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Abstract

The present paper is devoted to the construction and comparative study of

upwind methods as applied to the system of one-dimensional nonlinear elasticity

equations. We derive a simple approach for building up exact solutions to the Rie-

mann problem and construct a suite of test problems to assess numerical methods.

Then we carry out the implementation and a systematic comparative study of some

recently proposed simple, upwind fluxes, the focus being on robustness and accurate

resolution of delicate features such as linearly degenerate fields.

1 Introduction

The governing equations of nonlinear elasticity constitute a complicated system of hy-

perbolic conservation laws coupled with an additional differential constrain, the so-called

compatibility condition. The classical approach in linear and non-linear elasticity theo-

ries, widely accepted by now, consists of second-order systems of differential equations. A

different model for inelastic deformations formulated in terms of a first-order hyperbolic

system is proposed in [3]. Such a formulation seems to be more appropriate, as it allows

the use of well developed mathematical tools for studying various initial-boundary prob-

lems; see the recent book [5]. Also, from the computational point of view one may make

use of advanced approaches for constructing numerical algorithms to solve the equations

approximately, see for instance [20, 7]. The non-linear elasticity equations can be derived

from the aforementioned model [3] as a special case. The model from [3] was success-

fully used in [9, 10] to study wave propagation and high-rate deformations in metals,

where the equations, in non-conservative form, were formulated in terms of strain ten-

sor. Conservative formulations in terms of Lagrangian deformation gradient are presented

in [15, 13].
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In this paper we adopt as a model for non-linear elasticity, a system of first-order hy-

perbolic equations in conservation-law form. Modern numerical methods for hyperbolic

conservation laws make direct or indirect use of the Riemann problem, e.g. [20, 7]. Devel-

oping exact or approximate Riemann solvers for nonlinear elasticity is a difficult task due

to the enormous complexity of the system and its associated equation of state. A second-

order Godunov-type method based on an approximate Riemann solver is developed in [12].

More recently, an iterative algorithm for the solution of the Riemann problem for general

systems of conservation laws was proposed in [11] and an application to one-dimensional

elastic equations in terms of Lagrangian deformation gradient was given. These Riemann

solvers are quite complex to implement and require a detailed knowledge of the Riemann

problem solution. It is therefore desirable to have simpler Godunov-type fluxes to be used

in practical computations, which would also be applicable to inelastic media equations.

The present paper is devoted to the construction and comparative study of upwind

methods as applied to the one-dimensional system of nonlinear elasticity equations. First

we derive a simple method for deriving exact solutions to the Riemann problem for non-

linear elasticity. The constructed solutions are then proposed as reference solutions to

test the performance of numerical methods. These tests include an impact test problem,

a separation problem with a sonic point, a test with a stationary contact discontinuity

and a conventional shock-tube problem with a structure containing three-waves.

Having established a set of test problems, we carry out a systematic comparative study

of some recently proposed Godunov-type fluxes [21, 24, 18, 22] as well as some conventional

fluxes such as the centred Lax-Friedrichs flux and a simple linearized Riemann solver.

Most of the computations are carried out in the framework of the first-order Godunov

method [2]. Particular attention is given to robustness and ability of the methods to

accurately resolve delicate features of the solution such as contact waves. Some selected

fluxes are also used in the construction of high-order numerical methods in the framework

of the weighted essentially non-oscillatory (WENO) schemes [8, 6, 17].

The rest of the paper is organized as follows. In section 2 we give a brief description of

the governing equations of nonlinear elasticity. Section 3 is devoted to the construction of

exact Riemann problem solutions for some special cases. A description of fluxes is provided

in section 4. Section 5 contains first-order numerical results. Higher-order computations

on the basis of the WENO method are presented in section 6 and conclusions are drawn

in section 7.
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2 Governing equations of nonlinear elasticity

2.1 Complete 3D system

Three-dimensional processes of elastic media deformation in the Cartesian coordinate

system xi can be described by the complete set of parameters of state such as the velocity

vector u = {ui}, Eulerian deformation gradient C = {cij}, which we also call the Eulerian

distortion tensor, and specific entropy S. Other variables, such as material density ρ, the

stress tensor σik and the specific internal energy e can be represented as functions of the

above parameters.

We formulate the governing equations as a first-order hyperbolic system in conservative

form using the Eulerian deformation gradient as the parameter of state. This formulation

is a straightforward consequence of the thermodynamically compatible system theory de-

veloped in [4, 5]. The system represents momentum, strain and total energy conservation

laws and has the following form:

∂ρui

∂t
+

∂(ρuiuk − σik)

∂xk

= 0,

∂ρcij

∂t
+

∂(ρcijuk − ρckjui)

∂xk

= 0,

∂ρ(e + u2/2)

∂t
+

∂(ρuk(e + u2/2)− uiσik)

∂xk

= 0.

(1)

Here we assume summation over repeating indexes. The continuity equation, or mass

conservation law, can be derived using the definition of mass density and reads

∂ρ

∂t
+

∂ρuk

∂xk

= 0. (2)

This equation can be used for computations instead of one of the equations for distortions

cij in (1).

The closure relation for the system is the equation of state that defines the specific

internal energy e as function of distortion tensor and entropy: e = e(cij, S). Then density

ρ, strain tensor gij, stress tensor σik and temperature T are given by

ρ = ρ0/ det C, G = (gij) = C−1∗C−1, σik = ρcij
∂e

∂ckj

= −2ρgij
∂e

∂gjk

, T =
∂e

∂S
.

Here ρ0 is a constant mass density in the reference unstressed state.

For an isotropic medium the equation of state must be a function of three independent

invariants I1, I2, I3 of strain tensor which can be chosen in different ways. We shall use

I1 = trG = g11 + g22 + g33, I3 = det G = (ρ/ρ0)
2 ,

I2 = (g11g22 − g12g21) + (g22g33 − g23g32) + (g33g11 − g31g13).
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Note that for the two-dimensional case we have to set g33 ≡ 1. The equation of state

used in the present paper is given as the sum of three terms of which two correspond to

the hydrodynamic part of the internal energy and one corresponds to the shear deforma-

tion [16]:

e =
K0

2α2
(I

α/2
3 − 1)2 + cV T0I

γ/2
3 (eS/cV − 1) +

B0

2
I

β/2
3 (I2

1/3− I2). (3)

Here K0 and B0 are bulk and shear modulus, cV is heat capacity at constant volume, α,

β, γ are constants characterizing nonlinear dependence of sound speeds and temperature

on the mass density.

Additional steady conservation laws hold for the distortion tensor, which are compat-

ibility conditions and can be easily derived from the conservation equations for cij from

the system (1):
∂ρc1j

∂x1

+
∂ρc2j

∂x2

+
∂ρc3j

∂x3

= 0, j = 1, 2, 3. (4)

These equations can be viewed as constrains to be satisfied by solutions of (4).

2.2 Augmented one-dimensional system

Assume that deformation of a medium is uniform along the x1 ≡ x axis and only one

tangential component of the velocity vector is nonzero. In this case the complete set

of parameters of state of a medium consists of normal u = u1 and tangential v = u2

components of the velocity vector; c11, c12, c21, c22 components of the distortion tensor and

entropy S. Consequently, the complete system (1) can be reduced to seven equations. For

the purpose of solving the equations numerically it is more convenient to use the continuity

equation (2) instead of one of the equations for ρcij, say ρc11. We therefore adopt the

following form of the augmented one-dimensional system:

∂U

∂t
+

∂F (U )

∂x
= 0. (5)

Here the vector of conservative variables U and fluxes F (U ) are given by

U = (ρ, ρu, ρv, ρc12, ρc21, ρc22, ρ(E + u2/2 + v2/2))
T

,

F (U ) = (ρu, ρu2 − σ11, ρuv − σ21, 0, ρ(c21u− c11v)T ,

ρ(c22u− c12v), ρu(E + (u2 + v2)/2)− uσ11 − vσ21)
T .

(6)

Nonzero components of the strain tensor gij are

g11 = f 2
11 + f 2

21, g12 = g21 = f11f12 + f21f22, g22 = f 2
12 + f 2

22,
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where the entries fij of the C−1 matrix are given by

(f11, f12, f21, f22) = (c22,−c12, − c21, c11)/detC, detC = c11c22 − c12c21.

The mass density can be represented as a function of either cij or gij:

ρ = ρ0/detC = ρ0

√
g11g22 − g12g21.

The components of the stress tensor are given by:

σ11 = −2ρg11
∂E

∂g11

− 2ρg12
∂E

∂g21

,

σ12 = σ21 = −2ρg11
∂E

∂g12

− 2ρg12
∂E

∂g22

,

σ22 = −2ρg21
∂E

∂g12

− 2ρg22
∂E

∂g22

.

Finally, we note that the compatibility conditions (4) in the one-dimensional case read

as follows:

ρc11 = const, ρc12 = const. (7)

2.3 Eigenstructure of the system

We analyze the eigenstructure of the one-dimensional system (5), (6). To do so we write

it in quasi-linear form for the vector of primitive variables W = (u, v, c11, c12, c21, c22, S):

∂W

∂t
+ A(W )

∂W

∂x
= 0, (8)

where the matrix A(W ) is given by

A =




u 0 −A1111 −A1112 −A1121 −A1122 −A110

0 u −A2111 −A2112 −A2121 −A2122 −A210

−c11 0 u 0 0 0 0

−c12 0 0 u 0 0 0

0 −c11 0 0 u 0 0

0 −c12 0 0 0 u 0

0 0 0 0 0 0 u




with

Aijkl =
1

ρ

∂σij

∂ckl

, Aij0 =
1

ρ

∂σij

∂S
.

The eigenvalues of A can be found as the roots of the equation

(u− λ)3((u− λ)4 −K2(u− λ)2 + K0) = 0, (9)
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where the coefficients K0, K2 are given by

K2 = c11(A1111 + A2121) + c12(A1112 + A2122),

K0 = c2
11

∣∣∣∣∣∣
A1111 A1121

A2111 A2121

∣∣∣∣∣∣
+c11c12




∣∣∣∣∣∣
A1111 A1122

A2111 A2122

∣∣∣∣∣∣
+

∣∣∣∣∣∣
A1112 A1121

A2112 A2121

∣∣∣∣∣∣


+c2

12

∣∣∣∣∣∣
A1112 A1122

A2112 A2122

∣∣∣∣∣∣
.

This gives us the following set of eigenvalues:

λ1 = u−√x1, λ2 = u−√x2, λ3 = λ4 = λ5 = u, λ6 = u +
√

x2, λ7 = u +
√

x1.

where

x1 =
1

2
(K2 +

√
K2

2 − 4K0)/2, x2 =
1

2
(K2 −

√
K2

2 − 4K0)

The right eigenvectors are given by:

r1 =
1

2




(Q−1D−1
Λ )11

(Q−1D−1
Λ )21

c11(Q
−1D−2

Λ )11

c12(Q
−1D−2

Λ )11

c11(Q
−1D−2

Λ )21

c12(Q
−1D−2

Λ )21

0




, r2 =
1

2




(Q−1D−1
Λ )12

(Q−1D−1
Λ )22

c11(Q
−1D−2

Λ )12

c12(Q
−1D−2

Λ )12

c11(Q
−1D−2

Λ )22

c12(Q
−1D−2

Λ )22

0




, r7 =
1

2




(Q−1D−1
Λ )12

(Q−1D−1
Λ )22

−c11(Q
−1D−2

Λ )12

−c12(Q
−1D−2

Λ )12

−c11(Q
−1D−2

Λ )22

−c12(Q
−1D−2

Λ )22

0




,

r3 =




0

0

c11(Λ
−1
11 A1112 + Λ−1

12 A2112)

c12(Λ
−1
11 A1112 + Λ−1

12 A2112)− 1

c11(Λ
−1
21 A1112 + Λ−1

22 A2112)

c12(Λ
−1
21 A1112 + Λ−1

22 A2112)

0




, r4 =




0

0

c11(Λ
−1
11 A1122 + Λ−1

12 A2122)

c12(Λ
−1
11 A1122 + Λ−1

12 A2122)

c11(Λ
−1
21 A1122 + Λ−1

22 A2122)

c12(Λ
−1
21 A1122 + Λ−1

22 A2122)− 1

0




r5 =




0

0

−c11(Λ
−1
11 A110 + Λ−1

12 A210)

−c12(Λ
−1
11 A110 + Λ−1

12 A210)

−c11(Λ
−1
21 A110 + Λ−1

22 A210)

−c12(Λ
−1
21 A110 + Λ−1

22 A210)

1




r6 =
1

2




(Q−1D−1
Λ )11

(Q−1D−1
Λ )21

−c11(Q
−1D−2

Λ )11

−c12(Q
−1D−2

Λ )11

−c11(Q
−1D−2

Λ )21

−c12(Q
−1D−2

Λ )21

0




,
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The left eigenvectors are given by

l1 = ((DΛQ)11, (DΛQ)12, Q11A1111 + Q12A2111, Q11A1112 + Q12A2112,

Q11A1121 + Q12A2121, Q11A1122 + Q12A2122, Q11A110 + Q12A210)

l2 = ((DΛQ)21, (DΛQ)22, Q21A1111 + Q22A2111, Q21A1112 + Q22A2112,

Q21A1121 + Q22A2121, Q21A1122 + Q22A2122, Q21A110 + Q22A210)

l3 = (0, 0, c12/c11,−1, 0, 0, 0)

l4 = (0, 0, 0, c12/c11,−1, 0, 0)

l5 = (0, 0, 0, 0, 0, 0, 1)

l6 = ((DΛQ)11, (DΛQ)12,−Q11A1111 −Q12A2111,−Q11A1112 −Q12A2112,

−Q11A1121 −Q12A2121,−Q11A1122 −Q12A2122,−Q11A110 −Q12A210)

l7 = ((DΛQ)21, (DΛQ)22,−Q21A1111 −Q22A2111,−Q21A1112 −Q22A2112,

−Q21A1121 −Q22A2121,−Q21A1122 −Q22A2122,−Q21A110 −Q22A210)

Here Λ is a second order symmetric matrix

Λ =


 A1111 A1112 A1121 A1122

A2111 A2112 A2121 A2122







c11 0

c12 0

0 c11

0 c12




,

which is called the acoustic matrix and admits a factorization

Λ = AP = Q−1D2
ΛQ, DΛ = diag(

√
x1,
√

x2),

where Q is an orthogonal matrix; Λ−1
ij denotes (i, j) element of the inverse matrix Λ−1 =

Q−1D−2
Λ Q.

It can be seen that there are three linearly degenerate fields corresponding to λ = u

and four nonlinear fields.

3 Exact Riemann problem solutions

In this section we develop a procedure for constructing exact solutions to the local Rie-

mann problem, which is the Cauchy problem for (5) with piece-wise constant initial data

of the form

U (x, 0) =





UL, x < 0,

UR, x > 0.
(10)

We consider two special cases: an isolated contact discontinuity with possible changes in

all components of the vector of primitive variables W and the purely one-dimensional

shock-tube problem, in which no disturbances in the transverse direction exist.
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3.1 Isolated contact discontinuity

The Rankine-Hugoniot relations connecting the left and right states through a disconti-

nuity moving with velocity D are given by

[ρu]D = [ρu2 − σ11],

[ρv]D = [ρuv − σ21],

[ρc11]D = 0,

[ρc12]D = 0,

[ρc21]D = [ρc21u− ρc11v],

[ρc22]D = [ρc22u− ρc12v],

[ρ(e + (u2 + v2)/2)]D = [ρu(e + (u2 + v2)/2)− uσ11 − vσ21],

where for any quantity [φ] = φR− φL. An isolated contact discontinuity is defined by the

condition that the normal velocity component does not change across it:

uL = uR = D.

Assume that the right state WR and one component of WL, say entropy, are given. Then,

taking into account the compatibility conditions (7), we obtain the following five equations

for the remaining unknown quantities (v, c11, c12, c21, c22) of the left state WL:

[v] = [σ11] = [σ21] = [ρc11] = [ρc12] = 0 (11)

The nonlinear system (11) can be solved by means of the Newton method.

3.2 Complete solution for the purely one-dimensional case

Let us assume that v, c12, c21 and c22 are constant in the initial data. Then the structure

of the solution is similar to that of the ideal Euler equations, and consists of three distinct

waves: a left nonlinear wave, associated with λ1, a contact discontinuity, associated with

λ3 and a right nonlinear wave, associated with λ7. These three waves separate four

constant states, which are from left to right are: WL, W∗L, W∗R and WR. The left

nonlinear wave can be either a rarefaction wave occupying the region

λ1L = λ1(WL) ≤ x/t ≤ SL = λ1(W∗L)

in x− t space or a shock wave moving the speed SL so that across it we have the Rankine

- Hugoniot conditions:

FL − F∗L = SL (UL −U∗L) . (12)
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Similarly, the right wave is either a rarefaction

SR = λ7(W∗R) ≤ x/t ≤ λ7(WR) = λ7R

or a shock moving with the speed SR:

FR − F∗R = SR (UR −U∗R) . (13)

The middle wave of velocity SM is always a contact discontinuity dividing the unknown

star region between nonlinear waves into two adjacent subregions: star left W∗L and star

right W∗R. Consequently, there exist four possible wave patterns.

The solution to the Riemann problem is completely defined once we now SL, SR and

the type of the nonlinear waves. Moreover, the left star state is a function of SL and WL,

whereas the right star state is a function of SR and WR:

W∗L = W∗L(SL,WL), W∗R = W∗L(SR,WR).

The solution procedure developed here uses the fact that across the middle contact wave

both normal velocity u∗ = SM and normal stress σ11 are constant. This gives us a

nonlinear system of two equations for the unknown velocities SL, SR of the outer nonlinear

waves:
f1(SL, SR) = u(W∗L)− u(W∗R) = 0,

f2(SL, SR) = σ11(W∗L)− σ11(W∗R) = 0.
(14)

We now proceed to establish the expressions for computing the left and right star

states as functions of SL and SR. Consider first the left wave. If this wave is a rarefaction

we have the following system of ordinary differential equations valid across this wave [14]:

d

dξ
W =

r1

(r1,∇wλ1(W ))
, λ1L ≤ ξ ≤ SL (15)

coupled with the initial condition W (λ1L) = WL. Here ∇w denotes the gradient operator

with respect to components of the vector of primitive variables W . The sought left star

state is given by the solution of (15) evaluated at ξ = SL.

If the left wave happens to be a shock with the velocity SL, then the left star value is

given by the Rankine – Hugoniot conditions (12). The nonlinear system for the left star

conservative variable U∗L is solved numerically using the Newton iteration method.

The derivation of W∗R as a function of SR is carried out in an entirely analogous

manner. If the wave is a rarefaction then across it we have:

d

dξ
W =

r7

(r7,∇wλ7(W ))
, SR ≤ ξ ≤ λ7R (16)

coupled with the initial condition W (λ7R) = WR. Note that we solve (16) from right to

left. If instead the wave is a shock, we have the nonlinear system (13) for the right star

conservative variable U∗R.
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Overall, the solution algorithm produces a sequence of approximations to the star

values W
(n)
∗L , W

(n)
∗R , where n is the number of the current iteration, as follows. We use

the Newton method to solve (14). Knowing W
(n)
∗L , W

(n)
∗R we find out the type of the

nonlinear waves present in the solution by analyzing the inclination of characteristics.

If they converge, then the wave is a compressive wave, a shock. Otherwise we have a

rarefaction wave. Having established the type of waves we can compute the star values

and find the next approximation to SL, SR from the following linear system:




S
(n+1)
L

S
(n+1)
R


 =




S
(n)
L

S
(n)
R


−




∂f1

∂SL

(
S

(n)
L , S

(n)
R

) ∂f1

∂SR

(
S

(n)
L , S

(n)
R

)

∂f2

∂SL

(
S

(n)
L , S

(n)
R

) ∂f2

∂SR

(
S

(n)
L , S

(n)
R

)




−1 


f1

(
S

(n)
L , S

(n)
R

)

f2

(
S

(n)
L , S

(n)
R

)
)


 .

What is left is to describe the procedure for finding an initial guess value for the star

states W∗L, W∗R and the velocities SL, SR. Unfortunately, unlike the Euler equations,

the nonlinear elasticity equations do not lend themselves easily to analytical construction

of initial guess values. It appears as if the only possibility is to use the linearized solver,

described below in section 4, to produce approximations to W∗L, W∗R. Although this

works well for a wide class of initial data, the linearized solver fails for some special

situations, see section of numerical results. However, since our goal is to use the exact

Riemann solver in the construction of reference exact solutions rather than as a local solver

in the numerical scheme, the initial approximation can be found by using the results of

some first-order dissipative scheme run on a sufficiently fine mesh.

4 Numerical fluxes for finite-volume methods

Consider now a control volume in x − t space of dimensions ∆x = xi+1/2 − xi−1/2, ∆t =

tn+1 − tn. A finite volume method for solving (5) reads as follows:

Un+1
i = Un

i −
∆t

∆x

(
Fi+1/2 − Fi−1/2

)
, (17)

where Un
i is an approximation to the cell average and Fi+1/2 is the numerical flux. The

description of the scheme (17) is complete once expressions for the numerical fluxes are

provided. Godunov [2] proposed to use the self-similar solution U∗(x/t) of the Riemann

problem (5),(10) with the initial data UL = Ui, UR = Ui+1 to compute numerical fluxes

in the direction normal to the cell faces. The original Godunov flux is given by Fi+1/2 =

F (U∗(0)). More generally, the numerical flux can be defined as a two-point function of

left and right data in the local Riemann problem, namely

Fi+1/2 = Fi+1/2(UL,UR). (18)
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In most cases the upwind Godunov-type fluxes cannot be written as an explicit function

of UL, UR. Centred fluxes can be written in the form (18), which makes them simple to

implement but also rather diffusive as compared to upwind fluxes.

We now deal with different upwind fluxes that can be used as the building block for

non-oscillatory advection schemes.

4.1 Linearized Riemann solver

An upwind flux is constructed here by using a simple linearized Riemann solver obtained

by freezing the matrix A in (8) at the average state

W0 = (WL + WR)/2

and considering the corresponding linear hyperbolic system:

∂W

∂t
+ A0

∂W

∂x
= 0, A0 = A(W0) (19)

The self-similar solution W∗(x/t) of (19) (and thus U∗(x/t)) can be easily constructed

since we know the eigenvectors and eigenvalues. The flux is then given by F (U∗(0)).

The availability of the linearized solver is important for a number of reasons. Firstly,

it can be used as a local solver for a class of problems of nonlinear elasticity. It recog-

nizes all waves in the solution and is thus accurate for delicate features such as contact

discontinuities. Secondly, the knowledge of eigenvectors is necessary for the construction

of high-order methods which use the reconstruction procedure in characteristic variables.

Thirdly, the linearized Riemann solver is an essential element for the EVILIN flux [22]

described below.

However, conventional linearized Riemann solvers have a number of deficiencies. Firstly,

they may lack robustness at strong shock waves. Secondly, they fail to compute sonic

points correctly giving a large unphysical jump in all flow variables, a rarefaction shock,

unless explicit entropy fixes are enforced. Finally, the linearized Riemann solvers cannot

handle the situation when the Riemann problem solution contains very strong rarefaction

waves [1]. Therefore, the linearized solver is not generally recommended for practical

applications except for some special situations.

4.2 FORCE and generalized FORCE fluxes

Two classical centred fluxes are the Lax-Friedrichs flux

F LF
i+ 1

2
(UL,UR, ∆t, ∆x) =

1

2
[F (UL) + F (UR)]− 1

2

∆x

∆t
[UR −UL] (20)

11



and the two-step Lax-Wendroff flux

F LW
i+ 1

2
(UL,UR, ∆t, ∆x) = F (ULW ) , ULW =

1

2
[UL +UR]− 1

2

∆t

∆x
[F (UR)−F (UL)] . (21)

Another, more recent, first order centred flux is the FORCE flux [19, 23] given by the

arithmetic average of the Lax-Friedrichs and Lax-Wendroff fluxes:

F force
i+ 1

2
(UL, UR, ∆t, ∆x) =

1

2
F LW

i+ 1
2
(UL,UR, ∆t, ∆x) +

1

2
F LF

i+ 1
2
(UL,UR, ∆t, ∆x). (22)

As is well known, centred (or symmetric) fluxes contain no explicit wave propagation

information which makes them simple, efficient and applicable to very complex equations,

but also quite diffusive and dependent on the Courant number coefficient. In particular,

waves associated with linearly degenerate fields, such as contact waves, shear waves and

vortices, are poorly resolved.

A simple way of removing the dependence of the truncation error on the reciprocal

of the Courant number in the FORCE flux while retaining its simplicity is to use a local

time step in (22); this time step is estimated from the data UL, UR [18]. A further

improvement is the generalized FORCE (GFORCE) flux [24], which is given by a convex

average of (20) and (21), again with the local selection of the time step:

F GF
i+ 1

2
(UL,UR) = ωF LW

i+ 1
2
(∆tg, ∆xg) + (1− ω)F LF

i+ 1
2
(∆tg, ∆xg), ω =

1

1 + Kg

. (23)

Here 0 < Kg ≤ 1 is a prescribed local Courant number coefficient; usually we take

Kg = 0.9. The choice Ω = 1/2 gives the modified FORCE flux of [18]. The time step

used in the evaluation of the flux is computed from the initial data UL, UR as

∆tg = Kg∆xg/Smax. (24)

Here Smax is the speed of the fastest wave in the local solution. The local cell size ∆xg can

be chosen arbitrary due to the self-similar structure of the solution of the conventional

Riemann problem. For example, one could take ∆xg ≡ 1 or ∆xg ≡ ∆x. Note, that

generally speaking ∆tg 6= ∆t.

The GFORCE flux is upwind due to the fact that the nonlinear weight ω in (23) de-

pends on the local wave speed. For the linear advection equation with constant coefficient

the proposed flux (23) reproduces the Godunov’s upwind flux.

4.3 GMUSTA and EVILIN Riemann solvers

The idea of the multi-stage (MUSTA) Riemann solver [21] is to obtain an upwind nu-

merical flux by evolving in time the initial data in the local Riemann problem. Below we

briefly outline the generalized version of MUSTA, called GMUSTA, as given in [21, 18, 24].

12



Let us introduce a separate (local) spatial domain and corresponding mesh with 2M cells:

−M + 1 ≤ m ≤ M and cell size δx. The boundary between cells m = 0 and m = 1

corresponds to the interface position x = 0 in (10). Transmissive boundary conditions are

applied at numerical boundaries x±M+1/2 on the grounds that the Riemann - like data

extends to ±∞. We now want to solve this Riemann problem numerically on a given

separate mesh and construct a sequence of evolved data states Q(l)
m , 0 ≤ l ≤ k in such a

way, that the final values Q
(k)
0 , Q

(k)
1 adjacent to the origin are close to the sought Go-

dunov state. Here k is the total number of stages (time steps) on this separate mesh of

the algorithm.

The GMUSTA time marching for m = −M + 1, . . . M is organized by using the first-

order scheme with the GFORCE flux (23) on the chosen separate mesh:

U (l+1)
m = U (l)

m − δt

δx

(
F

(l)
m+1/2 − F

(l)
m−1/2

)
, F

(l)
m+1/2 = F GF (U (l)

m ,U
(l)
m+1). (25)

The time marching procedure is stopped when the required number of stages k is reached.

At the final stage we have a pair of values adjacent to the interface position. For the

construction of Godunov-type advection schemes one needs a numerical flux at the origin,

which for the outlined procedure is given by

F GM
i+1/2 = F

(k)
1/2 = F GF (U

(k)
0 ,U

(k)
1 ). (26)

The cell size δx can be chosen arbitrarily due to the self-similar structure of the solution

of the conventional Riemann problem. Normally we take δx ≡ 1. The Courant number

coefficient Kmusta is prescribed by the user; we typically take Kmusta = 9/10. The time

step δt is computed from the data U (l)
m according to the conventional formula

δt = Kmustaδx/Smax.

with the only difference that Smax is computed from all cells in the GMUSTA mesh.

The EVILIN Riemann solver [22] is a variant of GMUSTA which uses GMUSTA time

marching as a predictor and a linearized Riemann solver as a corrector. The EVILIN

flux is constructed by applying the linearized solver to the states adjacent to the origin,

namely Q
(k)
0 , Q

(k)
1 , which are obtained by the GMUSTA time marching. To this end we

solve exactly the following linearized Riemann problem:

∂tU + A1/2∂xU = 0, A1/2 = A
(

1
2
(U

(k)
0 + Q

(k)
1 )

)

U (x, 0) =





U
(k)
0 if x < 0 ,

U
(k)
1 if x > 0 .

(27)

The aim of EVILIN is to retain the good resolution of the linearized solver and while

avoiding its limitations. We note that the usual shortcomings of linearized Riemann
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solvers are not present with EVILIN. This is due to the fact that we apply the linearized

Riemann solver to evolved values rather than to the initial data. See [22] for more details

and numerical examples.

5 First-order numerical results

In this section we present a comparative study of the described numerical fluxes as im-

plemented in the first-order finite volume framework. As test problems we solve Riemann

problems with piece-wise constant initial data defined in a computational domain [0 : 1]:

∂U

∂t
+

∂F (U )

∂x
= 0, W (x, 0) =





WL, x < x0 ,

WR, x > x0 ,
(28)

where x0 is the position of the discontinuity in initial data. Note that we specify initial

data in terms of primitive variables rather than conservative ones to make the presentation

more convenient. Transmissive boundary conditions are applied at x = 0 and x = 1. As

the material for test computations we take copper with the following constants in the

equation of state:

ρ0 = 8.9 g/cm3, K0 = c2
0 −

4

3
b2
0, B0 = b2

0, c0 = 0.46 cm/ms, b0 = 0.21 cm/ms,

T0 = 300 K, cv = 0.4 · 10−4 g

ms K
, α = 1.0, β = 3.0, γ = 2.0.

In all calculations we denote the GMUSTA and EVILIN Riemann solvers with k stages

as GMUSTA-k and EVILIN-k, respectively. Symbols correspond to numerical solution of

the method under discussion. Unless otherwise specified, the solid line corresponds to the

exact solution obtained using the methods from the previous section.

5.1 Impact test problem

We solve the Riemann problem with the initial data corresponding to two colliding regions:

WL = (+5, 0, 1, 0, 0, 1, 0), WR = (−5, 0, 1, 0, 0, 1, 0), x0 = 0.5. (29)

The exact solution consists of two shock waves of velocities S = ±11.1 and a constant

star state

W∗L = W∗R = W∗ = (0.0, 0, 0.6894, 0, 0, 1, 0.0014)

and is given by

W (x, t) =





WL, (x− x0)/t < −S ,

W∗, −S < (x− x0)/t < S ,

WR, (x− x0)/t > S .
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We run the schemes up to the output time t = 0.03 on a mesh of 100 cells with a CFL

coefficient CFL = 0.9. Figs. 1 – 3 show computed results for Lax-Friedrichs, GFORCE

and EVILIN fluxes. The solid line corresponds to the exact solution. We show density

and the stress component σ22. Other quantities such as normal velocity u and normal

stress σ11 are computed satisfactorily by all methods. The results of GMUSTA-1 are very

similar to those of GFORCE and are thus omitted. The linearized solver fails for this

problem and hence no solution is shown.

We see that the shock wave positions are computed correctly by all methods, the only

difference being the resolution of the fronts. The main error, however, is committed in the

star region around the (trivial) contact wave, where non-physical under- and overshoots

in ρ and σ22 are produced by all methods. Overall, the scheme with the GFORCE flux

is the most accurate. We also note large over and undershoots near the contact wave

present in the result of the EVILIN-1 flux.

5.2 Symmetric separation test problem

We solve the Riemann problem with the following symmetric initial data, corresponding

to the separation of two regions of velocity V :

WL = (−0.75, 0, 1, 0, 0, 1, 0), WR = (+0.75, 0, 1, 0, 0, 1, 0), (30)

and x0 = 0.5. The self-similar solution to the problem consists of two rarefaction waves

and a constant star state. We remark that for such problems linearized Riemann solvers

fail provided the separation velocity is large enough. The star state and the complete

solution are given by

W∗ = (0, 0, 1.291, 0, 0, 1, 0),

W (x, t) =





WL, (x− x0)/t < −5.35,

left rarefaction, −5.35 < (x− x0)/t < −1.5888,

W∗, −1.5888 < (x− x0)/t < 1.5888

right rarefaction, −1.5888 < (x− x0)/t < 5.35,

WR, (x− x0)/t > 5.350.

For a given x/t the value of W inside rarefaction waves can be obtained by integrating

(15) for the left wave and (16) for the right wave. It is obvious that this test problem is

exceedingly difficult due to the presence of huge deformations of the material.

We run the schemes up to the output time t = 0.07 with CFL coefficient CFL = 0.9.

A mesh of 100 cells is used. For the given separation velocity both the linearized solver
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and EVILIN fail. In particular, the EVILIN solver fails for any practical number of

stages. Fig. 4 shows results of Lax-Friedrichs and GMUSTA-1 fluxes. The results of

GFORCE are somewhat more diffusive than GMUSTA-1 and are thus omitted. We see

that both Lax-Friedrichs and GMUSTA-1 produce rather inaccurate results. The most

visible artifact is a deep in density and stress in the star region. When the mesh is refined

this deep slowly disappears.

Finally we note, that for sufficiently large values of the separation velocity in the

initial data all methods fail, including the Lax-Friedrichs flux, even though the value of

density in the star region is far from vacuum. This is probably related to the very large

deformations present in the exact solution.

5.3 Sonic point test problem

We solve the Riemann problem with the following initial data

WL = (0, 0, 0.8, 0, 0, 1, 0), WR = (3, 0, 1, 0, 0, 1, 0), (31)

and x0 = 0.55. The structure of the solution is similar to that of the separation problem

with an important difference that now the left rarefaction wave contains a sonic point:

W (x, t) =





WL, (x− x0)/t < −10.5988,

left rarefaction, −10.5988 < (x− x0)/t < 0.4386,

W∗, 0.4386 < (x− x0)/t < 4.1602

right rarefaction, 4.1602 < (x− x0)/t < 7.6000,

WR, (x− x0)/t > 7.6000.

Here the star state is

W∗ = (2.299, 0, 1.254, 0, 0, 1, 0).

We run the schemes up to the output time t = 0.04 with CFL coefficient CFL = 0.9.

Let us first discuss the results of Lax-Friedrichs and GFORCE fluxes shown on Fig. 5 for

a mesh of 100 cells. For this problem GMUSTA-1 gives results which are very similar to

the GFORCE scheme and are thus omitted. The results of the linearized and EVILIN-1

solvers are shown on Fig. 7 for three meshes: 100, 400 and 1600 cells. All methods produce

a pronounced density deep in the star region. As expected, the linearized solver exhibits

a large non-physical discontinuity at the sonic point, a so-called rarefaction shock, on

all meshes, but away from it is quite accurate. The EVILIN-1 solver, however, avoids

generating the rarefaction shock due to the GMUSTA predictor step. Overall, from Figs.
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5, 7 we conclude that EVILIN-1 is the most accurate flux for this problem whereas the

Lax-Friedrichs flux is most diffusive with a typical pairing of cells.

Given the size of the deep in the star region both in the symmetric separation and sonic

point problems, one may naturally ask if the methods converge to the exact solution at all

when the mesh is refined. To verify this numerically, we have carried out computations

of the sonic point problem on a sequence of meshes. Fig. 6 shows the results of the

GFORCE scheme on two meshes: 5000 and 20000 cells. As can be seen, the constant

star region has indeed appeared in the numerical solution, but the spurious deep is still

present. Therefore, the conclusion of this numerical convergence study is that convergence

is exceedingly slow. We note that for this reason it is very difficult to obtain a reference

solution for this test problems numerically, the exact solution being the only reliable

option.

5.4 Stationary contact discontinuity

We solve the Riemann problem with initial data corresponding to a stationary contact

discontinuity:

WL = (0, 0, 1.156276139, 0.034688284, 0.093190648, 1.002195719, 0.001),

WR = (0, 0, 1, 0.03, 0.02, 1, 0),
(32)

and x0 = 0.5. The exact solution is given by W (x, t) ≡ W (x, 0). We run the schemes up

to the output time t = 1 on a mesh of 100 cells using a CFL coefficient CFL = 0.9. This

corresponds to approximately 530 time steps.

Fig. 8 shows computed results for schemes with Lax-Friedrichs, GFORCE, linearized

and EVILIN-1 fluxes. We see that the methods which do not resolve all the waves in the

local Riemann problem solution (Lax-Friedrichs, GFORCE, GMUSTA) produce rather

smeared profiles, the Lax-Friedrichs scheme being the worst. In particular, the computed

normal velocity is not zero in the whole computational domain. Additionally, the com-

puted normal stress σ11, not shown in the figures, deviates from its exact value by about

5–10%. The linearized and EVILIN-1 solvers resolve the stationary contact discontinuity

with one intermediate cell only. Since this intermediate cell is purely numerical the scheme

produces visible over and undershoots in velocity and stresses across the numerical profile

of the contact discontinuity. This is due to the fact that the numerical profile of internal

energy across the discontinuity includes (non-physical) intermediate values. We also note

that the EVILIN flux produces smaller velocity under and overshoots as compared to the

linearized flux.

Fig. 9 shows results of the GMUSTA flux on the same mesh, for different numbers of

stages. We see that the GMUSTA-1 flux is more accurate than both Lax-Friedrichs and
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GFORCE fluxes. Next, when the number of stages increases the GMUSTA results seem

to approach slowly a limiting profile, which is however different from the exact one.

5.5 Three-wave shock-tube problem

The initial data satisfying the compatibility conditions (7) is given by

WL = (0, 0, 0.95, 0, 0, 1, 0.001), WR = (0, 0, 1, 0, 0, 1, 0), (33)

and x0 = 0.5. The structure of the solution consists of (from left to right) a left travelling

rarefaction wave, a right-travelling contact discontinuity with velocity SM = 0.3948 and

a right-travelling shock wave with velocity SR = 5.5380:

W (x, t) =





WL, (x− x0)/t < −10.5988,

left rarefaction, −6.3071 < (x− x0)/t < −4.7331,

W∗L, −4.7331 < (x− x0)/t < 0.3948,

W∗R, 0.3948 < (x− x0)/t < 5.5380,

WR, (x− x0)/t > 5.5380.

Here the left and right star states are given by

W∗L = (0.3948, 0, 1.0183, 0, 0, 1, 0.0010), W∗R = (0.3948, 0, 0.9287, 0, 0, 1, 0.00002668).

We run the schemes up to the output time t = 0.06 on a mesh of 100 cells and a CFL

coefficient CFL = 0.9. Figs. 10 – 11 show computed results using the first-order scheme

with different fluxes.

We first compare the results of the fluxes which do not recognize all the waves in the

local Riemann problem solution, see Fig. 10. Overall, the least accurate is the scheme,

which produces very smeared profiles of all quantities with very typical ’pairing’ of cells.

GFORCE and GMUSTA-1 fluxes are visibly more accurate for all waves. We note that

these two fluxes are of virtually identical accuracy at the shock front and across the

smooth rarefaction wave but differ for the contact discontinuity, for which GMUSTA-1 is

more accurate.

The linearized solver produces the best resolution of all discontinuous fronts, especially

for the contact discontinuity, see Fig. 11. This is explained by the fact that it recognizes

all waves in the Riemann problem solution. However, there are also slight oscillations

in the ρ and σ22 profiles near the contact discontinuity which somewhat degrades the

results. The results of the EVILIN flux virtually coincide with those of the linearized
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solver everywhere except near the contact discontinuity. Unfortunately, there are now

visible oscillations in ρ and σ22 which are in fact more pronounced as compared to the

linearized solver.

5.6 Five-wave shock-tube problem

Having assessed the performance of the fluxes on the purely one-dimensional problems

with exact solution available we now solve a Riemann problem with solution in which all

waves are non-trivial. The initial data is given by

WL = (0.0, 1.0, 0.95, 0.0, 0.05, 1., 0.001), WR = (0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0) (34)

and x0 = 0.5. The structure of the solution consists of five waves (from left to right): two

left-travelling rarefaction waves, a right-travelling contact discontinuity, a right-travelling

rarefaction wave and a right-travelling shock wave. Since no exact solution is available,

we generate a reference solution by running a high-order method on an exceedingly fine

mesh of 10000 cells.

We run the schemes up to the output time t = 0.06 on a mesh of 200 cells and a

CFL coefficient CFL = 0.9. Figs. 12 – 13 show computed results using the first-order

scheme with different fluxes. Symbols correspond to numerical solution of the methods

under discussion whereas the reference solution is plotted by the solid line. Overall, the

differences in performance of the methods is similar to those observed in the simpler

three-wave test problem. The centred Lax-Friedrichs flux produces the most diffusive

results whereas the linearized Riemann solver is the most accurate. The EVILIN-1 flux is

virtually identical to the linearized solver everywhere except for the contact discontinuity

where it produces a visible undershoot in density ρ. For this test, the GFORCE and

GMUSTA-1 fluxes represent a good compromise between accuracy and monotonicity.

So far we have run the methods with a CFL number close to unity. However, in some

cases, e.g. when the system contains a source term or in multidimensional extensions of

the methods, a smaller CFL number is required. It is therefore important to examine

the effect of the choice of the CFL number on the accuracy of the fluxes. To accomplish

this we have solved this test problem with a small Courant number CFL=0.1. Fig. 14

shows the results of Lax-Friedrichs, GFORCE and GMUSTA-1 fluxes. We see that the

accuracy of the centred Lax-Friedrichs flux is degraded significantly by using such a small

CFL number. The performance of the GFORCE flux is affected only slightly whereas the

GMUSTA-1 flux is as accurate as for CFL=0.9 and is clearly superior to other two. The

accuracy of two other fluxes, linearized and EVILIN-1, does not seem to be sensitive to

the choice of CFL either.
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6 Extension to higher order of accuracy

The presented fluxes can be used directly to construct high-order finite-volume schemes.

Here we illustrate this in the frame of the state-of-art weighted essentially non-oscillatory

(WENO) schemes with third-order Runge-Kutta time stepping. For a detailed description

of the WENO schemes see [8, 6, 17] and references therein. Here we provide a brief

description of the method.

Integrating (5) with respect to x over the volume and keeping the time variable t

continuous we obtain the following semi-discrete finite-volume scheme which is in fact a

system of ordinary differential equations (ODE):

d

dt
Ui(t) = − 1

∆x

(
Fi+1/2 − Fi−1/2

)
≡ Li(U ), (35)

where Ui(t) is the space average of the solution in the cell [xi−1/2, xi+1/2] at time t and

Fi+1/2 is the numerical flux at x = xi+1/2 and time t, that is

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U (x, t) dx, Fi+1/2 = F (U (xi+1/2, t)). (36)

The numerical solution of (35) is advanced in time by means of the following third-order

TVD Runge-Kutta method (here we dropped the index i)

U (n+1/3) = Un + ∆t L(Un),

U (n+2/3) =
3

4
Un +

1

4
U (n+1/3) +

1

4
∆t L(U (n+1/3)),

Un+1 =
1

3
Un +

2

3
U (n+2/3) +

2

3
∆t L(U (n+2/3)).

(37)

The numerical flux at the cell boundary xi+1/2 is defined as a function of left and right

extrapolated values UL
i+1/2, UR

i+1/2:

Fi+1/2 = F (Ui+1/2(t)) = Fi+1/2(U
L
i+1/2, U

R
i+1/2), (38)

for which we use the fluxed described in this paper. The extrapolated values are obtained

from cell averages by means of a high order essentially non-oscillatory polynomial recon-

struction. In this paper we use the fifth order WENO reconstruction proposed in [6]. For

a scalar function q(x) the fifth order accurate left boundary extrapolated value qL
i+1/2 in

terms of cell averages qi is defined as

qL
i+1/2 = ω0v0 + ω1v1 + ω2v2, (39)

where vk is the extrapolated value obtained from cell averages in the kth stencil Sk =

(i− k, i− k + 1, i− k + 2) and ωk, k = 1, 2, 3, are nonlinear WENO weights given by

ωk =
αk

3∑
l=0

αl

, α0 =
3

10(ε + β0)2
, α1 =

3

5(ε + β1)2
, α2 =

1

10(ε + β2)2
.
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Here a small parameter ε is introduced to avoid division by zero. A recommended value

is ε = 10−6. However, we find that setting ε = 10−15 gives much better results. The

expressions for the extrapolated values vk and smoothness indicators βk can be found in [6]

and are thus omitted. The right value qR
i+1/2 is obtained by symmetry. For systems the

reconstruction is carried out in characteristic variables rather than conservative variables

and (39) is applied to each characteristic field.

We run the scheme for the five-wave shock-tube problem (34) from the previous section

a mesh of 200 cells and a CFL coefficient CFL = 0.6. Fig. 15 shows results computed

using the GFORCE flux. Overall, the resolution of all waves is good without visible

oscillations.

7 Conclusions

In this paper we have first constructed exact solutions to the Riemann problem for the

equations of non-linear elasticity. Some of these solutions have then been proposed as

test problems to assess the performance of numerical methods intended for solving the

general initial-boundary value problem for the equations of non-linear elasticity. Then

we have implemented some recently proposed numerical fluxes and have carried out a

detailed and systematic assessment of the corresponding finite volume methods, both in

their first-order and higher order modes using the WENO framework. The GFORCE

and one-stage GMUSTA fluxes represent a good compromise between robustness and

accuracy; their performance is distinctly better than that of the classical Lax-Friedrichs

flux. The simple linearized Riemann solver works well for a restricted class of problems

but has the usual difficulties of linearized Riemann solvers, such as lack of robustness

generally, the computation of entropy-violating shocks, etc. The EVILIN flux represents

an improvement over the linearized solver but for the severe test problems designed in this

paper it also runs into similar difficulties to those of the simple linearized solver. GFORCE

and GMUSTA are generally very robust and simple; their resolution of discontinuities

approaches that of the linearized solver or EVILIN, particularly for fast-moving waves.

Therefore the GFORCE and GMUSTA-1 fluxes represent a good choice for practical

calculations in non-linear elasticity.
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Figure 1: Impact problem. First-order scheme with the Lax-Friedrichs flux. The solid

line represents the exact solution.
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Figure 2: Impact problem. First-order scheme with the GFORCE flux. The solid line

represents the exact solution.
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Figure 3: Impact problem. First-order scheme with the EVILIN flux. The solid line

represents the exact solution. 25
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Figure 4: Separation problem. First-order scheme with the Lax-Friedrichs and GMUSTA-

1 fluxes. The solid line represents the exact solution.

0 0.5 1

7

9

11
LxF

GFORCE

X

ρ

0 0.5 1

-9

-5

-1

3

X

−σ22

Figure 5: Sonic point problem. First-order scheme with the Lax-Friedrichs and GFORCE

fluxes. The solid line represents the exact solution.
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Figure 6: Sonic point problem. GFORCE flux and mesh of 5000 (left) and 20000 (right)

cells. The solid line represents the exact solution.

0 0.5 1

7

9

11
Linearized Riemann solver

100 cells

400 cells

1600 cells

X

ρ

0 0.5 1

7

9

11
EVILIN-1 Riemann solver

100 cells

400 cells

1600 cells

X

ρ

Figure 7: Sonic point problem. First-order scheme with the linearized and EVILIN-1

fluxes. The solid line represents the exact solution.
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Figure 8: Stationary contact discontinuity. First-order scheme with Lax-Friedrichs,

GFORCE, linearized and EVILIN-1 fluxes. The solid line represents the exact solution.
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Figure 9: Stationary contact discontinuity. First-order scheme with the GMUSTA flux

and different number of stages. The solid line represents the exact solution.
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Figure 10: Three-wave shock-tube problem. First-order scheme with the Lax-Friedrichs,

GFORCE and GMUSTA-1 fluxes. The solid line represents the exact solution.
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Figure 11: Three-wave shock-tube problem. First-order scheme with the linearized and

EVILIN-1 fluxes. The solid line represents the exact solution.
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Figure 12: Five-wave shock-tube problem. First-order scheme with the Lax-Friedrichs,

GFORCE and GMUSTA-1 fluxes. The solid line represents the fine-mesh reference solu-

tion.

31



0 0.5 1

8.5

8.9

9.3

9.7
Linearized

EVILIN-1

X

ρ

0 0.5 1

0

0.1

0.2

0.3

0.4

X

u

0 0.5 1

-9

-6

-3

0

3

X

σ12

0 0.5 1

0

10

20

30

X

−σ22

Figure 13: Five-wave shock-tube problem. First-order scheme with the linearized and

EVILIN-1 fluxes. The solid line represents the fine-mesh reference solution.
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Figure 14: Five-wave shock-tube problem. First-order scheme with the Lax-Friedrichs,

GFORCE and GMUSTA-1 fluxes. Small Courant number CFL=0.1. The solid line rep-

resents the fine-mesh reference solution.
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Figure 15: Five-wave shock-tube problem. WENO with the GFORCE flux. The solid

line represents the fine-mesh reference solution.
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