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Abstract. We propose a general classification of nonequilibrium steady states in

terms of their stationary probability distribution and the associated probability

currents. The stationary probabilities can be represented graph-theoretically as

directed Cayley trees; closing a single loop in such a graph leads to a representation of

probability currents. This classification allows us to identify all choices of transition

rates, based on a master equation, which generate the same nonequilibrium steady

state. We explore the implications of this freedom, e.g., for entropy production.
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Introduction. One of the greatest successes of statistical mechanics was forging

the fundamental link between microscopic interactions and macroscopic behavior for

interacting many-body systems in equilibrium. Boltzmann and Gibbs established the

general framework which allows us to compute – at least in principle – any macroscopic

observable of interest. Labeling the microscopic states (“configurations”, C) of the

system and establishing a form for the internal energy H(C) associated with each C,

macroscopic observables can be expressed as statistical averages, 〈A〉 =
∑

C A(C)P eq(C),

with the appropriate equilibrium distribution P eq(C).

Given that a real system continuously undergoes transitions from one configuration

to another, it is quite remarkable that P eq(C) can be determined without explicit

recourse to a time-dependent distribution, P (C; t). At the root of this enormous

simplification lies the property of detailed balance. Related to microscopic reversibility,

a system evolving according to a dynamics with this property will eventually settle in a

stationary state in which the net probability current between any pair of configurations

vanishes. As a result, P eq(C) ≡ limt→∞ P (C; t) can be expressed in terms of ratios of

the (dynamic) transition rates between configurations, and the long-time limit remains

invariant under any modification of the dynamics which preserves these ratios. Indeed,

Monte Carlo simulation studies of equilibrium systems rely heavily on this property.

In summary, systems in thermal equilibrium are fundamentally well understood,

including their dynamical representations. In stark contrast, a comparable theoretical

framework is still sorely lacking for systems far from thermal equilibrium. Even the
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simplest generalizations of thermal equilibrium, namely, non-equilibrium steady states

(NESS), are currently analyzed case-by-case. Thus, much effort is directed at simple

models, maintained far from equilibrium by imposing external driving forces, with the

goal of identifying some generic classes of NESS [1, 2]. Typically, these models are

specified by a set of transition rates (motivated by physical considerations), so that the

master equation provides a natural framework for analysis. A key feature of far-from-

equilibrium dynamics, these rates violate detailed balance, resulting in non-vanishing

probability currents for the final, time-independent NESS. In general, its stationary

distribution is not known a priori, and must be found by solving the master equation.

Thus, it is impossible to discern if two different sets of rates will lead to the same

NESS without solving both master equations. By contrast, for equilibrium systems

with microscopically reversible dynamics, simply comparing the ratios of the rates will

suffice!

In this letter, we address these fundamental issues. Starting from a general

master equation which admits a unique stationary distribution, P ∗(C), we first review

a graphical construction for P ∗ in terms of (directed) Cayley trees. Established some

time ago [3, 4, 5], this method seems not to be widely known. In this approach, the

non-trivial probability currents associated with NESS are very naturally associated with

the violation of detailed balance. Second, we propose a general classification of NESS

in terms of both P ∗(C) and the (stationary) probability currents, K∗(C, C′), between

configurations C and C′. In other words, we postulate that a complete description for a

NESS is {P ∗, K∗}, being the appropriate generalization of the Boltzmann distribution

for equilibrium systems: {P eq, 0}. In addition to the usual macroscopic averages 〈A〉,

{P ∗, K∗} allows us to compute fluxes of all physical quantities (e.g., mass and energy

currents), within and through our system. In this framework, we can specify the class

of transition rates which lead to the same NESS, leading to a generalization of the

“detailed balance condition” routinely exploited in simulation studies of equilibrium

systems. In other words, all transformations of the rates which leave {P ∗, K∗} invariant

are known. Further, if we are provided two distinct set of rates corresponding to the

same NESS, then {P ∗, K∗} can be found trivially. We conclude with a discussion of

entropy production and some general comments.

The master equation and graphic representation of P ∗. We begin with a generic

master equation for an interacting many-body system with a finite number (N) of

degrees of freedom. Labelling the configurations in some arbitrary fashion as C1, C2,

.., CN , we write the transition rate, per unit time, from Cj to Ci as wj
i . All w’s are

real, non-negative, and assumed to be time-independent. In general, wj
i differs from its

reverse, wi
j. The master equation for Pi(t) ≡ P (Ci, t), the probability to find the system

in configuration Ci at time t reads:

∂tPi(t) =
∑

j 6=i

[

wj
i Pj(t) − wi

jPi(t)
]

≡
∑

j

W j
i Pj(t) (1)

i.e., the off- and on-diagonal elements of W are just wj
i and (−

∑

6=j wj
i ). Note that

∑

i W
j
i = 0, for ∀ j, ensuring that

∑

i Pi(t) = 1, for ∀ t. Such a W is known as a
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Figure 1. Representation of P
∗

1
, for a simple model with N = 3, in terms of directed

Cayley trees.

stochastic matrix. Since equation (1) is just a continuity equation for probability, we

can write Kj
i (t) ≡ wj

i Pj(t) − wi
jPi(t) as the net probability current from Cj into Ci.

In the following, we assume that every configuration can be reached from every

other configuration. Under these conditions, equation (1) is ergodic and has a unique

stationary solution, P ∗
i ≡ limt→∞ Pi(t). The associated stationary currents are denoted

by K∗j
i and satisfy

∑

j 6=i K
∗j
i = 0, i.e., the total probability current into any given

configuration vanishes. If the rates satisfy detailed balance, as for systems evolving

towards thermal equilibrium where wj
i /w

i
j = P eq

i /P eq
j , then all stationary currents

vanish. An equivalent statement of detailed balance which does not reference P eq
i

explicitly [2] involves closed loops in configuration space, i.e., Ci → Cj → Ck → ... →

Cn → Ci. For each loop, we define the product of the associated rates in the “forward”

and the “reverse” directions: Πf ≡ wi
jw

j
k...w

n
i and Πr ≡ wj

i w
k
j ...w

i
n. The detailed balance

condition corresponds to Πf = Πr for all loops. Related to integrability, this property

allows P ∗
i to be computed from the w’s easily.

In the absence of detailed balance, P ∗
i has to be found, in principle, from

∑

j W j
i P ∗

j = 0 laboriously. Fortunately, there is a systematic way to construct P ∗ [3, 4],

using graph theoretical methods similar to those originally designed for electric networks

[6]. First, associate each Ci with a vertex, labelled i. Next, consider all distinct labelled

trees (i.e., a graph consisting of all vertices with a single undirected edge between each

pair, forming no loops). Denoting these trees as tα, α = 1, 2, .., M , Cayley’s theorem

[7] states that M = NN−2. To compute P ∗
i , direct every edge towards the vertex i and

denote this subset of (directed) trees by tα(i). In other words, α(i) runs over the set

of directed trees with i as the “root”. Next, a factor of wn
k is associated with an edge

directed from n to k. Finally, to each tree tα(i), we assign a numerical value, U(tα(i)),

which is the product of the (N − 1) factors of w’s in the tree. Clearly, U(tα(i)) = 0 if

one of the associated rates vanishes. Then, the stationary distribution is given by

P ∗
i = Z−1

∑

α(i)

U(tα(i)) (2)

where Z is just the normalization factor and may play the role of a (super-) partition

function. We illustrate the procedure in figure 1 for N = 3. A more detailed discussion,

including further examples, can be found in [8].

Probability currents and loops in configuration space. From the defining equation
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Figure 2. One term in [...] of equation (3), illustrating the emergence of nontrivial

loops. Straight arrows (red online) represent the w factors; the rest (black online), the

U ’s.

for Kj
i above, we arrive at the net (stationary) probability current, from Cj into Ci:

K∗j
i ≡ wj

i P
∗
j − wi

jP
∗
i = Z−1

∑

[

wj
i U(tα(j)) − wi

jU(tα(i))
]

(3)

Focusing on the expression within [...], we note that, for a specific α, the trees tα(i)

and tα(j) differ only in the directed edges that connect vertices i and j (figure 2). Now,

multiplication of U(tα(j)) by wj
i can be regarded as adding a directed edge from j to i,

converting tα(j) into a graph with a single loop. Associated with this loop is the product

Πj
i (tα(j)) ≡ wj

i

(

wi
k1

wk1

k2
...wkℓ

j

)

, where k1, ..., kℓ label the vertices between i to j. Similar

considerations for wi
jU(tα(i)) lead to a graph with the same loop, but traversed in the

opposite sense and so, associated with Πi
j(tα(i)) = wi

j

(

wj
kℓ

...wk1

i

)

. Meanwhile, the rest

of both trees (the side branches of the loops) are identical, so that R(tα(i)) = R(tα(j)),

where R denotes the products of the w’s in the side branches. Summarizing, we write

wi
jU(tα(i)) = Πi

j(tα(i))R(tα(i)), etc., so that

K∗j
i = Z−1

∑

[

Πj
i (tα(j)) − Πi

j(tα(i))
]

R(tα(i)) (4)

This expression explicitly demonstrates the emergence of nonzero steady state

probability currents from rates which violate detailed balance, as manifested in

irreversible loops.

A postulate. It is easy to construct cases where two sets of rates, one obeying

detailed balance, and the other violating it, lead to the same stationary distribution. For

example, for particles hopping on a ring with symmetric or biased rates, P eq = P ∗ ∝ 1.

Hence, one might be tempted to consider any P ∗ as an “effective” equilibrium system.

Indeed, nothing prevents us from labeling − ln P ∗(C) as an “effective Hamiltonian”. Yet,

in the simple example above, the system with biased rates carries a physical current

while the system with symmetric rates does not. Thus, it is essential to identify a

key signature that distinguishes a NESS from an equilibrium state. We believe that

the nonvanishing stationary currents, K∗, fill this role. Therefore, we propose that

{P ∗, K∗} form a complete and unique description for any stationary state. The major

difference between a NESS and the standard equilibrium case is K∗ being nonzero. In

this sense, the class of NESS is significantly broader than equilibrium states, and their
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analogs in electrodynamics would be, respectively, magnetostatics and electrostatics.

Given {P ∗, K∗}, all macroscopic stationary properties of the system can be computed.

Beyond the usual averages with P ∗ as the weights, the K∗ generate average fluxes

(or currents) associated with physical observables, such as energy or particle number

density. More details and examples will be discussed elsewhere [8].

Dynamic equivalence classes. A common notion of NESS is that, unlike their

counterparts in thermal equilibrium, seemingly slight modifications of the rates lead

to very different steady states. Armed with our characterization of a NESS in terms of

{P ∗, K∗}, we can pose a natural question: What determines the class of dynamics that

leads to the same NESS? In other words, given a set of w’s and its associated NESS,

what are the transformations (on the rates) which leave {P ∗, K∗} invariant? For the

equilibrium case, {P eq, 0}, the answer is well known: Any set of w’s will lead to a desired

P eq, provided they satisfy the “detailed balance condition”: wj
i /w

i
j = P eq

i /P eq
j . This

can be regarded as a constraint on the w’s, given a certain P eq is to be achieved. In our

framework, this constraint can now be easily generalized: To arrive at a given {P ∗, K∗}

final state, the w’s must satisfy

wj
i P

∗
j − wi

jP
∗
i = K∗j

i . (5)

for all pairs i 6= j. In the remainder of this letter, we will explore other representations

of this constraint and some of its implications.

Let us decompose WP ∗ into its symmetric and antisymmetric parts:

W j
i P ∗

j = Sj
i + Aj

i (6)

where S ≡ (WP ∗ + WP ∗)/2, and A ≡ (WP ∗ −WP ∗)/2. Then equation (5) is just the

constraint that A is fixed to be K∗/2. In contrast, there is no such constraint on S,

except for two restrictions. The physical rates must be non-negative (w ≥ 0), leading

to Sj
i ≥ |Aj

i |, ∀i 6= j. Next, probability conservation imposes
∑

i S
j
i = 0, ∀ j. Thus, we

arrive at the conditions

Sj
i ≥

1

2

∣

∣

∣K∗j
i

∣

∣

∣ ∀i 6= j, Sj
j = −

∑

i6=j

Sj
i . (7)

Within these constraints, we can choose arbitrary S’s and construct the associated

transition rates via

W j
i =

[

Sj
i +

1

2
K∗j

i

]

(P ∗
j )−1 , (8)

resting assured that the final NESS will remain the same. Thus, we may associate such

S’s with an “equivalence class” of dynamical rates leading to the same given NESS.

It is very instructive to consider the difference, ∆j
i , between two sets of rates that

belong to the same class. Since the differences in the S’s are symmetric, ∆ must satisfy

∆j
iP

∗
j = ∆i

jP
∗
i . (9)

Reminiscent of the ordinary detailed balance condition, it is possible to turn this into a

mnemonic: “The differences (as opposed to the rates themselves) must satisfy detailed

balance with respect to P ∗.” Finally, we note an implication of this curious equation: If
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two sets of rates are somehow known to generate the same NESS, their (non-vanishing)

differences will provide a simple route to finding P ∗. In contrast, for equilibrium states,

the stationary distribution can be easily generated from just one set of rates, again due

to the known absence of K∗’s in this case.

Entropy production. One of the key signatures of nonequilibrium steady states,

recognized over three decades ago [9, 4, 10], is entropy production. For a general time-

dependent solution of the master equation, two independent quantities were introduced:

the entropy production of the “system” and of the “medium”,

Ṡsys ≡
∑

i,j

W j
i Pi(t) ln

Pj(t)

Pi(t)
, Ṡmed ≡

∑

i,j

W j
i Pj(t) ln

W j
i

W i
j

. (10)

The former is readily recognized as the time derivative of Ssys ≡ −
∑

i Pi(t) ln Pi(t),

which motivates the term “entropy production of the system”. The latter is attributed

to the coupling of the system to the external environment in a manner that prevents it

from reaching equilibrium [4]. Neither Ṡsys nor Ṡmed is necessarily positive. However,

their sum, naturally termed the “total entropy production”

Ṡtot ≡
∑

i,j

W j
i Pj(t) ln

W j
i Pj(t)

W i
jPi(t)

, (11)

is indeed non-negative [4].

Recasting these expressions in terms of the probability currents [4], and taking

t → ∞ to focus on stationary states, we arrive at Ṡ∗
sys = 1

2

∑

i,j K∗j
i ln

(

P ∗
j /P ∗

i

)

and

Ṡ∗
med = 1

2

∑

i,j K∗j
i ln(W j

i /W i
j ). For equilibrium states, both trivially vanish since all

currents are zero. By contrast, K∗ 6= 0 for a NESS, though Ṡ∗
sys remains zero (so that

Ṡ∗
med = Ṡ∗

tot). The interpretion of these results is clear: In the steady state, the entropy

“associated with our system” no longer changes. However, it is reasonable to expect

that, being coupled in an irreversible way to the environment, such a NESS continues to

“induce” the entropy of its surrounding medium to increase (indeed, Ṡ∗
med = Ṡ∗

tot > 0).

In this sense, Ṡ∗
med carries detailed information of transition rates and so, the precise

nature of the coupling between our system and its environment. As a result, even if we

insist on having the same NESS (i.e., a given {P ∗, K∗}), Ṡ∗
med will not be unique. Let

us explore the implications of these “degrees of freedom”.

Since Ṡ∗
med = Ṡ∗

tot, we focus on the latter and exploit equation (6):

Ṡ∗
tot =

1

2

∑

i,j

K∗j
i ln

Sj
i + Aj

i

Sj
i − Aj

i

. (12)

Since A = K∗/2, the freedom we have is any S satisfying equation (7). An immediate

consequence is that rates can be chosen to minimize the entropy production (associated

with a given NESS), by having S ≫ A. To lowest order in K∗j
i/S

j
i , we have

Ṡ∗
tot =

∑

(K∗)2 / (2S). Since Ṡ∗
med ≡ 0 for equilibrium cases, we can choose rates

which are arbitrarily “equilibrium-like” in this respect. We should emphasize that,

though Ṡ∗
tot can be made arbitrarily small, it remains strictly positive and retains

the NESS signature. At the opposite extreme, we can consider rates with “infinite
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Ṡ∗
med” by lowering some Sj

i to
∣

∣

∣Aj
i

∣

∣

∣. Whether such a concept is useful deserves further

exploration. It is natural to label such rates as “maximally asymmetric”, since one of

the two directed edges between some pairs of configurations is missing. Such models

abound in the literature, e.g., totally asymmetric exclusion processes (TASEP) [11].

One clear advantage of having maximally asymmetric rates for all edges is that the

number of trees used for constructing P ∗ is kept at the absolute minimum. Of course,

the expression for K∗ also simplifies. Finally, the implications for non-equilibrium work

theorems [12, 10] are not trivial and will be published elswhere [8].

Conclusions. To summarize, we have addressed a fundamental question associated

with non-equilibrium steady states: Within the framework of the master equation, what

class, if any, of transition rates W lead to the same stationary state? For equilibrium

systems, the answer is provided by the detailed balance condition. To generalize this

answer to NESS, we first postulate that a NESS is completely and uniquely specified

by its stationary distribution P ∗ in conjunction with the steady currents K∗. Then

the generalized detailed balance condition is simply equation (5). Exploiting a graphic

method to compute P ∗ in terms of directed Cayley trees, we display the connection

between K∗ and “irreversible” loops - key characteristics of rates that violate detailed

balance. Extensions, examples, and further implications of these explorations may be

found in [8].
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[11] For a review, see: Schütz, G M 2000 Exactly solvable models for many-body systems far from

equilibrium Phase Transitions and Critical Phenomena vol 19 ed C Domb and J L Lebowitz

(New York: Academic)

[12] Jarzinsky C 1997 Phys. Rev. Lett. 78 2690


