
On inverting the VMPC one-way function

KAMIL KULESZA
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

1
,

Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland,

e-mails: K.Kulesza@damtp.cam.ac.uk, Kamil.Kulesza@ippt.gov.pl

Draft version 5.2

Abstract.
We investigate the possibilities of inverting the VMPC one-way function, which was proposed

at FSE 2004. First, we describe the function using the language of permutation theory. Next,

easily invertible instances of VMPC are derived. We also show that no VMPC function is one-

to-one. Implications of these results for cryptographic applications of VMPC conclude the

paper.
Keywords: one-way function, cryptoanalysis, permutations

1. Introduction

 In 2004 at the 11
th
 Fast Software Encryption workshop Bartosz Zoltak proposed a candidate

for a one-way function that he named VMPC ([1]). The name is an acronym for Variably
Modified Permutation Composition, which nicely captures the main idea behind construction

of the family of the functions concerned. In [1] the VMPC is defined as follows (original
wording):

 Definition 1 [Zoltak 2004]

A k -level VMPC function, referred to as kVMPC , is such a transformation of n -element

permutation P into n -element permutation Q , where

:]]] : : [P[x]]][P : : [:[PP[P][11-kk== xQVMPCk

}1,...,1,0{ −∈ nx , nk < ,

iP is the n -element permutation such that])[(][xPfxP ii = , where if is any function such

that][][][xPxPxP ji ≠≠ for },...,2,1{ ki∈ , },...,2,1{ kj∈ , ji ≠ .

For simplicity of further references if is assumed to be ixxf i +=)(�

After stating the general definition, the paper describes a few particular instances of the

functions: 1VMPC , 2VMPC , 3VMPC . In [1] these functions have the following form:

 1] P[P[P[x]] 1 +=VMPC (1.1)

 2] 1]]P[P[P[P[x] 2 ++=VMPC (1.2)

 3] 2] 1] x]]P[P[P[P[P[3 +++=VMPC (1.3)

The VMPC function is easy to compute, since it requires only three basic MOV instructions
on Intel 80x86 processors.

Zoltak [1] claims that the VMPC function is difficult to invert for permutations of sufficiently
many elements. Permutations of degree 256 are proposed as appropriate for cryptographic

applications. The VMPC ’s author claims that the most efficient inverting method has a

complexity of about 2602 for 256-element permutations. This refers to the 1VMPC , with much

greater complexities for higher-level functions.

This difficulty in inverting attracted our attention and motivated the work below.

In this work, following the original paper [1], we focus mainly on the 1VMPC , making

1
 Part of the work described in this paper was done when the author was visiting scholar at DAMTP.

occasional references to the 2VMPC , 3VMPC . From now on, when we refer to a VMPC

function, we actually mean the 1VMPC function, unless stated otherwise.

The paper is organized as follows: Section 2 is devoted to mathematical notation and

description of the VMPC using the language of permutation theory. In Section 3 we present

instances for which the VMPC function can be easily inverted (so-called “weak keys”). Next,
we describe results on finding the general solution to the problem and comment on the

inverting algorithm. Section 4 describes computational results concerning the image of the

permutation group under the VMPC . We summarize the paper in Section 5; we indicate

possible directions of further research and final conclusions.

2. VMPC in the language of permutation theory

First, we write the VMPC using permutation theory terms, in order to benefit from it’s
powerful toolbox. In this paper we follow the most popular notation in the field, which can be

traced back at least to Herstein’s works, see [2]. For more detailed treatment of permutation

theory, the interested reader is referred to appendix A. Let:

nS be the symmetric group of degree n ;

nS be the cardinality of nS ;

A be an element of nS , nSA∈ ;

I be the identity permutation;
1−A be the inverse of permutation A ;
mA is multiplication of m permutations A ;

nA is alternating group of degree n (a normal subgroup of nS).

There are many ways to represent the permutation A . In this paper we use the short matrix

notation: 







=

xba

n
A

...

...21
, where letters in the lower row are assigned different numbers

from the set },...,2,1{ n . For instance, consider a permutation of degree 4: 







=

2413

4321
A .

In the short matrix notation the left-shift of A ’s lower row by one element (1<<) can be

described using multiplication by the permutation 







=

1...2

...21

n

n
Q . For instance, consider

the permutation A from above example, then the left-shift by one can be written as:









=
















=

3241

4321

2413

4321

1432

4321
QA .

Using letter Q to denote above operation may at first create some confusion with Zoltak

definition ([1]). However, Q has been associated with such a permutation long before the

VMPC paper.

Left-shift of A ’s lower row by m (m<<)
•
 elements can be described using multiplication by

the permutation mQ .

Recall that every permutation can be written as a product of disjoint cycles.

Finally, cycles of length 2 are called transpositions.

Having all notations in place it is the time to write down the equations for the kVMPC . Let

kk DAVMPC =)(, then the following equations correspond to equations 1.1-1.3:

•
 For simplicity we consider nm < .

QAAD 2

1 = (2.1)

 AQDAQAQAD 2

1

22

2 == (2.2)

AQDAAQQAQAD 3

2

322

3 == (2.3)

The kVMPC problem can be formulated as follows: given kD which was computed from the

permutation A using the kVMPC find A .

3. Inverting VMPC

In this section we concentrate on the 1VMPC . First, we show cases where given D , A can be

quickly calculated analytically. Following convention from Section 1 we can write the

equation 2.1 as: AAQAD = .

3.1 Special cases (a.k.a. weak keys)

1. Consider the situation when

IA =2 . (3.1)

 In such a case:

QAD = , (3.2)

which yields:

ADQ =−1 . (3.3)

In order to test whether A meets condition from the equation 3.1, one has to check whether
the following equation holds:

() IDQ =− 21
. (3.4)

If this is the case, the permutation A can be calculated from the equation 3.3. The question is
how often such a solution happens.

The equation 3.1 holds when A consists exclusively of transpositions and cycles of length 1.

Let 1∆ be the number of permutations that meet this condition. It holds that:

()∑
=









−








+=∆

n

m

m

m
m

n

2/

2
1 !!11 , (3.5)

where m is the number of elements that form transpositions in a permutation of degree n .

For sufficiently large n (but still much lower than 256) , it can be seen that:

)!1(1 −=<∆ n
n

Sn
. (3.6)

2. Consider the situation when
13 += rQD , (3.7)

where nr < . Then the following solution always exist:

 rQA = . (3.8)

PermutationsD of the type described by the equation 3.7 are easy to spot, because they

correspond to a left-shift by m -elements, where 13 += rm . Let’s denote the number of such

D ’s, which are unique by 2∆ . Then 12 −<∆ n .

3.2 General solution - theoretical considerations

Special cases, which are described above, apply to no more than the th
n

1
 of all elements

from nS . The remaining ones are not so easy to handle. Searching for a general solution

 requires examining properties of the symmetric group nS .

When searching for a general solution the first idea that comes to one’s mind is to commute

permutations Q and A in equations for the VMPC (eq. 2.1-2.3). If this were possible,

equation 2.1 would have the following form:

 QAD 3= , (3.9)

Similary, the equation for the kVMPC would have the form:

xk

k QAD 2+= , (3.10)

where ∑
=

=
k

m

mx
1

.

Equations of such a type are relatively easy to solve by a deterministic polynomial time

algorithm. We named such a method of solving the VMPC problem as an “abelian” solution.

However, it will not work in a general case because nS is non-abelian for all 2>n .

Although, the above fact eliminates an “abelian” solution for a general case, one may still be

interested in some particular cases:

1. Checking the center of nS (()nSZ), since all elements belonging to ()nSZ would commute

with Q . Unfortunately, it is trivial for all 2>n (() }{ISZ n = for 2>n).

2. Checking normal subgroups of nS which contains Q . Let’s call such a subgroup QH .

Then for some QHX ∈ the equation 2.1 can be written as:

 XAD 3= . (3.11)

Equations for the kVMPC would be treated in a similar way, leading to expressions analogous

to the equation 3.10. Solving such equations requires checking QHX ∈ and solving for A ,

very much like in case of equations 3.9 and 3.10. Such a procedure could be feasible provided

that QH is small. Unfortunately, the only normal subgroup of nS containing Q is nA (for

odd n). Since
2

n

n

S
A = , this approach is not practical.

All of the above show that properties of nS are not of great help. So, maybe it would be

possible to find a homomorphism from nS to some more useful group?

 For instance, homomorphism from nS to an abelian group would allow us to “transport the

equation” to an abelian group, solve it in such a group and map solutions back to the relevant

elements of nS . Unfortunately, the only such homomorphism for 2>n is (up to the

representation) the homomorphism from nS to 2Z . All that can be obtained using this is the

parity of A . However, A ’s parity can be calculated in an easier way, which will be described
in Section 3.3.1.

Using methods from classical permutation theory we have not been able to obtain a general

solution for the VMPC . However, we have checked tools from the classical toolbox and
eliminated those as possible candidates. Still, there are situations where classical group theory

is useful.

3.3 In search of a general solution – what can be done?
In this section we describe what can be done using existing tools.

3.3.1 A ’s parity

Consider the equation 2.1, multiplying both sides of the equation by Q , to yield

QAQADQ 2= , (3.12)

which can be written as:

 2)(AQADQ = . (3.12a)

Since 2)(AQ is always even, the parity of A is the same as the parity of DQ .

Similar reasoning, together with the known parity of Q (which is always opposite to n ’s

parity), allows us to find A ’s parity for other functions from the VMPC family.
Knowing A ’s parity is important, since it reduces the number of possible candidates by a
factor of 2.

3.3.2 n -cycle solutions

Recall the idea of commuting Q and A in equations for the VMPC . The idea presented in

this section is very much the same as the one that was behind an “abelian” solution. It amends

to finding some X such that:

AXQA = . (3.13)

Now, the question is whether we can say anything about X assuming that any nSA∈ can be

used in the equation. It turns out that this is the case.

Consider 







=

xba

n
A

...

...21
, the equation 3.13 can be written as:

 X
xba

n

xba

nn
QA 








=
















=

...

...21

...

...21

1...32

...21
. (3.14)

Solving equation 3.14 for X yields:

 







=

axb

xba
X

...

...
. (3.15)

Next, observe that the permutation X is made of only one cycle of length n . Such a

permutation is called an n -cycle. There is whole family of n -cycles (e.g., Q belongs to it).

One of the interesting properties of such permutations is that the inverse of an n -cycle is also

an n -cycle. The cardinality of the set of n -cycles is)!1(−n . By substituting equation 3.13

into equation 2.1 one obtains:

XAD 3= , (3.16)

which can be written as:

 31 ADX =− . (3.16a)

Again, solving such equations requires checking all n -cycles and solving for A . Although it
is not feasible for a head-on attack, it significantly reduces number of possible candidates to

search (by factor n). In this capacity it can be useful for some algorithmic constructions.

It is interesting to note that the same result, as presented above, can obtained by considering

orbits of the group generated by Q ([3]).

3.3.3 Special cases applied in a more general situation

The cases described in Section 3.1 have a very useful feature that, given the permutation of

D , it is possible to decide quickly whether it belongs to a special case. In addition, positive

outcome immediately yields the solution to the VMPC problem.
It should be observed that the conditions stated in the equations 3.1 or 3.7 need not apply to a

whole permutation A in order to be valid. In such a situation, one will not obtain immediate
solution for whole permutation A , but may quickly uncover its parts which meet one of these
conditions. For this mechanism to work at least two elements from A (preferably at least 3)
should form a block in the short matrix notation.

A block in the short matrix notation is a sequence of m index elements (upper row) such that

corresponding permutation elements (lower row) contain only elements from m index
element sequence (possibly permuted). For instance consider:

 







=

72153486

87654321
A . (3.17)

The block is formed by index elements 3,4,5 with corresponding permutation elements 4,3,5.

Given a permutation A , its elements that form a block can be found as described in Section

3.1. When block consists m elements, then at least 1−m of them can be uncovered. Elements

that belong to the block form cycles, which are disjoint with all other cycles in that

permutation. Hence, remaining A ’s elements can be considered separately, as a permutation

on 1+−mn elements. This observation allows to decrease size of the problem being solved.

As a result, in some cases problem might be vulnerable to attack by available algorithms.

Let’s denote:

y as the degree of permutation which can be feasibly attacked with available algorithms;

 3∆ as the number of permutations which can be feasibly attacked by using block method

 outlined above.

Recall that n is the degree of permutation A and assume ny < . Then taking into account

number of weak keys (see Section 3.1) the value of 3∆ can be described as follows:

 !)(213 y⋅∆+∆=∆ (3.18)

Substituting values for 1∆ and 2∆ yields:

 !)]1()!1[(3 ynyn ⋅−+−−<∆ (3.19)

3.3.4 Comments on an original inverting algorithm

Zoltak [1] provided only a rough estimate for the computational complexity of the inverting

algorithm. The algorithm was based on phenomenological observation that when certain

number of A ’s elements are known, the function can be inverted. This number depends upon

the level of the VMPC function and the degree of permutation concerned (n). For instance,

for 256=n and the first level function, the number of known elements should be around 34.

In [1], the inverting method for above parameters has the complexity of about 2602 . After

going through reasoning presented, we found that the estimate provided concerned the

complexity of guessing sufficient number of permutation elements, rather then the algorithm

itself.

In the absence of any further information we tried to assess the complexity of the inverting

algorithm and also to implement it. Unfortunately, the description provided was insufficient to

complete any of these tasks. As a results, we ended up with the program which we believe is

close to what the VMPC author described. We ran some numerical experiments for the first

level VMPC function and 256=n in order to check results on a number of known elements.

Experiments were carried out on randomly selected permutations. Because of quite limited

computing power our sample cannot be considered statistically significant (having in mind

nS), so original results were neither definitely proved or disproved. We observed a wide

range for numbers of known elements required in the individual cases. In addition, many

permutations could not be successfully inverted with less then 42 elements and some required

even 50.

While working on the inverting algorithm, we designed our own inverting procedure. Let’s

start its brief description from the observation that equation 2.1 can be rewritten as the

following set of equations:





=

=
2AB

BQAD
. (3.20)

Next, the set of equations has to be solved for A .
The main ideas behind our procedure are:

1. Observe that in the set of equations (3.20) the equation for D is very easy to solve. If

we assign any value to the particular element of the permutation B we immediately
obtain a corresponding value for an element from the permutation A .

2. Apply the second equation (for B) to test whether such a value of the element from
the permutation A is valid.

3. If value is not valid, we add it to the list of forbidden values for the element
concerned.

4. If value is valid, it will provide the element in B with which it is linked.
This routine is applied to all elements in A in order to build the list of forbidden values for
every element (see, 3 above), which narrows the space of possible permutations A .

In addition, for every valid value of an element from A , the list of linked elements from B is
created (see, 4 above).

For every element of the permutation of degree n , n values have to be tested. Hence, the

complexity of this operation is 2n .

Both lists (forbidden values and linked elements) can be used to check the validity of values

of a permutation’s elements fed into procedure. This check is performed in a linear time.

Hence, the complexity of inverting the VMPC by our procedure is 2n times the complexity of

guessing the sufficient number of permutation elements. However, it should be emphasized

that permutations elements are guessed from a smaller set than in the original algorithm ([1]).

This should result in a smaller number of permutation’s elements that have to be guessed.

There is a more room for further improvement, for instance one may make use of the facts

that nAB∈ and A ’s parity can also be easily established (Section 3.1.1). Taking these two

factors into account further decreases the number of possible A ’s.
We programmed a crude implementation of our procedure and tested it numerically. It

performed a little better than the original method, but again our sample cannot be considered

statistically significant.

To summarize: we are still not sure whether our procedure is equivalent to the original one or

whether it differs substantially. This is mainly due to lack of information regarding the

original inverting algorithm. Even, if both methods reduce to the same thing, our procedure is

much more transparent and offers simplicity with quantifiable computational complexity.

4. The image of nS under the kVMPC

We start from the fact the VMPC is never one-to-one. While proof of this result is somewhat
tedious, its essence lies in the observation that permutations having specific cycle

decompositions cannot be created when VMPC acts on nS ([4]). Since, the proof has rather a

qualitative character, the quantitative question regarding the cardinality of nS ’s image under

the VMPC remains open. Let’s denote:

 knD , as the image of nS under the kVMPC ;

 knD , as the cardinality of knD , , in other words the number of distinct elements of knD , .

We calculated all knD , for }3,2,1{∈k and }12,...,3{∈n . First, we investigated cardinalities of

sets knD , and compared them with cardinality of nS . As an example, in the table 4.1 we

present values for 1,nD .

Table 4.1. 1,nD compared with nS for }12,...,3{∈n

From the table 4.1 it is clear that 1,nD is always much smaller than nS . In the tested data

range the ratio
n

n

S

D 1,
 converges to 0.6. The size of knD , as a percentage of nS for the

1VMPC , 2VMPC and 3VMPC is presented on the graph 4.1. In the graph, values for 7<n are

omitted for legibility.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

7 8 9 10 11 12

n

|D
_
n
|/
|S
_
n
|

VMPC_1 VMPC_2 VMPC_3

Graph 4.1. Cardinality of nS ’s image under the 1VMPC , 2VMPC , 3VMPC as a percentage

of nS ’s cardinality.

From the graph it is clear that the 1VMPC and the 3VMPC produce images of similar size,

about 60% of nS . In turn the 2VMPC behaves differently, it produces an image with a size

cardinality of 40% of nS . We return to this issue later in the paper.

Now, it is time to ask the question: how many permutations A (nSA∈) give the same image

under the kVMPC .

Let’s denote set of all elements of knD , which can be computed from more than one

permutation A as ++
knD , . The cardinality of such a set will be denoted as

++
knD , .

n 3 4 5 6 7 8 9 10 11 12

nS
6 24 120 720 5040 40320 362880 3628800 39916800 479001600

1,nD
4 16 80 460 3031 24072 216522 2190520 24103024 289062962

nn SD /1,
0,6667 0,6667 0,6667 0,638889 0,601389 0,597024 0,596677 0,603649 0,603832 0,6034697

In the table below we present the ratio
kn

kn

D

D

,

,

++

. Again, we omit values for 7<n for clarity.

N 7 8 9 10 11 12

1,1, / nn DD ++

46,02% 43,17% 44,21% 43,50% 43,45% 43,35%

2,2, / nn DD ++
|

71,53% 64,96% 65,93% 66,63% 66,99% 67,21%

3,3, / nn DD ++

41,96% 43,09% 42,12% 42,18% 41,99% 41,96%

Table 4.2. Ratio between
++
knD , and knD , , for }12,...,7{∈n

The table 4.2 shows that there is a significant number of permutations A (nSA∈), that give

the same image under the kVMPC . Unsurprisingly, percentages for the 1VMPC and 3VMPC

are quite similar, while the percentage for the 2VMPC is much higher.

In addition, the distribution of permutations A that map to the same image is non-trivial. We

illustrate it in the next table by the mean of example for 12=n .

For the fixed values of n and k , every element from knD , can be assigned a number of

permutations A (nSA∈) that map to it. Let’s use acronym DA2 to denote such a number.

DA2 1VMPC 2VMPC 3VMPC

1 1 163742508 66058416 175048468

2 2 80992932 60905484 87497172

3 3 30331358 39126988 29519168

4 4 9736512 20073546 7582284

5 5 2942448 8809416 1586082

6 6 881000 3576438 287124

7 7 274092 1394696 47280

8 8 97842 595899 7584

9 9 35356 275400 1770

10 10 15756 170450 608

11 11 6564 100152 144

12 12 3600 72225 120

13 13 1236 47260 104

14 14 828 41820 24

15 15 614 29760 12

16 16 156 27250 16

17 17 72 15864 12

18 18 52 16104 0

19 20 24 9384 0

20 24 4 12366 0

21 27 8 7520 0

... ... 0 ... 0

181 140376 0 1 0

Table 4.3.Number of image elements of 12S under the kVMPC that can be computed from

multiple A .

The case of the 3VMPC distribution is made of 16 consecutive values of 12 >DA . The

maximum number of different permutations A , which give the same element from 3,12D is

17. There are 12 different elements from 3,12D with 172 =DA . The 1VMPC distribution is

similar, with some gaps towards the end. There are total 20 values of 12 >DA . The maximum

number of different permutations A , which give the same element from 1,12D is 27. There are

8 different elements from 1,12D with 272 =DA . As previously, the 2VMPC is different. At

the beginning the distribution is continuous up to about #100 (not presented in the table 4.3).

This is followed by increasing gaps. There are total of 180 values for 12 >DA . The maximum

number of different permutations A , which give the same element from 2,12D , is 140376.

There is only one element from the image of nS under the 2VMPC that can be computed from

140376 different permutations A . Next on the list (not presented in the table 4.3) are 12

elements of 2,12D with 15402 =DA .

To summarize relations between the kVMPC for various k values, we state a conjecture.

 Conjecture 4.1

Given two natural numbers 1k and 2k such that 21 kk ≠ and both have the same parity, two

functions
1k

VMPC and
2k

VMPC will produce images of nS with similar characteristics (e.g.,

the cardinality and the decomposition into DA2). �

 Observation 4.1

High number of permutations A , such that ++∈ knk DAVMPC ,)(, has far reaching consequences

for the difficulty of inversing the kVMPC . For instance, consider brute force guessing (see

Section 3.3.4). In such a case the attacker has to guess a set of correct values (say 34) for one

out of DA2 permutations. This makes the task DA2 times easier than originally estimated.
 �

 Observation 4.2

For the 1VMPC we found that permutations A , which fall into special cases (see Section 3.1),

usually yield elements from 1,nD with 12 >DA . Hence, the probability of successful attacks

making use of weak keys increase, maybe even by an order of magnitude. This is not so

surprising, since the value of 1∆ was first estimated in relation to nS (eq. 3.6), not to 1,nD .

�

 Concluding remarks on nS ’s image under the kVMPC .

1. Our numerical experiments were performed on all elements from nS for }12,...,3{∈n .

During calculations for 12=n we approached the limit of today’s PC technology. With some

extra effort one could make calculations on all elements from nS for 13=n and maybe

14=n ••
. However, we do not think that such calculations would bring qualitatively different

results. Obtained results are sufficient for extrapolation.

•• Supercomputer processing power might allow to achieve n=17, as long as someone is willing to pick up the

bill. Even in such a case, we do not expect more significant results to be collected.

2. The kVMPC function is not one-to-one. In this section we showed that this not an issue of

few elements from nS , but a basic property of the function. The cardinality of an image of nS

under the 1VMPC and 3VMPC is about 60% of nS . The same cardinality under the 2VMPC

is about 40% of nS . We expect these percentages to be stable (or even decrease) as n

increases.

3. In all cases investigated there was substantial number of elements of the image of nS under

the kVMPC , such that different elements of nS would map into the same element of the

image. Again, we expect percentages of such elements for the particular kVMPC to be stable

(or even increase) as n increases.

4. We expect that the kVMPC for 3>k would behave much in the same way as functions

described in this section. This view is formalized in conjecture 1.

5. Conclusions

First, we summarize our results, simultaneously outlining possibilities for future research. We

conclude with remarks on the usefulness of the VMPC in cryptography.

5.1 Summary and further research

We started by describing VMPC in the language of permutation theory. This allowed us to

write the definition of VMPC as permutations equation. The VMPC problem was formulated

in terms of finding solutions to an equation. For the 1VMPC , we showed that there exist

permutations for which the function can be inverted in linear time. Moreover, the number of

such permutations is non negligible. Similar methods can be given for other members of the

VMPC family. Searching for more weak keys is an interesting path for future research. Next,
we discussed applications of classical permutation theory methods to finding a general

solution to the VMPC problem. We eliminated some seemingly promising lines of research
and obtained a few partial results, which can be useful for the computational approach,

exhhausting methods of classical permutation theory in the process. The future theoretical

research should rather focus on methods from representation theory (e.g., [5]) or

computational group theory [6]. Another promising line of research may be algebraic attacks,

for instance see [7].

On the algorithmic front we proposed our own inverting procedure, which is transparent and

strait forward. Also, we were able to state and justify the computational complexity of our

procedure. Comparison with the traditional inverting algorithm seems to be in our favor. A

further development of the proposed procedure and its optimization seems to an interesting

task. Finally, we investigated the image of nS under the kVMPC . It was confirmed that family

of the VMPC functions is not one-to-one and nS ’s image under the kVMPC takes up about

40%-60% of nS ’s cardinality. As a result, some inverting methods can be significantly

enhanced. Further research in this area could focus on conjecture 4.1 and qualitative results

based on observations 4.1 and 4.2.

5.2 Remarks on usefulness of VMPC in cryptography

We have not been able to find a general solution to the VMPC problem and we still do not
have an efficient inverting algorithm for every case. However, our results indicate that the

VMPC is not a good candidate for a cryptographic one-way function.
A non-negligible number of weak keys (Sections 3.1 and 3.3.3), coupled with the peculiar

structure of nS ’s image under the kVMPC , which is not fully understood, disqualifies it at

present. In addition, other researchers have not thoroughly investigated this family of

functions. In fact we do not know any other papers which investigate basic properties of the

VMPC . Since there are many promising paths for further research, we would be very much
surprised if no more weaknesses were found.

Zoltak [1] proposed a stream cipher, a key scheduling algorithm and a MAC scheme all built

using the VMPC function. It is well known fact (e.g., [8]) that all those functionalities can be

built from a one-way function. However, using VMPC to build them is asking for repeating
the Enigma story. Its weaknesses known today already make it vulnerable to attack methods

similar to ones used against Enigma (see [9], [10]), not to mention more sophisticated ones

([11]).

Acknowledgement

Author wants to thank Prof. Jerzy Browkin for numerous discussion on the VMPC and group
theory. Many thanks go to all students participating in Summer Research Lab Project for the

fun we had while playing with the VMPC . Especially, I want to thank Adrian Orzepowski for
his help in obtaining results in Section 3.3.4 and 4. Lat but not least, I want to thank Prof.

Zbigniew Kotulski for his suggestions and a final encouragement to write it the paper.

References

[1] B. Zoltak. ‘VMPC One-Way Function and Stream Cipher’. Proceeding of FSE 2004,

Roy, Bimal; Meier, Willi (Eds.), LNCS vol. 3017, Springer-Verlag, Berlin, Heilderberg,

New York. 2004.

[2] I.N. Herstein. Topics in Algebra. Blaisdell Publishing Company. London. 1964.

[3] J. Browkin. Orbits of the group generated by Q . Private communication on 5.08.2005.

[4] J. Browkin. Proof that the VMPC is not one-to-one. Private communication on

26.07.2005.

[5] B. Simon. Representations of Finite and Compact Groups. American Mathematical

Society. 1996.

[6] C.C. Sims. Computation with finitely presented groups. Cambridge University Press.

Cambridge.1994.

[7] Nicolas Courtois. ‘General Principles of Algebraic Attacks and New Design Criteria for

Components of Symmetric Ciphers’. Proceeding of AES 2004, Dobbertin, Hans; Rijmen,

Vincent; Sowa, Aleksandra (Eds.), LNCS vol. 3373, Springer-Verlag, Berlin, Heilderberg,

New York. 2005.

[8] A.J. Menezes, P. van Oorschot and S.C. Vanstone. Handbook of Applied Cryptography,

CRC Press, Boca Raton 1997.

[9] K. Gaj. Enigma cipher, breaking methods. WKŁ, Warsaw 1989.

[10] A.Orłowski, K. Gaj. ‘Facts and Myths of Enigma: Breaking Stereotypes’. Advances in

Cryptology - Eurocrypt 2003, Biham, Eli (Ed.), LNCS vol. 2656, Springer-Verlag,

Berlin, Heilderberg, New York. 2003.

[11] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and T. Kawabata, ‘The Most

Efficient Distinguishing Attack on VMPC and RC4A’, eSTREAM, the ECRYPT Stream

Cipher Project: http://www.ecrypt.eu.org/stream/papersdir/037.pdf

Appendix A – selected information from permutation theory

In the paper we use the most popular notation in field, which can be traced back at least to

Herstein’s works, for instance see [2].

 Definitions

nS is a set of all permutations on n elements. nS forms a group, which is called symmetric

group of degree n . nS is a cardinality of nS , !nSn = .

A is the element of nS , nSA∈ .

I is the identity permutation, AIAAI == for all nSA∈ .

1−A be the inverse of permutation A , IAAAA == −− 11 for all nSA∈ .

mA is multiplication of m permutations A , for instance when 3=m AAAA =3 .

Theorem A.1

Every permutation can be written as product of disjoint cycles. �

Theorem A.2

If the pair of cycles does not have entries in common, then they commute. �

Definitions (c.d.)

Cycles of length 2 are called transpositions.

Theorem A.3

Every permutation in nS , 1>n , is a product of transpositions. �

Theorem A.4

Every permutation in nS can be represented as a product of either even or odd number of

transpositions. A permutation, which is a product of even number of transpositions, cannot be

a product of odd number of transpositions and vice versa. . �

Definitions (c.d.)

nA is a set of all even permutations in nS . nA is a normal subgroup of nS . It is called

alternating group of degree n ,
2

!n
An = .

()GZ is center of a group G . ()GZ is the subset of elements in G that commute with every

element in G .

