Substitutions into propositional tautologies

Jan Krajicek*T

Isaac Newton Institute, Cambridge
krajicek@maths.ox.ac.uk

Abstract
We prove that there is a polynomial time substitution (y1,...,yn) :=
g(x1,...,x5) with & << n such that whenever the substitution in-

stance A(g(x1,...,xzx)) of a 3DNF formula A(y1,...,y,) has a short
resolution proof it follows that A(ys,...,y,) is a tautology. The qual-
ification “short” depends on the parameters k and n.

Let A(y) be a 3DNF propositional formula in n variables y = (y1,...,yn)
and assume that we want to prove that A(y) is a tautology. By substituting
y := g(x) with x = (z1,...,x%) we get formula A(g(x)) which is, as long as
g is computable in (non-uniform) time n®®), expressible as 3DNF of size
nPM) . The formula uses n®M) auxiliary variables z besides variables z but
only x are essential: We know apriori (and can witness by a polynomial
time constructible resolution proof) that any truth assignment satisfying
-A(g(x1,...,z,)) would be determined already by its values at =1, ..., xk.

If A(y) is a tautology, so is A(g(z)). In this paper we note that the
emerging theory of proof complexity generators (Section 1) provides a func-
tion g with k& << n for which a form of inverse also holds (the precise
statement is in Section 2):

For the following choices of parameters:

o k=n’ and s = 2", for any § > 0 there is € = €(6) > 0, or

*Keywords: computational complexity, proof complexity, automated theorem proving.

fOn leave from Mathematical Institute, Academy of Sciences and Faculty of Mathe-
matics and Physics, Charles University, Prague.

#The paper was written while I was at the Isaac Newton Institute in Cambridge (pro-
gram Logic and Algorithms), supported by an EPSRC grant # N09176. Also partially sup-
ported by grants # A 101 94 01 and # AV0Z10190503 (AS CR), by grant # 201/05/0124
(GA CR), and by grant LC505 (Eduard Cech Center).

k’g(")“, for ¢ > 1, u > 0 specific constants,

o k=log(n) and s =n
it holds:

There is a function g computable in time n extending k bits to n bits
such that whenever A(g(x)) is a tautology and provable by a resolution proof
of size at most s then A(y) is a tautology too.

o(1)

Unless you are an ardent optimist you cannot hope to improve the bound
to s so that it would allow an exhaustive search over {0,1}*. In fact, it
follows that unless P = NP no automated provers (or SAT solvers) that are
based on DPLL procedure [4, 5], even augmented by clause learning [16] or
restarts of the procedure [6] can run in time subexponential (2"‘0(1)) in the
number of essential variables, as their computations yield resolution proofs
of size polynomial in the time [2], cf. Section 3. However, for the particular
function g we use, the exhaustive search yields something (assuming the
existence of strong one-way functions): If A(g(z)) is a tautology then there
are at most 2" /n*(1) falsifying truth assignments to A(y)) (Section 3). This
is a consequence of results of Razborov and Rudich [15].

Notation: z,y, z,... and a, b, . . . are tuples of variables and of bits respec-
tively, the individual variables or bits being denoted x;,y;, ... and a;, b;, . . .,
respectively. [n] is {1,...,n}.

1 Proof complexity generators

A proof complexity generator is any function g : {0,1}* — {0,1}* given
by a family of circuits' {Cy}x, each Cj, computing function g : {0,1}F —
{0,1}™*) for some injective function n(k) > k. (We want injectivity of n (k)
so that any string is in the range of at most one gi.) We assume that circuits
Cy, have size n(k)°(). Functions g of interest are those for which it is hard
to prove that any particular string from {0,1}"(*) is outside of the range of
gx- This can be formalized as follows.

Assume m(k) is the size of C%. The set of 7-formulas corresponding to
Cy is parameterized by b € {0,1}"*) \ Rng(gs). Given such a b, construct
propositional formula 7(C%);, (denoted simply 7(g), when Cys are canonical)
as follows: The atoms of 7(Cy), are x1,...,x, for bits of an input x €
{0,1}* and auxiliary atoms z, ... s Zm(k) for bit values of subcircuits of C
determined by the computation of C} on x. The formula expresses in a

In general we could allow functions computable in NTime(n(k)°®)/poly N
coNTime(n(k)°M) /poly.

DNF that if z;’s are correctly computed as in Cj with input = then the
output Ci(x) differs from b. The size of 7(C}), is proportional to m(k).
The formula is a tautology as b ¢ Rng(g).

The 7-formulas have been defined in [8] and independently in [1], and
their theory is being developed?. We now recall only few facts we shall use
later.

The next definition formalizes the concept of “hard to prove” in two
ways; the first one follows [14], the second one is from [10]. We apply
these concepts only to resolution but they are well-defined for an arbitrary
propositional proof system in the sense of [3].

Definition 1.1 Let s(k) > 1 be a function, and let g = {gi}r be a function
as above.

e Function g is s(k)-hard for resolution if any formula 7(Ck)p, b €
{0,13"*)\ Rng(g), requires resolution proofs of size at least s(k).

o g is s(k)-iterable for resolution iff all disjunctions of the form
T(Ck)B1 (:L‘l) V...V T(Ck)Bt(:El, .. ,xt)

require resolution proofs of size at least s(k). Heret > 1 is arbitrary,
and B1,..., B are circuits such that:

— 2% are disjoint n(k)-tuples of atoms, for i < t.

— By has no inputs, and inputs to B; are among x', ...zt for
1 <t.
— Circuits By, ..., Bt are just substitutions of variables and con-

stants for variables.

Note that the s(k)-iterability implies the s(k)-hardness. (The proof of The-
orem 2.1 uses only hardness of the function but we need iterability to get a
hard function computable in uniform polynomial time in Corollary 1.5.)

Exponentially hard functions for resolution do exists. A P /poly-function,
a linear map over Fy defined by a sparse matrix with a suitable “expan-
sion” property, 2k* _hard for resolution was constructed in [10, Thm.4.2].
Razborov [14, Thms.2.10,2.20] gave an independent construction and he no-
ticed that any proof of hardness utilising only the expansion property of a
matrix implies, in fact, QkQ(l)-iterabﬂity as well. We use a weaker statement
than what is actually proved in [14].

%[9, 13, 10, 14, 11, 12]; the reader may want to read the introductions to [10] or [14],
to learn about the main ideas.

Theorem 1.2 (Razborov[14]) There exists a function g = {guy tw, with
Q1)

gw : {0,1}" — {0,1}“’2, computed by size O(w?) circuits, that is 2¥ -
iterable for resolution.

However, what we want is a function computed by a uniform algorithm
(it is not known at present how to construct explicitly the matrices used in
[10, 14]) in order that our substitution is polynomial time computable too.
Fortunately, we can get a uniform function from Theorem 1.2, using a result
from [10].

Definition 1.3 Let m > ¢ > 1. The truth table function tt,,, takes as
input m? bits describing® a size < m circuit C with ¢ inputs, and outputs 2°
bits: the truth table of the function computed by C.

tt,, ¢ is, by definition, equal to zero at inputs that do not encode a size
< m circuit with £ inputs.

Theorem 1.4 (Krajicek[10]) Assume that there ezists a P /poly-function
9 = {9w}w, with g, : {0,1}* — {0, 1}w2, that is 2v°" _iterable for resolu-
tion.

Then:

1. For any 1> 6 > 0, the truth table function ttqse ; is 22" iterable for
resolution.

2. There is a constant ¢ > 1 such that the truth table function ttee, is

1+Q(1 . .
2 terable for resolution.

The theorem (see [10, Thm.4.2]) is proved by iterating the circuit com-
puting g,, along an w-ary tree of depth ¢, suitable ¢t. The two statements
stated explicitly are just two extreme choices of parameters, but the proof
yields an explicit trade-off for a range of parameters. We state this without
repeating the construction from [10].

Let ¢ > 1 and € > 0 be arbitrary constants. Assume that there is a
function g = {guw}w, with g, : {0,}* — {0,1}*", computed by size w*
circuits and that is 2%-iterable for resolution.

Then the truth function tt,, is s-iterable for the following choices of
parameters, with ¢ > 1 arbitrary:

1. m:=w°-t,

30(mlog(m)) bits would suffice but we want simple formulas.

2. £:=1-log(w),

3. 5= 2ui—tlos(w),

Corollary 1.5 1. For every c > 1 there are € > 0 and a polynomial time
computable function g = {gr}tr ,

g ¢ {0,1}F — {0, 1} |
that is 2 -hard for resolution.

2. There are € > 6 > 0 and a polynomial time computable function g =

{gk}k)]
g ¢ {0,1}F = {0, 11" |

that is 28 -hard for resolution.

2 The substitution

Theorem 2.1 1. For any 6 > 0 there are pu > 0 and a polynomial time
computable function g = {gi}r , extending k = n® bits to n = n(k)
bits such that for any SDNF formula A(y), y = (y1,---,Yn), it holds:

o If A(gr(x)) has a resolution proof of size at most 2™ then A(y)
1$ a tautology.

2. There are ¢ > 1, p > 0 and a polynomial time computable function
g = {gk}r , extending k = log(n)¢ bits to n = n(k) bits such that for
any S8DNF formula A(y), y = (y1,-..,Yn), it holds:

o If A(gi(z)) has a resolution proof of size at most n'*8(™" then
A(y) is a tautology.

Proof :

For Part 1. let § > 0 be arbitrary. Put ¢ := 6!, and take ¢ > 0 and the
polynomial time function g = {gi}r guaranteed by Corollary 1.5 (Part 1).
Hence gy, : {0, 1}”(s —{0,1}", for k = n?.

Assume A(y) is not a tautology and let b € {0,1}" is a falsifying assign-
ment. Then 7(g), can be proved in resolution by combining a size s proof of
A(g(x)) with a size n°1) proof of =A(b). By the 2*“-hardness of g it must
hold that

s +n°W > on’

Hence s must be at least 2", for suitable p < de.
Part 2 is proved analogously, using Corollary 1.5 (Part 2).

q.e.d.

Note that if g(z) is a hard proof complexity generator, so is function
(z,2) — (g(x), z). Hence we may apply the substitutions from the theorem
only to some variables y;.

3 Remarks

We conclude by some remarks. First we substantiate the comment about
automated theorem provers and SAT-solvers from the introduction.

Let B(z,z) be the formula A(g(z)) with the auxiliary variables z also
displayed. The k variables x are essential in B in the sense that there is a
O(|B|) size resolution proof of

B(z,z)V B(z,w) V z; = wj

for all j. (In fact, such a proof is easily constructible once we have the
algorithm for g.) Assume that it would be always possible to find a resolu-
tion proof of a formula whose size would be subexponential in the minimal
number of essential variables and polynomial in the size of the formula; in
our case 2"50(1)\14(9(35))\0(1).

Taking g from Theorem 2.1 (part 2) this would get a size |A(g)
proof of A(g(z)), which is bellow the required upper bound n'°8(™" Hence
we could interpret this as a new proof system R, in the sense of Cook-
Reckhow [3]: A proof in Ry of A(y) is either a resolution proof or a size
|A(g(x))|¢ (specific ¢) proof of A(g(x)). This proof system would allow for
polynomial size proofs of all tautologies, hence NP = coN'P.

The equality NP = coNP followed only from assuming the existence
of short resolution proofs. But automated provers (SAT-solvers) actually
construct the proofs, or a proof can be constructed by a polynomial time
algorithm from the description of any particular successful computation.
Hence the existence of automated provers (SAT-solvers) running in time
subexponential in the number of essential variables implies even P = NP
(or NP C BPP if the prover is randomised).

|O(1)

Our second remark concerns the exhaustive search; in other words, what
do we know about A(y) if we only know that A(g(x)) is a tautology but we
do not have a short proof of that fact.

Take for g the function from Theorem 2.1 (Part 1.), or any tt,,), with
m(f) = D). Let n := 2¢, and interpret strings b € {0,1}" as truth tables
of boolean functions in ¢ variables. Hence b ¢ Rng(g) implies that b is not
computable by a circuit of size £01).

Assume A(g(z)) is a tautology while A(y) is not. Define set C' C {0,1}"
by:

C ={be{0,1}" | 7A(b)} .

Then it satisfies:

(1) C is in P/poly.

(2) b € C implies that b is not computable by a size 9V circuit (i.e. b is
not in P /poly).

Razborov and Rudich [15] defined the concept of a P/poly-natural proof
against P /poly. It is a P/poly subset C of {0,1}" satisfying condition (2)
above, and also condition

(3) The cardinality of C' is at least 2" /n®, some ¢ > 1.

They proved a remarkable theorem (see [15]) that no such set exists, unless
strong pseudo-random number generators do not exists (or, equivalently,
strong one-way function do not exists).

In our situation this implies that (under the same assumption) there can
be at most 2" /n“(1) assignments falsifying A(y).

Let me conclude with an open problem: Can the substitution speed-up
proofs more than polynomially? That is, are there formulas A(y) having
long resolution proofs but A(g(z)) having short resolution proofs? In yet
another words, does R simulate the system R, defined earlier?

Acknowledgements: I am indebted to Antonina Kolokolova (Simon Fraser
U.) for discussions on related topics. Ithank Klas Markstrém (Umea) for ex-
plaining me a few facts about automated theorem provers and SAT-solvers,
and to Pavel Pudlédk (Prague) for comments on the draft of the paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, Electronic

[11]

[12]

[13]

Colloguium on Computational Complezity, Rep. No.23, (2000). Ext.
abstract in: Proc. of the 415t Annual Symp. on Foundation of Computer
Science, (2000), pp.43-53.

P. Beame, H. Kautz, and A. Sabharwal, Towards Understanding and
Harnessing the Potential of Clause Learning, Journal of Artificial In-
telligence Research (JAIR), vol. 22, (2004), pp.319-351.

S. A. Cook and A. R. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

M. Davis and H. Putnam, A Computing Procedure for Quantification
Theory, Journal of the ACM, 7(1), (1960), pp.201-215.

M. Davis, G. Logemann, and D. Loveland, A Machine Program for
Theorem Proving, Communications of the ACM, 5(7), (1962), pp.394-
397.

C. P.Gomes, B. Selman, and H. Kautz, Boosting combinatorial search
through randomization, In: 15th AAAI (1998), pp.431-437.

J. Krajicek, Bounded arithmetic, propositional logic, and complezity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).

J. Krajicek, On the weak pigeonhole principle, Fundamenta Mathemat-
icae, Vol.170(1-3), (2001), pp.123-140.

J. Krajicek, Tautologies from pseudo-random generators, Bulletin of
Symbolic Logic, 7(2), (2001), pp.197-212.

J. Krajicek, Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds, Journal of Symbolic Logic,
69(1), pp.265-286, (2004).

J. Krajicek, Diagonalization in proof complexity, Fundamenta Mathe-
maticae, 182, (2004), pp.181-192.

J. Krajicek, Structured pigeonhole principle, search problems and hard
tautologies, J. of Symbolic Logic, 70(2), (2005), pp.619-630.

A. A. RAZBOROV, Resolution lower bounds for perfect matching prin-
ciples, in: Proc. of the 17th IEEE Conf. on Computational Complezity,
(2002), pp.29-38.

[14] A. A. RAzBOROV, Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution, preprint, (May’03).

[15] A. A.Razborov and S. Rudich, Natural proofs, Journal of Computer
and System Sciences, 55, (1997), pp.24-35.

[16] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, Efficient
conflict driven learning in a boolean satisfiability solver, Proc. of the
2001 TEEE/ACM international conference on Computer-aided design,
(2001), pp.279-285.

