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Abstract. We study certain constraint satisfaction problems which are
the problems of deciding whether there exists a homomorphism from a
given relational structure to a fixed structure with a majority polymor-
phism. We show that such a problem is equivalent to deciding whether
the given structure admits a homomorphism from an obstruction belong-
ing to a certain class of structures of bounded pathwidth. This implies
that the constraint satisfaction problem for any fixed structure with a
majority polymorphism is in NL.
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1 Introduction and Related Work

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in artificial intelligence and computer science. A constraint satisfaction problem
is represented by a set of variables, a domain of values for each variable, and a set
of constraints between variables. The aim in a constraint satisfaction problem is
then to find an assignment of values to the variables that satisfies the constraints.

It has been observed [10] (see also [14]) that the constraint satisfaction prob-
lem can be recast as the following fundamental problem: given two finite rela-
tional structures A and B, is there a homomorphism from A to B? The CSP is
NP-complete in general, and the identifying of its subproblems that have lower
complexity has been a very active research direction in the last decade (see,
e.g., [2, 4–6, 10, 11, 14, 19]).

One of the most studied restrictions on the CSP is when the structure B
is fixed, and only A is part of the input. The obtained problem is denoted by
CSP(B). Examples of such problems include k-Sat, Graph H-colouring, and
Systems of Equations (e.g., linear equations). Strong motivation for studying
this framework was given in [10] where it was shown that such problems can be
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used in attempts to identify a largest subclass of NP that avoids problems of
intermediate complexity.

A variety of mathematical approaches to study problems CSP(B) has been
recently suggested. The most advanced approaches use logic (e.g., [18]), combi-
natorics (e.g., [11, 12]), universal algebra (e.g., [4, 19]), or combinations of those
(e.g., [6, 8, 10, 21]).

Duality. The concept of duality has been much used to study homomorph-
ism problems. The idea is to provide a set OB of obstructions for B such that,
for any relational structure A, A homomorphically maps to B if and only if A
does not admit a homomorphism from any structure from OB. If the set OB can
be chosen so that it has certain nice properties, then the complexity of CSP(B)
is low. The forms of duality that have been considered in the literature include
finite duality, bounded pathwidth duality, and bounded treewidth duality.

A structure B has finite duality if there is a finite obstruction set OB. Such
dualities have been studied in [1, 21, 23]. The problems CSP(B) with finite dual-
ity are exactly those for which the class of ‘yes’-instances is definable in first-order
logic [1]. Clearly, such problems belong to the complexity class AC0. A combi-
natorial characterisation of structures with finite duality is given in [23], and a
universal-algebraic characterisation of such structures was obtained in [21].

Bounded pathwidth duality was introduced in [6, 7]3. A structure B has bounded
pathwidth duality if one can choose an obstruction set OB consisting of struc-
tures of bounded pathwidth (see the formal definition in Section 2). Several
equivalent conditions, such as definability in various logics (e.g., in linear Data-
log), and a useful connection of bounded pathwidth duality with certain games,
called pebble-relation games, are given in [6, 7]. We will define and use this con-
nection in Section 4. The problems CSP(B) with bounded pathwidth duality
belong to the complexity class NL [6, 7]; moreover, all problems CSP(B) known
to belong to NL have bounded pathwidth duality. Concrete examples of such
problems are given in the two papers mentioned above, we will discuss some of
them later. To the best of our knowledge, no characterisation of structures with
bounded pathwidth duality is known.

Bounded treewidth duality has been studied in [3, 10, 12, 13, 18, 22]. This no-
tion is similar to bounded pathwidth duality (and actually preceded and inspired
it), but with OB consisting of structures of bounded treewidth. Many equivalent
logical characterisations of bounded treewidth duality are known [10, 18], e.g.,
definability of the complement of a problem in Datalog. The problems CSP(B)
with bounded treewidth duality belong to the complexity class PTIME [10]. No
characterisation of structures with bounded treewidth duality is known, though
there exists a strong necessary universal-algebraic condition, which is conjectured
to also be sufficient [3, 22]. Clearly, finite duality implies bounded pathwidth du-
ality, which, in turn, implies bounded treewidth duality.

Thus, obtaining necessary and/or sufficient algebraic conditions characteris-
ing structures with a given type of duality is a natural and interesting problem.

3 In [6, 7], it was called bounded path duality.
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This paper contributes to the study of the problem for bounded pathwidth du-
ality.

Algebraic approach. The algebraic approach to constraint satisfaction [2–
4, 14, 19] is probably the most successful one. The key concept in this approach
is the concept of a polymorphism (see the formal definition in Section 2) of
a relational structure. A polymorphism is an operation which preserves each
relation in the structure in the sense that it is a homomorphism from a finite
Cartesian power of the structure to the structure itself. Two structures with
the same polymorphisms have essentially the same properties with regard to
the corresponding constraint satisfaction problems [4, 14, 19]. In particular, the
problems have the same complexity, which makes polymorphisms very useful in
classifying relational structures.

The existence of several forms of polymorphisms has been shown to guarantee
that the corresponding CSPs are in PTIME (see [4, 14, 19]). One particular form
of such polymorphism is a majority operation, which is a ternary operation φ on
a set B satisfying φ(x, x, y) = φ(x, y, x) = φ(y, x, x) = x for all x, y ∈ B. Such
operations have played an important role in earlier investigations. For example,
the well-known List H-colouring problem for graphs [12] can be viewed as
CSP(B) for the structure B whose relations are the binary edge relation of H
and all possible unary relations. It is known that this problem CSP(B) is in
PTIME if and only if B has a majority polymorphism [9]. As another example,
consider the smallest non-trivial case, |B| = 2. If a two-element structure B has
a (unique) majority polymorphism, then CSP(B) is a subproblem of the 2-Sat
problem [16], and hence belongs to NL. So, the class of problems CSP(B) with a
structure B having a majority polymorphism is a wide generalisation of 2-Sat.

Majority polymorphisms are known to guarantee bounded treewidth duality
for relational structures (see [10] for the general situation, or Section 5.5 of [12]
for graph H-colouring problems). Moreover, the corresponding CSPs are known
to be solvable by a special sort of greedy algorithm (this property is referred to
as ‘bounded strict width’ in [10]).

There exist structures with bounded pathwidth duality, but without a major-
ity polymorphism [6, 8, 20], but many structures that are known to have bounded
pathwidth duality, also have a majority polymorphism [6, 7]. For example, all
oriented paths and directed cycles, have bounded pathwidth duality and also
a majority polymorphism [6]. Implicational (or 0/1/all) constraints, introduced
in [15], have a very particular form of majority polymorphism (called dual dis-
criminator), and they have been shown to have bounded pathwidth duality [6,
7]. It was also shown in [6, 7] that a mild generalisation of the dual discrimina-
tor polymorphism also guarantees bounded pathwidth duality. Our main result
shows, for the first time, that any structure with a majority polymorphism has
bounded pathwidth duality, and hence the corresponding CSP belongs to NL.
This answers an open question posed in [6, 7].
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2 Basic Definitions

Most of the terminology introduced in this section is fairly standard. A vocab-
ulary is a finite set of relation symbols or predicates. In what follows, τ always
denotes a vocabulary. Every relation symbol R in τ has an arity r = ρ(R) ≥ 0
associated to it. We also say that R is an r-ary relation symbol.

A τ -structure A consists of a set A, called the universe of A, and a relation
RA ⊆ Ar for every relation symbol R ∈ τ where r is the arity of R. All structures
in this paper are assumed to be finite, i.e., structures with a finite universe.
Throughout the paper we use the same boldface and slanted capital letters to
denote a structure and its universe, respectively.

Let A and A′ be τ -structures. We say that A′ is a substructure of A, denoted
by A′ ⊆ A, if A′ ⊆ A and for every R ∈ τ , RA′ ⊆ RA. If A is a τ -structure and
I ⊆ A, then A|I denotes the substructure induced by A on I, i.e., the τ -structure
I with universe I and RI = RA ∩ Ir for every r-ary R ∈ τ .

A homomorphism from a τ -structure A to a τ -structure B is a mapping
h : A → B such that for every r-ary R ∈ τ and every (a1, . . . , ar) ∈ RA, we
have (h(a1), . . . , h(ar)) ∈ RB. We denote this by h : A → B. We say that
A homomorphically maps to B, and denote this by A → B if there exists a
homomorphism from A to B. Let a1, . . . , am be elements in A and let b1, . . . , bm

be elements in B. We shall write A, a1, . . . , am → B, b1, . . . , bm to denote that
there exists some homomorphism h from A to B such that h(ai) = bi, 1 ≤ i ≤ m.
For any subset I of A, any homomorphism from A|I to B is called a partial
homomorphism from A to B.

Finally, CSP(B) is defined to be the set of all structures A such that A → B.

Definition 1. A τ -structure A is said to have treewidth at most (j, k) if there
is a tree T , called a tree-decomposition of A, such that

1. the nodes of T are subsets of A of size at most k,
2. adjacent nodes can share at most j elements,
3. nodes containing any given element of A form a subtree,
4. for any tuple in any relation in A, there is a node in T containing all ele-

ments from that tuple.

If T is a path then it is called a path-decomposition of A, and A is said to
have pathwidth at most (j, k).

Note that, traditionally, a structure is said to have pathwidth (treewidth)
at most k − 1 if it has pathwidth (treewidth, respectively) at most (j, k) for
some j, according to the above definition. Note that we use two numbers to
parameterize treewidth and pathwidth, as is customary in the study of CSPs [10,
22] (rather than one as is customary in graph theory), for the following reason.
The first parameter gives a more convenient parameterization of CSPs because
the second parameter is bounded from below by the maximum arity of a relation
in a structure, and hence it is less convenient to use for uniform treatment of
structures of different signatures that behave essentially in the same way with
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respect to homomorphisms. Nevertheless, the notions of pathwidth and treewidth
of relational structures are closely related to the corresponding notions for graphs
(see, e.g., [7]).

Definition 2. A set O of τ -structures is called an obstruction set for B if, for
any τ -structure A, A → B if and only if A′ 6→ A for all A′ ∈ O.

A structure B is said to have (j, k)-pathwidth duality if it has an obstruction
set consisting of structures of pathwidth at most (j, k). We say that B has j-
pathwidth duality if it has (j, k)-pathwidth duality for some k > j. We say that
B has bounded pathwidth duality if it has j-pathwidth duality for some j ≥ 0.

By replacing “pathwidth” with “treewidth” throughout the above definition,
one obtains the corresponding definitions of treewidth dualities.

Let us now formally define polymorphisms of relations and structures.

Definition 3. Let f be an n-ary operation on B, and R an m-ary relation on
B. Then f is said to be a polymorphism of R (or R is invariant under f) if the
following holds: for any m×n matrix X over B whose columns belong to R, the
m-tuple f(X) computed by applying f to the rows of X also belongs to R.

An operation is called a polymorphism of a relational structure if it is a
polymorphism of every relation in the structure.

For example, it is well known, and easy to check, that any binary Boolean
relation is invariant under the unique majority operation on {0, 1}.

One can easily check that f is an n-ary polymorphism of a relation structure
B if and only if f : B× . . .×B → B, where the product contains n copies of B.
If f is a polymorphism of a τ -structure B, then one can generate from B other
relations that are invariant under f , as follows.

Lemma 1. Let B be a τ -structure with a polymorphism f . Let C be an arbitrary
τ -structure, and fix arbitrary (not necessarily distinct) elements c1, . . . , cn of C.
Then the relation

{(b1, . . . , bn) | C, c1, . . . , cn → B, b1, . . . , bn}

is also invariant under f .

The proof of this lemma is straightforward. (The construction in the above
lemma is very similar to the indicator construction used in the study of H-
colouring problems [12]).

Definition 4. An m-ary operation f on B has j-pathwidth duality if every
structure with polymorphism f has j-pathwidth duality.

3 Main Result

Recall that a majority operation on a set B is a ternary operation φ on B which
satisfies the identities φ(x, x, y) = φ(x, y, x) = φ(y, x, x) = x for all x, y ∈ B.
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We will call a subset U of B a φ-subalgebra (or simply subalgebra if φ is
clear from the context) if it is invariant under φ, that is, φ(x, y, z) ∈ U for all
x, y, z ∈ U . Let U be a subalgebra of B, and I ⊆ U . Then we say that I is an
φ-ideal (or, simply, an ideal) in U if φ(x, y, z) ∈ I provided x, y, z ∈ U , and at
least two of them belong to I. For example, every subalgebra is an ideal in itself,
and every singleton is an ideal in any subalgebra that contains it.

Relations invariant under a majority operation have the nice property of 2-
decomposability. For an n-ary relation R on B, and for 1 ≤ i < j ≤ n, let
pri,j R = {(bi, bj) | (b1, . . . , bn) ∈ R}. A relation R is called 2-decomposable if,
for any tuple b = (b1, . . . , bn) ∈ Bn, we have b ∈ R if and only if (bi, bj) ∈ pri,j R
for all 1 ≤ i < j ≤ n. It is well known (see, e.g., [15]) that any relation invariant
under a majority operation is 2-decomposable.

Theorem 1. Every majority operation on a k-element set has (3k+2)-pathwidth
duality.

Proof idea: The following simple observation will be often used in the proof.
Assume that we want to show that A → B for some fixed structures A and
B. Then, if we have a structure C such that h : C, c1, . . . , cn → A, a1, . . . , an

for some a1, . . . , an ∈ A, then the possible values b1, . . . , bn taken by a1, . . . , an,
respectively, under a homomorphism from A to B must satisfy C, c1, . . . , cn →
B, b1, . . . , bn. This is because a composition of h with any homomorphism from
A to B would be a homomorphism from C to B with this property.

We now explain the general strategy of our proof. First, we use 2-decomposab-
ility to reduce the situation to the case when all relations in structures under
consideration are at most binary. Next, we prove that all structures of certain
pathwidth that do not homomorphically map to B form an obstruction set O for
B. For this, we fix an arbitrary structure A not admitting a homomorphism from
any structure from O, and use the above observation to reduce, for any a ∈ A,
the set of values in B to which a can possibly be mapped by a homomorphism
from A to B. Then, we choose values for elements in A (one by one in a certain
order) from those reduced sets, while further reducing these sets at each step.
Finally, we show that the obtained mapping A → B is homomorphism from
A to B. The majority polymorphism is used to guarantee that this “greedy”
approach never makes any reduced set empty.

Proof. (of Theorem 1). Fix a set B with |B| = k, and fix a majority operation
φ on B. Call a structure binary if it has at most binary relations. The proof will
use several lemmas.

Lemma 2. The operation φ has (3k+2)-pathwidth duality if every binary struc-
ture with polymorphism φ has (3k + 1, 3k + 2)-pathwidth duality.

Proof. Consider a new vocabulary τ ′ obtained from τ as follows: for every
relation symbol R of arity n ≥ 3, replace R by n(n−1)

2 binary relation symbols
Ri,j , 1 ≤ i < j ≤ n. Let C be an arbitrary τ -structure. We transform it to
an τ ′-structure Cbin as follows. Every at most binary relation in C remains
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unchanged in Cbin. Every n-ary, n ≥ 3, relation RC is replaced, naturally, by
relations pri,j RC, 1 ≤ i < j ≤ n.

Since every relation in B is 2-decomposable, it is easy to check that, for every
τ -structure A, A → B if and only if Abin → Bbin. It is well known, and also
easy to check, that φ is also a polymorphism of the structure Bbin. We need to
show that B has (3k+2)-pathwidth duality if Bbin has (3k+1, 3k+2)-pathwidth
duality.

Assume that Bbin has an obstruction set of pathwidth at most (3k+1, 3k+2)
and let r ≥ 3 be the maximum arity among the relations of B. Let A be any
structure such that A 9 B. We shall prove that there exists an structure of D
of pathwidth (3k + 2, 3k + r) that homomorphically maps to A but not to B.
This will show that all structures of pathwidth at most (3k + 2, 3k + r) that
do not have a homomorphism to B form an obstruction set for B, i.e., B has
(3k + 2)-duality.

Since A9 B, we have Abin 9 Bbin. Consequently, there exists a τ ′-structure
C of pathwidth at most (3k + 1, 3k + 2) such that C → Abin, but C 9 Bbin.
We obtain D from C in the following way. For any at most binary relation
symbol R ∈ τ , let RD = RC. For every relation symbol Ri,j and every pair
(u, v) ∈ RC

i,j , we introduce a tuple (d1, . . . , dn) in RD such that di = u, dj = v
and the remaining elements in the tuple are new elements that are particular
to this tuple. It is straightforward to check that D → A and D 9 B. It only
remains to show that D has pathwidth at most (3k + 2, 3k + r). Let S1, . . . , Sm

be a path-decomposition of C, with |Si| ≤ 3k + 2 for all 1 ≤ i ≤ m. We shall
obtain from it a path-decompostion of D. For each relation symbol Ri,j and for
each pair (u, v) in RC

i,j we select one set Sl, containing {u, v}. If necessary, we
extend the sequence S1, . . . , Sm by making copies of sets Sl, in order to ensure
that the same set (as a member of the sequence) is never selected twice. Finally,
we construct a path-decomposition from the (extended) sequence S1, . . . , Sm in
the following way: If a set Sl has been selected and associated to a given tuple
(u, v) of the relation, say RC

i,j , we enlarge Sl so that it also contains all the new
elements from {d1, . . . , dn} that have been introduced when processing tuple
(u, v) in the construction of D. Notice that the size of Sl increases at most by
n−2 ≤ r−2. Moreover, since the elements added while processing different tuples
were different, the intersections of neighbours in the obtained sequence have size
at most 3k + 2 (which is the maximum size of a set in the path-decomposition
for C). It is fairly easy to check that the obtained sequence of sets obtained is
indeed a path-decomposition of D, every set in it has at most 3k + r elements,
and the size of the intersection of neighbour sets is at most 3k + 2. The lemma
is proved.

In the rest of the proof, we assume that τ contains only at most binary rela-
tion symbols. We will show that that class of strutures C of pathwidth at most
(3k + 1, 3k + 2) such that C9 B is an obstruction set for B. Let A be an arbi-
trary τ -structure. If there is a structure C of pathwidth at most (3k + 1, 3k + 2)
such that C → A and C 6→ B then, clearly, there is no homomorphism from A
to B. Assume now that every structure C of pathwidth at most (3k + 1, 3k + 2)
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that homomorphically maps to A also homomorphically maps to B, and show
that A → B.

Let Cn be the class of all τ -structures of pathwidth at most (3n− 1, 3n).
Let C be a τ -structure, and c a fixed element of C. By Lemma 1, the unary

relation A(C, c) = {b ∈ B | C, c → B, b} is invariant under φ. For an element
a ∈ A and a number 1 ≤ q ≤ k, let Aq

a =
⋂

A(C, c) where the intersection is
taken over all pairs (C, c) such that C ∈ Cq, c ∈ C, and C, c → A, a. Since the
intersection of subalgebras is always a subalgebra, Aq

a is a subalgebra for all a
and q. Later, we will show that it is always non-empty.

A path P on a given structure C is any sequence c1, . . . , ct of (possibly re-
peated) elements of the universe of C. The path P is a cycle if c1 = ct.

Let P = a1, . . . , at, and Q = b1, . . . , bt be paths on A and B, respectively,
of the same length. We will denote the mapping from {a, a′} to {b, b′} taking
a to b and a′ to b′ by a, a′ → b, b′. If t > 1, we say that Q supports P if, for
all 1 ≤ i < t, the mapping ai, ai+1 → bi, bi+1 is a partial homomorphism from
A to B. For t = 1, we say that Q supports P if the mapping a1 → b1 is a
partial homomorphism from A to B. Observe that several occurrences of the
same element in the path on A need not be mapped to the same value in B. If,
for some n ≥ 0, we have bj ∈ An

aj
for all 1 ≤ j ≤ t then we say that b1, . . . , bt

n-supports P .

Lemma 3. Let 1 ≤ n ≤ k and let P = a1, . . . , at be any path on A. There
exists a structure C of pathwidth at most (3n + 1, 3n + 2) and some elements
c1, . . . , ct in C such that C, c1, . . . , ct → A, a1, . . . , at, and, furthermore, every
path b1, . . . , bt in B such that C, c1, . . . , ct → B, b1, . . . , bt n-supports P .

Proof. First, we construct a structure C′ in the following way. Initially, C′

has one element that we call c′1. For every 1 ≤ i < t, we do the following. If
ai 6= ai+1 then we include in the universe of C′ a new element that we denote
by c′i+1. If ai = ai+1 then we simply put c′i+1 = c′i. Then we add to C′ all
necessary tuples to ensure that, for all 1 ≤ i < t, the mapping ai, ai+1 →
c′i, c

′
i+1 is an isomorphism from A|{ai,ai+1} to C′

|{c′i,c′i+1} (i.e., this mapping and
its inverse are both homomorphisms). By the definition of C′, we have that
C′, c′1, . . . , c

′
t → A, a1, . . . , at. Furthermore, observe that every path b1, . . . , bt

such that C′, c′1, . . . , c
′
t → B, b1, . . . , bt supports a1, . . . , at. Indeed, for every

1 ≤ i < t, the mapping ai, ai+1 → bi, bi+1 can be obtained by composing the
mappings ai, ai+1 → c′i, c

′
i+1, and c′i, c

′
i+1 → bi, bi+1. By construction of C′,

the first mapping is a partial homomorphism from A to C′. By assumption,
the second mapping is a partial homomorphism from C′ to B. This proves that
ai, ai+1 → bi, bi+1 is a partial homomorphism from A to B, since the composition
of partial homomorphisms is again a partial homomorphism. It is easy to see that
S1, . . . , St−1, with Si = {c′i, c′i+1} is a path-decomposition of C′ of width (1, 2).

For every 1 ≤ i ≤ t and for every b 6∈ An
ai

, there exists some structure Di,b in
Cn and some element di,b in D such that Di,b, di,b → A, ai and Di,b, di,b 9 B, b.
The structure C is obtained by taking the disjoint union of the structures Di,b,
for all 1 ≤ i ≤ t and b 6∈ An

ai
, and of C′, and then identifying every di,b with
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c′i. Finally, set ci = c′i for all 1 ≤ i ≤ t. Let us verify that C, c1, . . . , ct have
the required properties. First, we shall prove that C, c1, . . . , ct → a1, . . . , at. Let
h be the partial mapping, with domain {c1, . . . , ct}, that sends ci to ai for all
i. We know that C′, c′1, . . . , c

′
t → A, a1, . . . , at and consequently, h preserves all

relations in C restricted to {c1, . . . , ct}. (Note that C |{c1,...,ct} may have a unary
relation {ci} which was not in C′, but was {di,b} before identifying di,b with c′i
– this relation {ci} is preserved because Di,b, di,b → A, ai). Consider now any
structure Di,b attached to C′ when forming C. Since Di,b, di,b → A, ai and di,b

is identified with c′i = ci we can extend the homomorphism h to the elements of
Di,b so that h also preserves all relations in Di,b. Hence, we have proved that
C, c1, . . . , ct → A, a1, . . . , at.

Now, let b1, . . . , bt be any path such that C, c1, . . . , ct → B, b1, . . . , bt. Con-
sequently, C′, c′1, . . . , c

′
t → B, b1, . . . , bt. It has been shown earlier that b1, . . . , bt

supports a1, . . . , at. Now let us show that bi ∈ An
ai

for all 1 ≤ i ≤ t. Indeed,
if bi 6∈ An

ai
then the mapping ci → bi cannot be extended to a homomorphism

Di,b, di,b → B, bi. Since Di,b, di,b → C, ci, it follows that C, ci 9 B, bi, a con-
tradiction. Consequently, bi ∈ An

ai
. It only remains to show that C has the

right pathwidth. We have seen above that there exists a path decomposition
S1, . . . , Sm of C′ of width (1, 2).

For each Di,b that we use in the construction of C we select a set Sl containing
ci. If necessary, we extend the sequence S1, . . . , Sm by making copies of sets Sl, in
order to ensure that the same set (as a member of the sequence) is never selected
twice. Finally, we construct a path decomposition of C from the (extended)
sequence S1, . . . , Sm in the following way: If a set Sl has not been associated
to any Di,b then we leave as it is. Otherwise, we take a path-decomposition
S′1, . . . , S

′
s of the structure Di,b to which Sl has been associated and we replace

Sl by the sequence Sl ∪ S′1, . . . , Sl ∪ S′s. It is fairly easy to verify that we obtain
a path-decomposition of C. Since each set in the path decomposition of each
Di,b can be assumed to have cardinality at most 3n, the width of the path-
decomposition of C is at most (3n + 1, 3n + 2).

From Lemma 3, we obtain the following corollaries.

Corollary 1. Every path a1, . . . , at in A is k-supported by some path in B.

Proof. Use Lemma 3 with a1, . . . , at and n = k. Let C and c1, . . . , ct be the
structure and elements provided by Lemma 3. Since C has pathwidth at most
(3k + 1, 3k + 2) and C → A, then there exists a homomorphism h from C to B.
Let bi = h(ci), 1 ≤ i ≤ t. Lemma 3 guarantees that the path b1, . . . , bt k-supports
a1, . . . , ak.

Corollary 2. Aq
a 6= ∅ for all a ∈ A and 1 ≤ q ≤ k.

Proof. In order to prove the case q = k, simply use Corollary 1 with the
one-element path P = a. The other cases follow because Ak

a ⊆ Aq
a.
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Corollary 3. Let q ≥ 1. Let a be any element of A and let b be any element in
Aq

a. Every cycle a = a1, . . . , at = a in A is (q−1)-supported by a cycle b1, . . . , bt

in B, with b1 = bt = b.

Proof. Appeal to Lemma 3 with a1, . . . , at and n = q− 1. Let C and c1, . . . , ct

be the structure and elements provided by Lemma 3. Let C′ be the structure
obtained from C by identifying the elements c1 and ct into a single element c. It
is easy to see that identifying two elements can increase the pathwidth by at most
one and hence, C′ belongs to Cq. Since a1 = at we have that C′, c → A, a. By the
definition of Aq

a, we have that C′, c → B, b. In consequence, there exists some
b1, . . . , bm with b1 = bm = b such that C, c1, . . . , ct → b1, . . . , bt with b = b1 = bt.
The properties of C guarantee that b1, . . . , bt (q − 1)-supports a1, . . . , at.

We will refer to Corollary 3 as to the cycle q-condition.
Note that, for every n, Cn is a subclass of Cn+1. This implies that, for all

a ∈ A, we have Ak
a ⊆ Ak−1

a ⊆ . . . ⊆ A1
a ⊆ A0

a = B. Therefore, one of these
inclusions is an equality, or else Ak

a is a singleton. It follows that, for every a, there
is a smallest q such that such that Aq

a is an ideal in Aq−1
a . Call this number qa.

Assume that |A| = m and order the elements of A so that qa1 ≥ qa2 ≥ . . . ≥ qam .
For simplicity, we will denote qai by qi. For 1 ≤ i ≤ m, set Xi = Aqi−1

ai
and

Yi = Aqi
ai

. Recall that Yi is an ideal in Xi for all i.
Note that, for all ai ∈ A, we have that Xi ⊇ Ak−1

ai
⊇ Ak

ai
and Yi ⊇ Ak

ai
.

By Corollary 1, we have the following property: every path ai1 , . . . , ait in A is
supported by a path bi1 , . . . , bit in B such that bi1 ∈ Yi1 , bit ∈ Yit and bij ∈ Xij

for all 1 < j < t. We call this property the path 0-condition.
We will now show how to choose elements b∗1, . . . , b

∗
m, in order, such that the

mapping h : A → B with h(ai) = b∗i , 1 ≤ i ≤ m, is a homomorphism from A to
B. When we choose an element b∗i , we will reset Xi and Yi so that Xi = B and
Yi = {b∗i }. Note that we will always maintain the property that Yi is an ideal in
Xi, for all i.

Assume now that we have chosen b∗1, . . . , b
∗
r where 0 ≤ r ≤ m. (The case

r = 0 corresponds to the initial situation where no b∗i is chosen yet). Then we
have that Xi = B and Yi = {b∗i } for all 1 ≤ i ≤ r. If, in the definition of the path
0-condition, we replace old Xi and Yi, 1 ≤ i ≤ r, with the new ones (i.e., Xi = B
and Yi = {b∗i }), then we will call the resulting condition the path r-condition.

We have shown above that the path 0-condition holds. Assume now that
l ≥ 1, and we have b∗1, . . . , b

∗
l−1 such that the path (l − 1)-condition holds. Our

goal now is to show that one can choose b∗l so that the path l-condition holds.
This will allow us to continue this process, and in the end, to prove that the
obtained values b∗i will indeed produce a homomorphism from A to B.

We will need some lemmas in order to choose b∗l . Let P = ai1 , . . . , ait be any
path on A. Consider a binary relation RP consisting of all pairs (b, b′) such that
there exists a path bi1 , . . . , bit that supports P , with bij ∈ Xij for all 1 ≤ j ≤ t,
and also b = bi1 and b′ = bit .

Lemma 4. The relation RP is invariant under φ.
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Proof. We will prove the lemma by induction on t. It is well known, and easy
to see, that the direct product of two subalgebras is invariant under φ, and
intersections and compositions of binary relations invariant under φ are also
invariant.

If t = 1 then RP = {(b, b) | A |{al}, al → B, b} ∩ {(b, b) | b ∈ Xl}. Since both
Xl and {b ∈ B | A, al → B, b} are subalgebras, it follows that RP is invariant.
If t = 2 then RP = {(bi1 , bi2) | A |{ai1 ,ai2}, ai1 , ai2 → B, bi1 , bi2} ∩ (Xi1 ×Xi2),
so it is invariant. Let t ≥ 3, and assume that the lemma holds for all shorter
paths. Take paths P ′ = ai1 , . . . , ait−1 and P ′′ = ait−1 , ait

. It is easy to see that
RP = RP ′ ◦RP ′′ is the composition of RP ′ and RP ′′ . By inductive assumption,
RP ′ and RP ′′ are invariant. Then so is RP .

Let P = ai1 , . . . , ait
be any path on A where ai1 = al. Let UP = {b ∈ Yl |

(b, b′) ∈ RP for some b′ ∈ Yit}. By the path (l − 1)-condition, UP is non-empty.

Lemma 5. UP is an ideal in Yl.

Proof. We prove first that, for any z ∈ Yl, there is z′ ∈ Xit
such that (z, z′) ∈

RP . Consider the cycle ai1 , . . . , ait , ai1 obtained by adding ai1 at the end of P .
Since z ∈ Yl, then, by the cycle ql-condition, the cycle ai1 , . . . , ait , ai1 is

supported by a cycle bi1 , . . . , bit , bi1 with bij ∈ Aql−1
aij

for all 1 < j ≤ t and
bi1 = z. Note that, due to the ordering of the elements of A, and to the fact that
Xi = B for 1 ≤ i ≤ l − 1, we have that Aql−1

i ⊆ Xi for all 1 ≤ i ≤ m. Now let
z′ = bit(∈ Xit). By the definition of RP , we get (z, z′) ∈ RP .

Now fix any x, y, z in Yl such that (at least) two of these elements are in UP ,
say x, y ∈ UP . We show that φ(x, y, z) ∈ UP . We have shown above that we have
(z, z′) ∈ RP for some z′ ∈ Xit . By the definition of UP , there exists some tuple
(x, x′) ∈ Rp with x′ ∈ Yit . Similarly, there exist some tuple (y, y′) ∈ RP with
y′ ∈ Yit . Since RP is invariant under φ, the tuple (φ(x, y, z), φ(x′, y′, z′)) belongs
to RP . Since x′, y′ ∈ Yit , z′ ∈ Xit and Yit is an ideal in Xit , we conclude that
φ(x′, y′, z′) ∈ Yit . Consequently, φ(x, y, z) ∈ UP .

Lemma 6. If I1, . . . , In, (n ≥ 2), are ideals in a subalgebra U such that Ii∩Ij 6=
∅ for all i, j, then we have

⋂
1≤i≤n Ii 6= ∅.

Proof. We prove the claim by induction on n. The base case n = 2 is trivial.
Assume the claim holds for n − 1 ideals and prove it for n. For i = 1, 2, 3, let
Ji be the intersection of all ideals I1, . . . , In except Ii. By inductive assumption,
all three ideals Ji are non-empty. Choose x ∈ J1, y ∈ J2, and z ∈ J3. For
any ideal Ii, 1 ≤ i ≤ n, at least two of x, y, z belong to Ii. It follows that
φ(x, y, z) ∈ ⋂

1≤i≤n Ii, and so
⋂

1≤i≤n Ii 6= ∅.

Let Ul be the intersection of all ideals of the form UP , over all paths P
starting at al.

Lemma 7. The set Ul is a non-empty subset of Yl.
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Proof. Since B is finite, it sufficient to prove non-emptiness for the intersection
of any finite number of ideals of the form UP . Furthermore, by Lemma 6, it is
sufficient to show that the intersection is non-empty for any pair of such ideals.

Let P = ai1 , . . . , ait and Q = ag1 , . . . , ags be two arbitrary paths on A with
ai1 = ag1 = al. We need to show that UP ∩ UQ 6= ∅.

Consider the following ternary relation R′ on B: a triple (b, b′, b′′) belongs to
R′ if and only if both (b, b′) ∈ RP and (b, b′′) ∈ RQ. Since both RP and RQ are
invariant under φ, it is easy to verify that R′ is invariant as well.

Consider the path ait
, . . . , ai2 , ai1 , ag2 , . . . , ags

on A. By applying the path
(l−1)-condition to this path, we obtain that there exist x1 ∈ Xi1(= Xl), y1 ∈ Yit

and z1 ∈ Ygs such that (x1, y1, z1) ∈ R′. By applying the path (l−1)-condition to
P , we can obtain elements x2 ∈ Yi1(= Yl) and y2 ∈ Yit

such that (x2, y2) ∈ UP .
Furthermore, since x2 ∈ Yi1 = Yl = Yg1 , we can, as in the (first part of the)
proof of Lemma 5, find z2 ∈ Xgs

such that (x2, z2) ∈ UQ. Hence, we have
(x2, y2, z2) ∈ R′. By symmetry, there is a triple (x3, y3, z3) ∈ R′ such that
x3 ∈ Yi1(= Yl), y3 ∈ Xit , and z3 ∈ Ygs . Notice that, in each coordinate, these
triples have at least two elements from the corresponding ideal Yij

. Now let
ux = φ(x1, x2, x3), uy = φ(y1, y2, y3), and uz = φ(z1, z2, z3). Since R′ is invariant,
we have (ux, uy, uz) ∈ R′. Since at least two of the xi’s belong to Yi1 , we have that
ux ∈ Yi1 . Similarly, we have uy ∈ Yit and uz ∈ Ygs . Thus, we have (ux, uy) ∈ RP

and (ux, uy) ∈ RQ, which implies that ux ∈ UP ∩ UQ.

Now let b∗l be an arbitrary element from Ul, and set Xl = B and Yl = {b∗l }.

Lemma 8. With b∗l chosen as above, the path l-condition holds.

Proof. Take any arbitrary path ai1 , . . . , ait on A. We need to show that the
path is supported by some path bi1 , . . . , bit on B with bij ∈ Xij for all 1 < j < t
and bi1 ∈ Yi1 , bit ∈ Yit .

If none of the elements ai1 , . . . , ait is al then we have the required path on B
by the path (l− 1)-condition, since the only difference between the path (l− 1)-
and l-conditions is the definition of Xl and Yl. Suppose now that the sequence
ai1 , . . . , ait contains at least one occurrence of al.

Let aimin and aimax the first and last occurrence, respectively, of al in P . Let us
consider the subpath Q = aimax , . . . , ait . Since b∗l ∈ Ul we can infer that b∗l ∈ UQ.
Consequently, there exists some path bimax , . . . , bit in B supporting aimax , . . . , ait

with bimax = b∗l , bit ∈ Yit and bij ∈ Xij for all imax < j < t. Similarly, there exists
some path bi1 , . . . , bimin in B supporting ai1 , . . . , aimin with bi1 ∈ Yi1 , bimin = b∗l
and bij ∈ Xij for all 1 < j < imin. Let us consider now the cycle aimin , . . . , aimax . If
imin < imax (i.e., more than one occurrence of al) then, by the ql-cycle condition,
aimin , . . . , aimax is supported by a cycle bimin , . . . , bimax in B with bimin = bimax =
b∗l and bij ∈ Aql−1

ij
for all imin < j < imax. Due to the ordering of the elements

of A and to the fact that Xi = B for 1 ≤ i ≤ l, we have that Aql−1
i ⊆ Xi for

all 1 ≤ i ≤ m. Consequently, the path bi1 , . . . , bimin , . . . , bimax , . . . , bit supports P
and satisfies bi1 ∈ Yi1 , bit ∈ Yit and bij ∈ Xij for all 1 < j < t. The lemma is
proved.
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We have shown that the path 0-condition holds, and, assuming that we can
choose b∗1, . . . , b

∗
l−1, l ≥ 1 so that the path (l − 1)-condition holds, we have

shown that it is possible to choose b∗l so that the path l-condition holds for
b∗1, . . . , b

∗
l−1, b

∗
l . Hence, the path m-condition holds. (Recall that A = {a1, . . . , am}).

Lemma 9. The mapping h : A → B such that h(ai) = b∗i for all 1 ≤ i ≤ m is
a homomorphism from A to B.

Proof. Recall that every relation in A is at most binary. Let R be any binary
relation symbol in τ and let (ai, aj) be any tuple in RA. Consider the path ai, aj

on A. The path m-condition guarantees that b∗i , b
∗
j supports it. Consequently, the

mapping h restricted to ai, aj is a partial homomorphism. Hence, (b∗i , b
∗
j ) ∈ RB.

The proof for unary relations is similar.

Theorem 1 is proved.

Corollary 4. If a structure B has a majority polymorphism then CSP(B) is in
complexity class NL.

Proof. By Proposition 3 [7], CSP(B) is in NL for any structure B with bounded
pathwidth duality. Now the result follows from Theorem 1.

It was shown in [10] that any structure B with a majority polymorphism
has 2-treewidth duality, while our Theorem 1 states that the parameter j in the
j-pathwidth duality for such structures grows linearly with the size of the base
set of the structure. In the next two sections we show that this linear growth is
in fact unavoidable.

4 Pebble-Relation Games

In this section, we describe pebble-relation games, introduced in [6, 7], which can
be used to characterise bounded pathwidth duality. We will use these games in
next section to prove the existence of binary structures which, for a given n ≥ 1,
have (6n + 2)-pathwidth duality, but not n-pathwidth duality.

Let S1 and S2 be two sets. We define a relation T with domain S1 and range
S2 as a collection of functions with domain S1 and range S2. Some confusion
might arise from the fact that generally (and in this paper) the name relation
is used with another meaning; for example, an r-ary relation over B is a subset
of Br. Both concepts are perfectly consistent, since an r-ary relation over B is,
indeed, a relation in the new sense, with domain {1, . . . , r} and range B. We will
assume by convention that for every set B there exists one mapping λ : ∅ → B.

Let f be a function with domain S1 and range S2, and let S′1 be a subset
of its domain S1. We will denote by f|S′1 the restriction of f to S1. Similarly,
let T be a relation with domain S1 and range S2, and let S′1 be a subset of its
domain S1. We will denote by T|S′1 the relation with domain S′1 and range S2
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that contains f|S′1 for every f ∈ T . For every relation T we denote by dom(T )
the domain of T . We have two relations with domain ∅: the relation {λ} and the
relation ∅.

Let 0 ≤ j ≤ k be non-negative integers and let A and B be τ -structures.
The (j, k)-pebble-relation ((j, k)-PR) game on A and B is played between two
players, the Spoiler and the Duplicator. A configuration of the game consists of
a relation T with domain I = {a1, . . . , ak′} ⊆ A, k′ ≤ k and range B such that
every function f in T is a homomorphism from A|I to B.

Initially I = ∅ and T contains the (unique) homomorphism from A|∅ to B,
that is, λ. Each round of the game consists of a move from the Spoiler and a
move from the Duplicator. Intuitively, the Spoiler has control on the domain I
of T , which can be regarded as placing some pebbles on the elements of A that
constitute I, whereas the Duplicator decides the content of T after the domain
I has been set by the Spoiler. There are two types of rounds: shrinking rounds
and blowing rounds.

Let Tn be the configuration after the n-th round. The spoiler decides whether
the following round is a blowing or shrinking round.

– If the (n+1)-th round is a shrinking round, the Spoiler sets In+1 (the domain
of Tn+1) to be a subset of the domain In of Tn. The Duplicator responds by
restricting every function in Tn onto the subdomain defined by In+1, that
is, Tn+1 = Tn

|In+1 .
– A blowing round only can be performed if |In| ≤ j. In this case the Spoiler

sets In+1 to be a superset of In with |In+1| ≤ k. The duplicator responds
by providing a Tn+1 with domain In+1 such that Tn+1

|In ⊆ Tn. That is, Tn+1

should contain some extensions of functions in Tn over the domain In+1

(recall that any such extension must be a homomorphism from A|In+1 to
B).

The Spoiler wins the game if the response of the Duplicator sets Tn+1 to ∅, i.e.,
the Duplicator could not extend successfully any of the functions. Otherwise, the
game resumes. The Duplicator wins the game if he has an strategy that allows
him to continue playing “forever”, i.e., if the Spoiler can never win a round of
the game.

We denote by hom(A,B) the set of all homomorphisms from A to B.
Now, we will present an algebraic characterization of the (j, k)-PR game.

Definition 5. Let 0 ≤ j < k be non-negative integers and let A and B be
τ -structures. We say that the Duplicator has a winning strategy for the (j, k)-
pebble-relation game on A and B if there is a nonempty family H of relations
such that:

(a) every relation T has range B and domain I for some I ⊆ A with |I| ≤ k.
(b) for every relation T in H with domain I, ∅ 6= T and T ⊆ hom(A|I ,B)
(c) H is closed under restrictions: for every T in H with domain I and every

I ′ ⊆ I, we have that T|I′ ∈ H.
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(d) H has the (j, k)-forth property: for every relation T in H with domain I with
|I| ≤ j and every superset I ′ of I with |I ′| ≤ k, there exists some relation T ′

in H with domain I ′ such that T ′|I ⊆ T .

The intuition behind the definition of a winning strategy is that every relation
in a winning strategy corresponds to a winning configuration for the Duplicator
in the game.

The following result will be most useful.

Theorem 2. [7] Let 0 ≤ j < k be non-negative integers and let A and B be
finite τ -structures. Then the two following conditions are equivalent:

– Duplicator has a winning strategy for the (j, k)-PR game.
– For every structure C of pathwidth at most (j, k), if C → A then C → B.

Indeed, by virtue of Theorem 2, in order to prove that a certain structure
B does not have (j, k)-pathwidth duality, we only need to provide an structure
A 6∈ CSP(B) and provide a winning strategy for the Duplicator in the (j, k)-PR
game.

5 Pathwidth Hierarchy Does Not Collapse

Recall that we call a structure binary if all of its relations are at most binary.

Theorem 3. For every n ≥ 1, there exists a binary structure with 2n elements
which has a majority polymorphism, but does not have n-pathwidth duality.

Proof. Let n ≥ 1, and let Bn be the set {1, . . . , n} × {1, 2}. The level of an
element (i, j) of Bn is defined to be its first coordinate i. For every 1 ≤ k ≤ n,
Rk

n is a binary symmetric relation on Bn that consists of all pairs ((i, j), (i′, j′))
satisfying at least one of the following conditions

– i > k, i = i′, j = j′

– i = i′ = k, j 6= j′,
– i < k and i′ ≤ k,
– i ≤ k and i′ < k.

Let fn be the ternary majority operation on Bn that returns, when the
majority rule does not apply (i.e., when there is no repetition among the ar-
guments), the first (from left to right) argument from the lowest level. Let us
prove that Rk

n is invariant under fn for every k. Take two triples (a1, b1, c1) and
(a2, b2, c2) of elements of Bn such that (a1, a2), (b1, b2), (c1, c3) ∈ Rk

n and show
that (d1, d2) = (fn(a1, b1, c1), fn(a2, b2, c2)) ∈ Rk

n. Let k1 be the lowest level
of an element in the first triple and k2 in the second. Clearly, if the majority
rule applies to both triples then (d1, d2) is one of (a1, a2), (b1, b2), (c1, c2), and so
belongs to Rk

n.
Assume that the majority rule applies to exactly one of the triples, say, the

first one. The level of the repeated element in the first triple cannot be greater
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than k because then the corresponding elements in the second triple would also
have to coincide. If the level of the repeated element is at most k − 1 then we
have k2 ≤ k, and so (d1, d2) ∈ Rk

n. If the level of the repeated element is exactly
k then, since there is no repetition in the second triple, we have k2 < k and so
(d1, d2) ∈ Rk

n.
If neither triple has a repetition, then the proof is very similar when at least

one k1, k2 is not equal to k. If k1 = k2 = k then the first argument of level k
in the first triple is (k, i), while the the first argument of level k in the second
triple is (k, j) for i 6= j, and so we have (d1, d2) ∈ Rk

n again.
Let τn = {P 1

n . . . , Pn
n } be the vocabulary that contains a binary relation

symbol P k
n for every 1 ≤ k ≤ n. Let Bn be the τ -structure with universe Bn and

such that every P k
n , 1 ≤ k ≤ n, is interpreted as Rk

n.
We shall show that Bn does not have n-pathwidth duality. For every m > n,

we shall construct a structure Am
n that certifies that Bn does not have (n,m)-

pathwidth duality.
We define Am

n by induction n. Let M be any odd number strictly larger than
m. The universe of Am

1 contains M elements x0, . . . , xM−1. For every 0 ≤ i ≤
M−1, we include the tuple xi, xi+1 (here the addition is modulo M) in (P 1

1 )A
m
1 .

In order to construct Am
n , we first consider 3 copies C1,C2,C3 of Am

n−1 (we
can without loss of generality assume that they have disjoint sets of elements).
Observe that every copy Ci, i ∈ {1, 2, 3} is a τn−1-structure. We transform it
into a τn-structure C′

i by merely setting (P k
n )C

′
i = (P k

n−1)
Ci for all 1 ≤ k < n

and (Pn
n )C

′
= ∅. We call C′

i a modified copy. Now we arbitrarily select one
element in each of the modified copies. Let us denote them by y1, y2, y3. The
structure Am

n is obtained by first computing the disjoint union of the three
modified copies C′

1 ∪C′
2 ∪C′

3, and then setting (Pn
n )A

m
n to consist of the pairs

(y1, y2), (y2, y3), (y3, y1).
Note that the partial homomorphisms from Ci to Bn−1 are precisely those

partial homomorphisms from C′
i to Bn that do not have elements of level n (i.e.,

(n, 1) and (n, 2)) in their images.
Let us first prove that Am

n is not homomorphic to Bn, again by induction on
n. If n = 1 then R1

1 is the disequality relation ( 6=) on the set B1 = {(1, 1), (1, 2)}.
Hence Am

1 is not homomorphic to B1 because the only relation in Am
1 is a cycle

of odd length M . We shall prove now that Am
n 9 Bn if Am

n−1 9 Bn−1. Let Ci,
i ∈ {1, 2, 3} be any copy of Am

n−1 used in the construction Am
n and let C′

i be its
modified copy. The set of homomorphisms from C′

i to Bn is easy to describe.
Since Ci is not homomorphic to Bn−1, every homomorphism from C′

i to Bn

must necessarily map at least one element of C′
i to one of the new values (n, 1)

or (n, 2). Since every relation Rk
n with 1 ≤ k ≤ n − 1 forces the values of level

n to be identical and C′
i is connected, any other element in C′

i has to take the
same value. Consequently, each C′

i has only two homomorphisms to Bn: one of
them sends all elements to (n, 1) and the other to (n, 2). Finally let us take into
consideration the distinguished elements y1, y2, y3 in Am

n . A homomorphism from
Am

n to Bn can map these elements only to the values of level n in Bn. However,
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these elements constitute a cycle of length 3 in (Pn
n )A

m
n , while Rn

n restricted to
the values of level n is the disequality relation. Hence, Am

n 9 Bn .
It remains to show the Duplicator has a winning strategy Hm

n for the (n,m)-
PR game on Am

n and Bn. Again, we prove this by induction on n. Let us consider
first the case n = 1. Recall that in this case Am

1 is essentially a cycle with M
vertices and that R1

1 is the disequality relation. It is an easy task to find a winning
strategy for the Duplicator. Specifically, the winning strategy Hm

1 contains, for
each set I with size at most m, a relation that contains precisely all partial
homomorphisms from Am

1 to B1 with domain I. Note that, since m < M , Am
1 |I

is a family of disjoint paths, and every partial homomorphism from Am
1 |I to B1

can be seen as a 2-coloring of these paths. It is straightforward to check that
Hm

1 is indeed a winning strategy.
We now show how to construct a winning strategy for the Duplicator for the

(n,m)-PR game on Am
n and Bn. Let Hi, i ∈ {1, 2, 3} be winning strategies for

(n− 1, m)-PR game on Ci and Bn−1 for the 3 copies C1,C2,C3 of Am
n−1 that

are used in the construction of Am
n .

Let I be any subset of Am
n , |I| ≤ m, and let I1, I2, I3 be subsets of I such

that each set Ii, i ∈ {1, 2, 3} contains precisely those elements of I that belong to
C′

i. (Note that some of the sets Ii may be empty). Let j1, j2 be different values
in {1, 2, 3} and j3 be the remaining value. Let Rj1 be any relation of Hj1 with
domain Ij1 and similarly let Rj2 be any relation of Hj2 with domain Ij2 .

We define R = R(I, j1, j2, Rj1 , Rj2) to be the relation that contains all those
partial homomorphisms t with domain I that satisfy the following conditions:

– t|Ij1
∈ Rj1 ∪ {(n,1), (n,2)},

– t|Ij2
∈ Rj2 ∪ {(n,1), (n,2)}, and

– t|Ij3
∈ {(n,1), (n,2)}.

where (n,1) (respectively, (n,2)) denotes the mapping, with the corresponding
domain, that maps all elements to (n, 1) (respectively, (n, 2)).

We define Hm
n to be the set that contains R(I, j1, j2, Rj1 , Rj2) for all valid

choices of I, j1, j2, Rj1 , and Rj2 .
We shall prove that Hm

n is indeed a winning strategy. It is fairly easy to verify
that, for every choice of I, j1, j2, Rj1 , and Rj2 , the relation R = R(I, j1, j2, Rj1 , Rj2)
is nonempty: for example, any mapping t with t|Ij1

∈ Rj1 , t|Ij2
= (n,1), and

t|Ij3
= (n,2) is a partial homomorphism. Moreover, one can show by slightly

modifying the previous example that the restriction of R to each Iji , i ∈ {1, 2, 3}
contains (n,1) and (n,2) (with the corresponding domain). We shall use this
fact later.

It follows directly from the definitions that Hm
n is closed under restrictions.

It only remains to show that Hm
n has the (n,m)-forth property. Let R =

R(I, j1, j2, Rj1 , Rj2) be any relation inHm
n with |I| ≤ n and let I ′ be any superset

of I with |I ′| ≤ m. We shall show that there exists some relation R′ in Hm
n with

domain I ′ such that R′|I is contained in R. Let us consider two cases.
First let us assume that the cardinality of Ij1 or the cardinality of Ij2 is n.

Assume without loss of generality that the former holds. Notice that in this case
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I = Ij1 . We just set R′ = R(I ′, j2, j3, R′j2 , R
′
j3

) where R′j2 is any relation in Hj2

with domain I ′ ∩ C ′j2 and R′j3 is any relation in Hj3 with domain I ′ ∩ C ′j3 . The
restriction of R′ to I, which consists of (n,1) and (n,2) (with domain I), is
contained in R.

Assume now that |Ij1 | ≤ n − 1 and |Ij2 | ≤ n − 1. By the (n − 1,m)-forth
property of Hj1 , there exists a relation R′j1 in Hj1 with domain I ′j1(= I ′ ∩ C ′j1)
such that R′j1 |Ij1

⊆ Rj1 . Similarly, by the (n−1,m)-forth property of Hj2 , there
exists a relation R′j2 in Hj2 with domain I ′j2(= I ′∩C ′j2) such that R′j2 |Ij2

⊆ Rj2 .
We obtain the required relation R′ by setting R′ = R(I ′, j1, j2, R′j1 , R

′
j2

).

Theorem 3 is of interest in the context of the so-called duality (or Datalog)
hierarchies. It is an important open question whether, for any n ≥ 3, there is a
structure which has bounded treewidth duality, but not n-treewidth duality. For
pathwidth dualities, this question can be answered in positive by using structures
with only two elements (see Section 7.2 of [7]), but the arity of the relations in
such structures would grow with n. Theorem 3 shows that, even when the arity
of relations in structures is bounded by 2, there exist structures for which the
parameter j of j-pathwidth duality is (necessarily) arbitrarily large.

6 Conclusion

We have shown that every relational structure with a majority polymorphism
has bounded pathwidth duality, thus solving an open problem posed in [6, 7].
There are two natural extensions of this class of structures, for which it seems
reasonable to (try to) prove the existence of bounded pathwidth duality.

One is the class of structures having a near-unanimity polymorphism, which
is an n-ary (n ≥ 3) operation f satisfying, for all x, y, the identities

f(y, x, x, . . . , x, x) = f(x, y, x, . . . , x, x) = . . . = f(x, x, x, . . . , x, y) = x.

Clearly, a majority operation is simply a ternary near-unanimity operation. It
is known [10] that any structure with a near-unanimity polymorphism of arity
n + 1 has n-treewidth duality. In [10], such structures were shown to have a
special property called “bounded strict width”. The problem of whether such
structures have bounded pathwidth duality was also mentioned in [6, 7].

The other class, which is known to properly extend the previous one, consists
of structures that admit a sequence of Jónsson operations (as polymorphisms).
For k ≥ 2, a sequence of ternary operations pi (0 ≤ i ≤ k) is called a sequence
of Jónsson operations if the operations satisfy the following identities:

p0(x, y, z) = x

pk(x, y, z) = z

pi(x, y, x) = x for all i

pi(x, x, y) = pi+1(x, x, y) for all even i

pi(y, x, x) = pi+1(y, x, x) for all odd i
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Such sequences of operations are studied in universal algebra in connection
with the property of congruence-distributivity. Note that if such a sequence
has three operations (i.e., k = 2) then p1 is simply a majority operation. It is
known [17] that a sequence of four Jónsson operations (as polymorphisms) guar-
antees bounded treewidth duality, but even this question is still open for such
sequences with more than four operations.
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12. P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press,
2004.



20 V. Dalmau and A. Krokhin
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