
Logics of imperfect information:
why sets of assignments?

Wilfrid Hodges
Queen Mary, University of London

w.hodges@qmul.ac.uk

1 The source of the question

In 1961 Leon Henkin [3] extended first-order logic by adding partially or-
dered arrays of quantifiers. He proposed a semantics for sentences φ that
begin with quantifier arrays of this kind: φ is true in a structure A if and
only if there are a sentence φ+ and a structure A+ such that:

• φ+ comes from φ by removing each existential quantifier ∃y in the
partially ordered prefix, and replacing each occurrence of the variable
y by a term F (x̄) where x̄ are the variables universally quantified ‘be-
fore’ ∃y in the quantifier prefix (so that the new function symbols F
are Skolem function symbols),

• A+ comes from A by adding functions to interpret the Skolem func-
tion symbols in φ+, and

• φ+ is true in A+.

For example the sentence

(1)
(∀x)(∃y)
(∀z)(∃w)

ψ(x, y, z, w)

is true in A if and only if there are functions FA, GA such that

(2) (A,FA, GA) |= (∀x)(∀z)ψ(x, F (x), z, G(z))

where F , G stand for FA, GA respectively.
Jon Barwise commented seventeen years later:

1

. . . the meaning of a branching quantifier expression of logic
like:

(3) ∀x

∀z

—

—

∃y

∃w
H

H ψ(x, y, z, w)
��

cannot be defined inductively in terms of simpler formulas, by
explaining away one quantifier at a time. Rather, the whole
block

(4)
∀x

∀z

—

—

∃y

∃w
HH
�

�

must be treated at once.

([1] with ψ in place of Barwise’s A, to avoid a clash of notation.) He offered
a proof of what he called ‘a precise version of this claim’. Unfortunately his
proof proves much less than he said. It shows only that truth for Henkin’s
sentences is not an inductive verifiability relation in the sense of Barwise
and Moschovakis [2]. The key point is that the inductive clauses can’t be
first-order; but this is hardly surprising.

2 Separating out the problems

With hindsight we can see that there are at least three problems that stand
in the way of giving an inductive definition of truth for sentences with
partially ordered quantifier arrays.

The first problem is that the definition needs to describe the effect of
adding a single quantifier at the lefthand end of a formula. But for partially
ordered quantifier arrays there may be several lefthand ends, and it makes
a difference where we add the quantifier. The sentence (3) behaves quite
differently from

(5)
∀x∀z —— ∃y

∃w
HH ψ(x, y, z, w)
��

I don’t know that anybody has thought seriously about this problem; it
needs a subtler notion of substitution than we are used to in logic. But in
any case Jaakko Hintikka showed how to sidestep it by using a notation

2

that shakes Henkin’s formulas down into a linear form. The formula (1)
above becomes

(6) (∀x)(∃y)(∀z/∃y)(∃w/∀x)ψ(x, y, z, w)

in Hintikka’s notation. (Hintikka also introduced a dual notion of false-
hood in terms of Skolem functions for the universal quantifiers. Thus the
slash /∃y in (6) expresses that the function for z is independent of y.) This
linear notation forms the syntax of the ‘Independence-Friendly’ IF logic of
Hintikka and Sandu [4]. Hintikka also pointed out that the Skolem func-
tions can be regarded as strategies in a game between ∀ and ∃; the resulting
games form the game semantics for IF logic.

The second problem is that a Skolem function for an existential quanti-
fier is a function of the preceding universally quantified variables, but not
of the preceding existentially quantified ones. But for example the formula

(7) (∃w/∀x)ψ(x, y, z, w)

gives no indication whether the variables y and z are going to be univer-
sally or existentially quantified; so from the formula alone we don’t know
what information can be fed into the Skolem functions for it.

In [5] I sidestepped this second problem by replacing the Skolem func-
tions by general game strategies. Unlike a Skolem function, a strategy for
a player can call on previous choices of either player. For games of perfect
information this is a distinction without a difference; if player ∃ has a win-
ning strategy using the previous choices of both players, then player ∃ has
a winning strategy that depends only on the previous choices of player ∀.
But for games of imperfect information, such as we have here, it makes a
difference. I proposed marking the difference between Hintikka’s games
and mine by dropping the quantifiers after the slashes, and writing for ex-
ample (∀z/y) where Hintikka writes (∀z/∃y). In what follows I refer to
the logic with my notation and the general game semantics as slash logic.
During recent years many writers in this area (but never Hintikka himself)
have transferred the name ‘IF logic’ to slash logic, often without realising
the difference. Until the terminology settles down, we have to beware of
examples and proofs that don’t make clear which semantics they intend.

Given a solution to the third problem (below), solving the second prob-
lem for IF logic with the Skolem function semantics is tiresome but not
difficult. The solution is to give several different interpretations for each
formula, one for each guess about which free variables are going to be
quantified existentially. As we add the quantifiers, we discard the wrong

3

guesses—a bit like Cooper storage. Details are in [6]. I believe a similar
trick should deal with the first problem when it has been correctly posed.

There remains the third problem, which is to find an inductive truth
definition for slash logic. The paper [5] gave the trump semantics, which
solves this problem.

It turned out that the main idea needed was to think of formulas as be-
ing satisfied not by assignments to their variables, but by sets of assignments.
Why sets of assignments? Mathematically the idea is natural enough, but
we can hardly see by intuition that it will work. For a while I almost con-
vinced myself that an inductive truth definition for slash logic would need
sets of sets of assignments, sets of sets of sets of assignments, and so on up
the hierarchy of finite types.

An intuitive answer to the question ‘Why sets of assignments?’ could
do marvels for making the inductive semantics of these sentences more
appealing. But it’s hardly clear where to look for an intuition. One obvious
approach is to try generalising the semantics to other logics, in order to
see what is needed where. But in the last ten years this hasn’t happened.
The semantics has been extended, but only to logics with broadly the same
features as Henkin’s original.

So we have to look elsewhere. One suggestion runs as follows. The
trump semantics for formulas of slash logic was found by starting from
a game semantics on sentences. The passage from sentences to games to
trumps is too complex to support any strong intuition. So we should try
to separate the games from the trump semantics. There are two natural
ways to do this. The first way is to discard the games altogether and find a
direct motivation for the trump semantics. Jouko Väänänen has made good
progress in this direction [11].

The second way is to abandon the formulas and work directly with the
games. This is the purpose of this paper.

3 The programme

We aim to extract the game-theoretic content of the games in [5], and extend
it to a class of games that has no intrinsic connection with formulas or truth
values. Finding the trump semantics was a matter of extending the truth
values on sentences to semantic values on formulas, in such a way that the
values on formulas could be built up by induction on complexity. We aim
to do the same but in a purely game-theoretic setting: we define values on
games, and we extend these values to values on subgames, again with the

4

aim of defining these values by induction.
This description is too open-ended for comfort. Since we’ve thrown

away the connection with truth, what counts as a correct extension to sub-
games?

Fortunately we know the formal core of the Tarski truth definition; sec-
tion 4 below describes it in terms of fregean values. This formal description
carries over straightforwardly from formulas to games, as soon as we have
said what subgames are and what the value of a game is. Section 5 will de-
scribe the games and their subgames. Section 6 will propose suitable values
for games. (There might be better choices here that I didn’t think of.) Then
sections 7 and 8 carry out the extension to fregean values, first for games of
perfect information and then under imperfect information.

As hoped, the fregean value of a subgame is in terms of sets of assign-
ments rather than single assignments. But also we can see a game-theoretic
reason for this. The following summary will perhaps make more sense at
the end of the paper, but I hope it conveys something already at this stage.

The value of a game is defined in terms of the existence of certain strate-
gies for the players. The definition of values by induction on subgames
builds up these strategies. Now one familiar move in building up a strat-
egy σ for a player p, at a place where another player p′ is about to move, is
to find a strategy σa corresponding to each possible choice a by p′. We build
σ as follows: player p waits to see what choice a player p′ makes, and then
proceeds with σa. But under conditions of imperfect information pmay not
know what choice p′ is making. (Or to say the same thing in terms of infor-
mation partitions, the composite strategy σ may give different answers on
data items in the same partition set.) So this kind of gluing is blocked. The
consequence is that we can give player p this strategy σ only if we know
that it works uniformly for all choices that player p′ can make. In other
words, the information that we have to carry up from the subgames is not
that certain data states allow strategies, but that certain sets of data states
allow the same strategy. In short, we need to go up one type level in order
to sidestep the fact that we can’t in general glue strategies together.

4 Fregean values

This section summarises without proofs the main results in [8].
Suppose E is a set of objects called expressions (for example the formulas

of a logic). We assume expressions can have parts that are also expressions.
We write F (ξ1, . . . , ξn) for an ‘expression with holes’, that gives an an ex-

5

pression F (e1, . . . , en) when suitable expressions e1, . . . , en are put in the
holes, putting ei in hole ξi for each i.

We assume given a family F of such ‘frames’ F (ξ1, . . . , ξn), with four
properties:

1. F is a set of nonempty partial functions on E. (‘Nonempty’ means
their domains are not empty.)

2. (Nonempty Composition) IfF (ξ1, . . . , ξn) andG(η1, . . . , ηm) are frames,
1 6 i 6 n and there is an expression

F (e1, . . . , ei−1, G(f1, . . . , fm), ei+1, . . . , en),

then F (ξ1, . . . , ξi−1, G(η1, . . . , ηm), ξi+1, . . . , ξn) is a frame.

3. (Nonempty Substitution) If F (e1, . . . , en) is an expression, n > 1 and
1 6 i 6 n, then

F (ξ1, . . . , ξi−1, ei, ξi+1, . . . , ξn)

is a frame.

4. (Identity) There is a frame 1(ξ) such that for each expression e, 1(e) =
e.

Assume also that S ⊆ E. We refer to the expressions in S as sentences, since
this is what they are in most applications to logics. Assume that a function
µ with domain S is given; µ gives a ‘value’ to each sentence.

Under these assumptions, we define a relation ≡ on E as follows. (It
expresses that two expressions make the same contribution to the µ-values
of sentences containing them.)

For all expressions e and f , e ≡ f if and only if

(a) for each frame F (ξ) with one variable, F (e) is in S if and
only if F (f) is in S;

(b) whenever F (e) and F (f) are in S, µ(F (e)) = µ(F (f)).

Then ≡ is an equivalence relation. If distinct values are assigned to the dis-
tinct equivalence classes, so that |e| is the value assigned to the equivalence
class of e, we call |e| the fregean value of e.

Lemma 1 Suppose that for every expression e there is a frame F (ξ) such that
F (e) is a sentence. Then for each frame G(ξ1, . . . , ξn) there is a function hG such
that for all expressions e1, . . . , en such that G(e1, . . . , en) is an expression,

|G(e1, . . . , en)| = hG(|e1|, . . . , |en|).

6

In a common turn of phrase, Lemma 1 says that fregean values are ‘com-
positional’. The function hG is called the Hayyan function of G in [8].

Lemma 2 Let e and f be sentences. If e ≡ f then µ(e) = µ(f). Hence there is a
function r defined on the fregean values of sentences, such that for every sentence
e, µ(e) = r(|e|).

The message of these two lemmas together is that the function µ, which
is quite arbitrary, can always be defined through an inductive definition of
fregean values, where the induction is on the complexity of expressions.
The fregean values of atomic expressions have to be given directly as the
base case. The Hayyan functions take care of the inductive steps, and fi-
nally the function r reads off µ from the fregean values of the sentences. It
turns out that in standard examples of truth definitions we can take r to be
the identity. One such case is where E is the set of formulas of slash logic,
S is the set of sentences, µ is the assignment of truth values to sentences as
given by the game semantics, and the fregean values are the values given
to formulas by the trump semantics.

The intended applications of this machinery were languages. But noth-
ing prevents us from carrying them over to games. The set S will consist
of the games and the set E will consist of the subgames of these games (in
some suitable sense). We give each game G a ‘value’ µ(G) in terms of the
effects of strategies of the players, and then we compute fregean values for
the subgames. This will yield an inductive definition for the values µ(G),
working directly on the games without any intervention of formulas. In
this setting we can test the effect of moving from games of perfect infor-
mation to games of imperfect information. Does it move the values up a
type?

5 The games

The first step in our programme is to define the games and the subgames so
that the assumptions of section 4 hold. The requirements are fairly strong.
The games have to be constructed inductively from their subgames. The
notion of substituting one subgame for another has to make sense. So does
the notion of imperfect information. Already the games start to look a little
like formulas. But we can discard the notion that there are just two players,
and we don’t need the notions of winning and losing. The players need not
be in competition with each other.

I think we need the following ingredients.

7

• First and trivially, there must be more than one player. (Otherwise
the notion of imperfect information becomes degenerate.) We write
P for the set of players.

• Second, as the game proceeds, the players build up a bank of data
(corresponding to the assignment of elements to variables). It’s enough
to assume there is a set Q of questions, each of which has a nonempty
set of answers. A data state is a function defined on a set of questions,
taking each of these questions to one of its answers. We write D for
the set of data states.

• Third, some of the choices of the players are structural; they have no
effect on the data state, but they control who moves next, what the
criteria are for deciding the payoffs, what information can be fed into
strategies, and so forth. Thus at any stage of the play a data state s and
a sequence c̄ of structural moves have been built up. The information
fed into the play by the sequence c̄ determines a ‘subgame’ which is
to be played ‘at’ the data state s.

• Fourth, the fact that the same subgame can be played at different data
states allows the possibility that the player who moves at this sub-
game may have incomplete information about the data state.

• Fifth, the players can move to subgames only finitely often in a play.
Eventually they reach an atomic subgame; when they do, the payoff
to each player is determined by the subgame and the data state. There
is no need to assume that the payoffs are wins or losses; real number
values will suffice, and they need not add up to zero.

• Sixth, for each subgame H there is an associated set of questions
m(H), which we can call the matter of H , with the property that H
can be played as soon as we are given a data state s which answers
all questions in m(H). (This corresponds to the free variables of a
formula.) We need an assumption like this in order to make sense of
substitution of subgames.

The following definitions are meant to give shape to these ingredients.
They are strongly influenced by Parikh’s paper [9].

We assume given the set P of players, the set Q of questions and the set
D of data states, as above. Given a finite subset W of Q, we write D � W
for the set of all data states whose domain is W , and RD�W for the set of all
functions from D � W to the set R of real numbers. If s is a data state, q is a

8

question and a is an answer to q, we write s(q/a) for the data state whose
domain is domain(s) ∪{q}, and which agrees with s everywhere except that
s(q/a)(q) = a.

We define inductively the set of game parts. The game parts will be
formal sequences. Later we will explain how they are played. It might be
cleaner to define the sequences first, and then define a game part F (i) for
each sequence i; but our approach saves on notation.

(α) For every finite W ⊆ Q and every function f : P → RD�W , 〈W, f〉 is a
game part; its matter is W . Game parts of this form are atomic.

(β) For every finite set W ⊆ Q, every player p ∈ Q, every partition π of
D � W , every question q ∈ Q \W and every game part J with matter
⊆W ∪ {q}, there is a game part 〈W,p, π, q, J〉 whose matter is W .

(γ) For every finite set W ⊆ Q, every player p ∈ P , every partition π of
D � W and every nonempty set X of game parts with matter ⊆ W ,
there is a game part 〈W,p, π,X〉 whose matter is W .

For each game part H with matter W and each data state s with domain
⊇W , H is played at s as follows:

(α) IfH is 〈W, f〉 then there is an immediate payoff of f(p)(s � W) to each
player p.

(β) If H is 〈W,p, π, q, J〉, then player p moves by choosing an answer a to
the question q, and the play continues as a play of J at the data state
s(q/a).

(γ) If H is 〈W,p, π,X〉, then player p moves by choosing a game part
J ∈ X , and the play continues as a play of J at the data state s.

A game is a game part with empty matter. We say that a game part H is a
subgame of a game part G if H occurs as a subsequence of G. Note that a
game part G can have several occurrences of a game part H in it.

Suppose a play of a game part G at a state s is in progress, and the
players have just reached an occurrence of the subgame H of G. Then the
choices of the players consist of (1) a sequence c̄ of subgames, starting at
G and finishing with H , namely the game parts chosen at subgames of
the form (γ), and (2) a data state t representing s together with the choices
made at subgames of the form (β). We call the pair (c̄, t) a position in the
play. The pair (c̄, s) determines the domain of t (namely, the union of the
domain of s and the set of questions answered at moves reported in c̄); we

9

call this domain the current domain at (c̄, s). The sequence c̄ also determines
the player who will move next; we call this player the current player at c̄.
The current game part at the position (c̄, t) is the final game part H of c̄. If
this game part is of the form 〈W,p, π, . . .〉, then p and π are respectively
the current player and the current partition at c̄. Here the current game part,
player and partition depend only on c̄, and the current domain depends
only on c̄ and s; but since the position (c̄, t) determines s, we can speak of
any of these things as being current at the position (c̄, t).

A strategy for a player p in a game partG at a data state s is a family σ of
functions σc̄ indexed by the sequences c̄ such that p is the current player at c̄.
For each position (c̄, t) where p is the current player, σc̄(t) is a possible move
for p in the current subgame. There is some redundancy here, because a
strategy is defined at positions in the game which could never be reached
if the strategy was followed; but this redundancy will never matter and it
would be a nuisance to exclude it. Note that the strategy σ depends on s
and not just on G; the dependence on s will be important below.

So far the partitions have played no role. Their purpose is to restrict the
allowed strategies, as follows. We say that a strategy σ for player p in game
part G at s is admissible at c̄ if for all data states t, u with domain the current
domain W at c̄, if

• s � W and t � W lie in the same partition set of the current partition
at c̄,

then
σc̄(s) = σc̄(t).

We say that a strategy σ for p is admissible if it is admissible at all c̄ at which
p is the current player.

A game G is of perfect information if all the partitions appearing in G
are trivial, i.e. all their partition sets are singletons. For a game of perfect
information, every strategy is admissible. When we discuss games of per-
fect information, we can ignore their partitions; for example we can write
〈W,p, π,X〉 as 〈W,p,X〉.

In sections 7 and 8 below we will sometimes talk of strategies that are
restricted to subsets of some setD � W . It makes sense to glue together sev-
eral such strategies, provided that no two of them are defined on members
of the same partition.

If J is a game part occurring in the subgame H , and J ′ is a subgame
with the same matter as J , then we can form a new subgame H(J ′/J) by

10

replacing the occurrence of J by an occurrence of J ′; the matter of H(J ′/J)
is the same as that of H . (The notation is a shorthand; there might be other
occurrences of J in H , and these stay unchanged.)

It would be possible to substitute J ′ for J in H even if the matter of J ′

is not the same as that of J . But suppose the question q is in the matter
of J ′ and not in that of J . Let G be a game where some player chooses in
turn answers to the questions in m(J), and then the game continues as J .
Then substituting J ′ for J in G yields a subgame G′ whose matter contains
q; so this substitution turns a game into a game part that is not a game. We
will bar this kind of substitution. In other words, we will consider only
substitutions where (a) of section 4 holds. So the significant question will
be when (b) holds too.

Our notion of subgame is not the more familiar one due to Selten [10].
A Selten subgame in our context would be a pair (G, s) where G is a sub-
game that can be played at data state s. For us it is essential that the same
subgame can be played at different data states. This is the game analogue
of the fact that a subformula allows different assignments to its variables.

6 Game values

We define the value of a game G to a player p, µp(G), to be the supremum
of the reals λ such that p has an admissible strategy which ensures that the
payoff to p is at least λ. So µp(G) is an element of R ∪ {±∞}. We can take
the value µ(G) of G to be the function taking each player p to µp(G). But in
fact all our calculations of values will consider one player at a time.

This is a generalisation of the assignment of truth values to sentences
in logic. The logical case is where there are two players, the payoffs are all
either 0 or 1, and for any atomic game part at any data state the payoffs to
the two players add up to 1. One could generalise in other ways (for ex-
ample taking values in a complete boolean algebra), but I chose something
simple that seems to fit with the habits of game theory.

Now that we have the values of games, we can apply the framework of
section 4. We take E to be the set of game parts, S to be the set of games and
µ to be the value function just defined. Every game part is a subgame of a
game, so that the hypothesis of Lemma 1 holds. (It would have failed if we
allowed the matter of a game part to be infinite, since only finitely many
questions get answered during a play.)

Following section 4 we define a relation ≡ on subgames: H ≡ J if and
only if

11

(a) H and J have the same matter, and

(b) for every game G containing an occurrence of H , µ(G(J/H)) = µ(G).

Then ≡ is an equivalence relation on E. If we can identify the equivalence
classes, we can label them with fregean values, and then we have a defini-
tion of µ by induction on subgames.

7 The extension under perfect information

In this section all games are of perfect information, so that all strategies are ad-
missible. Here the situation is familiar enough to suggest where to look for
fregean values.

Definition 3 Let G be a game part.

(a) Let p be a player and s a data state with domain ⊇ m(G). Define the value
of G at s to p, vp(G, s), by:

vp(G, s) = sup{λ : p has a strategy which, when G is played at state s,
guarantees that the payoff to p will be at least λ}.

(b) We define vp(G) to be the function with domain D � m(G), whose value for
each s in this set is vp(G, s).

(c) We define v(G) to be the function with domain P , whose value for each
player p is vp(G).

In the case where G is a game, vp(G) = µp(G) for each player p, and so
v(G) = µ(G). In the case where G is atomic, there is an immediate payoff
to each player for each s ∈ D � m(G), and v(G) records these payoffs.

The definition of v(G) depends only on the values v(G, s) where s has
domain m(G). But G can be played at data states s with much larger do-
mains. We need to show that for these s the values v(G, s) are determined
by v(G). (This is fundamental. If it failed, the values v(G) wouldn’t be
fregean values obeying the conclusion of Lemma 1.)

Lemma 4 (Under perfect information.) Suppose a game part G has matter W ,
and s is a data state with domain W ′ ⊇W . Let p be a player. Then the value of G
at s for p is equal to the value of G at s � W for p.

12

Proof Suppose σ is a strategy for p in G at s � W that guarantees p a
payoff of at least λ. Let τ be the following strategy for p in G at s: ignore
any answers to questions not in W , and use σ. Induction on the complexity
ofG shows that this is a strategy for p inG at s; the ignored values are never
needed, and in particular they make no difference to the payoff. Thus τ
guarantees payoff at least λ for p.

Conversely suppose τ is a strategy for p in G at s that guarantees p a
payoff of at least λ. Then let σ be the strategy for p in G at s � W that uses
τ , filling in the extra values from s. Again σ guarantees payoff at least λ to
p. �

Theorem 5 (Under perfect information.) Suppose H and H ′ are game parts with
the same matter. Then H ≡ H ′ if and only if v(H) = v(H ′).

Proof We fix a player p. Assuming that vp(H) = vp(H ′), we prove
that for every game part G in which H occurs as a subgame, vp(G) =
vp(G(H ′/H)). The proof is by induction on the complexity of G. By the
lemma, we need only show that vp(G, s) = vp(G(H ′/H), s) when s has do-
main m(G).

(α) Suppose first that G = H . Then G(H ′/H) = H ′, so the result is
immediate.

(β) Suppose that p′ is a player, G is 〈W,p′, q, J〉, s is a data state with
domain m(G), and vp(G, s) = λ. Then for every λ′ < λ, p has a strategy for
G at s which guarantees p a payoff of at least λ′. We aim to show the same
for G(H ′/H). There are two cases, according as p′ is p or another player.

Suppose first that p′ 6= p. Then

For each λ′ < λ and each possible choice a of p′ at G, there is a
strategy σa for p for J at s(a/q) which guarantees p a payoff of
at least λ′.

Now by induction hypothesis vp(J) = vp(J(H ′/H)), so the lemma tells us
that vp(J, s(a/q)) = vp(J(H ′/H), s(a/q)) for each a. It follows that for each
a, player p has a strategy τa for J(H ′/H) at s(a/q) which guarantees p a
payoff of at least λ′. For each λ′ < λ we can glue these strategies together
to produce a strategy τ for p in G at s, namely: Wait for the choice a and
then play τa. This strategy guarantees p a payoff of at least λ′. Hence again
vp(G(H ′/H), s) > vp(G, s), and symmetry gives the converse.

The other case, where p′ is p, is similar but easier. The strategy σ for p at
G chooses an element a to answer q, and then we need only consider s(a/q)
for this a, so that no gluing is needed.

13

(γ) Suppose p′ is a player and G is 〈W,p′, q,X〉. Then the argument
of case (β) applies with appropriate changes. Note that since the different
subgame occurrences have their own strategy functions, there is no need
for any gluing in this case.

This proves one direction. For the other, suppose vp(H) < vp(H ′), and
choose λ with vp(H) < λ < vp(H ′). Then p has no strategy in H that
guarantees that for all s, p will get payoff λ. Hence there is some s such
that p can’t guarantee to get λ, playing at s. Consider the game where some
other player chooses assignments to the domain of s, then p picks up and
plays H . In this game G player p can’t guarantee to get payoff λ, since the
other player could play s. But by assumption player p can guarantee to get
payoff λ in G(H ′/H). Hence µ(G(H ′/H)) 6= µ(G), so that H 6≡ H ′. �

Suppose we restrict to any smaller class of games which is closed under
substitution of subgames with the same matter, and under (β) of section 5.
(An example of such a class is where in (γ) we require the set X to be finite.
This comes nearest to first-order logic.) Then the entire argument above
goes through.

8 The extension under imperfect information

We turn to our major question. What is needed to repair the proof of Theo-
rem 5 if we drop the assumption of perfect information?

Lemma 4 doesn’t survive unaltered, but with a suitable definition of
values we can still get the main point of the lemma, which is that the val-
ues at data states whose domain is the matter determine the values at all
other data states. The proof of Theorem 5 also goes through except for one
point: in the gluing at case (β), nothing guarantees that the resulting strat-
egy τ is admissible. A little meditation shows that the problem is serious.
No information about the existence of separate admissible strategies τa for
J(H ′/H) at s(a/q) is going to guarantee a single admissible strategy for
G(H ′/H) at s.

So we have to carry up inductively the information that certain sets of
data states lie within the domains of admissible strategies.

Definition 6 Let G be a game part.

(a) Let p be a player, and let W be a finite set of questions ⊇ m(G). Define the

14

value of G at a subset S of D � W to p, vp(G,S), by:

vp(G,S) = sup{λ : p has an admissible strategy which, when G is
played at any state s ∈ S, guarantees that the payoff
to p will be at least λ}.

(b) We define vp(G) to be the function with domain the power set of D � m(G),
whose value for each subset S of D � m(G) is vp(G,S).

(c) We define v(G) to be the function with domain P , whose value for each
player p is vp(G).

Then as before, v(G) = µ(G) whenever G is a game.
Suppose W ′ ⊇ W and S is a subset of D � W ′. We say that s, t in S are

in the same fibre of S along W if s � (W ′ \W) = t � (W ′ \W). This defines
an equivalence relation, and its equivalence classes are called the fibres of S
along W .

Lemma 7 Suppose a game part G has matter W , W ′ is a finite set ⊇ W , and S
is a set of data states with domain W ′. Let p be a player. Then the value of G at S
for p is equal to the infimum of the values of G at the fibres of S along W for p.

Proof. (Cf. Lemma 7.4 of [5].) Let λ be the infimum of the values of G
at the fibres of S along W for p. Then for each λ′ < λ and each fibre φ of
S along W , there is an admissible strategy σφ for p on φ, which guarantees
p a payoff of at least λ′. Fixing λ′, glue together these strategies on the
separate fibres, to get a strategy σ on W . In the definition of admissibility,
elements of different fibres never agree off W ; so the admissibility of the σφ

guarantees that σ is admissible. Thus the value of G at S for p is at least λ.
An easier argument in the other direction shows that if the value of G

at S for p is at least λ, then the value at each fibre is at least λ too. �

We repeat the Theorem, but under imperfect information and with the
new definition of v.

Theorem 8 Suppose H and H ′ are game parts with the same matter. Then H ≡
H ′ if and only if v(H) = v(H ′).

Proof. We fix a player p. Assuming that vp(H) = vp(H ′), we prove
that for every game part G in which H occurs as a subgame, vp(G) =
vp(G(H ′/H)). The proof is by induction on the complexity of G. By the

15

lemma, we need only show that vp(G,S) = vp(G(H ′/H), S) when S ⊆ D �
m(G).

(α) The case where G = H is as before.
(β) Suppose that p′ is a player, G is 〈W,p′, π, q, J〉, S ⊆ D � W and

vp(G,S) = λ. Then for every λ′ < λ, p has an admissible strategy for G at
S which guarantees p a payoff of at least λ′. We aim to show the same for
G(H ′/H). There are two cases, according as p′ is p or another player.

Suppose first that p′ = p. Then:

there is an admissible function σ for p such that p has an admis-
sible strategy for J at Sσ = {s(σ(s)/q) : s ∈ S} which guaran-
tees p a payoff of at least λ′.

Now by induction hypothesis vp(J) = vp(J(H ′/H)). Hence by the lemma,
vp(J, Sσ) = vp(J(H ′/H), Sσ). It follows that p has an admissible strategy
for J(H ′/H) at Sσ which guarantees p a payoff of at least λ′. Combining
this strategy with σ, p has an admissible strategy for G(H ′/H) at S which
guarantees a payoff of at least λ′. Thus vp(G) 6 vp(G(H ′/H)), and symme-
try gives the converse.

Next, suppose p′ 6= p. The argument is the same, except that in place of
Sσ we use Sq = {s(a/q) : s ∈ S, a an answer to q} .

(γ) Suppose that p′ is a player, G is 〈W,p′, π,X〉 and S ⊆ D � W . One
can adjust the arguments of case (β) to this case without needing any new
ideas.

Now conversely suppose that m(H) = m(H ′) 6= ∅, and for some S
with domain m(H) = {q1, . . . , qk}, vp(H,S) < vp(H ′, S). Then the same
inequality must hold for some nonempty intersection of S with a class of
the current partition at H ; so we can assume that S lies in a single class
of this partition. Choose λ, λ′ with vp(H,S) < λ′ < λ < vp(H ′, S). Let
f : P → RD�m(H) be the function that takes each player p′ 6= p to the
constant function with value 0, and that satisfies

f(p)(s) =
{
λ′ if s ∈ S,
λ otherwise.

Let p0 be some player other than p, and let G be the game

〈∅, p0, q1, 〈{q1}, p0, q2, 〈. . . , qk, 〈m(H), p, {H, 〈m(H), f〉}〉 . . .〉

where the missing partitions are all trivial, so that the information is perfect
except perhaps within H .

16

In the game G, player p0 can use the first k moves to pick an element
of S. Then by assumption p has no admissible strategy in H guaranteeing
a payoff > λ′, and choosing 〈m(H), f〉 guarantees p a payoff of only λ′.
So vp(G) 6 λ′. On the other hand p has a strategy for G(H ′/H) which
guarantees a payoff of at least λ. Namely, if p0 chooses s in S, then pick
H ′ and play a suitable admissible strategy at S in H ′; if p0 chooses outside
S, then choose 〈m(H), f〉 and collect λ. Since G is a game, it follows that
H 6≡ H ′. �

Just as in the previous section, the theorem still holds good if we restrict
to a class of games with reasonable closure conditions. I omit details.

9 Conclusion

In the games above, we get fregean values for game parts by assigning val-
ues to sets of data states, not to single data states. This is the exact analogue
of what happens in the semantics for slash logic as in [5]. The proofs make
clear why this is the right level: in some sense the argument was always
about sets of data states rather than data states one at a time—but in the
case of perfect information we could disguise this fact by taking the data
states one at a time and then gluing.

The games above do look rather like formulas. (I don’t know whether
they have any other application.) But our arguments show that some fea-
tures of logical formulas are irrelevant to the fact that fregean values go
with sets of data states. In particular the number of players is irrelevant
as long as it is at least two. Competition between the players is irrelevant.
Truth (as opposed to real number values) is also irrelevant. Last but not
least, the information partitions that we allowed are much more general
than those that arise from IF or slash logic.

Acknowledgements My warm thanks to the organisers of ‘Interactive
Logic: Games and Social Software’ for a very stimulating meeting, and for
giving me the opportunity to present this paper. The paper was completed
during a visit to the Isaac Newton Institute in Cambridge.

References

[1] Jon Barwise, ‘On branching quantifiers in English’, Journal of Philosoph-
ical Logic 8 (1978) 47–80.

17

[2] Jon Barwise and Yiannis N. Moschovakis, ‘Global inductive definabil-
ity’, Journal of Symbolic Logic 43 (1978) 521–534.

[3] Leon Henkin, ‘Some remarks on infinitely long formulas’, in Infinitistic
methods: Prococeedings of symposium on foundations of mathematics, Perg-
amon Press and Państwowe Wydawnictwo Naukowe, Warsaw 1961,
pp. 167–183.

[4] Jaakko Hintikka and Gabriel Sandu, ‘Game-theoretical semantics’, in
Handbook of logic and language, ed. Johan van Benthem and Alice ter
Meulen, Elsevier 1996, pp. 361–410.

[5] Wilfrid Hodges, ‘Compositional semantics for a language of imperfect
information’, Logic Journal of the IGPL 5 (1997) 539–563.

[6] Wilfrid Hodges, ‘Some strange quantifiers’, in Structures in logic and
computer science, ed. Mycielski, J. et al., Lecture Notes in Computer
Science 1261, Springer, Berlin 1997, pp. 51–65.

[7] Wilfrid Hodges, ‘Formal features of compositionality’, Journal of Logic,
Language and Information 10 (2001) 7–28.

[8] Wilfrid Hodges, ‘From sentence meanings to full semantics’, Research
Proceedings of Conference ‘Logic 2005’, Indian Institute of Technology
in Bombay, ed. Amitabha Gupta et al. (to appear).

[9] Rohit Parikh, ‘Propositional logics of programs: new directions’, in
Foundations of Computation Theory, Lecture Notes in Computer Science
158, Springer, Berlin 1983, pp. 347–359.

[10] Reinhard Selten, ‘Spieltheoretische Behandlung eines Oligopolmod-
ells mit Nachfrageträgheit’, Zeitschrift für die gesamte Staatwissenschaft
121 (1965) 301–324, 667–689.

[11] Jouko Väänänen and Wilfrid Hodges, ‘Dependence of variables con-
strued as an atomic formula’ (Preprint).

18

