation is 2n . 

Both lists (forbidden values and linked elements) can be used to check the validity of values 

of a permutation’s elements fed into procedure. This check is performed in a linear time.  

Hence, the complexity of inverting the VMPC  by our procedure is 2n  times the complexity of 

guessing the sufficient number of permutation elements. However, it should be emphasized 

that permutations elements are guessed from a smaller set than in the original algorithm ([1]). 

This should result in a smaller number of permutation’s elements that have to be guessed. 

There is a more room for further improvement, for instance one may make use of the facts 

that nAB∈  and A ’s parity can also be easily established (Section 3.1.1). Taking these two 

factors into account further decreases the number of possible A ’s. 
We programmed a crude implementation of our procedure and tested it numerically. It 

performed a little better than the original method, but again our sample cannot be considered 

statistically significant. 

To summarize: we are still not sure whether our procedure is equivalent to the original one or 

whether it differs substantially. This is mainly due to lack of information regarding the 

original inverting algorithm. Even, if both methods reduce to the same thing, our procedure is 

much more transparent and offers simplicity with quantifiable computational complexity.  

 

4. The image of nS  under the kVMPC  

We start from the fact the VMPC  is never one-to-one. While proof of this result is somewhat 
tedious, its essence lies in the observation that permutations having specific cycle 

decompositions cannot be created when VMPC  acts on nS  ([4]). Since, the proof has rather a 

qualitative character, the quantitative question regarding the cardinality of nS ’s image under 

the VMPC  remains open.  Let’s denote: 

   knD ,  as the image of nS  under the kVMPC ; 

   knD ,  as the cardinality of knD , , in other words the number of distinct elements of knD , . 



We calculated all knD ,  for }3,2,1{∈k  and }12,...,3{∈n . First, we investigated cardinalities of 

sets knD ,  and compared them with cardinality of nS . As an example, in the table 4.1 we 

present values for 1,nD . 

Table 4.1.  1,nD  compared with nS  for }12,...,3{∈n  

From the table 4.1 it is clear that 1,nD  is always much smaller than nS . In the tested data 

range the ratio 
n

n

S

D 1,
 converges to 0.6. The size of knD ,  as a percentage of nS  for the 

1VMPC , 2VMPC  and 3VMPC  is presented on the graph 4.1. In the graph, values for 7<n  are 

omitted for legibility.    
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Graph 4.1.  Cardinality of  nS ’s image under the 1VMPC , 2VMPC , 3VMPC  as a percentage 

of nS ’s cardinality. 

From the graph it is clear that the 1VMPC and the 3VMPC  produce images of similar size, 

about 60% of nS . In turn the 2VMPC  behaves differently, it produces an image with a size 

cardinality of  40% of nS . We return to this issue later in the paper. 

Now, it is time to ask the question: how many permutations A  ( nSA∈ )  give the same image 

under the kVMPC . 

Let’s denote set of all elements of knD ,  which can be computed from more than one 

permutation A  as ++
knD , . The cardinality of such a set will be denoted as 

++
knD , . 

n  3 4 5 6 7 8 9 10 11 12 

nS  
6 24 120 720 5040 40320 362880 3628800 39916800 479001600 

1,nD  
4 16 80 460 3031 24072 216522 2190520 24103024 289062962 

nn SD /1,  
0,6667 0,6667 0,6667 0,638889 0,601389 0,597024 0,596677 0,603649 0,603832 0,6034697 



In the table below we present the ratio 
kn

kn

D

D

,

,

++

. Again, we omit values for 7<n  for clarity.   

 

N 7 8 9 10 11 12 

1,1, / nn DD ++
 

46,02% 43,17% 44,21% 43,50% 43,45% 43,35% 

2,2, / nn DD ++
| 

71,53% 64,96% 65,93% 66,63% 66,99% 67,21% 

3,3, / nn DD ++
 

41,96% 43,09% 42,12% 42,18% 41,99% 41,96% 

Table 4.2. Ratio between 
++
knD ,  and knD , , for }12,...,7{∈n  

The table 4.2 shows that there is a significant number of permutations A  ( nSA∈ ), that give 

the same image under the kVMPC . Unsurprisingly, percentages for the 1VMPC  and 3VMPC  

are quite similar, while the percentage for the 2VMPC  is much higher. 

In addition, the distribution of permutations A  that map to the same image is non-trivial. We 

illustrate it in the next table by the mean of example for 12=n . 

For the fixed values of n  and k , every element from knD ,  can be assigned a number of 

permutations A  ( nSA∈ ) that map to it. Let’s use acronym DA2  to denote such a number.  

  

#  DA2  1VMPC  2VMPC  3VMPC  

1 1 163742508 66058416 175048468 

2 2 80992932 60905484 87497172 

3 3 30331358 39126988 29519168 

4 4 9736512 20073546 7582284 

5 5 2942448 8809416 1586082 

6 6 881000 3576438 287124 

7 7 274092 1394696 47280 

8 8 97842 595899 7584 

9 9 35356 275400 1770 

10 10 15756 170450 608 

11 11 6564 100152 144 

12 12 3600 72225 120 

13 13 1236 47260 104 

14 14 828 41820 24 

15 15 614 29760 12 

16 16 156 27250 16 

17 17 72 15864 12 

18 18 52 16104 0 

19 20 24 9384 0 

20 24 4 12366 0 

21 27 8 7520 0 

... ... 0 ... 0 

181 140376 0 1 0 

 

Table 4.3.Number of image elements of 12S  under the kVMPC that can be computed from 

multiple A .   



The case of the 3VMPC  distribution is made of 16 consecutive values of 12 >DA .  The 

maximum number of different permutations A , which give the same element from 3,12D  is 

17.  There are 12 different elements from 3,12D  with 172 =DA . The 1VMPC  distribution is 

similar, with some gaps towards the end. There are total 20 values of 12 >DA . The maximum 

number of different permutations A , which give the same element from 1,12D  is 27. There are 

8 different elements from 1,12D  with 272 =DA . As previously, the 2VMPC  is different. At 

the beginning the distribution is continuous up to about #100 (not presented in the table 4.3). 

This is followed by increasing gaps. There are total of 180 values for 12 >DA . The maximum 

number of different permutations A , which give the same element from 2,12D , is 140376. 

There is only one element from the image of nS  under the 2VMPC  that can be computed from 

140376 different permutations A . Next on the list (not presented in the table 4.3) are 12 

elements of 2,12D  with 15402 =DA . 

To summarize relations between the kVMPC  for various k  values, we state a conjecture. 

 

   Conjecture 4.1 

Given two natural numbers 1k  and 2k  such that 21 kk ≠  and both have the same parity, two 

functions 
1k

VMPC  and 
2k

VMPC  will produce images of nS  with similar characteristics (e.g., 

the cardinality and the decomposition into DA2 ).                                                                   � 

 

   Observation 4.1 

High number of permutations A , such that ++∈ knk DAVMPC ,)( , has far reaching consequences 

for the difficulty of inversing the kVMPC . For instance, consider brute force guessing (see 

Section 3.3.4). In such a case the attacker has to guess a set of correct values (say 34) for one 

out of DA2  permutations. This makes the task DA2  times easier than originally estimated.  
     � 

 

   Observation 4.2 

For the 1VMPC  we found that permutations A , which fall into special cases (see Section 3.1), 

usually yield elements from 1,nD  with 12 >DA . Hence, the probability of successful attacks 

making use of weak keys increase, maybe even by an order of magnitude. This is not so 

surprising, since the value of 1∆  was first estimated in relation to nS  (eq. 3.6), not to 1,nD .   

� 
 

   Concluding remarks on nS ’s image under the kVMPC . 

1. Our numerical experiments were performed on all elements from nS  for }12,...,3{∈n . 

During calculations for 12=n  we approached the limit of today’s PC technology. With some 

extra effort one could make calculations on all elements from nS  for 13=n  and maybe 

14=n ••
. However, we do not think that such calculations would bring qualitatively different 

results. Obtained results are sufficient for extrapolation.  

                                                
•• Supercomputer processing power might allow to achieve n=17, as long as someone is willing to pick up the 

bill. Even in such a case, we do not expect more significant results to be collected.  

 



2. The kVMPC  function is not one-to-one. In this section we showed that this not an issue of 

few elements from nS , but a basic property of the function. The cardinality of an image of nS  

under the 1VMPC and 3VMPC  is about 60% of nS .  The same cardinality under the 2VMPC  

is about 40% of nS . We expect these percentages to be stable (or even decrease) as n  

increases.  

3. In all cases investigated there was substantial number of elements of the image of nS  under 

the kVMPC , such that different elements of nS  would map into the same element of the 

image.  Again, we expect percentages of such elements for the particular kVMPC  to be stable 

(or even increase) as n  increases.  

4. We expect that the kVMPC  for 3>k  would behave much in the same way as functions 

described in this section. This view is formalized in conjecture 1. 

 

5. Conclusions 

First, we summarize our results, simultaneously outlining possibilities for future research. We 

conclude with remarks on the usefulness of the VMPC  in cryptography.   

 

5.1 Summary and further research 

We started by describing VMPC  in the language of permutation theory. This allowed us to 

write the definition of VMPC  as permutations equation. The VMPC  problem was formulated 

in terms of finding solutions to an equation. For the 1VMPC , we showed that there exist 

permutations for which the function can be inverted in linear time. Moreover, the number of 

such permutations is non negligible.  Similar methods can be given for other members of the 

VMPC  family. Searching for more weak keys is an interesting path for future research. Next, 
we discussed applications of classical permutation theory methods to finding a general 

solution to the VMPC  problem. We eliminated some seemingly promising lines of research 
and obtained a few partial results, which can be useful for the computational approach, 

exhhausting methods of classical permutation theory in the process. The future theoretical 

research should rather focus on methods from representation theory (e.g., [5]) or 

computational group theory [6]. Another promising line of research may be algebraic attacks, 

for instance see [7].     

On the algorithmic front we proposed our own inverting procedure, which is transparent and 

strait forward. Also, we were able to state and justify the computational complexity of our 

procedure. Comparison with the traditional inverting algorithm seems to be in our favor. A 

further development of the proposed procedure and its optimization seems to an interesting 

task. Finally, we investigated the image of nS  under the kVMPC . It was confirmed that family 

of the VMPC  functions is not one-to-one and nS ’s image under the kVMPC  takes up about 

40%-60% of nS ’s cardinality. As a result, some inverting methods can be significantly 

enhanced. Further research in this area could focus on conjecture 4.1 and qualitative results 

based on observations 4.1 and 4.2. 

  

5.2 Remarks on usefulness  of  VMPC  in cryptography 

We have not been able to find a general solution to the VMPC  problem and we still do not 
have an efficient inverting algorithm for every case. However, our results indicate that the 

VMPC  is not a good candidate for a cryptographic one-way function. 
A non-negligible number of weak keys (Sections 3.1 and 3.3.3), coupled with the peculiar 

structure of nS ’s image under the kVMPC , which is not fully understood, disqualifies it at 



present. In addition, other researchers have not thoroughly investigated this family of 

functions. In fact we do not know any other papers which investigate basic properties of the 

VMPC . Since there are many promising paths for further research, we would be very much 
surprised if no more weaknesses were found.  

Zoltak [1] proposed a stream cipher, a key scheduling algorithm and a MAC scheme all built 

using the VMPC  function. It is well known fact (e.g., [8]) that all those functionalities can be 

built from a one-way function. However, using VMPC  to build them is asking for repeating 
the Enigma story. Its weaknesses known today already make it vulnerable to attack methods 

similar to ones used against Enigma (see [9], [10]), not to mention more sophisticated ones 

([11]).    
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Appendix A – selected information from permutation theory 

In the paper we use the most popular notation in field, which can be traced back at least to 

Herstein’s works, for instance see [2]. 

 

 Definitions 

nS  is a set of all permutations on n  elements. nS  forms a group, which is called symmetric 

group of degree n . nS  is a cardinality of nS , !nSn = . 

A  is the element of nS , nSA∈ . 

I  is the identity permutation, AIAAI ==  for all nSA∈ . 

1−A  be the inverse of permutation A , IAAAA == −− 11  for all nSA∈ . 

mA is multiplication of m  permutations A , for instance when 3=m  AAAA =3 . 

 

Theorem A.1 

Every permutation can be written as product of disjoint cycles.                                               � 

 

Theorem A.2 

If the pair of cycles does not have entries in common, then they commute.                             � 

 

Definitions (c.d.) 

Cycles of length 2 are called transpositions.  

 

Theorem A.3 

Every permutation in nS , 1>n , is a product of transpositions.                                               � 

 

Theorem A.4 

Every permutation in nS  can be represented as a product of either even or odd number of 

transpositions. A permutation, which is a product of even number of transpositions, cannot be 

a product of odd number of transpositions and vice versa.          .                                             � 

 

Definitions (c.d.) 

nA  is a set of all even permutations in nS . nA  is a normal subgroup of nS . It is called 

alternating group of degree n , 
2

!n
An = . 

( )GZ  is center of a group G . ( )GZ  is the subset of elements in G  that commute with every 

element in G . 


