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1. Introduction

The concept of scale-invariance is central to the modern understanding of critical

phenomena in and out of equilibrium. Its exploitation through the renormalization

group has in particular led to the recognition of universal critical exponents and scaling

functions which describe the behaviour of physical observables, see e.g. [1] and references

therein. Here we are concerned with the slow dynamics of systems brought rapidly to

their critical point and/or into a phase with more than one thermodynamically stable

state. Such a kind of behaviour is typical for glassy systems but also occurs in simple

magnets with a purely relaxational dynamics which were quenched from a disordered

state to a final temperature T ≤ Tc, where Tc > 0 is the critical temperature. For the

latter, it is now understood that the dynamics is governed by a single time-dependent

length-scale L = L(t) ∼ t1/z for t sufficiently large and where z is the dynamical

exponent [2]. As an example, consider simple magnets relaxing towards equilibrium.

For phase-ordering kinetics (T < Tc), the Bray-Rutenberg theory shows that dynamical

scaling together with the assumption of a Porod law for the time-dependent structure

factor predicts the value of z [3]; whereas for T = Tc the value of z is computed from

critical (equilibrium) dynamics. More recently, it has been understood that the study

to two-time observables provides further and deeper insight, in particular the ageing

behaviour is made explicit through the breaking of time-translation invariance. The

challenge is now to find the values of the associated non-equilibrium (ageing) exponents

and also the form of the scaling functions, see below for the precise definitions.

A common way to study this problem is through a Langevin equation which should

describe the dynamics of a coarse-grained order-parameter. This may be turned into

a field-theory and renormalization-group methods then allow to extract values of these

exponents, in quite good but not perfect agreement with the results of direct numerical

simulations [4, 5]. On the other hand, the resulting predictions for the scaling functions

appear to be far from the numerical results, see [6, 7]. An alternative approach seeks

to extend dynamical scaling to a larger group of ‘local’ scale-transformations [8], see

[9] for a recent review. In the framework of a de Dominicis-Janssen type theory

[10, 11], the effective action S = S[φ, φ̃] is given in term of the order-parameter

field φ and its associated response field φ̃. Furthermore, for systems in contact with

a thermal bath such that detailed balance holds one always has the decomposition

S[φ, φ̃] = S0[φ, φ̃] + Sb[φ̃] into a ‘deterministic’ part S0 which can be derived from the

Langevin equation when all noise terms are dropped and the ‘noise’ term Sb[φ̃] which

depends only on the response function [12]. The form of response functions can then be

found from the requirement of covariance under the group of local scale-transformations.

As we shall explain below, correlation functions can be reduced to certain integrals of

higher, multipoint response functions [12]. This approach yields the form of the scaling

functions whereas the exponents are treated as parameters whose values have to be
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supplied† and reproduce perfectly the results of both analytical and simulational studies

of many common spin systems undergoing phase-odering kinetics where z = 2.‡
It is an established fact that the basic Langevin equation for the order-parameter

does not admit any symmetries beyond dilatations and (space-)translations, see [14]

for a recent discussion. However, it has been shown that at least for simple magnets

it is enough to concentrate on the dynamical symmetries of the deterministic part of

the Langevin equation only, as given by the action S0. In particular, Schrödinger-

invariance of that deterministic part is sufficient to be able to derive the two-time

correlations C(t, s) and two-time response functions R(t, s) explicitly [12]. There is

an exact agreement for systems such as the spherical model, the XY model in spin-wave

approximation or the voter model which are all described by a linear Langevin equation.

Good agreement with simulations of Ising, Potts and XY models models was found as

well [7, 15, 16].

In this paper, we extend the treatment of local scale-invariance to ageing systems

with a dynamical exponent z = 2 but without detailed balance. Working with a de

Dominicis-Janssen type theory, we find again a decomposition S[φ, φ̃] = S0[φ, φ̃]+Sb[φ, φ̃]

into a ‘deterministic’, Schrödinger-invariant term S0 and ‘noise’ terms, each of which

contains at least one response field more than order-parameter fields (explicit expressions

will be given in sections 2 and 3). Then the Bargman superselection rules which follow

from the Galilei-invariance of S0 are enough to establish that again the two-time response

function is noise-independent and the two-time correlation function can be reduced to

a finite sum of response functions the form of whom is strongly constrained again by

the requirement of their Schrödinger-covariance. These developments provide further

evidence for a hidden non-trivial local scale-invariance in ageing systems which manifests

itself directly in the ‘deterministic’ part (see [17] for the construction of Schrödinger-

invariant semi-linear kinetic equations) but which strongly constrains the full noisy

correlations and reponses.

We test the present framework of local scale-invariance in two exactly solvable

systems with a non-linear coarse-grained Langevin equation. A convenient set of models

with a non-trivial ageing behaviour is furnished by the bosonic contact [18] and pair-

contact processes [19], both at criticality. These systems are defined as follows. Consider

a set of particles of a single species A which move on the sites of a hypercubic lattice in d

dimensions. On any site one may have an arbitrary (non-negative) number of particles.§
† This is close in spirit to the treatment of equilibrium phase transitions through conformal invariance,

which fixes the form of the n-point correlators in terms of the scaling dimensions of the scaling fields

[1]. Furthermore, those exponents can be determined exactly in 2D from symmetry considerations

(i.e. representation theory of the Virasoro algebra) alone since the conformal symmetry is infinite-

dimensional in that case.
‡ For non-equilibrium critical dynamics where z 6= 2 in general one also has a good match with

numerical data for the response functions in direct space but systematic differences may appear in

momentum-space calculations, e.g. in the 2D Ising model for t/s . 10 [13].
§ This property distinguishes the models at hand from the conventional (‘fermionic’) contact and pair-
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Single particles may hop to a nearest-neighbour site with unit rate and in addition, the

following single-site creation and annihilation processes are admitted

mA
µ−→ (m+ 1)A , pA

λ−→ (p− `)A ; with rates µ and λ (1)

where ` is a positive integer such that |`| ≤ p. We are interested in the following special

cases:

(i) critical bosonic contact process: p = m = 1. Here only ` = 1 is possible.

Furthermore the creation and annihilation rates are set equal µ = λ.

(ii) critical bosonic pair-contact process: p = m = 2. We fix ` = 2, set 2λ = µ and

define the control parameter ‖

α :=
3µ

2D
(2)

The dynamics is described in terms of a master equation which may be written in a

hamiltonian form ∂t|P (t)〉 = −H|P (t)〉 where |P (t)〉 is the time-dependent state vector

and the hamiltonian H can be expressed in terms of creation and annihilation operators

a(x, t)† and a(x, t) [20, 21, 22]. It is well-known that these models are critical in the

sense that their relaxation towards the steady-state is algebraically slow [18, 19, 24]. In

particular, the local particle-density is ρ(x, t) := 〈a(x, t)〉. Its spatial average remains

constant in time
∫

dx ρ(x, t) =

∫
dx 〈a(x, t)〉 = ρ0 (3)

where ρ0 is the initial mean particle-density. We are interested in the two-time connected

correlation function

G(r; t, s) := 〈a(x, t)a(x+ r, s)〉 − ρ2
0 (4)

and take an uncorrelated initial state, hence G(r; 0, 0) = 0. The linear two-time response

function is found by adding a particle-creation term
∑
x h(x, t)

(
a†(x, t)− 1

)
to the

quantum hamiltonian H and taking the functional derivative

R(r; t, s) :=
δ〈a(r + x, t)〉
δh(x, s)

∣∣∣∣
h=0

(5)

We have previously analyzed these quantities in the scaling limit where both t, s as well

as t− s become large with respect to some microscopic reference time. The results are

as follows [24]: consider the autocorrelation and autoresponse functions, which satisfy

the scaling forms

G(t, s) := G(0; t, s) = s−bfG(t/s) (6)

R(t, s) := R(0; t, s) = s−1−afR(t/s) (7)

contact processes whose critical behaviour is completely different.
‖ If instead we would treat a coagulation process 2A → A, where ` = 1, the results presented in the

text are recovered by setting λ = µ and α = µ/D.
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bosonic pair-contact process
bosonic contact process

α < αc α = αc

a d
2
− 1 d

2
− 1 d

2
− 1

b d
2
− 1 d

2
− 1

0 if 2 < d < 4
d
2
− 2 if d > 4

Table 1. Ageing exponents of the critical bosonic contact and pair-contact processes in

the different regimes. The results for the bosonic contact process hold for an arbitrary

dimension d, but for the bosonic pair-contact process they only apply if d > 2, since

αc = 0 for d ≤ 2.

fR(y) fG(y)

contact process (y − 1)−
d
2 (y − 1)−

d
2

+1 − (y + 1)−
d
2

+1

pair α < αc d > 2 (y − 1)−
d
2 (y − 1)−

d
2

+1 − (y + 1)−
d
2

+1

contact 2 < d < 4 (y − 1)−
d
2 (y + 1)−

d
2 2F1

(
d
2
, d

2
; d

2
+ 1; 2

y+1

)

process
α = αc

d > 4 (y − 1)−
d
2 (y + 1)−

d
2

+2 − (y − 1)−
d
2

+2 + (d− 4)(y − 1)−
d
2

+1

Table 2. Scaling functions (up to normalization) of the autoresponse and

autocorrelation of the critical bosonic contact and bosonic pair-contact processes.

where the values of the exponents a and b are listed in table 1. Here the critical value

αc for the pair-contact process is explicitly given by [19]

1

αc
= 2

∫ ∞

0

du
(
e−4uI0(4u)

)d
(8)

where I0 is a modified Bessel function. The dynamical behaviour of the contact process

is independent of α. For the critical bosonic pair-contact process, there is a clustering

transition between a spatially homogeneous state for α < αc and a highly inhomogeneous

one for α > αc where dynamical scaling does not hold. These two transitions are

separated by a multicritical point at α = αc. Since our models do not satisfy detailed

balance, there is no reason why the exponents a and b should cöıncide and our result

a 6= b for the bosonic pair-contact process is perfectly natural.

While the scaling function fR(y) = (y − 1)−d/2 has a very simple form, the

autocorrelator scaling function has an integral representation

fG(y) = G0

∫ 1

0

dθ θa−b(y + 1− 2θ)−d/2 (9)

where the values for a and b are given in table 1 and G0 is a known normalization

constant. The explicit scaling functions are listed up to normalization in table 2 [24].

In this paper, we shall study to what extent their form can be understood from local

scale-invariance.
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This paper is organized as follows. In section 2 we treat the bosonic contact process

in its field-theoretical formulation. The action is split into a Schrödinger-invariant term

S0 and a noise term Sb and we show how the response and correlation functions can

be exactly reduced to certain noiseless three- and four-point response functions. In

this reduction the Bargman superselection rules which follow from the Schrödinger-

invariance of S0 play a central rôle. These tools allow us to predict the reponse-

and correlation functions which will be compared to the exact results of table 2. In

section 3 the same programme is carried out for the bosonic pair-contact process but

as we shall see, the Schrödinger-invariant term S0 of its action is now related to a

non-linear Schrödinger equation. The treatment of this requires an extension of the

usual representation of the Schrödinger Lie-algebra which now includes a dimensionful

coupling constant. The construction is carried out in appendix A. The required n-point

correlation functions coming from this new representation are derived in appendices B

and C. Finally, in section 4 we conclude.

2. The contact process

2.1. Field-theoretical description

The master equation which describes the critical bosonic contact process as defined in

section 1 can be turned into a field-theory in a standard fashion through an operator

formalism which uses a particle annihilation operator a(r, t) and its conjugate a†(r, t),

see for instance [20, 22] for detailed discussion of the technique. Since we shall be

interested in the connected correlator, we consider the shifted field and furthermore

introduce the shifted response field

φ(r, t) := a(r, t)− ρ0

φ̃(r, t) := ā(r, t) = a†(r, t)− 1 (10)

such that 〈φ(r, t)〉 = 0 (our notation implies a mapping between operators and quantum

fields, using the known equivalence between the operator formalism and the path-integral

formulation [23, 22]). As we shall see, these fields φ and φ̃ will become the natural

quasiprimary fields from the point of view of local scale-invariance. We remark that the

response function is not affected by this shift, since

R(r, r′; t, s) =
δ〈a(r, t)〉
δh(r′, s)

=
δ〈φ(r, t)〉
δh(r′, s)

(11)

Then the field-theory action reads, where µ is the reaction rate [25]

S[φ, φ̃] =

∫
dR

∫
du
[
φ̃(2M∂u −∇2)φ− µφ̃2(φ+ ρ0)

]

= S0[φ, φ̃] + Sb[φ, φ̃] (12)

To keep expressions shorter, we have supressed the arguments of φ(R, u) and φ̃(R, u)

under the integrals and we shall also do so often in what follows, if no ambiguity arises.
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The diffusion constant D is related to the ‘mass’ M through D = (2M)−1. We have

decomposed the action as follows:

S0[φ, φ̃] :=

∫
dR

∫
du
[
φ̃(2M∂u −∇2)φ

]
(13)

describes the deterministic,¶ noiseless part whereas the noise is described by

Sb[φ, φ̃] := −µ
∫

dR

∫
du
[
φ̃2(φ+ ρ0)

]
. (14)

quite analogously to what happens in the kinetics of simple magnets, see [12] for details.

In principle, an initial correlator G(r; 0, 0) could be assumed and will lead to a

further contribution Sini to the action. For critical systems, one usually employs a term

of the form Sini,st = − τ0
2

∫
dR (φ(R, 0)−〈φ(R, 0)〉)2, see e.g. [11, 5] but this would have

for us the disadvantage that it explicitly breaks Galilei-invariance. We shall rather make

use of the Galilei-invariance of the noiseless action S0[φ, φ̃] and use as an initial term

[4, 12]

Sini[φ̃] = −1

2

∫
dRdR′ φ̃(R, 0)G(R−R′; 0, 0)φ̃(R′, 0). (15)

Because of the initial condition G(R; 0, 0) = 0, however, Sini[φ̃] = 0 and we shall not

need to consider it any further.

From the action (12), n-point functions can then be computed as usual

〈φ1(r1, t1) . . . φn(rn, tn)〉 =

∫
DφDφ̃ φ1(r1, t1) . . . φn(rn, tn) exp

(
−S[φ, φ̃]

)
(16)

which through the decomposition (12) can be written as an average of the noiseless

theory

〈φ1(r1, t1) . . . φn(rn, tn)〉 =
〈
φ1(r1, t1) . . . φn(rn, tn) exp

(
−Sb[φ, φ̃]

)〉
0

(17)

where 〈. . .〉0 denotes the expectation value with respect to the noiseless theory.

2.2. Symmetries of the noiseless theory

In what follows, we shall need some symmetry properties of the noiseless part described

by the action S0[φ, φ̃] which we now briefly recall. The noiseless equation of motion

for the field φ is a free diffusion-equation 2M∂tφ(x, t) = ∇2φ(x, t). Its dynamical

symmetry group is the well-known Schrödinger-group Sch(d) [26, 27] which acts on

space-time coordinates (r, t) as (r, t) 7→ (r′, t′) = g(r, t) where

t −→ t′ =
αt+ β

γt+ δ
, r −→ r′ =

Rr + vt+ a

γt + δ
; αδ − βγ = 1 (18)

¶ This terminology is used since the equation of motion of φ following from S0 is a partial differential

equation and not a stochastic Langevin equation.
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field scaling dimension mass

φ x M
φ̃ x̃ −M
φ̃2 x̃2 −2M

Υ := φ̃2φ xΥ −M
Σ := φ̃3φ xΣ −2M
Γ := φ̃3φ2 xΓ −M

Table 3. Scaling dimensions and masses of some composite fields.

and where R is a rotation matrix. Solutions φ of the free diffusion equation are carried

to other solutions of the same equation and φ transforms as

φ(r, t) −→ (Tgφ)(r, t) = fg[g
−1(r, t)]φ[g−1(r, t)] (19)

where the companion function fg is known explicitely and contains the so-called ‘mass’

M = (2D)−1 [27, 28]. We list the generators of the Lie algebra sch1 = Lie(Sch(1)) in

one spatial dimension [29]

X−1 = − ∂t
X0 = − t∂t −

1

2
r∂r −

x

2

X1 = − t2∂t − tr∂r − xt−
M
2
r2

Y− 1
2

= − ∂r (20)

Y 1
2

= − t∂r −Mr

M0 = −M
Fields transforming under Sch(d) are characterized by a scaling dimension and a mass.

We list in table 3 some fields which we shall use below. We remark that for free fields

one has

x̃2 = 2x̃ , xΥ = 2x̃+ x , xΣ = 3x̃+ x , xΓ = 3x̃ + 2x (21)

but these relations need no longer hold for interacting fields. On the other hand, from

the Bargman superselection rules (see [30] and below) we expect that the masses of the

composite fields as given in table 3 should remain valid for interacting fields as well.

Throughout this paper, we shall make the important assumption that the fields φ

and φ̃ transform covariantly according to (19) under the Schrödinger group. By analogy

with conformal invariance, such fields are called quasiprimary [8]. For quasiprimary

fields the so-called Bargman superselection rules [30] holds true which state that

〈 φ . . . φ︸ ︷︷ ︸
n

φ̃ . . . φ̃︸ ︷︷ ︸
m

〉0 = 0 unless n = m (22)
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We recall the proof of these in appendix B. Before we consider the consequences of (22),

we recall the well-known result on the form of noise-less n-point functions in ageing

systems.

Since in ageing phenomena, time-translation invariance is broken, we must consider

the subalgebra age1 ⊂ sch1 obtained by leaving out the generator of time-translations

X−1 [31]. Then the n-point function of quasiprimary fields φi, i = 1, . . . n has to satisfy

the covariance conditons [29, 8](
n∑

i=1

X
(i)
k

)
〈ϕ1(r1, t1) . . . ϕn(rn, tn)〉0 = 0 ; k ∈ {0, 1} (23)

(
n∑

i=1

Y (i)
m

)
〈ϕ1(r1, t1) . . . ϕn(rn, tn)〉0 = 0 ; m ∈

{
−1

2
,
1

2

}
(24)

where ϕi stands either for a quasiprimary field φi or a quasiprimary response field

φ̃i. The ϕi are characterized by their scaling dimension xi and their mass Mi. The

generators Xk are then the extension of (20) to n-body operators and the superscript

(i) refers to ϕi. The n-point function is zero unless the sum of all masses vanishes

n∑

i=1

Mi = 0 (25)

which reproduces the Bargman superselection rule (22). It is well-known [29, 8] that the

noiseless two-point function R0(r, r′; t, s) = 〈ϕ1(r, t)ϕ2(r, s)〉0 is completely determined

by the equations (23) and (24) up to a normalization constant.

R0(r, r′; t, s) = R0(t, s) exp

(
−M1

2

(r − r′)2

(t− s)

)
δ(M1 +M2) (26)

where the autoresponse function is given by

R0(t, s) = r0(t− s)− 1
2

(x1+x2)

(
t

s

)− 1
2

(x1−x2)

(27)

This reproduces the expected scaling form (7) together with the scaling function fR(y)

as given in table 2 if we identify

x = x1 = x2, and x = a+ 1 (28)

For the critical bosonic contact process, we read off from table 1 that a = d
2
− 1. Hence

one recovers x = d
2
, as expected for a free-field theory.

2.3. Reduction formulæ

We now show that the Bargman superselection rule (22) implies a reduction of the n-

point function of the full theory to certain correlators of the noiseless theory, which is

described by S0 only. This can be done generalizing the arguments of [12].
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First, for the computation of the response function, we add the term∫
dR

∫
du φ̃(R, u)h(R, u) to the action. As usual the response function is

R(r, r′; t, s) =
〈
φ(r, t)φ̃(r′, s)

〉

=

〈
φ(r, t)φ̃(r′, s) exp

(
−µ
∫

dR

∫
du φ̃2(R, u)(φ(R, u) + ρ0)

)〉

0

=
〈
φ(r, t)φ̃(r′, s)

〉
0

= R0(r, r′; t, s) (29)

where we expanded the exponential and applied the Bargman superselection rule.

Indeed, the two-time response is just given by the response of the (gaussian) noise-

less theory. We have therefore reproduced the exact result of table 2 for the response

function of the critical bosonic contact process.

Second, we have for the correlator

G(r, r′, t, s) =

〈
φ(r, t)φ(r′s) exp

(
−µ
∫

dR

∫
du φ̃2(R, u)φ(R, u)

)

× exp

(
−µρ0

∫
dR

∫
du φ̃2(R, u)

)〉

0

(30)

Expanding both exponentials

exp

(
−µ
∫

dR

∫
du φ̃2(R, u)φ(R, u)

)
=
∞∑

n=0

(−µ)n

n!

(∫
dR

∫
du φ̃2(R, u)φ(R, u)

)n

exp

(
−µρ0

∫
dR

∫
du φ̃2(R, u)

)
=

∞∑

m=0

(−ρ0µ)m

m!

(∫
dR

∫
du φ̃2(R, u)

)m

and using the Bargman superselection rule (22), non-vanishing terms only arise if

2n+ 2m = n + 2 or else

n+ 2m = 2 (31)

This can only be satisfied for n = 0 and m = 1 or for n = 2 and m = 0. The full noisy

correlator hence is the sum of only two terms

G(r, r′; t, s) = G1(r, r′; t, s) +G2(r, r′; t, s) (32)

where the first contribution involves a three-point function of the composite field φ̃2 of

scaling dimension x̃2 (see table 3)

G1(r, r′; t, s) = −µρ0

∫
dR

∫
du
〈
φ(r, t)φ(r′, s)φ̃2(R, u)

〉
0

(33)

whereas the second contribution comes from a four-point function and involves the

composite field Υ (see table 3)

G2(r, r′; t, s) =
µ2

2

∫
dRdR′

∫
dudu′ 〈φ(r, t)φ(r′, s)Υ(R, u)Υ(R′, u′)〉0 (34)
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We see that the connected correlator is determined by three- and four-point functions of

the noiseless theory. We now use the symmetries of that noise-less theory to determine

the two-, three,- and four-point functions as far as possible.

2.4. Correlator with noise

We consider G1(r, r′, t, s) first. The appropriate three-point function is given in

appendix B, equation (B24):

〈φ(r, t)φ(r′, s)φ̃2(R, u)〉0 = (t− s)x− 1
2
x̃2(t− u)−

1
2
x̃2(s− u)−

1
2
x̃2

× exp

(
−M

2

(r −R)2

t− u − M
2

(r′ −R)2

s− u

)
Ψ3(u1, v1)Θ(t− u)Θ(s− u) (35)

with

u1 =
u

t
· [(s− u)(r −R)− (t− u)(r′ −R)]2

(t− u)(s− u)2

v1 =
u

s
· [(s− u)(r −R)− (t− u)(r′ −R)]2

(t− u)2(s− u)
(36)

and an undetermined scaling function Ψ3. The Θ-functions have been introduced

by hand because of causality but this could be justified through a more elaborate

argument along the lines of [31]. Introduced into (33), this gives the general form for

the contribution G1(r, r′; t, s). We concentrate here on the autocorrelator, i.e. r = r′

and find, with y = t/s

G1(t, s) = −µρ0 s
−x− 1

2
x̃2+ d

2
+1 · (y − 1)−(x− 1

2
x̃2)

×
∫ 1

0

dθ (y − θ)− 1
2
x̃2(1− θ)− 1

2
x̃2

∫

Rd
dR exp

(
−M

2
R2 y + 1− 2θ

(y − θ)(1− θ)

)

×H
(
θ

y

R2(y − 1)2

(y − θ)(1− θ)2
, θ

R2(y − 1)2

(y − θ)2(1− θ)

)
(37)

where H is an undetermined scaling function. Very much in the same way, we find for

G2(t, s)

G2(t, s) =
µ2

2
s−x−xΥ+d+2 · (y − 1)−(x−xΥ)

∫ 1

0

dθ

∫ 1

0

dθ′ (y − θ)− 1
2
xΥ(1− θ)− 1

2
xΥ

× (y − θ′)− 1
2
xΥ(1− θ′)− 1

2
xΥ

∫

R2d

dRdR′ exp

(
−M

2

R2

1− θ −
M
2

R′2

1− θ′
)

×Ψ4 (ũ3(R, θ,R′, θ′), ũ4(R, θ,R
′, θ′), ṽ3(R, θ,R′, θ′), ṽ4(R, θ,R′, θ′)) (38)

where Ψ4 is another undetermined function and the functions ũ3, ũ4, ṽ3, ṽ4 can be worked

out from the appropriate expressions (B26) in the appendix B by the replacements

r3 − r2 → R, r4 − r2 → R′, t2 → 1, t1 → y, t3 → θ, t4 → θ′ (remember that r1 = r2)

As we have a free-field theory for the critical bosonic contact process, we expect

from table 1 and eq. (28) that x = x̃ = d/2 and hence the following scaling dimensions
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for the composite fields

x̃2 = d, xΥ =
3

2
d (39)

Consequently, the autocorrelator takes the general form

G(t, s) = s1−d/2g1(t/s) + s2−dg2(t/s) (40)

For d larger than the lower critical dimension d∗ = 2, the second term merely furnishes a

finite-time correction. On the other hand, for d < d∗ = 2, it would be the dominant one

and we can only achieve agreement with the known exact result if we assume Ψ4 = 0. In

what follows, we shall discard the scaling function g2 and shall concentrate on showing

that our expressions for g1 are compatible with the exact results given in table 2.

In order to do so, we choose the following special form for the function Ψ3

Ψ3(u1, v1) = Ξ

(
1

u1

− 1

v1

)
(41)

where Ξ remains an arbitrary function. Then we are back in the case already treated in

[12]. We find

G1(t, s) = − µρ0s
d
2

+1−x− 1
2
x̃2(y − 1)

1
2
x̃2−x− d2

×
∫ 1

0

dθ [(y − θ)(1− θ)] d2− 1
2
x̃2φ1

(
y + 1− 2θ

y − 1

)
(42)

where the function φ1 is defined by

φ1(w) =

∫
dR exp

(
−Mw

2
R2

)
Ξ(R2) (43)

As in [12] we choose

φ1(w) = φ0,cw
−1−a. (44)

This form for φ1(w) guarantees that the three-point response function

〈φ(r, t)φ(r, s)φ2(r′, u)〉0 is nonsingular for t = s. We have thus

G(t, s) = G1(t, s) = s−bfG

(
t

s

)
(45)

with

fG(y) = − µρ0φ0,c

∫ 1

0

dθ (y + 1− 2θ)−
d
2

=
2µρ0φ0,c

d

(
(y − 1)−

d
2

+1 − (y + 1)−
d
2

+1
)

(46)

and we have reproduced the corresponding entry in table 2 for the critical bosonic

contact process.+

+ We remark that for 2 < d < 4, the same form of the autocorrelation function is also found in the

critical voter-model [32].
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3. The pair-contact process

3.1. Field-theoretical description and reduction formula

For the pair-contact process we have two different cases, namely the case α < αc and

the case at criticality α = αc. The following considerations apply to both cases and we

shall for the moment leave the value of α arbitrary and only fix it at a later state.

The action for the pair-contact process on the critical line is [25, eq. (30)]

S[a, ā] =

∫
dR

∫
du
[
ā(2M∂t −∇2)a− αā2a2 − µā3a2

]
(47)

As before, see eq. (10), we switch to the quasiprimary fields φ(r, t) = a(r, t) − ρ0 and

φ̃(r, t) = ā(r, t). Then the action becomes

S[φ, φ̃] =

∫
dR

∫
du
[
φ̃(2M∂t −∇2)φ− αφ̃2φ2 − αρ2

0φ̃
2−

− 2αρ0φ̃
2φ− µφ̃3φ2 − 2µρ0φ̃

3φ− µρ2
0φ̃

3
]

= S0[φ, φ̃] + Sb[φ, φ̃] (48)

Also in this model, similarly to the treatment of section 2, a decomposition of the action

into a first term with a non-trivial dynamic symmetry and a remaining noise term is

sought such that the correlators and responses can be reexpressed in terms of certain

n-point functions which only depend on S0. The first term reads

S0[φ, φ̃] :=

∫
dr

∫
dt
[
φ̃(2M∂t −∇2)φ− αφ̃2φ2

]
. (49)

and we derive its Schrödinger-invariance in appendix A. The remaining part is the noise-

term which reads

Sb[φ, φ̃] =

∫
dR

∫
du
[
−αρ2

0φ̃
2 − 2αρ0φ̃

2φ− µφ̃3φ2 − 2µρ0φ̃
3φ− ρ2

0φ̃
3
]

(50)

Also in this case the Bargman superselection rule (22) holds true. This means that we

can proceed now in a very similar way as before.∗ First we have to check which n-point

functions contribute to the response and correlation funtion. We rewrite exp(−Sb[φ, φ̃])

as a product of five exponentials and expand each factor. The indices of the sums are

denoted by ki for the i-th term in (50), for instance for the first term

exp

(
−
∫

dR

∫
du αρ2

0φ̃
2(R, u)

)
=

∞∑

k1=0

1

k1!

(
−
∫

dR

∫
du αρ2

0φ̃
2(R, u)

)k1

(51)

For the response function again only the first term of each sum contributes, that is

R(r, r′; t, s) = R0(r, r′; t, s) (52)

∗ This argument works provided each term in Sb contains at least one response field φ̃ more than

order-parameter fields φ.
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contr. k1 k2 k3 k4 comp.field scaling dim. 3-point/4-point

G1(t, s) 1 0 0 0 φ̃2 x̃2 3-point

G2(t, s) 0 2 0 0 Υ xΥ 4-point

G3(t, s) 0 0 2 0 Γ xΓ 4-point

G4(t, s) 0 0 0 1 Σ xΣ 3-point

G5(t, s) 0 1 1 0 Υ and Γ xΥ, xΓ 4-point

Table 4. Contributions to the correlation function: The first column shows how we

denote the contribution, the next four columns give the value of the corresponding

indices. The sixth column lists the composite field(s) involved, the seventh column

how we denote the scaling dimension of that field. The last column lists whether it is

a three- or four-point function that contributes.

is noise-independent. For the correlation function, we have the condition 2k1 + 2k2 +

3k3 + 3k4 + 3k5 = 2 + k2 + 2k3 + k4 or simply

2k1 + k2 + k3 + 2k4 + 3k5 = 2 (53)

which implies immediately that

k5 = 0. (54)

In table 4 we list the five differenent contributions to the correlation function. We

denote also the form of the composite field, its scaling dimension and whether it is a

three- or four-point function which contributes. A short inspection of the general form

of the n-points function given in the appendix B shows that the contributions have the

form (with y = t/s)

G1(t, s) = s−x−
1
2
x̃2+ d

2
+1f1(y) , G4(t, s) = s−x−

1
2
xΣ+ d

2
+1f4(y) (55)

for the 3-point functions and

G2(t, s) = s−x−xΥ+d+2f2(y) , G3(t, s) = s−x−xΓ+d+2f3(y)

G5(t, s) = s−x−
1
2
xΥ− 1

2
xΓ+d+2f5(y)

for the four-point functions. The scaling functions fi(y) involve an arbitrary functions

Ψ̃i which are not fixed by the symmetries (see appendix B for details). As we do not have

a free-field theory in this case we can not make any asumptions about the value of the

scaling dimensions of the composite fields. Therefore we do not know which terms will

be the leading ones in the scaling regime. However, it turns out that the term G1(t, s)

alone can reproduce our result correctly. Thus we set the scaling functions fn=0 with

n = 2, . . . 5 analogously to the last section. We now concentrate on

G1(t, s) = αρ2
0

∫
dR

∫
du
〈
φ(r, t)φ(r, s)φ̃2(R, u)

〉
0

(56)
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3.2. Symmetries of the noiseless theory

As in the last chapter, we require for the calculation of the two- and three-point functions

the symmetries of the following non-linear ‘Schrödinger equation’ obtained from (49)

2M∂tφ(x, t) = ∇2φ(x, t) + F(φ, φ̃) (57)

with a nonlinear potential

F(φ, φ̃) = −gφ2(x, t)φ̃(x, t) (58)

While for a constant g the symmetries of this equation are well-known, it was pointed out

recently that g rather should be considered as a dimensionful quantity and hence should

transform under local scale-transformations as well [17]. This requires an extension of

the generators used so far and we shall give this in appendix A. The computation of

the n-point functions covariant with respect to these new generators is given in the

appendices B and C. In doing so, we have for technical simplicity assumed that to each

field ϕi there is one associated coupling constant gi and only at the end, we let

g1 = . . . = gn =: g (59)

Therefore, from eq. (52) we find for the response function (see (C12))

R0(r, r′; t, s) = (t− s)− 1
2

(x1+x2)

(
t

s

)− 1
2

(x1−x2)

× exp

(
−M

2

(r − r′)2

t− s

)
Ψ̃2

(
t

s
· t− s
g1/y

,
g

(t− s)y
)

(60)

with an undetermined scaling function Ψ̃2. This form is cleary consistent with our

results in table 2 if we identify

x := x1 = x2 = a+ 1 =
d

2
, Ψ̃2 = const. (61)

This holds true for both α < αc and α = αc. In distinction with the bosonic contact

process, the symmetries of the noiseless part S0 do not fix the response function

completely but leave a certain degree of flexibility in form of the scaling function Ψ̃2.

For the calculation of the correlator we need from eq. (56) the following three-point

function 〈
φ(r, t)φ(r′, s)φ̃2(R, u)

〉
0

= (t− s)x− 1
2
x̃2(t− u)−

1
2
x̃2(s− u)−

1
2
x̃2

× exp

(
−M

2

(r −R)2

t− u − M
2

(r′ −R)2

s− u

)
Ψ̃3(u1, v1, β1, β2, β3) (62)

with

u1 =
u

t
· [(s− u)(r −R)− (t− u)(r′ −R)]2

(t− u)(s− u)2
(63)
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v1 =
u

s
· [(s− u)(r −R)− (t− u)(r′ −R)]2

(t− u)2(s− u)
(64)

β1 =
1

s2
· α1/y

(t− u)2
, β2 =

1

s2
· α1/y

(s− u)2
, β3 = α1/ys2 (65)

s2 =
1

t− u +
1

u
(66)

We choose the following realisation for Ψ̃3

Ψ̃3(u1, v1, β1, β2, β3) = Ξ

(
1

u1
− 1

v1

)[
−(
√
β1 −

√
β2)
√
β3

β3 −
√
β2β3

](a−b)
(67)

where the scaling function Ξ was already encountered in eq. (41) for the bosonic contact

process. We now have to distinguish the two different cases α < αc and α = αc. For

the first case α < αc, we have a − b = 0 so that the last factor in (67) disappears and

we simply return to the expressions already found for the bosonic contact process, in

agreement with the known exact results. However, at the multicritical point α = αc
we have a − b 6= 0 and the last factor becomes important. We point out that only the

presence or absence of this factor distinguishes the cases α < αc and α = αc.

If we substitute the values for β1, β2 and β3, Ψ̃3 becomes

Ψ̃3(u1, v1, β1, β2, β3) = Ξ

(
1

u1
− 1

v1

)[
θ(y − 1)

(y − θ)(1− θ)

](a−b)
(68)

This factor does not involve R so that we obtain in a similar way as before

G1(t, s) = s−b(y − 1)(b−a)−a−1

∫ 1

0

dθ [(y − θ)(1− θ)]a−b

× φ1

(
y + 1− 2θ

y − 1

)[
θ(y − 1)

(y − θ)(1− θ)

]a−b
(69)

where we have identified

x̃2 = 2(b− a) + d (70)

G1(t, s) reduces to the expression (9) if we choose the same expression for φ1(w) as

before. We have thus reproduced all scaling functions correctly.

4. Conclusions

The objective of our investigation has been to test further the recent proposal of using

the non-trivial dynamical symmetries of a part of the Langevin equation in order to

derive properties of the full stochastic non-equilibrium model. To this end, we have

compared the known exact results for the two-time autoresponse and autocorrelation

functions in two specific models, see table 2, with the expressions derived from the

standard field-theoretical actions which are habitually used to describe these systems.
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This is achieved through a decomposition of the action into two parts S = S0 + Sb such

that (i) S0 is Schrödinger-invariant and the Bargman superselection rules hold for the

averages calculated with S0 only and (ii) the remaining terms contained in Sb are such

that a perturbative expansion terminates at a finite order, again due to the Bargman

superselection rules. The two models we considered, namely the bosonic variants of the

critical contact and pair-contact processes, satisfy these requirements and are clearly

in agreement with the predictions of local scale-invariance (LSI). In particular, our

identification eq. (10) of the correct quasi-primary order-parameter and reponse fields

is likely to be useful in more general systems.

Specifically, we have seen the following.

(i) In the bosonic contact process, the symmetries of the noiseless part S0 of the action

is described in terms of the representation of the Schrödinger-group relevant for the

free diffusion equation.

In consequence, the form of the two-time response function is completely fixed by

LSI and in agreement with the known exact result. The connected autocorrelator is

exactly reducible to certain noiseless three- and four-point functions. Schrödinger-

invariance alone cannot determine these but the remaining free scaling functions

can be chosen such that the known exact results can be reproduced.

(ii) For the bosonic pair-contact process, the symmetries of the partial action S0 are

described in terms of a new representation pertinent to a non-linear Schrödinger

equation. This new representation, which we have explicitly constructed, involves a

dimensionful coupling constant g. Therefore even the response function is no longer

fully determined. As for the autocorrelation function, which again can be exactly

reduced to certain three- and four-point functions calculable from the action S0,

the remaining free scaling functions can be chosen as to fully reproduce the known

exact results.

The consistency of the predictions of LSI with the exact results of these models furnishes

further evidence in favour of an extension of the well-known dynamical scaling towards

a (hidden) local scale-invariance which influences the long-time behaviour of slowly

relaxing systems. An essential ingredient were the Bargman superselection rules which

at present can only be derived for a dynamical exponent z = 2. An extension of our

method to models with z 6= 2 would first of all require a way to generalize the Bargman

superselection rules. We hope to return to this open problem elsewhere.
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Appendix A. Representations of age1 and sch1 for semi-linear Schrödinger

equations

We discuss the Schrödinger-invariance of semi-linear Schrödinger equations of the form

(57) and especially with non-linearities of the form (58). With respect to the well-

known Schrödinger-invariance of the linear Schrödinger equation, the main difference

comes from the presence of a dimensionful coupling constant g of the non-linear term.

It is enough to consider explicitly the one-dimensional case which simplifies the

notation. In one spatial dimension, the Schrödinger algebra sch1 is spanned by the

following generators

sch1 =
〈
X−1, X0, X1, Y−1/2, Y1/2,M0

〉
(A1)

while its subalgebra age1 is spannned by

age1 =
〈
X0, X1, Y−1/2, Y1/2,M0

〉
(A2)

These generators for g = 0 are listed explicitly in eq. (20) and the non-vanishing

commutators can be written compactly

[Xn, Xn′] = (n− n′)Xn+n′

[Xn, Ym] = (n/2−m)Yn+m

[Y 1
2
, Y− 1

2
] = M0 (A3)

where n, n′ ∈ {±1, 0} and m ∈ {± 1
2
} (see [8] for generalizations to d > 1).

Following the procedure given in [17], we now construct new representations of age1

and of sch1 which takes into account a dimensionful coupling g with scaling dimension

ŷ as follows.

(i) The generator of space-translations reads simply

Y− 1
2

= −∂r. (A4)

(ii) The generator of scaling transformations is assumed to take the form

X0 = −t∂t −
1

2
r∂r − ŷg∂g −

x

2
(A5)

where ŷ is the scaling dimension of the coupling g.

(iii) For sch1 we also keep the usual generator of time-translations

X−1 = −∂t. (A6)

(iv) The remaining generators we write in the most general form adding a possible

g-dependence through yet unknown functions L,Q, P .

M0 = −M− L(t, r, g)∂g

Y 1
2

= − t∂r −Mr −Q(t, r, g)∂g (A7)

X1 = − t2∂t − tr∂r −
M
2
r2 − xt− P (t, r, g)∂g
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The representation given by eqs. (A4,A5,A6,A7) must satisfy the commutation relations

(A3) for age1 or sch1. From these conditions the undetermined functions L,Q and P

are derived. A straigthforward but slightly longish calculation along the lines of [17]

shows that for age1, one has

L = 0 , Q = 0 , P = p0(M) tŷ+1 m (t/g) (A8)

Here, m(v) is an arbitrary differentiable function and p0(M) aM-dependent constant.

We shall use the shorthand v = tŷ/g in what follows.

In consequence, for age1 only the generator X1 is modified with respect to the

representation eq. (20) and this is described in by the function m(v) and the constant

p0(M).

On the other hand, for sch1 the additional condition [X1, X−1] = 2X0 leads to

p0 = 2ŷ, m(v) = v−1.

Hence, the new representations are still given by eq. (20) with the only exception

of X1 which reads

age1 : X1 = −t2∂t − tr∂r − p0(M)tŷ+1m
(
tŷ/g

)
∂g −

Mr2

2
− xt

sch1 : X1 = −t2∂t − tr∂r − 2ŷtg∂g −
Mr2

2
− xt (A9)

We require in addition the invariance of linear Schrödinger equation (2M∂t − ∂2
r )φ = 0

with respect to this new representation. In terms of the Schrödinger operator Ŝ this

means

[Ŝ,X ] = λŜ ; where Ŝ := 2M0X−1 − Y 2
−1/2 (A10)

and X is one of the generators of age1 eq. (A2) or of sch1 eq. (A1). Obviously, λ = 0

if X ∈ 〈X−1, Y±1/2,M0〉 and λ = −1 if X = X0. Finally, for X1 we have from the

definition of the Schrödinger operator Ŝ[
Ŝ, X1

]
= − 4M0X0 +

(
Y1/2Y−1/2 + Y−1/2Y1/2

)

= − 2tŜ +M (1− 2x− 4ŷg∂g) (A11)

where in the second line the explicit forms eqs. (A4,A5,A6,A7) were used. This also

holds for all those representations of age1 for which there exists an operator X−1 6∈ age1

such that [X1, X−1] = 2X0 and we shall restrict our attention to those in what follows.

On the other hand, the direct calculation of the same commutator with the explicit form

(A9) gives for age1

[
Ŝ, X1

]
= −2tŜ +M (1− 2x)− 2Mp0(M)tŷ [(ŷ + 1)m(v) + ŷvm′(v))] ∂g (A12)

Besides λ = −2t, the consistency between these two implies for m(v) the equation

v

(
(ŷ + 1)m(v) + ŷv

dm(v)

dv

)
=

2ŷ

p0
(A13)
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with the general solution

m(v) =
2ŷ

p0

1

v
+
m0

p0
v−1−1/ŷ (A14)

where m0 = m0(M) is an arbitrary constant. The larger algebra sch1 is recovered from

this if we set p0 = 2ŷ and m0 = 0. Hence the final form for the generator X1 in the

special class of representations of the algebra age1 defined above is

X1 = −t2∂t − tr∂t − 2ŷtg∂g −m0g
1+1/ŷ∂g −

Mr2

2
− xt (A15)

Summarizing, this class of representations of age1 we constructed is characterized by

the triplet (x,M, m0), whereas for sch1, the same triplet is (x,M, 0).

Finally, to make X1 a dynamical symmetry on the solutions Φ = Φg(t, r) of the

Schrödinger equation ŜΦg = 0 we must impose the auxiliary condition (1 − 2x −
4ŷg∂g)Φg = 0 which leads to

Φg(t, r) = g(1−2x)/(4ŷ)Φ(t, r) (A16)

In particular, we see that if x = 1/2, we have a representation of age1 without any

further auxiliary condition.

We now look for those semi-linear Schrödinger equations of the form

ŜΦ = F (t, r, g,Φ,Φ∗) for which the representations of age1 or sch1 as given by

eqs. (A4,A5,A6,A7) and with X1 as in (A15) act as a dynamical symmetry. The non-

linear potential F is known to satisfy certain differential equations which can be found

using standard methods, see [33],[17, eq. (2.8)]. In our case these equations read

X−1 : ∂tF = 0 (A17)

Y− 1
2

: ∂rF = 0 (A18)

M0 : (Φ∂Φ − Φ∗∂Φ∗ − 1)F = 0 (A19)

Y 1
2

: [t∂rF −Mr(Φ∂Φ − Φ∗∂Φ∗ − 1)]F = 0 (A20)

X0 :

[
t∂t +

1

2
r∂r + ŷg∂g + 1− x

2
(Φ∂Φ + Φ∗∂Φ∗ − 1)

]
F = 0 (A21)

X1 :
[
t2∂t + tr∂r + 2t(ŷg∂g + 1) +m0g

1+1/ŷ∂g

− Mr2

2
(Φ∂Φ − Φ∗∂Φ∗ − 1)− xt(Φ∂Φ + Φ∗∂Φ∗ − 1)

]
F = 0 (A22)

We first solve these for sch1. From the conditions eqs. (A17,A18,A19,A20,A21) we

easily find

F = Φ (ΦΦ∗)1/x f
(
gx (ΦΦ∗)ŷ

)
(A23)

where f is an arbitrary differentiable function. Two comments are in order:
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(i) For a dimensionless coupling g, that is ŷ = 0, we have x = 1/2. Then the scaling

function reduces to a g-dependent constant and we recover the standard form for

the non-linear potential F as quoted ubiquitously in the mathematical literature,

see e.g. [34].

(ii) Taking into account the generator X1 from eq. (A22) as well does not change

the result. Hence in this case translation-, dilatation- and Galilei-invariance are

indeed sufficient for the special Schrödinger-invariance generated by X1, see also

[31]. We point out that traditionnally an analogous assertion holds for conformal

field-theory, see e.g. [1], but counterexamples are known where in local theories

scale- and translation-invariance are not sufficient for conformal invariance [35, 36].

Second, we now consider the representation of age1 where X1 is given by (A15).

We have the conditions eqs. (A18,A19,A20,A21,A22). We write F = ΦF(ω, t, g) with

ω = ΦΦ∗ and the remaining equations coming from X0 and X1 are

(t∂t + ŷg∂g − xu∂u + 1)F = 0
(
t2∂t +m0g

1+1/ŷ∂g
)
F = 0 (A24)

with the final result

F = Φ (ΦΦ∗)1/x f

(
(ΦΦ∗)ŷ

[
g−1/ŷ − m0

ŷ t

]−xŷ)
(A25)

and where f is the same scaling function as encountered before for sch1. Finally, the

result for the general representations of age1 which depend on an arbitrary function

m(v) are not particularly inspiring and will not be detailed here. We observe

(i) For m0 = 0, this result is identical to the one found for sch1.

(ii) Even for m0 6= 0, the form of the non-linear potential reduces in the long-time limit

t→∞ to the one found in eq. (A23) for the larger algebra sch1.

We can summarize the main results of this appendix as follows.

Proposition. Consider the following generators

M0 = −M , Y−1/2 = −∂r , Y1/2 = −t∂r −Mr , X−1 = −∂t
X0 = − t∂t −

1

2
r∂r − ŷg∂g −

x

2
(A26)

X1 = − t2∂t − tr∂t − 2ŷtg∂g −m0g
1+1/ŷ∂g −

Mr2

2
− xt

where x,M, m0 are parameters. Define the Schrödinger operator Ŝ := 2M0X−1−Y 2
−1/2.

Then:

(i) the generators 〈X0,1, Y±1/2,M0〉 form a representation of the Lie algebra age1. If

furthermore m0 = 0, then 〈X0,±1, Y±1/2,M0〉 is a representation of the Lie algebra sch1.

(ii) These representations are dynamical symmetries of the Schrödinger equation ŜΦ =
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0, under the auxiliary condition (1− 2x− 4ŷg∂g)Φ = 0.

(iii) For the Schrödinger-algebra sch1 and also in the asymptotic limit t → ∞ for

the ageing algebra age1, the semi-linear Schrödinger equation invariant under these

representations has the form

ŜΦ = Φ (ΦΦ∗)1/x f
(
gx (ΦΦ∗)ŷ

)
(A27)

where f is an arbitrary differentiable function.

This general form includes our potential (58) since the scaling dimension ŷ is a

remaining free parameter in our considerations

Appendix B. The n-point function

In this appendix we use the generators (A26) from appendix A to find the most general

form of the n-point functions compatible with the symmetries for n ≥ 3. We shall do

this for the case m0 = 0 only, as this will be enough to reproduce the exact results of

table 2. The case n = 2 needs a special treatment and is presented in appendix C.

We restrict ourselves to the case d = 1 for simplicity, but the generalisation to

arbitrary dimension will be obvious. First we introduce some notation. We fix an

arbitrary index k and define the shifted coordinates

r̃b := rb − rk, t̃b := tb − tk for j 6= k and t̃k := tk (B1)

In the sequel, we will adopt the following convention: The index a always runs from 1

to n, the index b runs from 1 to n but skips k. The prime on a sum means that the

index k is left out, viz.

n∑

i=1

′

Ai :=

n∑

i=1
i6=k

Ai (B2)

We denote the n-point function by

F ({ra}, {ta}, {ga}) := 〈ϕ1(r1, t1) . . . ϕn(rn, tn)〉 (B3)

where we assume one coupling constant for each field. This quantity has to satisfy the

following four linear partial differential equations
(

n∑

i=1

X
(i)
k

)
F ({ra}, {ta}, {ta}) = 0 ; k ∈ {0, 1} (B4)

(
n∑

i=1

Y (i)
m

)
F ({ra}, {ta}, {ta}) = 0 ; m ∈

{
−1

2
,

1

2

}
(B5)
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To solve these equations, we use the method of characteristics [37]. We solve (B4) first

for spatial translation invariance with the result

F ({ra}, {ta}, {ga}) = F̃ ({r̃b}, {ta}, {ga}) (B6)

with a new function F̃ with 3n− 1 arguments. In order to solve for X0 we set

x =
1

2

n∑

i=1

xi (B7)

and make the ansatz

F̃ ({r̃b}, {ta}, {ga}) =
∏

i<j

(ti − tj)−ρijG({r̃b}, {t̃a}, {ga}) (B8)

where the parameters ρij and the function G remain to be determined. We also change

to the new independent temporal variables t̃a. Then one finds after a short calculation
(

n∑

i=1

t̃i∂t̃i +
1

2

n∑

i=1

′

r̃i∂r̃i +
n∑

i=1

ŷigi∂gi

)
G({r̃b}, {t̃a}, {ga}) = 0 (B9)

together with the condition

x =
∑

i<j

ρij. (B10)

Before proceeding to solve this equation, we turn to the generators Y1/2. We find for

the function G({r̃b}, {t̃a}, {ga})
(

n∑

i=1

′

t̃i∂r̃i +

n∑

i=1

′

Mir̃i + rk

(
n∑

i=1

Mi

))
G({r̃b}, {t̃a}, {ga}) = 0. (B11)

Since G({r̃b}, {t̃a}, {ga}) does not depend on rk, we recover the Bargman superselection

rule

n∑

i=1

Mi = 0 (B12)

as expected. For G({r̃b}, {t̃a}, {ga}) we make another ansatz:

G({r̃b}, {t̃a}, {ga}) = exp

(
−

n∑

i=1

′Mi

2

r̃2
i

t̃i

)
H({r̃b}, {t̃a}, {ga}) (B13)

where the function H({r̃b}, {t̃a}, {ga}) remains to be determined. With (B12) and

(B13), equation (B11) reduces to

(
n∑

i=1

′

t̃i∂r̃i

)
H({r̃b}, {t̃a}, {ga}) = 0. (B14)
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We retake (B9) and introduce the ansatz (B13). This yields
(

n∑

i=1

t̃i∂t̃i +
1

2

n∑

i=1

′

r̃i∂r̃i +
n∑

i=1

ŷigi∂gi

)
H({r̃b}, {t̃a}, {ga}) = 0 (B15)

The last equation for H({r̃b}, {t̃a}, {ga}) we obtain from X1. Using the ansatz (B8)

yields an equation for G(
n∑

i=1

t̃2i ∂t̃i +

n∑

i=1

′

t̃ir̃i∂r̃i +
1

2

n∑

i=1

′

Mir̃
2
i + 2

n∑

i=1

′

ŷit̃igi∂gi + rk

(
n∑

i=1

′

t̃i∂r̃i +

n∑

i=1

′

r̃iMi

)

+2t̃k

(
n∑

i=1

′

t̃i∂t̃i +
1

2

n∑

i=1

′

r̃i∂ri +

n∑

i=1

′

ŷigi∂gi

))
G({r̃b}, {t̃a}, {ga}) = 0. (B16)

Together with the condition

∑

i<j

(ti + tj) =

n∑

i=1

tixi (B17)

which is satisfied if we choose the parameters ρij such that

x1 = ρ12 + ρ13 + ρ14 + ρ15 + . . .+ ρ1n

x2 = ρ12 + ρ23 + ρ24 + ρ25 + . . .+ ρ2n

x3 = ρ13 + ρ23 + ρ34 + ρ35 + . . .+ ρ3n (B18)
...

...
...

...

xn = ρ1n + ρ2n + ρ3n + ρ4n + . . .+ ρn−1n

Here a few remarks are in order. The above system is compatible with (B10), as can be

see be adding all equations. Also, this system is always solvable for n ≥ 3, as for n ≥ 4,

it is underdetermined and for n = 3 the correponding determinant does not vanish ].

Lastly, we often have the case x1 = x2 =: x and x3 = . . . = xn =: x̃. In this case, we

can set

ρ12 = x− n−2
2
x̃ ; ρ2i = 1

2
x̃, ρ1i = 1

2
x̃ for i = 3, . . . , n (B19)

and ρij = 0 for all the remaining ρij. We still have to rewrite equation (B16) in terms

of the variables {r̃b} and {t̃a}. Here we take equations (B9) and (B11) and the ansatz

(B13) into account and get for H({r̃b}, {t̃a}, {ga})
(

n∑

i=1

′

t̃2i ∂t̃i − t̃2k∂tk +
n∑

i=1

′

t̃ir̃i∂r̃i + 2
n∑

i=1

′

ŷit̃igi∂gi

)
H({r̃b}, {t̃a}, {ga}) = 0. (B20)

We thus have to solve the homogenous equations (B14),(B15) and (B20). This will

eliminate three more variables and yields

F ({ra}, {ta}, {ga}) =
∏

i<j

(ti − tj)−ρij exp

(
−1

2

n∑

i=1

′

Mi
(ri − rk)2

ti − tk

)

] This system is not solvable for n = 2 when x1 6= x2. This case is considered in appendix C.
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× Ψ̃n ({uc}, {vc}, {βa}) (B21)

with an arbitrary function Ψ̃n, which depends on 3n−4 variables. Here the index c runs

from 1 to n but skips k and another arbitrarily fixed index r 6= k, and the expressions

uc, vc and βa are given by

uc =
tk ((rc − rk)(tr − tk)− (rr − rk)(tc − tk))2

(tc − tk)(tr − tk)2tc

vc =
tk ((rc − rk)(tr − tk)− (rr − rk)(tc − tk))2

(tr − tk)(tc − tk)2tr

βk = gk
(1/ŷk)

(
tr

(tr − tk)tk

)
, βb = gb

(1/ŷb)

(
tk(tb − tk)2

(tr − tk)tr

)
(B22)

We remind the reader of our convention that the index c runs from 1 to n skipping r

and k and that the index b runs from 1 to n skipping only k.

In higher dimensions rotational invariance has to be satisfied as well and then the

generalization to arbitrary d is straightforward.

If we consider instead the algebra age1 with dimensionless couplings gi we merely

have to make the replacement

Ψ̃n ({uc}, {vc}, {βa}) −→ Ψn ({uc}, {vc}) (B23)

where Ψn is also an arbitrary function such that only the dependence on {βa} drops

out.

Finally, we explicitely list the three- and four-point functions in the form in which

they are needed in the main text. The three-point function with fixed indices r = 2 and

k = 3 and the special situation (B19) assumed reads

F ({ra}, {ta}, {ga}) = (t1 − t2)−(x− 1
2
x̃)(t1 − t3)−

1
2
x̃(t2 − t3)−

1
2
x̃ (B24)

× exp

(
−1

2

2∑

i=1

Mi
(ri − r3)2

ti − t3

)
Ψ̃n ({uc}, {vc}, {βa})

with

u1 =
t3
t1

[(r1 − r3)(t2 − t3)− (r2 − r3)(t1 − t3)]2

(t1 − t3)(t2 − t3)2

v1 =
t3
t2

[(r1 − r3)(t2 − t3)− (r2 − r3)(t1 − t3)]2

(t1 − t3)2(t2 − t3)
(B25)

β1 = g1
1/ŷ1

t3(t1 − t3)2

(t2 − t3)t2
, β2 = g2

1/ŷ2
t3(t2 − t3)

t2

β3 = g3
1/ŷ3

t2
t3(t2 − t3)

The four point function with r = 1 and k = 2 in the special situation (B19) reads

F ({ra}, {ta}, {ga}) = (t1 − t2)−(x−x̃)(t1 − t3)−
1
2
x̃(t1 − t4)−

1
2
x̃(t2 − t3)−

1
2
x̃

× (t2 − t4)−
1
2
x̃ exp

(
−1

2

3∑

i=1

Mi
(ri − r4)2

ti − t4

)
Ψ̃n ({uc}, {vc}, {βa})
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with

u3 =
t2
t3

[(r3 − r2)(t1 − t2)− (r1 − r2)(t3 − t4)]2

(t3 − t2)(t1 − t2)2

u4 =
t2
t4

[(r4 − r2)(t1 − t2)− (r1 − r2)(t4 − t2)]2

(t4 − t2)(t1 − t2)2

v3 =
t2
t1

[(r3 − r2)(t1 − t2)− (r1 − r2)(t3 − t2)]2

(t1 − t2)(t3 − t2)2
(B26)

v4 =
t2
t1

[(r4 − r2)(t1 − t2)− (r1 − r2)(t4 − t2)]2

(t1 − t2)(t4 − t2)2

β1 = g1
1/ŷ1

t2(t1 − t2)

t1
, β2 = g2

1/ŷ2
t1

(t1 − t2)t2

β3 = g3
1/ŷ3

t2(t3 − t2)2

t1(t1 − t2)
, β4 = g4

1/ŷ4
t2(t4 − t2)2

(t1 − t2)t1

Appendix C. The two-point function

In this appendix we calculate the two-point function, which was not included in the

treatment of appendix B. Again, we only treat the case m0 = 0. Apart from the

generator X1, the calculations are similar to those done in appendix B, so we only give

the essential steps. First we define

τ := t1 − t2 , r := r1 − r2 (C1)

and then we proceed as follows. We solve for M0, Y−1/2, Y1/2, X0 in exactly the same

way as before with the result

F (r1, r2, t1, t2, g1, g2) = 〈ϕ1(r1, t1, g1)ϕ2(r2, t2, g2)〉0 = τ−xG(r, τ, t2, g1, g2) (C2)

where x = 1
2

(x1 + x2) and G(r, τ, t2, g1, g2) satisfies the equations
(
τ∂τ + t2∂t2 +

1

2
r∂r + y1g1∂g1 + y2g2∂g2

)
G(r, τ, t2, g1, g2) = 0 (C3)

(τ∂r + rM1)G(r, τ, t2, g1, g2) = 0 (C4)

and the Bargman superselection rule

M1 +M2 = 0 (C5)

holds true. Now (C3) is solved by

G(r, τ, t2, g1, g2) = G̃(u1, u2, v1, v2) (C6)

where we have defined

u1 :=
r2

τ
, u2 :=

r2

t2
, v1 :=

g
1/ŷ1

1

τ
, v2 :=

g
1/ŷ2

2

τ
(C7)
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and rewriting (C4) in terms of the new variables yields

(
u1∂u1 + u2∂u2 +

1

2
u1M1

)
G̃(u1, u2, v1, v2) = 0 (C8)

which is solved by

G̃(u1, u2, v1, v2) = exp

(
−1

2
u1M1

)
H(w, v1, v2) , w :=

u2

u1
(C9)

The function H(w, v1, v2) is found through the generator X1. Using again the invariance

under Y1/2 and X0, we readily obtain in terms of v1, v2 and w

(
(w + 1)∂w + v1∂v1 − v2∂v2 +

1

2
(x1 − x2)

)
H(w, v1, v2) = 0. (C10)

The most general solution of this equation is

H = (w + 1)−
1
2

(x1−x2)Ψ̃2

(
(w + 1)

v1

, v1v2

)
(C11)

where the function Ψ̃2 remains arbitrary. Substituting back the values for v1, v2 and w

our final result is

F (r1, t1, r2, t2) = δM1+M2,0 (t1 − t2)−
1
2

(x1+x2)

(
t1
t2

)− 1
2

(x1−x2)

× exp

(
−M1

2

(r1 − r2)2

t1 − t2

)
Ψ̃2

((
t1
t2

)ŷ1 (t1 − t2)ŷ1

g1

,
g1g2

(t1 − t2)ŷ1+ŷ2

)
.(C12)

For applications to semi-linear equations, one now sets g := g1 = g2 with a scaling

dimension ŷ := ŷ1 = ŷ2. In the limit ŷ → 0, the function Ψ̃2 reduces to a g-dependent

normalization constant and we recover the standard result [29].

In many applications, one expects the scaling functions to be universal, up to

normalization. On the other hand, the coupling g should be a non-universal quantity

so that a universal scaling function cannot contain g in its arguments. This leads to

Ψ̃2 = Ψ̃2((t1/t2)ŷ) and we point out that such a scaling form would be compatible (one

still has z = 2, however) with what is found from the field-theoretical renormalization

group and numerical simulations in non-equilibrium critical dynamics [5, 13]. An

extension to different values of z would as a first step require the generalization of the

Bargman superselection rules. We hope to come back elsewhere to this open problem.
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