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The analysis of the collective behaviour of many-body systems is greatly helped

in situations where some scale-invariance allows an efficient description through field-

theoretical methods. A necessary requirement for the application of these is the

possibility to identify the physical observables typically defined in terms of a lattice

model, e.g. σr for the order-parameter at the site r, with a continuum field φ(r) (called

a scaling operator [1]) with well-defined scaling properties φ(r) = b−xφ(r/b). In other

words, one generally expects that the correspondence (a is the lattice constant)

σr → a−xφ(r) (1)

can be defined in equilibrium systems or more generally steady-states of non-equilibrium

systems, see e.g. [2, 1, 3]. In addition, in equilibrium systems one expects the same sort

of relationship to hold true where φ(r) is now a primary scaling operator of a conformal

field-theory and allows space-dependent rescaling factors b = b(r) [1].

In this letter, we reconsider this correspondence for systems with dynamical scaling

and far from equilibrium, as it occurs for example in ageing phenomena. Concrete

examples are phase-ordering kinetics or non-equilibrium critical dynamics, see [4, 5, 6]

for reviews. Among the main quantities of interest are the two-time autocorrelation

function C(t, s) and the autoresponse function R(t, s)

C(t, s) = 〈φ(t, r)φ(s, r)〉 = s−bfC(t/s)

R(t, s) =
δ〈φ(t, r)〉
δh(s, r)

∣∣∣∣
h=0

=
〈
φ(t, r)φ̃(s, r)

〉
= s−1−afR(t/s) (2)

where φ̃ is the response field in the Janssen-de Dominicis formalism [7, 8], a and b are

ageing exponents and fC and fR are scaling functions such that fC,R(y) ∼ y−λC,R/z for

y � 1. These scaling forms are only valid in the scaling regime where t, s → ∞ and

y = t/s > 1 fixed. We stress that in the kind of system under consideration invariance

under time-translations is broken. In an attempt to try to derive the form of the scaling

functions in a model-independent way it has been argued [9] that the scaling operators

φ and φ̃ should transform covariantly under a larger group than mere dynamical scale-

transformations. If such an invariance exists, one may call it a local scale-invariance

(LSI). The infinitesimal generators of local scale-invariance read [9, 10, 11]

X0 = −t∂t −
x

z
, X1 = −t2∂t −

2

z
(x+ ξ) t (3)

where for simplicity we have suppressed the terms acting on the space coordinates which

are not important for what follows. We have also not written down the further generators

of LSI which do not modify the time t but only act on the space coordinates r. Here

x is the scaling dimension of the scaling operator φ(t, r) = b−x/zφ(t/bz, r/b) where z is

the dynamical exponent and ξ is a constant. It is the purpose of this letter to clarify

the meaning of this constant ξ.

Motivated by the analogy with two-dimensional conformal invariance, we generalize
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the dilatation generator X0 and the generator X1 of ‘special’ transformations as follows

to all n ≥ 0

Xn = −tn+1∂t −
x

z
(n+ 1)tn − 2ξ

z
ntn (4)

such that the commutator [Xn, Xm] = (n −m)Xn+m holds for all n,m ∈ N0 (with the

convention 0 ∈ N0).† Next, the global form of these transformations reads as follows. If

t = β(t′) such that β(0) = 0, then φ(t) transforms as

φ(t) = β̇(t′)−x/z
(
t′β̇(t′)

β(t′)

)−2ξ/z

φ′(t′) (5)

where again the space-dependence of φ was suppressed. The infinitesimal generators

Xn are recovered for β(t) = t + εtn+1, with |ε| � 1. From this, it is clear that φ is not

transforming as an usual primary scaling operator. But if one defines Φ(t) := t−2ξ/zφ(t)

the scaling operator Φ(t) becomes a conventional primary scaling operator of LSI, viz.

Φ(t) = β̇(t′)−(x+2ξ)/z Φ′(t′) (6)

but with a modified scaling dimension x → x + 2ξ. In other words, if time-dependent

observables of lattice models σr(t) can be related to a primary scaling operator Φ(t) at

all, it should be via the relation

σr(t)→ a−x φ(t) = a−x t2ξ/z Φ(t) (7)

rather than by eq. (1). Of course, (7) is only possible because of the absence of

time-translation invariance. We emphasize that the scaling of φ is unusual in that

under a dilatation t → bzt the scaling dimension remains x but for more general scale

transformations a new effective scaling dimension x+ 2ξ appears.

As a simple application, consider the two-time autoresponse function. For quasipri-

mary scaling operators Φ(t) and Φ̃(s) with scaling dimensions x and x̃, respectively, local

scale-invariance predicts 〈Φ(t)Φ̃(s)〉 = (t/s)(ex−x)/z(t−s)−(x+ex)/z, up to normalization [9].

In view of (7), the physical autoresponse function rather reads

R(t, s) =
〈
φ(t)φ̃(s)

〉
=
〈
t2ξ/zΦ(t)s2eξ/zΦ̃(s)

〉

= s−(x+ex)/z

(
t

s

)(2eξ+ex−x)/z (
t

s
− 1

)−(x+ex+2ξ+2eξ)/z

= s−1−a
(
t

s

)1+a′−λR/z ( t
s
− 1

)−1−a′

(8)

(up to normalization) and where the effective scaling dimensions of Φ(t) and Φ̃(s) as

read off from eq. (6) must be used. In the last line, we have reintroduced the standard

† This is the unique semi-infinite extension of the algebra 〈X0, X1〉 which does not introduce further

differential operators into Xn and is compatible with eq. (3).
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Table 1. Values of the exponents a, a′ and λR/z in several non-disordered and a few

glassy systems which are at a critical point of their stationary state. If a numerical

result is quoted without an error bar it is taken form the literature, otherwise the

numbers in brackets give our estimate of the uncertainty in the last digit(s). fa

stands for the Frederikson-Andersen model. The methods of calculation of the two-

time autoresponse are d: direct space, p: momentum space, a: alternating external

field; e refers to an exact solution and n to a numerical study.

model a a′ − a λR/z Method Ref.

OJK-model (d− 1)/2 −1/2 d/4 d,e [12, 13, 11]

1D Ising 0 −1/2 1/2 d,e [14, 10]

2D Ising 0.115 −0.187(20) 0.732(5) p,n [17]

3D Ising 0.506 −0.022(5) 1.36 p,n [17]

1D contact process −0.681 +0.270(10) 1.76(5) d,n [21, 22]

fa, d > 2 1 + d/2 −2 2 + d/2 p,e [15]

fa, d = 1 1 −3/2 2 p,e [15, 16]

3D Ising spin glass 0.060(4) −0.76(3) 0.38(2) a,n [11]

exponents a, a′ and λR and hence reproduce the result quoted in [11]. Early discussions

of local scale-invariance had assumed a′ = a from the outset. In the appendix, we

discuss the scaling form of the autocorrelator C(t, s) in those cases where z = 2.

It appears that the more general correspondence (7) and consequently the response

(8) with a′ 6= a actually occurs in non-equilibrium critical dynamics, as we shall now

illustrate in a few examples. In table 1 we collect results on the exponents a, a′ and

λR/z in some models with a critical stationary state and where a′ 6= a.‡ In several cases,

these exponents can be read off from the exact solution, i.e., for the magnetic response

in the OJK-model [12, 13] and the 1D Glauber-Ising model at zero temperature [14] or

else the energy response in the zero-temperature Frederikson-Andersen model [15, 16].

Another interesting test case is provided by the critical Ising model in 2D and 3D.

Indeed, it was pointed out some time ago that the numerical calculation of the two-time

response function R̂q(t, s) =
∫
Rddr R(t, s; r)e−iq·r in momentum space provides a more

sensitive test on the form of its scaling function than in direct space [17]. The methods

of LSI can be readily adapted to momentum space and the analogue of (8) is, again up

to normalization,

R̂0(t, s) = s−1−a+d/z

(
t

s

)1+a′−λR/z ( t
s
− 1

)−1−a′+d/z
(9)

Since measurements of autoresponse functions are much affected by statistical noise,

‡ In table 1, d,e means that the exact response agrees with (8) with the given values of the exponents,

while p,e means that there is exact agreement with (9).
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Figure 1. Intermediate susceptibility χInt(t, s) in momentum space in the (a) 2D and

(b) 3D critical Ising model, for several values of the waiting time s. The full curve is

the LSI prediction eq. (10,11) with the exponents as listed in table 1. The dashed line

corresponds to the case a′ = a.

one often rather studies integrated response functions. Here we consider

χInt(t, s) :=

∫ s

s/2

du R̂0(t, u) = χ0s
−a+d/zfχ(t/s) (10)

which is free from effects which mask the true scaling behaviour in several other variants

of integrated responses [17]. The scaling function fχ(y) follows from LSI, eq. (9):

fχ(y) = y(d−λR)/z

[
2F1

(
1 + a′ − d

z
,
λR
z
− a; 1 +

λR
z
− a;

1

y

)

−2a−λR/z2F1

(
1 + a′ − d

z
,
λR
z
− a; 1 +

λR
z
− a;

1

2y

)]
(11)

and where 2F1 is Gauss’ hypergeometric function. In figure 1 we compare simulational

data [17] with this prediction for both the 2D and 3D critical Ising model with non-

conserved heat-bath dynamics. It had already been observed before [17] that local scale-

invariance with the additional assumption a′ = a does not agree with the numerical data

in 2D and only marginally so in 3D and we confirm this finding. However, we also see

that the data can be perfectly matched by LSI, within the numerical precision, if a and

a′ are allowed to be different. We did check that the integrated TRM response functions

in direct space as studied in [18] do not change appreciably with a′ − a.

A similar conclusion can also be drawn for the 1D critical contact process. It has

been shown recently that the phenomenology of ageing can also be found in critical

stochastic processes although these do not satisfy detailed balance and have a non-

equilibrium steady-state [19, 20, 21]. In figure 2a we compare the numerical data

obtained directly for R(t, s) either from the LCTMRG [21] or Monte Carlo simulations

[22]. It is satisfying that the data from both methods are consistent with each other
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Figure 2. Autoresponse function for the critical 1D contact process for several waiting

times s. The data labelled tm come from the transfer matrix renormalization group

[21] and mc denotes Hinrichsen’s Monte Carlo data [22]. The dashed line corresponds

to the case a′ = a and the full curve gives the LSI prediction eq. (8) with the exponents

as listed in table 1.

in the scaling regime, where s and t − s are both large enough. Again, we observe an

almost perfect agreement with eq. (8), provided a′ 6= a.§
One the other hand, when one looks closer at the region where t/s / 1.1, one does

observe deviations of the data from (8) [22]. In trying to analyze this, recall that non-

equilibrium critical dynamics is special in the sense that both the ageing regime (where

t − s ∼ O(s)) and the quasistationary regime (where t − s � s) display dynamical

scaling with the same length scale L(t) ∼ t1/z , where z is the equilibrium dynamical

critical exponent. Hence one usually expects some crossover to occur. In terms of the

response function, this might be formalized by writing R = R(s/τ∗, (t− s)/τ∗, s) where

τ∗ is some reference time scale such that, with (t− s)/τ∗ = O(1)

lim
s→∞

R =

{
Req(t− s) ; for s/τ∗ →∞
s−1−afR(t/s) ; for s/τ∗ = O(1)

Since in lattice calculations, s is always finite, the crossover can be illustrated by

studying Q := R(t, s)/Req(t − s) ∼ R(t, s)(t − s)1+a. As long as LSI still describes

the data, one expects Q ∼ (y − 1)a−a
′

for y = t/s ' 1 and deviations from it

should signal the presumed crossover to the quasistationary regime. Instead we find

for the critical contact process that for y = t/s / 1.1, Q(y) ∼ (y − 1)−0.15 and this

§ Hinrichsen quotes λR/z ≈ 1.75 and 1 + a′ ≈ 0.59 [22] in good agreement with our estimates. The

contact process is the only known example where a′ − a > 0, which might be related to the fact that

z < 2 there.
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behaviour continues at least down to t/s − 1 ≈ 10−3. For smaller values of t/s, which

correspond to t − s = O(1), strong finite-time effects occur and the change towards

a quasistationary behaviour, where Q(y) would become y-independent, could not be

observed. In comparison, unpublished data for the 2D Ising model [22] show convergence

towards Q(y) ∼ (y − 1)0.187 as s increases before finite-time effects destroy scaling. We

conclude that LSI does accurately describe the data as long as t/s is large enough such

that the effects of the crossover are not yet notable. A quantitative analysis of data

from the region t/s / 1.1 would require a precise theory of the cross-over between the

ageing regime and the region t − s � s and/or the rôle of finite-time effects. In the

absence of such a theory, much larger values of s would presumably be needed to really

carry out a test of LSI for values of t/s closer to unity than it is possible with the data

of figure 2.

Finally, we recall that studying the scaling behaviour of an alternating susceptibility

gives yet another direct access to the exponent a′ − a. This was applied to the critical

3D Ising spin glass [11], with a binary distribution of the couplings Ji,j = ±J .

In summary, we have reconsidered the way how observables defined in non-

equilibrium lattice models might be related to (quasi-)primary scaling operators of

field-theory. Our result eq. (7) points to a so far overlooked subtlety which might be of

relevance in the discussion of the functional form of non-equilibrium scaling functions,

for example in ageing phenomena. The results on R(t, s) as collected in table 1 of

some models with non-equilibrium critical dynamics appear to be compatible with the

predictions eqs. (8,9) of local scale-invariance, provided cross-over effects to non-ageing

regimes are negligible. The multitude of examples in table 1 suggests that rather being

a kind of exotic exception (a belief implicit in [9, 10, 11]), the case a′ 6= a might turn

out to be the generic situation. Having seen that the same mechanism also explains the

exact autocorrelator of the 1D Glauber-Ising model indicates that the correspondence

(7) should be more than just a patching-up of data for the autoresponse function.

What does this mean for the existence of local scale-invariance in non-equilibrium

dynamics ? In a few exactly solved systems (where the dynamical exponent z = 2) we

have found exact agreement and in several models as generic as kinetic Ising models or

the contact process eqs. (8,9) describe the data very well for t/s not too small. On the

other hand, field-theoretical studies of the critical O(n) model in both 4− ε dimensions

[5] and in 2 + ε dimensions [23], although they agree with LSI at the lowest orders in ε,

continue to find discrepancies with either (8) or (9) at some higher order. However, the

available field-theoretical results are still far from the numerical data.‖ But since we have

shown that LSI reproduces the known exact results of both R(t, s) and C(t, s) of the 1D

Ising model it might be too simplistic to argue that LSI could at best describe gaussian

fluctuations. A better understanding of the dynamical symmetries of non-equilibrium

critical dynamics remains a challenging problem.

‖ The second-order calculation in 4 − ε dimensions for n = 1 is a little closer to the numerical data

than LSI with a′ = a [17].
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Appendix. Two-time autocorrelations for z = 2

If the dynamical exponent z = 2, local scale-invariance reduces to Schrödinger-

invariance. We have already described in the past [10] how two-time autocorrelation

functions can be calculated in the case ξ = 0 and we now wish to extend that treatment

to the more general correspondence (7). We consider a Langevin equation of the form

∂tφ = −D δH
δφ
− Dv(t)φ + η where H is the hamiltonian, D the diffusion constant, the

gaussian noise η has zero mean and variance 〈η(t, r)η(s, r′)〉 = 2DTδ(t − s)δ(r − r′)
and T is the bath temperature. The potential v(t) acts as a Langrange multiplier which

can be used to describe explicitly the breaking of time-translational invariance. Here

we restrict to situations where

k(t) := exp

[
−D

∫ t

0

du v(u)

]
∼ tz (A1)

Then is has been shown [10] that for systems at criticality

C(t, s) = 〈φ(t)φ(s)〉 = DT

∫
du dR

〈
φ(t,y)φ(s,y)φ̃2(u, r + y)

〉
0

= DT

∫
du dR

k(t)k(s)

k(u)2
R(3)

0 (t, s, u;R) (A2)

where R(3)
0 is the well-known three-point response function for v(t) = 0 which can be

found from its Schrödinger-covariance and reads [24]

R(3)
0 (t, s, u; r) = R(3)

0 (t, s, u) exp

[
−M

2

t+ s− 2u

(s− u)(t− u)
r2

]
Ψ

(
t− s

(t− u)(s− u)
r2

)

R(3)
0 (t, s, u) = Θ(t− u)Θ(s− u)(t− u)−ex2(s− u)−ex2(t− s)−x+ex2

where Ψ is an undetermined scaling function and the causality conditions t > u, s > u

are noted explicitly. In writing this, we have dropped a term coming from the

correlations in the initial state which merely produces finite-time corrections to the

leading scaling behaviour, see [4, 5, 10].

We now generalize this to the primary scaling operators according to (7). The

operator Φ has the scaling dimension x+ 2ξ, the composite scaling operator Φ̃2 has the

scaling dimension 2x̃2 + 4ξ̃2.¶ We then obtain for the physical autocorrelation function,

up to normalization and with t > s

C(t, s) = (ts)ξ
∫

du dR
〈

Φ(t,y)Φ(s,y)Φ̃2(u,R+ y)
〉

0
u2eξ2

= (ts)ξ(t− s)−x−2ξ+ex2+2eξ2−d/2
∫ s

0

du
k(t)k(s)

k(u)2
u2eξ2 [(t− u)(s− u)]−ex2−2eξ2+d/2

×
∫

dR exp

[
−M

2

t+ s− 2u

t− s R2

]
Ψ
(
R2
)

¶ For bosonic free fields, one would have x̃2 = x̃ and ξ̃2 = ξ̃.
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= s1+d/2−x−ex2

(
t

s

)ξ+z(
t

s
− 1

)ex2+2eξ2−x−2ξ−d/2

×
∫ 1

0

dv v2eξ2−z
[(

t

s
− v
)(

1− v
)]d/2−ex2−2eξ2

Ψ

(
t/s+ 1− 2v

t/s− 1

)
(A3)

and where the function Ψ is defined by the integral over R. By comparison with the

standard scaling from for C(t, s), we read off b = x+x̃2−1−d/2 and λC = 2(x−z)+2ξ.+

Furthermore, since 1 + a′ = x + 2ξ, it turns out that the form of the scaling function

fC(y) is described by just one more parameter µ := ξ + ξ̃2 and we finally have

C(t, s) = C0s
b

(
t

s

)1+a′−λC/2( t
s
− 1

)b−2a′−1+2µ

×
∫ 1

0

dv vλC+2µ−2−2a′
[(

t

s
− v
)(

1− v
)]a′−b−2µ

Ψ

(
t/s+ 1− 2v

t/s− 1

)
(A4)

and we have also reintroduced a normalization constant C0. This should hold for simple

(non-glassy) magnets with z = 2 and in situations where the initial correlations have

no effect on the leading scaling behaviour; of course the scaling limit s → ∞ and

t/s = y > 1 fixed is understood.

As an illustration, we consider the 1D Glauber-Ising model. At T = 0, the exact

two-time autocorrelation function is [14]

C(t, s) =
2

π
arctan

(√
2

t/s− 1

)
(A5)

This holds true not only for the usually considered short-ranged initial conditions but

also for long-ranged initial spin-spin correlations 〈σr(0)σ0(0)〉 ∼ r−ν with ν > 0 (for

ν = 0 an analogous result holds for the connected autocorrelator) [14]. In addition, the

exponents a, a′ and λR are independent of ν.

In previous work [10], we have already explained the form of the exact autoresponse

function R(t, s) in terms of the correspondence eq. (7) (see table 1) but we had to leave

open the analogous question for C(t, s). In order to account for (A5), we remark that

for t = s, the autocorrelator should not be singular. This requires

Ψ(w) = wb−2a′−1+2µ for w � 1 (A6)

The most simple way to realize this is to require that (A6) holds for all values of w.

This kind of assumption was already seen to become exact in models described by an

+ A similar calculation for the autoresponse function gives, up to normalization,

R(t, s) = s−(x+ex)/2(t/s)ξ+z(t/s− 1)−x−2ξ δx+2ξ,ex+2eξ

which reproduces again eq. (8), hence λR = 2(x − z) + 2ξ = λC as expected [4] for non-disordered

systems without long-range initial correlations.
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underlying bosonic free field-theory [10]. Recalling from table 1 that b = a = 0 and

λC = 1 and assuming (A6) to hold for all w, we obtain

C(t, s) ≈ C0

∫ 1

0

dv v2µ

[(
t

s
− v
)(

1− v
)]−2µ−1/2 (

t

s
+ 1− 2v

)2µ

(A7)

Because the exact result (A5) is independent of the initial correlations, the comparison

with the expression (A7) derived from the thermal noise is justified. The exact Glauber-

Ising result (A5) is recovered from (A7) for µ = −1/4 and C0 =
√

2 /π.

This is the first example of a model with a′ 6= a where the scaling of both the

autoresponse and of the autocorrelation functions can be explained in terms of LSI.
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[14] C. Godrèche and J.-M. Luck, J. Phys. A: Math. Gen. 33, 9141 (2000); E. Lippiello and M.

Zannetti, Phys. Rev. E61, 3369 (2000); M. Henkel and G.M. Schütz, J. Phys. A: Math. Gen.
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[18] M. Henkel, M. Pleimling, C. Godrèche and J.-M. Luck, Phys. Rev. Lett. 87, 265701 (2001).

[19] K. Oerding and F. van Wijland, J. Phys A: Math. Gen. 31, 7011 (1998).

[20] J.J. Ramasco, M. Henkel, M.A. Santos and C.A. de Silva Santos, J. Phys. A: Math. Gen. 37,

10497 (2004).

[21] T. Enss, M. Henkel, A. Picone and U. Schollwöck, J. Phys. A: Math Gen. 37, 10479 (2004).
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