Substitutions into propositional tautologies

Jan Krajíček^{*†‡}

Isaac Newton Institute, Cambridge krajicek@maths.ox.ac.uk

Abstract

We prove that there is a polynomial time substitution $(y_1, \ldots, y_n) := g(x_1, \ldots, x_k)$ with $k \ll n$ such that whenever the substitution instance $A(g(x_1, \ldots, x_k))$ of a 3DNF formula $A(y_1, \ldots, y_n)$ has a short resolution proof it follows that $A(y_1, \ldots, y_n)$ is a tautology. The qualification "short" depends on the parameters k and n.

Let A(y) be a 3DNF propositional formula in n variables $y = (y_1, \ldots, y_n)$ and assume that we want to prove that A(y) is a tautology. By substituting y := g(x) with $x = (x_1, \ldots, x_k)$ we get formula A(g(x)) which is, as long as g is computable in (non-uniform) time $n^{O(1)}$, expressible as 3DNF of size $n^{O(1)}$. The formula uses $n^{O(1)}$ auxiliary variables z besides variables x but only x are essential: We know apriori (and can witness by a polynomial time constructible resolution proof) that any truth assignment satisfying $\neg A(g(x_1, \ldots, x_k))$ would be determined already by its values at x_1, \ldots, x_k .

If A(y) is a tautology, so is A(g(x)). In this paper we note that the emerging theory of proof complexity generators (Section 1) provides a function g with $k \ll n$ for which a form of inverse also holds (the precise statement is in Section 2):

For the following choices of parameters:

• $k = n^{\delta}$ and $s = 2^{n^{\epsilon}}$, for any $\delta > 0$ there is $\epsilon = \epsilon(\delta) > 0$, or

^{*}Keywords: computational complexity, proof complexity, automated theorem proving. [†]On leave from Mathematical Institute, Academy of Sciences and Faculty of Mathematics and Physics, Charles University, Prague.

[‡]The paper was written while I was at the Isaac Newton Institute in Cambridge (program Logic and Algorithms), supported by an EPSRC grant # N09176. Also partially supported by grants # A 101 94 01 and # AV0Z10190503 (AS CR), by grant # 201/05/0124 (GA CR), and by grant LC505 (Eduard Čech Center).

• $k = \log(n)^c$ and $s = n^{\log(n)^{\mu}}$, for $c > 1, \mu > 0$ specific constants,

it holds:

There is a function g computable in time $n^{O(1)}$ extending k bits to n bits such that whenever A(g(x)) is a tautology and provable by a resolution proof of size at most s then A(y) is a tautology too.

Unless you are an ardent optimist you cannot hope to improve the bound to s so that it would allow an exhaustive search over $\{0,1\}^k$. In fact, it follows that unless $\mathcal{P} = \mathcal{NP}$ no automated provers (or SAT solvers) that are based on DPLL procedure [4, 5], even augmented by clause learning [16] or restarts of the procedure [6] can run in time subexponential $(2^{k^{o(1)}})$ in the number of essential variables, as their computations yield resolution proofs of size polynomial in the time [2], cf. Section 3. However, for the particular function g we use, the exhaustive search yields something (assuming the existence of strong one-way functions): If A(g(x)) is a tautology then there are at most $2^n/n^{\omega(1)}$ falsifying truth assignments to A(y)) (Section 3). This is a consequence of results of Razborov and Rudich [15].

Notation: x, y, z, \ldots and a, b, \ldots are tuples of variables and of bits respectively, the individual variables or bits being denoted x_i, y_j, \ldots and a_i, b_j, \ldots , respectively. [n] is $\{1, \ldots, n\}$.

1 Proof complexity generators

A proof complexity generator is any function $g : \{0,1\}^* \to \{0,1\}^*$ given by a family of circuits¹ $\{C_k\}_k$, each C_k computing function $g_k : \{0,1\}^k \to \{0,1\}^{n(k)}$ for some injective function n(k) > k. (We want injectivity of n(k)so that any string is in the range of at most one g_k .) We assume that circuits C_k have size $n(k)^{O(1)}$. Functions g of interest are those for which it is hard to prove that any particular string from $\{0,1\}^{n(k)}$ is outside of the range of g_k . This can be formalized as follows.

Assume m(k) is the size of C_k . The set of τ -formulas corresponding to C_k is parameterized by $b \in \{0,1\}^{n(k)} \setminus Rng(g_k)$. Given such a b, construct propositional formula $\tau(C_k)_b$ (denoted simply $\tau(g)_b$ when C_k s are canonical) as follows: The atoms of $\tau(C_k)_b$ are x_1, \ldots, x_k for bits of an input $x \in \{0,1\}^k$ and auxiliary atoms $z_1, \ldots, z_{m(k)}$ for bit values of subcircuits of C_k determined by the computation of C_k on x. The formula expresses in a

¹In general we could allow functions computable in $NTime(n(k)^{O(1)})/poly \cap coNTime(n(k)^{O(1)})/poly$.

DNF that if z_j 's are correctly computed as in C_k with input x then the output $C_k(x)$ differs from b. The size of $\tau(C_k)_b$ is proportional to m(k). The formula is a tautology as $b \notin Rng(g)$.

The τ -formulas have been defined in [8] and independently in [1], and their theory is being developed². We now recall only few facts we shall use later.

The next definition formalizes the concept of "hard to prove" in two ways; the first one follows [14], the second one is from [10]. We apply these concepts only to resolution but they are well-defined for an arbitrary propositional proof system in the sense of [3].

Definition 1.1 Let $s(k) \ge 1$ be a function, and let $g = \{g_k\}_k$ be a function as above.

- Function g is s(k)-hard for resolution if any formula $\tau(C_k)_b, b \in \{0,1\}^{n(k)} \setminus Rng(g)$, requires resolution proofs of size at least s(k).
- g is s(k)-iterable for resolution iff all disjunctions of the form

 $\tau(C_k)_{B_1}(x^1) \vee \ldots \vee \tau(C_k)_{B_t}(x^1, \ldots, x^t)$

require resolution proofs of size at least s(k). Here $t \ge 1$ is arbitrary, and B_1, \ldots, B_t are circuits such that:

- $-x^i$ are disjoint n(k)-tuples of atoms, for $i \leq t$.
- B_1 has no inputs, and inputs to B_i are among x^1, \ldots, x^{i-1} , for $i \leq t$.
- Circuits B_1, \ldots, B_t are just substitutions of variables and constants for variables.

Note that the s(k)-iterability implies the s(k)-hardness. (The proof of Theorem 2.1 uses only hardness of the function but we need iterability to get a hard function computable in uniform polynomial time in Corollary 1.5.)

Exponentially hard functions for resolution do exists. A $\mathcal{P}/poly$ -function, a linear map over \mathbf{F}_2 defined by a sparse matrix with a suitable "expansion" property, $2^{k^{\Omega(1)}}$ -hard for resolution was constructed in [10, Thm.4.2]. Razborov [14, Thms.2.10,2.20] gave an independent construction and he noticed that any proof of hardness utilising only the expansion property of a matrix implies, in fact, $2^{k^{\Omega(1)}}$ -iterability as well. We use a weaker statement than what is actually proved in [14].

 $^{^2[9,\,13,\,10,\,14,\,11,\,12];}$ the reader may want to read the introductions to [10] or [14], to learn about the main ideas.

Theorem 1.2 (Razborov[14]) There exists a function $g = \{g_w\}_w$, with $g_w : \{0,1\}^w \to \{0,1\}^{w^2}$, computed by size $O(w^3)$ circuits, that is $2^{w^{\Omega(1)}}$ -iterable for resolution.

However, what we want is a function computed by a uniform algorithm (it is not known at present how to construct explicitly the matrices used in [10, 14]) in order that our substitution is polynomial time computable too. Fortunately, we can get a uniform function from Theorem 1.2, using a result from [10].

Definition 1.3 Let $m \ge \ell \ge 1$. The truth table function $\operatorname{tt}_{m,\ell}$ takes as input m^2 bits describing³ a size $\le m$ circuit C with ℓ inputs, and outputs 2^{ℓ} bits: the truth table of the function computed by C.

 $\mathbf{tt}_{m,\ell}$ is, by definition, equal to zero at inputs that do not encode a size $\leq m$ circuit with ℓ inputs.

Theorem 1.4 (Krajíček[10]) Assume that there exists a $\mathcal{P}/poly$ -function $g = \{g_w\}_w$, with $g_w : \{0,1\}^w \to \{0,1\}^{w^2}$, that is $2^{w^{\Omega(1)}}$ -iterable for resolution.

Then:

- 1. For any $1 > \delta > 0$, the truth table function $tt_{2^{\delta\ell},\ell}$ is $2^{2^{\Omega(\delta\ell)}}$ -iterable for resolution.
- 2. There is a constant $c \geq 1$ such that the truth table function $\mathbf{tt}_{\ell^c,\ell}$ is $2^{\ell^{1+\Omega(1)}}$ -iterable for resolution.

The theorem (see [10, Thm.4.2]) is proved by iterating the circuit computing g_w along an *w*-ary tree of depth *t*, suitable *t*. The two statements stated explicitly are just two extreme choices of parameters, but the proof yields an explicit trade-off for a range of parameters. We state this without repeating the construction from [10].

Let $c \geq 1$ and $\epsilon > 0$ be arbitrary constants. Assume that there is a function $g = \{g_w\}_w$, with $g_w : \{0,\}^w \to \{0,1\}^{w^2}$, computed by size w^c circuits and that is $2^{w^{\epsilon}}$ -iterable for resolution.

Then the truth function $\mathbf{tt}_{m,\ell}$ is s-iterable for the following choices of parameters, with $t \geq 1$ arbitrary:

1. $m := w^c \cdot t$,

 $^{{}^{3}}O(m\log(m))$ bits would suffice but we want simple formulas.

- 2. $\ell := t \cdot \log(w),$
- 3. $s := 2^{w^{\epsilon} t \log(w)}$.
- **Corollary 1.5** 1. For every c > 1 there are $\epsilon > 0$ and a polynomial time computable function $g = \{g_k\}_k$,

$$g_k : \{0,1\}^k \to \{0,1\}^{k^c}$$
,

that is $2^{k^{\epsilon}}$ -hard for resolution.

2. There are $\epsilon > \delta > 0$ and a polynomial time computable function $g = \{g_k\}_k$,

$$g_k : \{0,1\}^k \to \{0,1\}^{2^{k^o}}$$

that is $2^{k^{\epsilon}}$ -hard for resolution.

2 The substitution

- **Theorem 2.1** 1. For any $\delta > 0$ there are $\mu > 0$ and a polynomial time computable function $g = \{g_k\}_k$, extending $k = n^{\delta}$ bits to n = n(k) bits such that for any 3DNF formula $A(y), y = (y_1, \ldots, y_n)$, it holds:
 - If A(g_k(x)) has a resolution proof of size at most 2^{n^μ} then A(y) is a tautology.
 - 2. There are c > 1, $\mu > 0$ and a polynomial time computable function $g = \{g_k\}_k$, extending $k = \log(n)^c$ bits to n = n(k) bits such that for any 3DNF formula A(y), $y = (y_1, \ldots, y_n)$, it holds:
 - If A(g_k(x)) has a resolution proof of size at most n^{log(n)^μ} then A(y) is a tautology.

Proof :

For Part 1. let $\delta > 0$ be arbitrary. Put $c := \delta^{-1}$, and take $\epsilon > 0$ and the polynomial time function $g = \{g_k\}_k$ guaranteed by Corollary 1.5 (Part 1). Hence $g_k : \{0, 1\}^{n^{\delta}} \to \{0, 1\}^n$, for $k = n^{\delta}$.

Assume A(y) is not a tautology and let $b \in \{0,1\}^n$ is a falsifying assignment. Then $\tau(g)_b$ can be proved in resolution by combining a size s proof of A(g(x)) with a size $n^{O(1)}$ proof of $\neg A(b)$. By the $2^{k^{\epsilon}}$ -hardness of g it must hold that

$$s + n^{O(1)} \ge 2^{n^{\delta \epsilon}} .$$

Hence s must be at least $2^{n^{\mu}}$, for suitable $\mu < \delta \epsilon$.

Part 2 is proved analogously, using Corollary 1.5 (Part 2).

q.e.d.

Note that if g(x) is a hard proof complexity generator, so is function $(x, z) \rightarrow (g(x), z)$. Hence we may apply the substitutions from the theorem only to some variables y_i .

3 Remarks

We conclude by some remarks. First we substantiate the comment about automated theorem provers and SAT-solvers from the introduction.

Let B(x, z) be the formula A(g(x)) with the auxiliary variables z also displayed. The k variables x are *essential* in B in the sense that there is a O(|B|) size resolution proof of

$$B(x,z) \lor B(x,w) \lor z_j \equiv w_j$$

for all j. (In fact, such a proof is easily constructible once we have the algorithm for g.) Assume that it would be always possible to find a resolution proof of a formula whose size would be subexponential in the minimal number of essential variables and polynomial in the size of the formula; in our case $2^{k^{o(1)}}|A(g(x))|^{O(1)}$.

Taking g from Theorem 2.1 (part 2) this would get a size $|A(g)|^{O(1)}$ proof of A(g(x)), which is below the required upper bound $n^{\log(n)^{\mu}}$. Hence we could interpret this as a new proof system R_g in the sense of Cook-Reckhow [3]: A proof in R_g of A(y) is either a resolution proof or a size $|A(g(x))|^c$ (specific c) proof of A(g(x)). This proof system would allow for polynomial size proofs of all tautologies, hence $\mathcal{NP} = co\mathcal{NP}$.

The equality $\mathcal{NP} = co\mathcal{NP}$ followed only from assuming the existence of short resolution proofs. But automated provers (SAT-solvers) actually construct the proofs, or a proof can be constructed by a polynomial time algorithm from the description of any particular successful computation. Hence the existence of automated provers (SAT-solvers) running in time subexponential in the number of essential variables implies even $\mathcal{P} = \mathcal{NP}$ (or $\mathcal{NP} \subseteq \mathcal{BPP}$ if the prover is randomised).

Our second remark concerns the exhaustive search; in other words, what do we know about A(y) if we only know that A(g(x)) is a tautology but we do not have a short proof of that fact.

Take for g the function from Theorem 2.1 (Part 1.), or any $\mathbf{tt}_{m(\ell),\ell}$ with $m(\ell) = \ell^{\omega(1)}$. Let $n := 2^{\ell}$, and interpret strings $b \in \{0, 1\}^n$ as truth tables of boolean functions in ℓ variables. Hence $b \notin Rng(g)$ implies that b is not computable by a circuit of size $\ell^{O(1)}$.

Assume A(g(x)) is a tautology while A(y) is not. Define set $C \subseteq \{0,1\}^n$ by:

$$C := \{ b \in \{0, 1\}^n \mid \neg A(b) \} .$$

Then it satisfies:

- (1) C is in $\mathcal{P}/poly$.
- (2) $b \in C$ implies that b is not computable by a size $\ell^{O(1)}$ circuit (i.e. b is not in $\mathcal{P}/poly$).

Razborov and Rudich [15] defined the concept of a $\mathcal{P}/poly$ -natural proof against $\mathcal{P}/poly$. It is a $\mathcal{P}/poly$ subset C of $\{0,1\}^n$ satisfying condition (2) above, and also condition

(3) The cardinality of C is at least $2^n/n^c$, some $c \ge 1$.

They proved a remarkable theorem (see [15]) that no such set exists, unless strong pseudo-random number generators do not exists (or, equivalently, strong one-way function do not exists).

In our situation this implies that (under the same assumption) there can be at most $2^n/n^{\omega(1)}$ assignments falsifying A(y).

Let me conclude with an open problem: Can the substitution speed-up proofs more than polynomially? That is, are there formulas A(y) having long resolution proofs but A(g(x)) having short resolution proofs? In yet another words, does R simulate the system R_q defined earlier?

Acknowledgements: I am indebted to Antonina Kolokolova (Simon Fraser U.) for discussions on related topics. I thank Klas Markström (Umea) for explaining me a few facts about automated theorem provers and SAT-solvers, and to Pavel Pudlák (Prague) for comments on the draft of the paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson, Pseudorandom generators in propositional proof complexity, *Electronic* Colloquium on Computational Complexity, Rep. No.23, (2000). Ext. abstract in: Proc. of the 41st Annual Symp. on Foundation of Computer Science, (2000), pp.43-53.

- [2] P. Beame, H. Kautz, and A. Sabharwal, Towards Understanding and Harnessing the Potential of Clause Learning, *Journal of Artificial Intelligence Research (JAIR)*, vol. 22, (2004), pp.319-351.
- [3] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic, 44(1), (1979), pp.36-50.
- [4] M. Davis and H. Putnam, A Computing Procedure for Quantification Theory, *Journal of the ACM*, 7(1), (1960), pp.201-215.
- [5] M. Davis, G. Logemann, and D. Loveland, A Machine Program for Theorem Proving, *Communications of the ACM*, 5(7), (1962), pp.394-397.
- [6] C. P.Gomes, B. Selman, and H. Kautz, Boosting combinatorial search through randomization, In: 15th AAAI, (1998), pp.431-437.
- [7] J. Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University Press, (1995).
- [8] J. Krajíček, On the weak pigeonhole principle, Fundamenta Mathematicae, Vol.170(1-3), (2001), pp.123-140.
- [9] J. Krajíček, Tautologies from pseudo-random generators, Bulletin of Symbolic Logic, 7(2), (2001), pp.197-212.
- [10] J. Krajíček, Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds, *Journal of Symbolic Logic*, 69(1), pp.265-286, (2004).
- [11] J. Krajíček, Diagonalization in proof complexity, Fundamenta Mathematicae, 182, (2004), pp.181-192.
- [12] J. Krajíček, Structured pigeonhole principle, search problems and hard tautologies, J. of Symbolic Logic, 70(2), (2005), pp.619-630.
- [13] A. A. RAZBOROV, Resolution lower bounds for perfect matching principles, in: Proc. of the 17th IEEE Conf. on Computational Complexity, (2002), pp.29-38.

- [14] A. A. RAZBOROV, Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution, preprint, (May'03).
- [15] A. A.Razborov and S. Rudich, Natural proofs, Journal of Computer and System Sciences, 55, (1997), pp.24-35.
- [16] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, Efficient conflict driven learning in a boolean satisfiability solver, Proc. of the 2001 IEEE/ACM international conference on Computer-aided design, (2001), pp.279-285.