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Abstract

We give combinatorial and computational characterizations of the

NP search problems definable in the bounded arithmetic theories T 2
2

and T 3
2 .

By a search problem in full generality we mean simply a binary relation

R(x, y) such that ∀x∃yR(x, y) holds. The search task is: given an instance

x find a solution y such that R(x, y) holds.

The most important class of search problems are NP search problems.

Here the relation R(x, y) is decidable in polynomial time and the length of

y is bounded by a polynomial in the length of x. Problems in NP∩coNP,
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the PLS problems (Polynomial Local Search) of Johnson, Papadimitriou and

Yannakakis [11] and various combinatorially defined problems as in Papadim-

itriou [19, 20] and Papadimitriou and Yannakakis [21] are all examples of NP

search problems.

Any NP search problem can be defined by an open formula φ(x, y) in the

language of the bounded arithmetic theory PV of Cook [6]. The totality of

the problem is then expressed by sentence

∀x∃y<s φ(x, y)

where s is a polynomial time function bounding solutions in terms of in-

stances. We say that the problem is definable in a theory if this sentence

expressing its totality is provable in the theory (and in fact we will identify

the problem with this sentence, see below).

Buss’ hierarchy [2] of bounded arithmetic theories

PV ⊆ S1
2 ⊆ T 1

2 ⊆ T 2
2 ⊆ T 3

2 ⊆ . . .

and various other related theories like PV+dWPHP, U1
2 or V 1

2 offer a natural

stratification of the class of all NP search problems into subclasses consisting

of those problems definable in a particular theory.

It turns out that if we can define an NP search problem in a theory

of bounded arithmetic, we learn something about the complexity of solving

the search problem. For example, if it is definable in PV itself or in the

stronger theory S1
2 then the problem can be solved by a polynomial time

algorithm. In fact, a form of the converse implication also holds: any NP

search problem solvable by a polynomial time algorithm can be defined (by a

particular formula φ(x, y)) such that its totality is provable in both PV and

S1
2 .

Similar connections exists between T 1
2 and the PLS search problems, see

Buss and Kraj́ıček [3]. In fact, various characterizations are known of the

NP search problems definable in higher levels of the bounded arithmetic hi-

erarchy (as well as of more complex search problems, with the relation R not

necessarily polynomial time, but somewhere in the polynomial hierarchy).

These are based on reflection principles for fragments of quantified proposi-

tional logic in Kraj́ıček and Pudlák [15]; on various reflection principles for a
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suitably modified concept of provability in T i
2 in Kraj́ıček and Takeuti [17];

or go via Herbrandization of induction axioms in Ferreira [7] or a more gen-

eral Herbrandization in Hanika [8, 9]. However, these characterizations for

T i
2 with i ≥ 2 appear to lack an immediate combinatorial content and they

do not really illuminate the particular class of search problems definable in

the theory.1

The aim of this paper is to give a combinatorial characterization of the

class of NP search problems definable in T 2
2 and T 3

2 , previously the simplest

classes without such a characterization.

Our approach is to sharpen and generalize a known link between constant

depth Frege systems and relativized theories T i
2(α) established by Paris and

Wilkie [22]. In the past this link has been used mainly for proving upper

bounds on lengths of proofs or for independence results for T i
2(α). Here

we show that the link can be used to give characterizations in terms of

reflection principles for (extensions of) resolution, which we subsequently

interpret combinatorially.2

A note on formalization. As pointed out earlier any NP property of x can

be defined in the language of PV by a formula of the form ∃y < sφ(x, y), with

φ open. It is, however, more convenient to allow strict Σb
1-formulas (denoted

Σ̂b
1): a block of bounded existential quantifiers followed by a formula built

using Boolean connectives and sharply bounded quantifiers ∃z < |t| and

∀z < |t|. It is well-known that, over PV, any Σ̂b
1-formula is equivalent to a

formula of the form ∃y < sφ(x, y) with φ open. In fact, if we replaced PV

with S1
2 as our base theory we could allow the even larger class of (non-strict)

Σb
1 formulas.

Let Σ̂b
1(T

2
2 ) be the set of ∀Σ̂b

1 sentences provable in T 2
2 . Characterizing

the NP search problems definable in T 2
2 is equivalent to characterizing this

set. So it is convenient for us to identify a search problem with the sentence

expressing its totality. An NP search problem class is then simply a true

∀Σ̂b
1 theory.

1Recently Pudlák in an unpublished work has outlined a game-theoretic characteriza-

tion of Σb
1(T

i
2).

2We could have used the existing construction from Kraj́ıček [13] (drawing on [12]),

interpreting it carefully. Instead, however, we give a simpler, self-contained exposition.

3



Let us recall a useful concept of reducibility among NP search problems

(see also Beame et.al. [1] and Hanika [8, 9]). A problem ∀x∃y<s φ(x, y) is

(many-one) reducible to a problem ∀u ∃v<tψ(u, v) if there are polynomial

time functions f and g such that ∀x, v ψ(f(x), v) → φ(x, g(x, v)).

A class Γ is reducible to a class ∆, written Γ ≤ ∆, if every problem in

Γ is reducible to some problem in ∆. If two classes are reducible to each

other then we say they are equivalent, Γ ≡ ∆. By an instance of a class, we

mean an instance (an assignment to the universal quantifier) of one of the

members of the class.

We summarize our results with a table. The entries in the table are classes

of search problems and in each row all the classes are equivalent.

Σ̂b
1(T

1
2 ) PLS VR(log)−totality

Σ̂b
1(T

2
2 ) CPLS 1−Ref(Res) VR−totality 2VR(log)−totality

Σ̂b
1(T

3
2 ) 1−Ref(PK1) 2VR−totality

PLS and CPLS are defined in section 1, 1−Ref(Res) in section

2, VR−totality and VR(log)−totality in section 3 and 1−Ref(PK1),

2VR−totality and 2VR(log)−totality in section 4. In the last section we

briefly discuss the relation between these and some other classes of search

problems and describe some open problems.

This is a paper in bounded arithmetic and we expect that the reader is

familiar at least with the well established basic facts and definitions. A back-

ground can be found in [14]. More (including bibliographical information)

on search problems in connection with bounded arithmetic can be found in

[4, 8].

1 PLS and coloured PLS

In this section we introduce a combinatorial principle, coloured PLS or

CPLS, and prove that CPLS ≤ Σ̂b
1(T

2
2 ) (Lemma 3). In the next sec-

tion we introduce a proof-theoretic principle 1−Ref(Res), and prove that

1−Ref(Res) ≤ CPLS (Lemma 7) and Σ̂b
1(T

2
2 ) ≤ 1−Ref(Res) (Lemma 9).

CPLS is a generalization of the class PLS, introduced in Johnson et. al.

[11]. Buss and Kraj́ıček [3] showed that, in our notation, PLS ≡ Σ̂b
1(T

1
2 ).
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PLS is normally defined in terms of a cost function and a neighbourhood

function, but to make the connection between PLS and CPLS clear it is

convenient for us to use a different (equivalent) definition, which does not

use the cost function and instead brings in a polynomial time domain.

Note that we will try to describe instances of these problems in a natural,

combinatorial way, rather than stick closely to our formal definition of a

search problem.

Definition 1 A PLS problem is given by a polynomial time set D and a

polynomial time “neighbourhood function” N which also take a size parameter

a as an extra (unwritten) input. In an instance of PLS, D ⊆ [0, a] such that

a ∈ D, N : [0, a] → [0, a]. A solution to the instance is a witness that the

following is false:

∀x ∈ D (N(x) ∈ D ∧N(x) < x).

The minimization axiom for polynomial time sets is enough to show that

every instance of PLS has a solution, since the least member of D is always a

solution. Hence this is provable in T 1
2 , so PLS ≤ Σ̂b

1(T
1
2 ). The other direction

is harder; see [3].

Definition 2 A CPLS problem (for Coloured PLS) is given by unary poly-

nomial time functions N and e, a polynomial time set L and a two place

polynomial time relation C, which also take a size parameter a as an extra

(unwritten) input. We think of an instance of the principle as talking about a

directed graph on a set [0, a] of nodes, and all the sets and functions live in the

domain [0, a]. Each node i is associated with a set Ci := {x ∈ [0, a] : C(i, x)}
of colours. L defines a set of leaf nodes, and we call a the source node.

A solution to the instance is a witness that one of the following is false:

1. ∀i /∈ L N(i) < i – every non-leaf node has a strictly smaller neighbour

2. ∀i /∈ L CN(i) ⊆ Ci – the colours of the neighbour of i are a subset of

the colours of i

3. ∀i ∈ L e(i) ∈ Ci – every leaf has a colour
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4. Ca = ∅ – the source does not have any colour.

This is equivalent to PLS if we add the condition that every leaf has the

same colour (just take for D the set of nodes avoiding that colour).

In PLS we are given a directed graph where the neighbour of a node

is always smaller than it, and we are given a source node, and the search

problem is to find any leaf. We now give several more ways of thinking of

CPLS as an extension of this picture. Firstly, we can assume that 1, 2 and 4

above are true. Our search problem is then to find either evidence that one

of these is actually false, or a leaf which does not have the colour it should.

Such a leaf must exist, since the source has no colours and if a node has no

colours then neither does its neighbour; it is as if we are trying to find a leaf

on the path that starts at the source, and we can identify nodes on this path

by a Πb
1 property (having no colours), or as if we had an instance of PLS

with a Πb
1 domain D.

Secondly, we can assume that 1, 2 and 3 above are true. Our search

problem is now to find a colour for the source. We can think of solving it (in

exponential time) by following the path down from the source to a leaf, then

tracing the colour of the leaf back up this path to the source.

Lemma 3 CPLS ≤ Σ̂b
1(T

2
2 ).

Proof It is sufficient to prove in T 2
2 that every instance of CPLS has a so-

lution. Suppose that there is no solution. Then we can show by Πb
2 induction

that for every node i, every node j ≤ i has at least one colour, which is a

contradiction when i = a. �

The next theorem also follows from the relativized version of Theorem 10,

since it is known that, for example, the weak pigeonhole principle for α is a

∀Σ̂ b
1(α) principle which is provable in T 2

2 (α) by Maciel, Pitassi and Woods

[18] but which is not reducible to a PLS problem (see Chiari and Kraj́ıček

[4]). We sketch a direct proof, however, as it is straightforward.

Theorem 4 There is an oracle A with respect to which CPLSA 6≤ PLSA.
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Proof (sketch) We will consider instances (L,N,C, e) of CPLS given en-

tirely by oracles. Suppose there is a PLS problem, with domain D ⊆ [0, t(a)]

(where t is a term and a is the size of the instance of CPLS) and neighbour-

hood function M , which, given access to an instance of CPLS as an oracle

always outputs a solution to the instance.

Choose a sufficiently large and let F be the following set of partially

defined instances of CPLS of size a: (L,N,C, e) ∈ F if and only if, where

they are defined, L,N,C, e do not violate any part of the definition of CPLS

and for all i, if N(i) is defined then N(i) ≥ i−√
a.

Let S =def {(x, f) : f ∈ F and x ∈ Df}. Then S 6= ∅. Let (x, f) ∈ S be

such that x is minimal. We may assume that only polylog(a) bits in f are

defined, since we do not need more than this to fix x ∈ Df .

Now, f consists of partial information about neighbours and colours. In

particular no path in f has length more than, say, a/4, and the colours that

f says appear (or fail to appear) on a path are consistent with the rules of

CPLS. Also at least 3a/4 nodes are blank, in that f records no information

about them at all.

Now begin a computation of the neighbourhood function M on input x.

We need to find y and g ∈ F with g ⊇ f such that y = Mg(x). Then by

minimality of x we will have y ≥ x, but g will not contain enough information

to fix a solution to every instance of CPLS extending g, which will give our

desired contradiction.

We extend f as follows. Suppose M asks for a neighbour (or a colour) of

the node i at the end of the path in f which begins at the source. Then we

fix N(i) to be j, where j is the first blank node below i; because f is small,

we know there must be such a j ≥ i−√
a.

Suppose M asks for a neighbour (or a colour) of some other node i (which

does not already have a neighbour). Then we declare that i is a leaf. If i

is already at the end of some path p in f , then since f is small at most

polylog(a) colours are already ruled out from appearing in p, so there is

some colour e(i) we can consistently give to i.

We reply appropriately to any other queries about colours. �
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2 A reflection principle for polynomial time

resolution

We first define a polynomial time resolution proof. Informally, it is a

possibly exponentially long proof all of the structure of which is, however,

given by polynomial time functions and relations.

Definition 5

1. A clause over a propositional variables is encoded by a subset of [2a],

saying for each literal whether or not it is in the clause (we allow both

a literal and its negation to occur simultaneously in the same clause).

The clause is p-time if and only if the set encoding it is p-time.

2. A set of clauses C1, . . . , Cb over a atoms is encoded by a relation R ⊆
[b] × [2a] as follows:

Ri := {j ∈ [2a] | (i, j) ∈ R}

encodes Ci.

The set is p-time iff the relation is.

3. A p-time set of clauses C1, . . . , Cb over a atoms is narrow if there is a

p-time function g that upon receiving an index i lists all literals in Ci.

4. A p-time resolution derivation consists of a set of initial clauses

C1, . . . , Cr, a set of internal clauses D1, . . . , Ds and a set of final clauses

E1, . . . , Et, encoded respectively by polynomial time relations R, S and

T , as described above.

It also has a p-time function f : [s+ t] → [max((r + s)2 · 2a, b)] giving

for each member F of the sets of internal and final clauses either an

earlier pair of clauses (from the initial or internal sets) from which F

was inferred by resolution, as well as the resolved literal, or a single

clause from which F follows by weakening (this includes the “trivial”

weakening when we just rewrite a clause that has already appeared in

the proof).
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5. A p-time resolution refutation is like a p-time resolution derivation,

except there is no set of final clauses; instead we insist that the last

internal clause is empty. We will write a refutation as a tuple (R, S, f).

The statement that a tuple of relations R, S, T and function f is a reso-

lution derivation is Π̂b
1(R, S, T, f)-expressible. Similarly the statement that

(R, S, f) is a resolution refutation is Π̂b
1(R, S, f)-expressible.

If we have a function α giving a truth assignment to the atoms, then the

soundness of such a resolution refutation is the statement that one of the

initial clauses contains only false literals, and this is a Σ̂b
2(R, S, f, α)-formula.

However if the initial clauses are narrow (as witnessed by a function g), then

the soundness statement is a Σ̂b
1(R, S, f, g, α)-formula. If everything in the

proof is polynomial time, then the statement is Σ̂b
1.

Definition 6 An instance of 1−Ref(Res) is given by polynomial time ob-

jects R, S, f, g, α as above, and a parameter a giving the size of the proof, and

possibly some other parameters. A solution to the instance is either a witness

that with these parameters R, S, f, g fail to define a resolution refutation with

narrow initial clauses, or a clause in R in which all literals are false under

α. By the above observations, this defines a class of NP search problems.

We are abusing notation here, since “1-reflection” for a proof system

is normally a statement about small, coded proofs, rather than our large,

polynomial time proofs.3

Lemma 7 1−Ref(Res) ≤ CPLS.

Proof Suppose we are given a p-time assignment α and π = (R, S, f, g)

which claims to be a polynomial time refutation with narrow initial clauses.

Suppose π has b + 1 lines in total (the length of R plus the length of S).

Label the clauses in π as D0, . . . , Db. Suppose there are a literals (so there

are a/2 variables). We identify the literals with the numbers 1, . . . , a.

3Viewing our proofs as given by sets, relations and functions we see that it is the correct

concept of reflection in the second order setting of theories like T2(α), U1

2
or V 1

2
.
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We define an instance of CPLS. The nodes are the clauses of π. The

source node is the Db, the empty clause. The leaves are the clauses from R,

namely the initial clauses.

The colours of a node i are the true literals (under α) which appear in the

clause Di (to match our formal definition of CPLS, without loss of generality

we may assume a ≤ b, by padding out the proof π if necessary).

To find the neighbour of a non-leaf node i: Di was derived by resolution

from clauses Dj1 and Dj2, where j1, j2 and the name z of the variable that

was resolved on are given in polynomial time by the function f . Let us say

Dj1 is the clause Ez and Dj2 is the clause F z̄, where E,F ⊆ Di. Then to

find the neighbour of i, we follow the direction of the false literal. That is,

if z is false then the neighbour is j1, while if z̄ is false then the neighbour

is j2. (And if Di was derived by weakening rather than resolution, then its

neighbour is the single clause it was derived from).

We first show that properties 1, 2 and 4 of the definition of CPLS hold

– strictly speaking, we show that any witness that one of these fails to hold

gives a witness that (R, S, f, g) is not a valid resolution refutation, which will

be a valid solution to our instance of 1−Ref(Res). 1 is clear. 4 is true because

there are no literals at all in the empty clause, so there are certainly no true

literals. For 2, observe that if j is the neighbour of i, then every literal in j

already appeared in i, with the exception of the resolved literal; but by our

choice of j we have made sure that this literal is false. So Cj ⊆ Ci.

Lastly we define the function e assigning colours to leaves. For each leaf

i, Di is an initial clause and the function g lists for us in polynomial time

the (polynomially many) literals appearing in that clause. We define the

function e to output the first true literal in the clause, or 0 if there is no such

literal (recall that 0 is not a literal).

If 1, 2 and 4 hold, the solution to this CPLS problem must be a node i

such that e(i) /∈ Ci. But this means that e(i) did not find a true literal in

clause Di. So Di must be a false initial clause, as required. �

The last thing we need to show is that Σ̂b
1(T

2
2 ) ≤ 1−Ref(Res), which will

require some proof-theoretic analysis of T 2
2 which may be of independent

interest. Note that in the following proof we consider the relativized case.
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The other results in this paper relativize, but in this case we can prove

something slightly stronger (that it is only the assignment that needs to use

the oracle, and the structure of the refutation is independent of it) so we go

into a little more detail.

Theorem 8 Suppose that T 2
2 (ρ) ⊢ ∀a ∃y < a ∀z < aφ(a, y, z), where φ is

a sharply bounded formula and ρ is an undefined relation symbol that may

appear in φ. Then (uniformly in a) there exists a p-time set Ca of clauses

Ci and a p-time set Aa of narrow clauses (as witnessed by a p-time function

that we do not show explicitly in the notation) given together by a relation

R, and a p-time resolution refutation of Ca ∪ Aa given by S, f , such that:

1. R, S and f are strictly p-time, that is, they do not use an oracle for ρ.

2. PV proves that the R, S and f define a resolution refutation.

3. There is a p-time truth assignment α with an oracle for ρ such that

PV(ρ) proves the following two properties:

(a) α satisfies all clauses in Aa.

(b) For any i ∈ [a], if Ci is unsatisfied by α then ∀z < aφ(a, i, z) is

true.

Moreover, if the formula proved in T 2
2 (ρ) is only Σ̂b

1(ρ) (i.e. the quantifier

∀z < a is not used) then we have the additional property that clauses in Ca

are narrow – in fact they are singleton clauses (and there is a p-time function

g witnessing this).

Proof Suppose that φ is a sharply bounded formula with an undefined

relation symbol ρ such that T 2
2 (ρ) ⊢ ∀x∃y<x∀z<xφ(x, y, z). We will show,

given any value a for x, how to construct a p-time resolution refutation

(uniform in a) such that finding a false initial clause in the refutation yields

a witness y such that ∀z<aφ(a, y, z), provably in PV(ρ).

The first step is to take a free-cut-free proof Π, in the sequent calculus

for T 2
2 (ρ), in which every formula is Π̂b

2(ρ) and the last line of which is the

sequent

∀y<x∃z<x¬φ(x, y, z) −→ ∅.
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Then we will show how to translate Π̂b
2(ρ) formulas into families of clauses

and we will inductively construct, for each line on the proof, a polynomial

time resolution derivation of the clauses on the right from the clauses of the

left. We also allow ourselves to use some extra, “helper” clauses A (we will

generally not write the parameter a) in the derivation. We insist that the set

of these is describable in polynomial time, that they are small (polynomial

size), and that they are true, which means that they will be satisfied in the

evaluation α (see below). The derivation for the last line of Π will give us

the required resolution refutation.

Let a be the value we use for x. Some term t(a) gives the largest bound

on any quantifier that appears in the proof Π. This is our most important

parameter, which we will call t.

We describe our propositional variables. For each sharply bounded for-

mula θ that appears in Π, and for every possible tuple b̄ of parameters from

[0, t], we have one propositional variable 〈θ(b̄)〉. There are only constantly

many such formulas, so we may identify the set of all variables with some set

[0, s] (where s is given by a term in a).

The assignment α just maps every variable 〈θ(b̄)〉 to the truth value of

the formula θ(b̄).

The Π̂b
2(ρ) formula ∀x<b∃y <c θ(b, c) (which may contain extra param-

eters) now translates naturally into the family of clauses

{
∨

j<c

〈θ(i, j)〉 : i < b}.

We will use this translation for clauses in the antecedent of a sequent - we

translate the succedent in a slightly different way. Note that if the existential

quantifier is not used, this translation will give singleton clauses.

Our inductive hypothesis is the following: for each sequent in the proof

Π, for every choice of parameters for the free variables in the sequent, there

is a p-time resolution derivation (R, S, T, f) (using these parameters) with

the following initial and final clauses:

Suppose the sequent is

∀x1<p1 ∃y1<q1 φ1(x1, y1), . . . , ∀xk<pk ∃yk<qk φk(xk, yk)

⊢ ∀u1<s1 ∃v1<t1 ψ1(u1, v1), . . . , ∀ul<sl ∃vl<tl ψl(ul, vl).
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Then the initial clauses R are

{
∨

yi<qi

〈φi(xi, yi)〉 : xi < pi, i = 1, . . . , k}

together with a polynomial time set of helper clauses, as defined above. The

final clauses S are

{
∨

v1<t1

〈ψ1(u1, v1)〉 ∨ . . . ∨
∨

vl<tl

〈ψl(ul, vl)〉 : u1 < s1, . . . , ul < sl}.

Note that the final clauses are a translation of

∀u1<s1 . . .∀ul<sl, ∃v1<t1 ψ1(u1, v1) ∨ . . . ∨ ∃vl<tl ψl(ul, vl).

Each sequent is introduced by a bounded quantifier rule (not including

sharply bounded quantifier introduction), the cut rule, an induction rule,

propositional connective introduction, or sharply bounded quantifier intro-

duction; or it may be an axiom from BASIC or an equality axiom.

The last two sets of rules and the axioms are dealt with easily and justify

our slightly unusual choice of literals. Because Π was a free-cut-free proof,

these rules are only applied to sharply bounded formulas, which translate

as single literals (or rather, singleton clauses). Since the rules are sound

and only have a small number of hypotheses, we can essentially include the

instance of the rule as one of our helper axioms. We can treat any instance

of an axiom similarly.

We will give one example, for the right sharply-bounded universal quan-

tifier introduction rule. This has the form:

x < |t|,Γ −→ ∆, θ(x)

Γ −→ ∆, ∀y< |t| θ(y) .

By the inductive hypothesis, for each x we have a polynomial time reso-

lution derivation for the hypothesis of the rule. That is, it has initial clauses

〈x < |t|〉 (a singleton clause) and every clause γ ∈ Γ∗ (where Γ∗ is a set of

clauses arising from the translations of Γ), together with some helper clauses.

It has final clauses δ∨〈θ(x)〉 (we have one such clause for every δ ∈ ∆∗, where

∆∗ is a set of clauses arising from translations of the formulas in ∆).

Let t′ be the value of |t| − 1. We add the clauses 〈0 < |t|〉, . . . , 〈t′ < |t|〉
(all singletons) and 〈∀y< |t| θ(y)〉 ∨∨

i<|t| ¬〈θ(i)〉 to our set of helper clauses.
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We now describe a derivation for the conclusion of the rule. From Γ∗ and

our helper clauses 〈i < |t|〉 we can derive all clauses δ ∨ 〈θ(i)〉, for all δ ∈ ∆∗

and all i < |t|. For each δ we resolve all such clauses with our helper clause

〈∀y< |t| θ(y)〉 ∨ ∨
i<|t| ¬〈θ(i)〉, to get δ ∨ 〈∀y< |t| θ(y)〉, as required.

Induction rule

Suppose the last rule applied in Π is

Γ, ∀x<p ∃y<q θ(s, x, y) −→ ∆, ∀x<p ∃y<q θ(s+ 1, x, y)

Γ, ∀x<p ∃y<q θ(0, x, y) −→ ∆, ∀x<p ∃y<q θ(t, x, y) .

Our strategy is to take the resolution derivations for every inductive step

and put them all together to get one long derivation of step t from step 0.

This derivation is polynomial time because the derivations for the inductive

steps are given uniformly in s. The construction is complicated by having to

deal with the side formulas. In particular, we need to re-use the clauses for Γ

several times, once for each induction step, which is why the final derivation

fails to be treelike.

By the inductive hypothesis we have, for each s, a polynomial time deriva-

tion πs for the hypothesis of the rule, with initial clauses Γ∗ and
∨

y〈θ(s, x, y)〉
for each x (with suitable bounds) together with a set As of helper clauses;

and final clauses δ ∨ ∨
y〈θ(s+ 1, x, y)〉 for each x and each δ ∈ ∆∗.

We define a new series of derivations, π′
s. For each δ, let πs,δ be a copy of πs

with the disjunction δ added to every clause. By listing all these derivations

πs,δ one after the other we can get a derivation π′
s, with initial clauses δ ∨A,

δ ∨ γ and δ ∨∨
y〈θ(s, x, y)〉 for each δ, each A ∈ As, each γ ∈ Γ∗ and each x;

and final clauses δ ∨ ∨
y〈θ(s+ 1, x, y)〉 for each x and each δ ∈ ∆∗.

We can now string the derivations π′
0, . . . , π

′
t−1 together one after the

other, giving a derivation with initial clauses δ∨A, δ∨γ and δ∨∨
y〈θ(0, x, y)〉

for each δ, each A ∈ As (for each s), each γ ∈ Γ∗ and each x; and final clauses

δ ∨ ∨
y〈θ(t, x, y)〉 for each x and each δ ∈ ∆∗.

We add weakening steps to the beginning of this derivation to obtain each

δ ∨ A from just A, each δ ∨ ∨
y〈θ(0, x, y)〉 from just

∨
y〈θ(0, x, y)〉 and each

δ ∨ γ from just γ. This gives the required derivation; notice that our helper

clauses are now
⋃

s As.

Cut rule

14



This is done in the same way as one step in the induction rule.

Bounded ∃ left introduction

Suppose the last rule applied in Π is

x < s, θ(x),Γ −→ ∆

∃y<s θ(y),Γ −→ ∆

where the variable x does not occur in the conclusion; we may also assume

that the formula θ is sharply bounded, since Π is free-cut-free.

By the inductive hypothesis, for each x < s we have a p-time derivation

πx with initial clauses 〈θ(x)〉, γ ∈ Γ∗ and a set Ax of helper clauses (we may

assume that Ax contains 〈x < s〉, since it is a true sentence) and final clauses

δ ∈ ∆∗.

By removing 〈θ(x)〉 from the initial clauses and adding the negated literal

¬〈θ(x)〉 to each remaining clause in πx we get a derivation π′
x with initial

clauses ¬〈θ(x)〉 ∨ γ and ¬〈θ(x)〉 ∨ A for each A ∈ Ax, and final clauses

¬〈θ(x)〉 ∨ δ.
Make a new derivation by first stringing π′

0 to π′
s−1 together. Then add ev-

ery γ and every A ∈ Ax as initial clauses, together with the clause
∨

y<s〈θ(y)〉.
With these initial clauses, we can now obtain the initial clauses of each π′

x by

weakening. Finally for each δ ∈ ∆∗ resolve every ¬〈θ(x)〉∨δ with
∨

y<s〈θ(y)〉
to obtain δ as a final clause.

Bounded ∀ left introduction

Suppose the last rule applied in Π is

θ(r),Γ −→ ∆

r < s, ∀x<s θ(x),Γ −→ ∆
.

The derivation for the bottom depends on the values of r and s. If r ≥ s then

we add ¬〈r < s〉 as a helper clause, derive the empty clause from 〈r < s〉
and derive every δ by weakening. If r < s, then the initial clauses of the

conclusion of the rule already contain the initial clauses of the hypothesis as

a subset.

Bounded ∃ right introduction
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This is the rule

Γ −→ ∆, θ(r)

r < s,Γ −→ ∆, ∃x<s θ(x) .

It is dealt with similarly to the bounded ∀ left introduction. If r < s is true,

we use weakening to obtain the bottom derivation from the top one.

Bounded ∀ right introduction

This is the rule

x < s,Γ −→ ∆, θ(x)

Γ −→ ∆, ∀y<s θ(y) .

For each x < s we add 〈x < s〉 as a helper clause. This allows us to derive

each δ∨〈θ(x)〉 from Γ∗; stringing all these together gives a derivation for the

bottom.

For the convenience of the reader, we summarize the helper clauses that

we introduced in the proof. We used translations of instances of the proposi-

tional connective and sharply bounded quantifier introduction rules; transla-

tions of instances of the BASIC and equality axioms; and some true clauses

of the form 〈i < j〉, introduced to help with our treatment of bounded quan-

tifiers. �

Lemma 9 Σ̂b
1(T

2
2 ) ≤ 1−Ref(Res) (provably in PV).

Proof Suppose T 2
2 ⊢ ∀x∃y < t φ(x, y). By altering φ if necessary, we may

assume that the bound t on y is just the variable x. By Theorem 8, there are

polynomial time objects R, S, f, g, α,A, C such that, if we plug in a parameter

a as a value for x, C is a set of narrow initial clauses C0, . . . , Ca−1 such that

if any Ci is unsatisfied by α then φ(a, i) is true, A is a set of narrow clauses

all satisfied by α, the narrowness of C and A is witnessed by g, (R, S, f)

describes a resolution refutation of A ∪ C, and all of this is provable in PV.

This is an instance of 1−Ref(Res) and the only possible solution is some

i such that Ci is false under α. But such an i is a solution to our instance of

Σ̂b
1(T

2
2 ). �

We summarize these results as a theorem.
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Theorem 10 The set of ∀Σ̂ b
1 consequences of T 2

2 is many-one equivalent to

the classes CPLS and 1−Ref(Res).

Furthermore these reductions are provable in PV (we showed this explic-

itly in Lemma 9, but it is clear in the other two reductions), which gives as

a corollary (recall that formally we identify a class of search problems with

a set of sentences):

Theorem 11 As theories of bounded arithmetic, Σ̂b
1(T

2
2 ) = PV + CPLS =

PV + 1−Ref(Res).

These theorems relativize in the natural way.

Theorem 8 also gives us a new characterization of Σ̂b
2(T

2
2 ), the set of ∀Σ̂b

2

consequences of T 2
2 . This appears to be simpler than the characterization in

Chiari and Kraj́ıček [4] in terms of Generalized Local Search (GLS) problems.

Theorem 12 Let 2 −Ref(Res) be the principle that for every polynomial

time resolution refutation (not necessarily with narrow initial clauses) and

every polynomial time truth assignment, one of the initial clauses contains

only false literals.

Alter the definition of CPLS by getting rid of the function e and replacing

condition 3, “∀i ∈ L e(i) ∈ Ci,” with “∀i ∈ L ∃x x ∈ Ci”. Let Π1 − CPLS

be the principle that every instance of this new definition of CPLS has a

solution.

Then 2−Ref(Res)and Π1 − CPLS are ∀Σ̂b
2 principles which axiomatize

Σ̂b
2(T

2
2 ) over PV.

3 Verifiable Recursion Programs

A verifiable recursion program is roughly a sequence Ra, . . . , R0 of machines.

In the course of its computation, each machine may invoke (provide input to

and receive output from) other machines further down in the sequence. Each

machine has an associated correctness predicate for checking its output, and

the goal of the whole program is to produce a correct output for Ra.
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Definition 13 A verifiable recursion program, or VR program, P

consists of polynomial time machines R (with recursive query ability) and

V , both taking a size parameter a. An instance Pa of a verifiable recursion

program P is specified by giving a value for the parameter a and comprises:

1. A sequence Ra, ..., R0 of polynomial time machines with inputs from

[0, a] with recursive query ability. Formally, Ri is defined as follows: a

computation of Ri on input x is precisely a computation of R on input

(a, i, x).

Each machine Ri is only allowed to make calls to machines Rj with

j < i (so R0 cannot make any calls).

2. A sequence Va, ..., V0 of polynomial time predicates on [0, a]2. As above,

Vi(x, y) abbreviates V (a, i, x, y). If Vi(x, y) is true, we say that y is a

correct reply for x, at level i.

A program Pa is well-defined if for all i and x, if the recursive calls made

by machine Ri on input x ∈ [0, a] are answered by (any) correct replies, then

the output y of Ri(x) satisfies Vi(x, y) (and is thus correct).

A program Pa is total if for every x ∈ [0, a] there is some y ∈ [0, a]

such that Va(x, y). We can think of this as “every input to Ra has a correct

output”, but notice that Ra does not appear in the formal definition.

For a given VR program P , the principle that if any instance of P is

well-defined then it is total is expressible as a ∀Σ̂b
1 sentence: for every a and

x ∈ [0, a], either

1. there exists y ∈ [0, a], k ∈ [0, a] and a computation of Rk on y with

correct answers to queries but which returns incorrect output, or

2. there exists a correct output for Ra on input x.

This is a search problem, and we call the class of all such problems

VR−totality. Note that in our formalization, VR−totality is also a first-

order theory.

Lemma 14 T 2
2 proves VR−totality. Hence VR−totality ≤ Σ̂b

1(T
2
2 ).
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Proof Fix a program (R, V ) and a parameter a.

Firstly, even PV proves that for any x ∈ [0, a] there is a correct reply to

R0 on input x. Now for a fixed k assume that there is a correct reply for all

x ∈ [0, a] at every level j ≤ k. Let z ∈ [0, a]. By induction on the length of

the computation of Rk+1 on z, there exists a partial computation with each

query correctly answered. Therefore by well-definedness of R and V , there

is a correct output for Rk+1.

Now, by applying Πb
2-IND on k, there is a correct output to any input x

at level a. �

Lemma 15 CPLS ≤ VR−totality. Hence Σ̂b
1(T

2
2 ) ≡ VR−totality.

Proof Consider a CPLS problem given by N , e, L and C and fix also the

size parameter a.

Fix a suitable term b > a, large enough to code any solution to the CPLS

problem. Our program only needs depth a, so we will describe Ri and Vi for

i ≤ a and stipulate that for i > a they are the same as Ra and Va.

We define the correct output at level i ≤ a as: Vi(x, y) is true if y is a

colour of node i, or if y already codes a solution to the CPLS instance. Note

that neither here, nor in the definition of the machines Ri, do we use the

input x.

Machine R0 returns e(0) if 0 is a leaf and e(0) ∈ C0. If one of these is not

true, then this constitutes a solution to the CPLS problem and R0 returns a

witness to this instead.

For i ≤ a, machine Ri computes the neighbour j = N(i) of node i and

queries the machine Rj . If the reply is a witness to the CPLS problem, then

Ri returns that. Otherwise the reply should be a colour in Cj, which should

also be in Ci. If so, Ri returns this colour. If however one of these conditions

fails, then Ri has found a witness to the CPLS problem, which it returns. �

Notice that this proof is more complicated than it needs to be for the

lemma. We have built an “exception handling” system into the program,

so that, whenever it encounters a witness to the CPLS problem, this is im-

mediately passed up to the top machine. Hence the program is provably
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well-defined in PV, and the only witnesses to this VR−totality problem are

correct outputs of the top machine.

We may guarantee this in general: given any verifiable recursion program

P there is a program P ′, provably well-defined in PV, such that for any a

and x the correct outputs at the top level of P ′
a are the union of the correct

outputs at the top level of Pa with the set of witnesses (if there are any) that

Pa is not well-defined. So if Pa is well-defined, the outputs of Pa and P ′
a are

the same. Hence we get

Corollary 16 Let VR be the class of multifunctions F such that there is

a term t and a verifiable recursion program P , provably well-defined in PV,

such that for all x, the correct outputs of Pt(x) on input x are precisely the

values of F (x). Then the Σ̂b
1 consequences of T 2

2 are witnessed precisely by

multifunctions from VR, provably in PV.

That is, if T 2
2 ⊢ ∀x∃y θ(x, y), where θ is an (implicitly bounded) PV

formula, then for some F ∈ VR, PV ⊢ ∀x∀y , θ(x, y) ↔ F (x) = y; and

if F ∈ VR then there is an (implicitly bounded) PV formula θ such that

T 2
2 ⊢ ∀x∃y θ(x, y) and PV ⊢ ∀x∀y , θ(x, y) ↔ F (x) = y.

Definition 17 A shallow verifiable recursion program is defined as in Def-

inition 13, except that the allowed depth of recursion is only |a| rather than

a. That is, the inputs and outputs still come from the set [0, a], but we only

have machines R|a|, . . . , R0 and V|a|, . . . , V0.

Let VR(log)−totality be the principle “every well-defined shallow veri-

fiable recursion program is total”. This is also a class of search problems.

Lemma 18 VR(log)−totality ≤ Σ̂b
1(T

1
2 ).

Proof We show S2
2 ⊢ VR(log)−totality by the same argument as in

Lemma 14, but using LIND rather than IND. Then the result follows by

∀Σb
1 conservativity of S2

2 over T 2
2 . �

We remark that there is a direct reduction of VR(log)−totality to PLS,

informally as follows: let n = |a|, where a is the parameter giving the size

of our instance of VR−totality. For a given x ∈ [0, a], the domain of the

PLS problem is the set of sequences (cn, . . . , c0, wn, . . . , w0) where wn, . . . , w0
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is a partial computation of the entire “computation stack” of R and each

ci measures the progress made in wi (the number of recursive queries made

and correctly answered so far). These progress indicators can be verified in

polynomial time by checking that the answers to recursive queries are cor-

rect, and thus the domain is a polynomial time set. The neighbourhood

function examines this stack of computations, advances the computation of

some machine that is not waiting for a query to be answered (the bottom

one, in the worst case), and passes completed outputs back up the stack.

In the resulting computation sequence, the progress (cn, . . . , c0) will be lex-

icographically larger unless the topmost machine had already finished its

computation. (We would need to reverse this ordering to match our version

of PLS, which searches for a minimal cost.)

Lemma 19 PLS ≤ VR(log)−totality and hence Σ̂b
1(T

1
2 ) ≡

VR(log)−totality.

Proof Given the polynomial time domain D, the neighbourhood function

N and a size parameter a, define Ri and Vi as follows:

Vk(x, y) returns true if x 6∈ D. Otherwise it accepts if y ∈ D and either

N(y) = y or x− y ≥ 2k.

R0(x) computes N(x). For k > 0, Rk(x) queries Rk−1(x), obtaining x′

and then queries Rk−1(x
′), returning the result.

The condition on the R and V machines – namely that correct answers to

queries implies correct output – is direct from the definitions of the machines.

Now, PV proves that a correct (satisfactory to Vn) reply y to R|a|(a) satisfies

y ∈ D and N(y) = y (since it is not possible that x− y ≥ 2|a|). �

Note that the ability to make multiple recursive calls at each level seems

to be essential.

As before since all these reductions are provable in PV, we get as corol-

laries:

Corollary 20 Let VR(log) be the class of multifunctions F such that there

is a term t and a shallow verifiable recursion program P , provably well-defined

in PV, such that for all x, the correct outputs of Pt(x) on input x are precisely
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the values of F (x). Then the Σb
1 consequences of T 1

2 are witnessed precisely

by multifunctions from VR(log), provably in PV.

Theorem 21 As first order theories, PV+Σ̂b
1(T

2
2 ) = PV+VR−totality and

PV + Σ̂b
1(T

1
2 ) = PV + VR(log)−totality.

4 Search principles for T 3
2

In this section we expand on the results of the previous sections to obtain

a characterization of the Σ̂b
1 consequences of T 3

2 through a generalization of

the verifiable recursion machines.

We obtain this by changing the verification property: namely, the verifi-

cation machines Vi will have an additional “check” argument z. We say that

z witnesses that a reply y to input x at level i is incorrect if ¬Vi(x, y, z). In

a certain informal sense, y is “correct” if ∀z < aVi(x, y, x), and as with the

verifiable recursion programs, if a machine’s queries are replied to correctly,

then its output is correct. In fact, however, we do not use this universal

quantifier. Instead we add Herbrand functions Fi such that from any x, y, z

falsifying Vi and the queries and responses used to compute y, Fi identifies

an incorrect reply and provides a z′ as a witness. Formally:

Definition 22 A 2-verifiable recursion program P consists of polyno-

mial time machines R (with recursive query ability), V and F , all taking a

size parameter a. An instance Pa of P is as follows.

1. The sequence Ra, ..., R0 is as before.

2. The sequence Va, ..., V0 are now predicates on [0, a]3.

3. There is a sequence Fa, ..., F1 of polynomial time Herbrand func-

tions [0, a]poly(|a|) 7→ [0, a]2, where as usual, Fi(x, z, ...) abbreviates

F (a, i, x, z, ...).

A program Pa is well-defined if for all i, x and z, if the recursive calls

Rj1(x1), ..., Rjm
(xm) made in a computation of Ri on input x ∈ [0, a] are

22



answered by y1, ..., ym, Ri outputs y and Fi(x, z, ȳ) outputs 〈k, z′〉, then either

Vi(x, y, z) is true, or Vjk
(xk, yk, z

′) is false.

In particular, the output of R0 must be correct for any z, as there are no

recursive queries made.

Note that the property of well-definedness is Π̂b
1.

A program Pa is total if for every x ∈ [0, a], there is some y ∈ [0, a] such

that Va(x, y, 0); that is, at the top level, we do not care about the argument

z and there is no implicit quantification.

Now observe that, similarly to the previous section, the following state-

ment 2VR–totality is expressible as a ∀Σ̂b
1-sentence: if a 2-verifiable recur-

sion program P is well-defined then it is total.

Lemma 23 T 3
2 ⊢ 2VR−totality, and therefore 2VR−totality ≤ Σ̂b

1(T
3
2 ).

Proof The proof in T 3
2 is by induction on i on the hypothesis:

∀j <i ∀x6a ∃y6a ∀z6a Vi(x, y, z). �

We note a useful assumption we can make about these 2-verifiable re-

cursion machines. If we are describing a machine Ri, we can assume that

when Ri makes a query x to Rj and receives an answer y, then this answer is

correct for any particular values of z that Ri can compute (i.e., Vj(x, y, z) is

satisfied for these z). This is because the Herbrand function Fi can retroac-

tively check these assumptions, and provide an “excuse” for Ri to compute

incorrectly if an assumption was not met.

The converse of Lemma 23 is also true:

Theorem 24 Σ̂b
1(T

3
2 ) ≤ 2VR−totality.

This is the main result of this section. The broad outline of the proof

is as follows: we first define a propositional proof system called PK1 that

is a strengthening of resolution4 and the associated reflection principle

1−Ref(PK1) for polynomial time proofs in this system. We then show how

4PK1 is a special case of a proof systems R(f) defined in [13]; it is R(id).
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to reduce the principle to 2VR−totality. Finally, we show how to adapt the

theorem of section 2 concerning T 2
2 and resolution to reduce Σ̂b

1(T
3
2 ) to this

reflection principle.

Definition 25 PK1 is a proof system like resolution, but with the following

additions:

1. Clauses in PK1 (1-clauses) are sets containing both literals and con-

junctions of literals.

2. The resolution rule is expanded to the 1-resolution rule:

C ∨ ∧
k lk ∧ l′ D ∨ ¬l′

C ∨D
which is ordinary resolution if the conjunction resolved upon is simply

l′.

3. There is a new rule, ∧-introduction:

C ∨ ∧
j lj C ∨ l′

C ∨ (
∧

j lj ∧ l′)

We now define a presentation of PK1 derivations, which we call p-time if

the relevant relations and functions are. This is meant to be a generalization

of Definition 5 for resolution proofs.

Definition 26

1. A conjunction over a propositional variables is encoded as a subset of

[2a]. A set of conjunctions is encoded by a relation Q ⊆ [c] × [2a].

A 1-clause over a propositional variables and c conjunctions is encoded

as a subset of [2a+ c] describing which literals and which conjunctions

appear in the 1-clause, together with a relation Q (as above) describing

which literals appear in the conjunctions. In general Q will also describe

many conjunctions which do not appear in the 1-clause.
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2. A set of 1-clauses C1, ..., Cb over a atoms and c conjunctions is encoded

by a relation Q (giving the conjunctions) and

R ⊆ [b] × [2a + c]

(giving the 1-clauses).

3. A p-time set of 1-clauses has narrow conjunctions if there is a

polynomial-time function which, given the name of any conjunction in

Q, outputs all the literals appearing in it.

The set of 1-clauses has narrow clauses if there is a polynomial-time

function which, given a 1-clause in the set, lists the literals and the

(names of) conjunctions that appear in it.

Finally the set is narrow if it both has narrow conjunctions and has

narrow clauses.

4. A derivation consists of sets C1, ..., Cr, D1, ..., Ds and E1, ..., Et of re-

spectively initial, internal and final 1-clauses, which all share a common

set of conjunctions encoded by Q and are themselves encoded by rela-

tions R, S and T . A function f identifies the hypotheses used to derive

a given clause, and identifies either the conjunction and/or literal re-

solved upon, or the conjunctions and literal involved in a ∧-introduction

inference, as appropriate. (For the formalization to work we need to

include one extra rule: that we can replace a literal in a clause with a

conjunction containing only that literal.)

5. As before a derivation is a refutation with no final clauses and with the

last internal clause empty.

The statements that (Q,R, S, T, f) is a derivation and that (Q,R, S, f)

is a refutation are Π̂b
1(Q, ...) expressible. For a p-time assignment α, the

soundness of a refutation with narrow initial clauses (witnessed by p-time

functions g1 and g2) is Σ̂b
1.

Hence we can define 1−Ref(PK1) as an NP search problem: for

(Q,R, S, f, g, α) polynomial time, given a size parameter a specifying the

instance, find either a witness that the PK1 refutation with narrow initial

clauses is improperly defined or an initial clause falsified by α.
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Theorem 27 1−Ref(PK1) ≤ 2VR−totality.

Proof Consider a polynomial time refutation π = (Q,R, S, f, g) and an

assignment α. Fix the size parameter a and let D0, . . . , Db be the 1-clauses

in π and let A1, . . . , Ac be the conjunctions used in π.

Choose a size d > b for our 2VR program large enough to code witnesses

to the 1−Ref(PK1)-instance. As we will only require depth b, for i > b all

machines will behave as machine b. The inputs x to all machines are ignored,

and we will not write them in what follows. All witnesses to the 2VR program

being ill-defined will give rise to a witness that π is not well-formed.

The correctness predicate Vi(y, z) (remember we are ignoring x) accepts

if either y names a true literal in 1-clause Di, or if it names a conjunction in

1-clause Di and z does not name a false literal in the conjunction. A correct

reply at the top level then clearly witnesses that the final clause of π is not

empty.

By the remark before Lemma 24, we may assume that any reply y to a

recursive call to level i is either a true literal in Di or a conjunction in Di.

Informally, machine Ri seeks a true literal or a true conjunction in Di. If

Di is an initial clause (and therefore narrow), Ri examines all conjunctions

and literals occurring and returns a true one. If Di was derived by weakening

from Dj, Ri calls Rj and returns the result.

Suppose Di was derived by an instance of ∧-introduction, of the form

C ∨ ∧
j lj C ∨ l′

C ∨ (
∧

j lj ∧ l′)
.

Say that the bottom 1-clause is Di, and the left- and right-hand top clauses

are Dj and Dk.

Case (1): l′ is false. Then Ri queries Rk, and gets a reply y which it

returns. We may assume that y is either a true literal in Dk or a conjunction

in Dk. If ¬Vi(y, z), that is, z witnesses that Ri’s reply is incorrect, then

either y is a false literal in Di (which is impossible) or z is a false literal in

the conjunction A named by y, and A appears in Di. But then A must be

in C and so also appears in Dk. So ¬Vk(y, z). Hence in this case, we put

Fi(y, z) := 〈k, z〉.
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Case (2) l′ is true. Then Ri queries Rj , and gets a reply y, and we may

assume y is either a true literal in Dj or a conjunction in Dj. If y is a literal,

then Ri returns y. As above, y is a true literal appearing in Di, so no z can

witness that y is an incorrect reply for level i.

So suppose y is a conjunction A. If A appears in C, then Ri returns y.

Otherwise A is the conjunction
∧

j lj, in which case Ri returns the name y′

of the conjunction
∧

j lj ∧ l′ in Di (this name is given to us in polynomial

time by the function f). In this case Fi(y, z) := 〈j, z〉, which has the desired

property that if ¬Vi(y
′, z) (i.e. z is a false literal in

∧
j lj ∧ l′) then ¬Vj(y, z)

(ie. z is a false literal in
∧

j lj – for z cannot be the literal l′, since l′ is known

to be true, in this case).

The case of 1-resolution is similar. �

Observe that the 2VR program produced by the reduction makes only

one recursive call at each level. This is analogous to the situation for (full

depth) VR programs and in contrast to the shallow programs of both types.

All that remains to finish the proof of Theorem 24 is to show that

Σ̂b
1(T

3
2 ) ≤ 1−Ref(PK1). This follows from the following theorem, which is a

generalization of Theorem 8 from section 2.

Theorem 28 Suppose that T 3
2 (ρ) ⊢ ∀a∃x < a∀y < a∃z < aφ(a, x, y, z),

where φ is sharply bounded and the undefined relation symbol ρ may appear

in φ. Then (uniformly in a) there exists a p-time set Ca of 1-clauses Ci and

a p-time set Aa of narrow clauses given together by relation R, and a p-time

PK1 refutation of Ca∪Aa given by S, f (all over a p-time set of conjunctions

given by relation Q) such that:

1. Q,R, S and f are strictly p-time (i.e., do not depend on ρ).

2. PV proves that Q,R, S and f define a PK1 refutation.

3. There is a p-time truth assignment α to the literals in the refutation,

with an oracle for ρ, such that PV(ρ) proves:

(a) α satisfies all clauses in Aa.

(b) For any i ∈ [a], if Ci is unsatisfied by α then

∀y < a∃z < aφ(a, i, y, z) is true.
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Moreover, if the formula proved is Σ̂b
2(ρ) or Σ̂b

1(ρ) (i.e., the quantifier ∃z < a

and possibly also ∀y < a is not used), then the set of clauses Ca will have

narrow conjunctions or be narrow, respectively.

Proof The proof follows that of Theorem 8, with several modifications

that we indicate. As before fix a value for parameter a and this time take a

treelike free-cut-free proof with end-sequent

∀x < a∃y < a∀z < a¬φ(a, x, y, z) −→ ∅.

For every proper Π̂b
3(ρ) formula ∀x < p∃y < q∀z < rθ(x, y, z) in Π and its

ancestors that are not sharply bounded, replace ∀z < rθ(x, y, z) by βθ(r, x, y),

where βθ is a new relation symbol (and possibly some extra parameters w̄

may appear in all these formulas). The resulting Π′ fails to be a proof only

at the sites of former ∀-introduction inferences, where the new β relations

now spontaneously appear.

The assumption about being treelike is needed so that, for example, a

formula ∀z < r θ(e, f, z) will not be an ancestor of both ∀x < p ∃y < q ∀z <
r θ(x, y, z) and ∀u<p ∃v<q ∀z<r θ(u, v, z), because these would get different

β symbols unless we were very careful about the names of our variables.

The set of conjunctions that will appear in the PK1 derivation we con-

struct comprises
∧

i<r〈θ(i, b̄)〉 for every bounded quantifier ∀i<x θ(i, ȳ) that

we replace with a βθ in the above fashion, and for every choice r, b̄ of param-

eters from [0, t] (recall that t is the value of the term t(a) giving the largest

bound on any quantifier in Π). This set of conjunctions is clearly given by a

p-time relation Q.

The theorem is now proved by induction as before (constructing a deriva-

tion of clauses translating the succedent from clauses translating the an-

tecedent), but we modify the induction hypothesis as follows: Whenever a

literal 〈βθ(r, x, y)〉 would occur in the translation into clauses, instead the

translation produces the conjunction
∧

i<r〈θ(i, x, y)〉.
Introduction of a propositional connective or a sharply bounded quantif-

ier, as well as BASIC and equality axioms, are as before: the helper clauses

are the same and only ordinary resolution is used.

The cases of induction and cut are likewise unaffected: both of these rules

entail stringing together several PK1 derivations (in the case of induction,
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modified by adding extra disjuncts to all 1-clauses and some weakening steps

at the beginning). No resolutions steps of any kind are added.

What remain are the (non-sharply bounded) quantifier introduction rules.

Bounded ∃ left and right introduction

If the formula ∃y <s θ(y) introduced is Σ̂b
1(ρ) (and therefore involves no

relations βθ) then the rule is handled as before, and involves only weakening

and ordinary resolution. If ∃y < s βθ(r, y) is introduced on the right, then

again the rule is as before and involves only weakening (this time adding

conjunctions rather than literals to the final 1-clauses).

Finally, if ∃y < s βθ(r, y) is introduced on the left we take a proof πy

(corresponding to the hypothesis of the rule) for each y < s, removing the

initial clauses
∧

i<r〈θ(i, y)〉 and adding the disjunction
∨

i<r ¬〈θ(i, y)〉 to each

remaining 1-clause. We string together the resulting proofs π′
0, ..., π

′
s−1 and

add every A ∈ Ay and γ ∈ Γ∗ as initial clauses, as well as
∨

y<s(
∧

i<r〈θ(i, y)〉).
As before each initial clause of every π′

y is now obtained by weakening. For

each δ ∈ ∆∗, “cut” every
∨

i<r ¬〈θ(i, y)〉∨δ with
∨

y<s(
∧

i<r〈θ(i, y)〉) to obtain

δ as a final clause. (Note that we can simulate a cut

U ∨ ∨
i<r ¬〈θ(i, y)〉 V ∨ ∧

i<r〈θ(i, y)〉
U ∨ V

by r applications of 1-resolution).

Bounded ∀ left and right introduction

If the ∀ introduction inference is correct in Π′ (i.e., does not involve the

spontaneous production of a βθ relation), then the rule is handled as before

and involves only weakening and stringing together proofs.

If the “inference” is

x < r,Γ −→ ∆, θ(x)

Γ −→ ∆, βθ(r)
,

add 〈x < r〉 as helper clauses for every x < r. We obtain derivations of every

δ ∨ 〈θ(x)〉 from Γ∗. These are strung together and ∧-introduction is applied

to obtain the final 1-clauses δ ∨ ∧
i<r〈θ(i)〉.

Finally if the “inference” is

θ(p),Γ −→ ∆

p < r, βθ(r),Γ −→ ∆
,
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and p ≥ r then every δ follows as in Theorem 8 from the helper clause

¬〈p < r〉 and weakening. If p < r then add the helper clause 〈θ(p)〉∨¬〈θ(p)〉.
The initial clauses of the hypothesis of the rule are all either initial clauses

of the conclusion, or are derived from the new initial clause
∧

i<r〈θ(i)〉 and

the new helper clause.

Note that the helper clause introduced in the last case above is the only

additional kind of helper clause beyond those produced by Theorem 8. In

particular, no conjunctions appear in any helper clause. �

We could also define an extension C2PLS of PLS to capture Σ̂b
1(T

3
2 ).

Rather than each node having a set Ci of colours, it has a 0/1 matrix Di

whose rows correspond to conjunctions in the PK1 proof, so that a row is all

1 if the conjunction is true in that 1-clause. The principle would assert, in a

Π̂b
1 way, that the root contains no all-1 rows, that each leaf contains an all-1

row, and that if j is the neighbour of i, then j contains an all-1 row only if i

does. But this principle does not seem very illuminating and we will give no

more details of it.

Definition 29 A shallow 2-verifiable recursion program is defined as

above, except that there are only |a| + 1 many machines P|a|, . . . , P0 (and

similarly |a|+ 1 many correctness predicates and Herbrand functions) so the

recursion only has logarithmic depth.

Theorem 30 (PV) The principle 2VR(log)−totality that every well-defined

shallow 2-verifiable recursion machine is total is provable in S3
2 and hence

T 2
2 . Furthermore the search principle CPLS is reducible to it. So shallow

2-verifiable recursion machines witness exactly the sΣb
1 consequences of T 2

2 .

Proof The first part of the theorem is as for 2VR−totality, but with Σb
3-

LIND.

We now prove the reducibility part of the theorem. The proof uses the

“shortening cuts” idea of the proof of the conservativity of S3
2 over T 2

2 , and

is a natural extension of the proof of Lemma 195.

5There is a similar argument relating CPLS with Pudlák’s game principle A3, to which

these shallow recursion machines seem to be closely related.

30



Informally the idea is that machine Pi should output either the 2ith iter-

ated neighbour of x, or a colour of x.

Suppose the CPLS problem has nodes [0, a]. We define a particular

2VR(log) machine, with size parameter a2 (hence of “depth” 2|a|). Any

witness to the CPLS instance is a correct reply at any level and is immedi-

ately passed up to the top whenever it is encountered, and for the sake of

clarity we omit this special case from our descriptions below.

Our correctness predicate is: Vi(x, y, z) is true if either (1) y ≤ x−2i and

z /∈ Cy \ Cx or (2) y ∈ Cx.

Machine R0 on input x first checks if x is a leaf. If so, and if e(x) is a colour

of x, then R0 returns it and this is correct for any z (otherwise it has found

a witness to the CPLS instance). If x is not a leaf, R0 returns the neighbour

of x. If this reply is incorrect for some z, violating the well-definedness of

our program, then we obtain a witness to the CPLS instance.

For i > 0, machine Ri on input x first calls Ri−1(x) and gets an output y′.

If y′ ∈ Cx, then Ri returns y′. Otherwise, we can assume that y′ ≤ x− 2i−1

(to be checked by Fi). In this case Ri calls Ri−1(y
′) and gets an output y′′.

Now, if y′′ ∈ Cy′ then we assume that Vi−1(x, y
′, y′′) accepts (to be checked

by Fi). Since y′ is not a colour of x, case (1) must hold here, and we have

y′′ /∈ Cy′ \ Cx. Hence y′′ ∈ Cx. Otherwise, if y′′ /∈ Cy′ then we have y′′ ≤
y′ − 2i−1 ≤ x− 2i. In either case, Ri returns y′′.

Fi, given z, first checks the assumptions made above. Next, the only

way Ri’s answer could be incorrect for z is if it tried to return y′′ ≤ x − 2i,

and z was such that z ∈ Cy′′ \ Cx. Fi therefore checks Vi−1(y
′, y′′, z) and

Vi−1(x, y
′, z), and outputs according to whichever one is false. If both of

these are true, then z /∈ Cy′′ \Cy′ and z /∈ Cy′ \Cx, which together contradict

z ∈ Cy′′ \ Cx.

The size parameter a2 is large enough to code all the possible inputs

and outputs described: nodes, colours, or witnesses to the CPLS instance.

Finally we show how a correct output of the top machine R2|a| yields a colour

for the source node a. Let y be such that V2|a|(a, y, 0). It is not possible that

y ≤ a− 22|a|, since this number is negative. So y must be a colour of a. �

Lastly, since all these reductions are provable in PV,
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Theorem 31 As first order theories, PV + Σ̂b
1(T

3
2 ) = PV + 2VR−totality

and PV + Σ̂b
1(T

1
2 ) = PV + 2VR(log)−totality.

5 Concrete reducibilities and open problems

Two prominent combinatorial principles provable in T 2
2 are the weak pi-

geonhole principle WPHP, asserting that no function can injectively map

a2 into a, and the minimization principle MIN asserting that a partial

ordering on [0, a] has a minimal element. Stated in this way MIN is a Σ̂b
2

statement but it has a natural Σ̂b
1 consequence called the generalized it-

eration principle ITER. The principle ITER says that no function can be

strictly decreasing in a partial ordering (see [4]). It is known [4] that when

stated with oracles neither WPHP nor ITER is provable in T 1
2 (α).

The provability of WPHP in T 3
2 (and in T 2

2 if the function is assumed

to be surjective) was established by Paris, Wilkie and Woods [23]. The

surjectivity assumption was later removed by Maciel, Pitassi and Woods [18].

The principle MIN, and hence ITER, is easily provable in T 2
2 by induction

on a. We now give, as an illustration of how our new search problems work,

direct reductions of these principles to CPLS (that is, not going via their

provability in T 2
2 ).

Proposition 32 ITER ≤ CPLS.

Proof Suppose our instance of ITER is an ordering � on the domain [0, a]

and a function g : [0, a] → [0, a]. A solution is a witness that � is not an

ordering or some x with g(x) 6≺ x.

We define an instance of CPLS. The nodes are pairs (x, y) ∈ [0, a]2 with

y ≤ x, ordered lexicographically (with the order reversed, so (a, y) < (0, y)).

The root is (0, 0) and the leaves are the nodes of the form (a, y).

The colours of C(x,y) are the set {z ≤ x : z ≺ y} of witnesses that y is not

a minimal element of the set [0, x]. The neighbour of an internal node (x, y)

is (x+1, x+1) if x+1 ≺ y; otherwise it is (x+1, y). So if moving from a node

to its neighbour introduces a new colour, this gives a witness that � is not

an ordering. Lastly for any leaf node (a, y), we define e((a, y)) = g(y). �
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Proposition 33 Consider WPHP in the form: if f is a function a −→ a2

and g is a function a2 −→ a then g is not the inverse of f .

This can be witnessed by a shallow 2-VR program.

Proof We adapt the proof of WPHP from [23]. Let n = |a| and suppose f :

x 7→ (f0(x), f1(x)). Define F i
s(x) = fsi

(. . . (fs2
(fs1

(x))) . . . ), where s1, . . . , si

are the bits of s, and let h(x) = F n
x (x) + 1.

Consider a complete binary tree of height n, with each node labelled with

a number < a. Each leaf u (at the bottom) is labelled with h(u), and if the

children w0, w1 of a node w are labelled with y0, y1, then w is labelled with

g(y0, y1).

For i = 0, . . . , n the intended goal of machine Ri is to take as input the

address u of a node at level i of the tree (counting from the bottom up), and

output what its label y would be if f really were the inverse of g. So the

correctness relation Vi(u, y, v) is “|v| 6= i or |u| 6= n− i or F i
v(y) = h(u ⌢ v)”

and machine Ri on input x calls Ri−1 on inputs u0 and u1 and gets replies

y0, y1 respectively, then outputs y = g(y0, y1).

Suppose that v witnesses that y is an incorrect label for node u. Suppose

that the first bit of v is 0, so v has the form 0w. Then the Herbrand machine

Fi outputs v′ = w, which should witness that y0 is an incorrect label for u0

(and similarly if the first bit of z is 1).

Suppose this fails, and V i−1(u0, y0, w) is true. Then F i−1
w (y0) = h(u0w),

so if y0 = f0(y) we would have F i
0w(y) = h(u0w) and y would be correct for

u at v = 0w. But y is not correct, so we have y0 6= f0(y). But y = g(y0, y1),

so we have found a witness that g is not the inverse of f .

We have one extra machine Rn+1, which is never correct (except that it

will accept witnesses of the above form that get passed up the machine, as

described in an earlier remark). It calls Rn and gets a label y for the root

of the tree. Fn+1 outputs v′ = y, and Vn(∅, y, y) must be incorrect by the

definition of h(u). �

To complete the reduction of WPHP to CPLS, we informally sketch a

reduction of the totality of a shallow 2-VR program to an instance of CPLS

(compare the remark after Lemma 18). We will only consider programs where

each Ri only makes two recursive calls, and they must both be to Ri−1.
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The domain of our instance of CPLS is the set of labelled paths through

the computation tree of the recursion program, going from the root to a leaf.

The elements have the form of sequences wn, . . . , w1 as follows: for each wi,

either (1) wi is a number x, and wi−1 represents the first recursion call made

by Pi on input x; or (2) wi is a pair (x, y′) and wi−1 represents the second

recursion call made by Ri on input x, if the answer to the first recursion call

was y′.

To order these elements, represent each singleton x as 1 and each pair

(x, y′) as 0, then order the sequences lexicographically.

The neighbour of an element is the next step in the computation. For

example, consider a string ending (x3, y
′
3), x2, (x1, y

′
1). We simulate R1 on

input x1, after it has made its first recursion call and got reply y′1. It makes

some second call to R0 and gets some reply y′′. It then outputs y′′′. We then

simulate R2 on input x2, after it has made its first recursion call and got

reply y′′′. It makes a second call to R1, with some input x′. So the neighbour

of our string will be a string ending (x3, y
′
3), (x2, y

′′′), x′.

Finally, z is a colour of a string if it witnesses that one of the replies y′

made to a recursion call was incorrect. The Herbrand functions guarantee

that if z witnesses that the neighbour of a string is incorrect, then some z′

(possibly different) witnesses that the original string is incorrect.

Let us conclude with some open problems. The most pressing one is surely

to show that T 3
2 (α) is not Σ̂b

1(α)-conservative over T 2
2 (α). This would follow

if one constructs an oracle relative to which 2VR−totality is not reducible

to CPLS or, equivalently, to VR−totality or to 2VR(log)−totality. This is

likely also to have consequences (depending on the type of argument) for the

proof complexity of R(log) of [13].

A natural NP search problem not known to be reducible to CPLS is

the Ramsey principle RAM (cf [5]): given as an instance an undirected

graph on [0, a − 1], find a homogeneous subgraph of size at least log(a)/2.

This is guaranteed to exist by a version of the finite Ramsey theorem, which

Pudlák [25] has shown to be provable in T 5
2 , so non-reducibility (relative

to an oracle) to CPLS would imply that T 5
2 (α) is not Σ̂b

1(α)-conservative

over T 2
2 (α). Using the no-gap theorem of Chiari and Kraj́ıček [5] this would
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further imply non-Σ̂b
2(α)-conservativity of T 3

2 (α) over T 2
2 (α). (We note that

such a non-conservativity is known when the smash function is not present

in the theories, see [10].)

A test case for any technique aimed at showing non-reducibility to CPLS

is to show that the ordinary PHP is not reducible to CPLS, without using

the random restriction method of [16, 24].

Another problem which may be tractable (since it does not involve prov-

ing independence from CPLS, which may be as hard as proving lower bounds

for R(log)) is to establish whether or not ITER is equivalent to CPLS.
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