
Substitutions into propositional tautologies

Jan Kraj́ıček∗†‡

Isaac Newton Institute, Cambridge
krajicek@maths.ox.ac.uk

Abstract

We prove that there is a polynomial time substitution (y1, . . . , yn) :=
g(x1, . . . , xk) with k << n such that whenever the substitution in-
stance A(g(x1, . . . , xk)) of a 3DNF formula A(y1, . . . , yn) has a short
resolution proof it follows that A(y1, . . . , yn) is a tautology. The qual-
ification “short” depends on the parameters k and n.

Let A(y) be a 3DNF propositional formula in n variables y = (y1, . . . , yn)
and assume that we want to prove that A(y) is a tautology. By substituting
y := g(x) with x = (x1, . . . , xk) we get formula A(g(x)) which is, as long as
g is computable in (non-uniform) time nO(1), expressible as 3DNF of size
nO(1). The formula uses nO(1) auxiliary variables z besides variables x but
only x are essential: We know apriori (and can witness by a polynomial
time constructible resolution proof) that any truth assignment satisfying
¬A(g(x1, . . . , xk)) would be determined already by its values at x1, . . . , xk.

If A(y) is a tautology, so is A(g(x)). In this paper we note that the
emerging theory of proof complexity generators (Section 1) provides a func-
tion g with k << n for which a form of inverse also holds (the precise
statement is in Section 2):

For the following choices of parameters:

• k = nδ and s = 2nε
, for any δ > 0 there is ε = ε(δ) > 0, or

∗Keywords: computational complexity, proof complexity, automated theorem proving.
†On leave from Mathematical Institute, Academy of Sciences and Faculty of Mathe-

matics and Physics, Charles University, Prague.
‡The paper was written while I was at the Isaac Newton Institute in Cambridge (pro-

gram Logic and Algorithms), supported by an EPSRC grant # N09176. Also partially sup-
ported by grants # A 101 94 01 and # AV0Z10190503 (AS CR), by grant # 201/05/0124
(GA CR), and by grant LC505 (Eduard Čech Center).

1

• k = log(n)c and s = nlog(n)µ
, for c > 1, µ > 0 specific constants,

it holds:
There is a function g computable in time nO(1) extending k bits to n bits

such that whenever A(g(x)) is a tautology and provable by a resolution proof
of size at most s then A(y) is a tautology too.

Unless you are an ardent optimist you cannot hope to improve the bound
to s so that it would allow an exhaustive search over {0, 1}k . In fact, it
follows that unless P = NP no automated provers (or SAT solvers) that are
based on DPLL procedure [4, 5], even augmented by clause learning [16] or

restarts of the procedure [6] can run in time subexponential (2ko(1)
) in the

number of essential variables, as their computations yield resolution proofs
of size polynomial in the time [2], cf. Section 3. However, for the particular
function g we use, the exhaustive search yields something (assuming the
existence of strong one-way functions): If A(g(x)) is a tautology then there
are at most 2n/nω(1)) falsifying truth assignments to A(y)) (Section 3). This
is a consequence of results of Razborov and Rudich [15].

Notation: x, y, z, . . . and a, b, . . . are tuples of variables and of bits respec-
tively, the individual variables or bits being denoted xi, yj , . . . and ai, bj , . . .,
respectively. [n] is {1, . . . , n}.

1 Proof complexity generators

A proof complexity generator is any function g : {0, 1}∗ → {0, 1}∗ given
by a family of circuits1 {Ck}k, each Ck computing function gk : {0, 1}k →
{0, 1}n(k) for some injective function n(k) > k. (We want injectivity of n(k)
so that any string is in the range of at most one gk.) We assume that circuits
Ck have size n(k)O(1). Functions g of interest are those for which it is hard
to prove that any particular string from {0, 1}n(k) is outside of the range of
gk. This can be formalized as follows.

Assume m(k) is the size of Ck. The set of τ -formulas corresponding to
Ck is parameterized by b ∈ {0, 1}n(k) \ Rng(gk). Given such a b, construct
propositional formula τ(Ck)b (denoted simply τ(g)b when Cks are canonical)
as follows: The atoms of τ(Ck)b are x1, . . . , xk for bits of an input x ∈
{0, 1}k and auxiliary atoms z1, . . . , zm(k) for bit values of subcircuits of Ck

determined by the computation of Ck on x. The formula expresses in a

1In general we could allow functions computable in NTime(n(k)O(1))/poly ∩

coNT ime(n(k)O(1))/poly.

2

DNF that if zj ’s are correctly computed as in Ck with input x then the
output Ck(x) differs from b. The size of τ(Ck)b is proportional to m(k).
The formula is a tautology as b /∈ Rng(g).

The τ -formulas have been defined in [8] and independently in [1], and
their theory is being developed2. We now recall only few facts we shall use
later.

The next definition formalizes the concept of “hard to prove” in two
ways; the first one follows [14], the second one is from [10]. We apply
these concepts only to resolution but they are well-defined for an arbitrary
propositional proof system in the sense of [3].

Definition 1.1 Let s(k) ≥ 1 be a function, and let g = {gk}k be a function
as above.

• Function g is s(k)-hard for resolution if any formula τ(Ck)b, b ∈
{0, 1}n(k) \ Rng(g), requires resolution proofs of size at least s(k).

• g is s(k)-iterable for resolution iff all disjunctions of the form

τ(Ck)B1(x
1) ∨ . . . ∨ τ(Ck)Bt(x

1, . . . , xt)

require resolution proofs of size at least s(k). Here t ≥ 1 is arbitrary,
and B1, . . . , Bt are circuits such that:

– xi are disjoint n(k)-tuples of atoms, for i ≤ t.

– B1 has no inputs, and inputs to Bi are among x1, . . . , xi−1, for
i ≤ t.

– Circuits B1, . . . , Bt are just substitutions of variables and con-
stants for variables.

Note that the s(k)-iterability implies the s(k)-hardness. (The proof of The-
orem 2.1 uses only hardness of the function but we need iterability to get a
hard function computable in uniform polynomial time in Corollary 1.5.)

Exponentially hard functions for resolution do exists. A P/poly-function,
a linear map over F2 defined by a sparse matrix with a suitable “expan-
sion” property, 2kΩ(1)

-hard for resolution was constructed in [10, Thm.4.2].
Razborov [14, Thms.2.10,2.20] gave an independent construction and he no-
ticed that any proof of hardness utilising only the expansion property of a
matrix implies, in fact, 2kΩ(1)

-iterability as well. We use a weaker statement
than what is actually proved in [14].

2[9, 13, 10, 14, 11, 12]; the reader may want to read the introductions to [10] or [14],
to learn about the main ideas.

3

Theorem 1.2 (Razborov[14]) There exists a function g = {gw}w, with

gw : {0, 1}w → {0, 1}w2
, computed by size O(w3) circuits, that is 2wΩ(1)

-
iterable for resolution.

However, what we want is a function computed by a uniform algorithm
(it is not known at present how to construct explicitly the matrices used in
[10, 14]) in order that our substitution is polynomial time computable too.
Fortunately, we can get a uniform function from Theorem 1.2, using a result
from [10].

Definition 1.3 Let m ≥ ` ≥ 1. The truth table function ttm,` takes as
input m2 bits describing3 a size ≤ m circuit C with ` inputs, and outputs 2`

bits: the truth table of the function computed by C.
ttm,` is, by definition, equal to zero at inputs that do not encode a size

≤ m circuit with ` inputs.

Theorem 1.4 (Kraj́ıček[10]) Assume that there exists a P/poly-function

g = {gw}w, with gw : {0, 1}w → {0, 1}w2
, that is 2wΩ(1)

-iterable for resolu-
tion.

Then:

1. For any 1 > δ > 0, the truth table function tt2δ`,` is 22Ω(δ`)
-iterable for

resolution.

2. There is a constant c ≥ 1 such that the truth table function tt`c,` is

2`1+Ω(1)
-iterable for resolution.

The theorem (see [10, Thm.4.2]) is proved by iterating the circuit com-
puting gw along an w-ary tree of depth t, suitable t. The two statements
stated explicitly are just two extreme choices of parameters, but the proof
yields an explicit trade-off for a range of parameters. We state this without
repeating the construction from [10].

Let c ≥ 1 and ε > 0 be arbitrary constants. Assume that there is a
function g = {gw}w, with gw : {0, }w → {0, 1}w2

, computed by size wc

circuits and that is 2wε
-iterable for resolution.

Then the truth function ttm,` is s-iterable for the following choices of
parameters, with t ≥ 1 arbitrary:

1. m := wc · t,

3O(m log(m)) bits would suffice but we want simple formulas.

4

2. ` := t · log(w),

3. s := 2wε−t log(w).

Corollary 1.5 1. For every c > 1 there are ε > 0 and a polynomial time
computable function g = {gk}k ,

gk : {0, 1}k → {0, 1}kc

,

that is 2kε
-hard for resolution.

2. There are ε > δ > 0 and a polynomial time computable function g =
{gk}k ,

gk : {0, 1}k → {0, 1}2kδ

,

that is 2kε
-hard for resolution.

2 The substitution

Theorem 2.1 1. For any δ > 0 there are µ > 0 and a polynomial time
computable function g = {gk}k , extending k = nδ bits to n = n(k)
bits such that for any 3DNF formula A(y), y = (y1, . . . , yn), it holds:

• If A(gk(x)) has a resolution proof of size at most 2nµ
then A(y)

is a tautology.

2. There are c > 1, µ > 0 and a polynomial time computable function
g = {gk}k , extending k = log(n)c bits to n = n(k) bits such that for
any 3DNF formula A(y), y = (y1, . . . , yn), it holds:

• If A(gk(x)) has a resolution proof of size at most nlog(n)µ
then

A(y) is a tautology.

Proof :
For Part 1. let δ > 0 be arbitrary. Put c := δ−1, and take ε > 0 and the

polynomial time function g = {gk}k guaranteed by Corollary 1.5 (Part 1).

Hence gk : {0, 1}nδ
→ {0, 1}n, for k = nδ.

Assume A(y) is not a tautology and let b ∈ {0, 1}n is a falsifying assign-
ment. Then τ(g)b can be proved in resolution by combining a size s proof of
A(g(x)) with a size nO(1) proof of ¬A(b). By the 2kε

-hardness of g it must
hold that

s + nO(1) ≥ 2nδε

.

5

Hence s must be at least 2nµ
, for suitable µ < δε.

Part 2 is proved analogously, using Corollary 1.5 (Part 2).

q.e.d.

Note that if g(x) is a hard proof complexity generator, so is function
(x, z) → (g(x), z). Hence we may apply the substitutions from the theorem
only to some variables yi.

3 Remarks

We conclude by some remarks. First we substantiate the comment about
automated theorem provers and SAT-solvers from the introduction.

Let B(x, z) be the formula A(g(x)) with the auxiliary variables z also
displayed. The k variables x are essential in B in the sense that there is a
O(|B|) size resolution proof of

B(x, z) ∨ B(x,w) ∨ zj ≡ wj

for all j. (In fact, such a proof is easily constructible once we have the
algorithm for g.) Assume that it would be always possible to find a resolu-
tion proof of a formula whose size would be subexponential in the minimal
number of essential variables and polynomial in the size of the formula; in
our case 2ko(1)

|A(g(x))|O(1).
Taking g from Theorem 2.1 (part 2) this would get a size |A(g)|O(1)

proof of A(g(x)), which is bellow the required upper bound nlog(n)µ
. Hence

we could interpret this as a new proof system Rg in the sense of Cook-
Reckhow [3]: A proof in Rg of A(y) is either a resolution proof or a size
|A(g(x))|c (specific c) proof of A(g(x)). This proof system would allow for
polynomial size proofs of all tautologies, hence NP = coNP .

The equality NP = coNP followed only from assuming the existence
of short resolution proofs. But automated provers (SAT-solvers) actually
construct the proofs, or a proof can be constructed by a polynomial time
algorithm from the description of any particular successful computation.
Hence the existence of automated provers (SAT-solvers) running in time
subexponential in the number of essential variables implies even P = NP
(or NP ⊆ BPP if the prover is randomised).

Our second remark concerns the exhaustive search; in other words, what
do we know about A(y) if we only know that A(g(x)) is a tautology but we
do not have a short proof of that fact.

6

Take for g the function from Theorem 2.1 (Part 1.), or any ttm(`),` with

m(`) = `ω(1). Let n := 2`, and interpret strings b ∈ {0, 1}n as truth tables
of boolean functions in ` variables. Hence b /∈ Rng(g) implies that b is not
computable by a circuit of size `O(1).

Assume A(g(x)) is a tautology while A(y) is not. Define set C ⊆ {0, 1}n

by:
C := {b ∈ {0, 1}n | ¬A(b)} .

Then it satisfies:

(1) C is in P/poly.

(2) b ∈ C implies that b is not computable by a size `O(1) circuit (i.e. b is
not in P/poly).

Razborov and Rudich [15] defined the concept of a P/poly-natural proof
against P/poly. It is a P/poly subset C of {0, 1}n satisfying condition (2)
above, and also condition

(3) The cardinality of C is at least 2n/nc, some c ≥ 1.

They proved a remarkable theorem (see [15]) that no such set exists, unless
strong pseudo-random number generators do not exists (or, equivalently,
strong one-way function do not exists).

In our situation this implies that (under the same assumption) there can
be at most 2n/nω(1) assignments falsifying A(y).

Let me conclude with an open problem: Can the substitution speed-up
proofs more than polynomially? That is, are there formulas A(y) having
long resolution proofs but A(g(x)) having short resolution proofs? In yet
another words, does R simulate the system Rg defined earlier?

Acknowledgements: I am indebted to Antonina Kolokolova (Simon Fraser
U.) for discussions on related topics. I thank Klas Markström (Umea) for ex-
plaining me a few facts about automated theorem provers and SAT-solvers,
and to Pavel Pudlák (Prague) for comments on the draft of the paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, Electronic

7

Colloquium on Computational Complexity, Rep. No.23, (2000). Ext.
abstract in: Proc. of the 41st Annual Symp. on Foundation of Computer
Science, (2000), pp.43-53.

[2] P. Beame, H. Kautz, and A. Sabharwal, Towards Understanding and
Harnessing the Potential of Clause Learning, Journal of Artificial In-
telligence Research (JAIR), vol. 22, (2004), pp.319-351.

[3] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

[4] M. Davis and H. Putnam, A Computing Procedure for Quantification
Theory, Journal of the ACM, 7(1), (1960), pp.201-215.

[5] M. Davis, G. Logemann, and D. Loveland, A Machine Program for
Theorem Proving, Communications of the ACM, 5(7), (1962), pp.394-
397.

[6] C. P.Gomes, B. Selman, and H. Kautz, Boosting combinatorial search
through randomization, In: 15th AAAI, (1998), pp.431-437.

[7] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).

[8] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathemat-
icae, Vol.170(1-3), (2001), pp.123-140.

[9] J. Kraj́ıček, Tautologies from pseudo-random generators, Bulletin of
Symbolic Logic, 7(2), (2001), pp.197-212.

[10] J. Kraj́ıček, Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds, Journal of Symbolic Logic,
69(1), pp.265-286, (2004).

[11] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathe-
maticae, 182, (2004), pp.181-192.

[12] J. Kraj́ıček, Structured pigeonhole principle, search problems and hard
tautologies, J. of Symbolic Logic, 70(2), (2005), pp.619-630.

[13] A. A. Razborov, Resolution lower bounds for perfect matching prin-
ciples, in: Proc. of the 17th IEEE Conf. on Computational Complexity,
(2002), pp.29-38.

8

[14] A. A. Razborov, Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution, preprint, (May’03).

[15] A. A.Razborov and S. Rudich, Natural proofs, Journal of Computer
and System Sciences, 55, (1997), pp.24-35.

[16] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, Efficient
conflict driven learning in a boolean satisfiability solver, Proc. of the
2001 IEEE/ACM international conference on Computer-aided design,
(2001), pp.279-285.

9

