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Abstract. We present a definition of the class NP in combina-
torial context as the class of languages of structures defined by
finitely many forbidden lifted substructures. We apply this to spe-
cial syntactically defined subclasses and show how they correspond
to naturally defined (and intensively studied) combinatorial prob-
lems. We show that some types of combinatorial problems like edge
colorings and graph decompositions express the full computational
power of the class NP. We then characterize Constraint Satisfac-
tion Problems (i.e. H-coloring problems) which are expressible by
finitely many forbidden lifted substructures. This greatly simplifies
and generalizes the earlier attempts to characterize this problem.
As a corollary of this approach we perhaps find a proper setting of
Feder and Vardi analysis of CSP languages within the class MM-
SNP.

1. Introduction

Think of a 3-colorability of a graph G = (V, E). This is a well
known hard problem and there is a multiple evidence for this: concrete
instances of the problem are difficult to solve (if you want a non-trivial
example consider Kneser graphs; [20]), there is an abundance of mini-
mal graphs which are not 3-colorable (these are called 4-critical graphs,
see e.g. [13]) and in the full generality (and even for important “small”
subclasses such as 4-regular graphs or planar graphs) the problem is a
canonical NP-complete problem.

Yet the problem has an easy formulation. A 3-coloring is simple to
formulate even at the kindergarten level. This is in a sharp contrast
with the usual definition of the class NP by means of polynomially
bounded non-deterministic computations. Fagin [5] gave a concise de-
scription of the class NP by means of logic: NP languages are just
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languages accepted by an Existential Second Order (ESO) formula of
the form

∃PΨ(S, P ),

where S is the set of input relations, P is a set of existential relations,
the proof for the membership in the class, and Ψ is a first-order for-
mula without existential quantifiers. This definition of NP inspired a
sequence of related investigations (see e.g. [12, 29] and these descrip-
tive complexity results established that most major complexity classes
can be characterized in terms of logical definability of finite structures.
Particularly this led Feder and Vardi [6] to their seminal reduction
of Constraint Satisfaction Problems (shortly CSP) to so called MM-
SNP (Monotone Monadic Strict Nondeterministic Polynomial) prob-
lems which also nicely link MMSNP to the class NP in computational
sense. This will be explained in some detail in Section 3 which presents
one of the main motivations of this paper. Inspired by these results we
would like to ask an even simpler question:

Can one express the computational power of the class NP by combi-
natorial means?

From the combinatorial point of view there is a standard way how
to approach (and sometimes to solve) a monotone property P : one
investigates those structures without the property P which are critical,
(or minimal) without P . One proceeds as follows: denote by F the class
of all critical structures and define the class Forb(F) of all structures
which do not “contain” any F ∈ F . The class Forb(F) is the class of
all structures not containing any of the critical substructures and thus
it is easy to see that Forb(F) coincides with the class of structures
with the property P . Of course in most cases the class F is infinite
yet a structural result about it may shed some light on property P .
For example this is the case with 3-colorability of graphs where 4-
critical graphs were (and are) studied thoroughly (historically mostly
in relationship to Four Color Conjecture).

Of particular interest (and as the extremal case in our setting) are
those monotone properties P of structures which can be described by
finitely many forbidden substructures. It has been proved in a se-
quence of papers [1, 28] that a homomorphism monotone problem is
First Order (shortly FO) definable if and only if it is positively FO
definable (shortly FO+ definable), i.e. the formula does not contain



FORBIDDEN LIFTS (NP AND CSP FOR COMBINATORISTS) 3

any negations (and so implications and inequalitites), and thus alter-
natively defined as Forb(F) for a finite set F of structures. Although
FO-definability is not a rare fact (and extremely useful in database the-
ory), still FO-definability cannot express most combinatorial problems
(compare [26],[1] which characterize all CSP which are FO-definable;
see also Theorem 1). Thus it may seem to be surprising that the classes
of relational structures defined by ESO formulas (i.e. the whole class
NP) corresponds exactly to those canonical lifts of structures which
are defined by a finite set of forbidden substructures. Shortly, finitely
many forbidden lifts determine any language in NP. This is being made
precise in Section 3. Here, let us just briefly illustrate this by our ex-
ample of 3-colorability. Instead of a graph G = (V, E) we consider the
graph G together with three unary relations C1, C2, C3 which cover the
vertex set V ; this structure will be denoted by G′ and called a lift of G
(G′ has one binary and three unary relations). There are 3 forbidden
substructures or patterns: For each i = 1, 2, 3 the graph K2 together
with cover Ci = {1, 2} and Cj = ∅ for j 6= i form pattern F′

i
(where

the signature of F′
i
contains one binary and three unary relations). The

language of all 3-colorable graphs then corresponds just to the language
Φ(Forb(F′

1
,F′

2
,F′

3
)) where Φ is the forgetful functor which transforms

G′ to G and the language of 3-colorable graphs is just the language of
the class satisfying formula ∃G′(G′ ∈ Forb(F′

1
,F′

2
,F′

3
)). This extended

language (of structures G′) of course just expresses the membership of
3-colorability to the class NP. There is more than this that meets the
eye. This scheme fits nicely into the mainstream combinatorial and
combinatorial complexity research. Building upon Feder-Vardi classifi-
cation of MMSNP we isolate (in Theorems 5, 7, 9) three computation-
ally equivalent formulations of NP class:

(1) By means of shadows of forbidden homomorphisms of relational
lifts (the corresponding category is denoted by Relcov(∆, ∆′)),

(2) By means of shadows of forbidden injections (monomorphisms)
of monadic lifts (the corresponding category will be denoted by
Relcov

inj (∆, ∆′)),
(3) By means of shadows of forbidden full homomorphisms of monadic

lifts (the corresponding category will be denoted by Relcov
full(∆, ∆′)).

Our results imply that each of these approaches includes the whole
class NP. It is interesting to note how nicely these categories fit to
the combinatorial common sense about the difficulty of problems: On
the one side the problems in CSP correspond and generalize ordinary
(vertex) coloring problems. One expects a dichotomy here: every CSP
problem should be either polynomial or NP-complete (as conjectured
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in [6] and probabilistically verified in [17]). On the other side the above
classes 1. − 3. model the whole class NP and thus we cannot expect
dichotomy there (by a celebrated result of Ladner [16]). But this is in
accordance with the combinatorial meaning of these classes: the class
1. expresses coloring of edges, triples etc. and thus it involves problems
in Ramsey theory [8, 22]. The class 2. may express vertex coloring of
classes with restricted degrees of vertices [14, 10]. The class 3. relates
to vertex colorings with a given pattern among classes which appears
in many graph decomposition techniques (for example in the solution
of the Perfect Graph Conjecture [3]). The point of view of forbidden
partitions (in the language of graphs and matrices) is taken for example
in [9]. This clear difference between combinatorial interpretations of
syntactic restrictions on formulas expressing the computational power
of NP is one of the pleasant consequences of our approach.

At this point we should add one more remark. We of course do not
only claim that every problem in NP can be polynomially reduced to
a problem in one of these classes. This would only mean that each
of these classes contains an NP-complete problem. What we claim is
that these classes have the computational power of the whole of NP,
i.e. these classes are computationally equivalent to all problems in NP.
More precisely, to each language L in NP there exists a language M in
any of these three classes such that M is polynomially equivalent to L,
i.e. there exist polynomial reductions of L to M and M to L.

Having finitely many forbidden patterns (i.e. forbidden substruc-
tures) for a class of structures K we are naturally led to the question
whether K is the class determined by a finite set of templates, or in
other words by the existence of homomorphisms to particular struc-
tures. In technical terms (see e.g. [10, 6]) this amounts to the question
whether K is an instance of a Constraint Satisfaction Problem (shortly
CSP). On the other hand finitely many forbidden patterns lead to the
question whether the class K is not defined by a finite duality. This
scheme for combinatorial problems goes back to [23], see e.g. [10] and it
was studied in situations as diverse as bounded tree width dualities [11],
duality of linear programming [10] and classes with bounded expansion
[24]. Here we completely characterize (using results of [26]) shadows
of finitary dualities in the case where the extension of the language
is monadic, i.e. it consists of unary relations (as is the above case of
3-coloring), see Theorem 13. These general results can be used in the
investigation of the class MMSNP (to be defined in Section 3). Feder
and Vardi introduced this class as a fragment of SNP in [6]. They
proved that the class MMSNP is randomly polynomially equivalent to
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the class of finite union of CSP languages. This was later derandom-
ized by the first author proving that the classes MMSNP and CSP are
computationally equivalent [15]. We will examine these classes from
the viewpoint of descriptive complexity theory: Any finite union of
CSP languages belongs to MMSNP. But the converse does not hold.
Consider for example the language of triangle free graphs: this is an
MMSNP language which is not a finite union of CSP languages. Made-
laine and Stewart introduced the class of Forbidden Pattern Problems
(FP) as an equivalent combinatorial version of MMSNP [19], [18]. They
gave an effective, yet lengthy process to decide whether an MMSNP
language is a CSP language. We give a short and easy procedure to de-
cide whether an MMSNP language is a finite union of CSP languages,
and we show that these are exactly those languages defined by forbid-
den patterns not containing any cycle. This simplicity is possible by
translation and generalization of the Feder-Vardi proof of the computa-
tional equivalence of finite union of CSP’s and MMSNP in the context
of category theoretical language of duality.

The paper is organized as follows: In Section 2 we review the basic
notions and previous work related to finite structures. Particularly we
state two our basic tools: the characterization of finite dualities [26, 7]
and a combinatorial classique, the sparse incomparability lemma. It is
here where we introduce two our basic notions of lifts and shadows.
The interplay of corresponding classes (categories) is a central theme
of this paper. In Section 3 we introduce the relevant notions of descrip-
tive complexity (mostly taken from [6]) and relate it to our approach.
We prove that the class NP is polynomially equivalent with classes of
structures characterized by finitely many forbidden lifts (this is proved
in three different categories, see Theorems 5, 7 and 9). In Section 4 we
study the relationship of lifts and shadows abstractly from the point of
view of dualities. Theorem 13 enables us to prove the characterization
of shadows of finite dualities (called lifted dualities) in lifts and shad-
ows. This, as a corollary, proves the main result of [19]. In Section 5 we
return to Feder-Vardi setting and indicate how the polynomial equiv-
alence of classes MMSNP and finite unions of CSP problems emerges
naturally in our combinatorial-categorical context.

For more complicated (i.e. nonmonadic) lifts we (of course) have
partial results only. Perhaps the next case is that of covering equiv-
alences. This we are still able to handle with our methods and we
characterize all CSP languages in this class. But we postpone this to
another occasion.
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2. Categories of Finite Structures

For a relational symbol R and relational structure A let A = X(A)
denote the universe of A and let R(A) denote the relation set of tu-
ples of A which belong to R. Let ∆ denote the signature (type) of
relational symbols, and let Rel(∆) denote the class of all relational
structures with signature ∆. We will often work with two (fixed) sig-
natures, ∆ and ∆ ∪ ∆′ (the signatures ∆ and ∆′ are always supposed
to be disjoint). For convenience we denote structures in Rel(∆) by
A,B etc. and structures in Rel(∆∪∆′) by A′,B′ etc. For convenience
we shall denote Rel(∆ ∪ ∆′) by Rel(∆, ∆′). The classes Rel(∆) and
Rel(∆, ∆′) will be considered as categories endowed with all homomor-
phisms. Recall, that a homomorphism is a mapping which preserves all
relations. Just to be explicit, for relational structures A,B ∈ Rel(∆) a
mapping f : X(A) −→ X(B) is a homomorphism A −→ B if for every
relational symbol R ∈ ∆ and for every tuple (x1, . . . , xt) ∈ R(A) we
have (f(x1), . . . , f(xt)) ∈ R(B). Similarly we define homomorphisms
for the class Rel(∆, ∆′). The interplay of categories Rel(∆, ∆′) and
Rel(∆) is one of the central themes of this paper. Towards this end
we define the following notions: Let Φ : Rel(∆, ∆′) → Rel(∆) denote
the natural forgetful functor that “forgets” relations in ∆′. Explicitly,
for a structure A′ ∈ Rel(∆, ∆′) we denote by Φ(A′) the corresponding
structure A ∈ Rel(∆) defined by X(A′) = X(A), R(A′) = R(A) for
every R ∈ ∆. For a homomorphism f : A′ −→ B′ we put Φ(f) = f .
The mapping f is of course also a homomorphism Φ(A′) −→ Φ(B′).
This is expressed by the following diagram.

A’ B’

A B

f’

f

Φ Φ

These object-transformations call for a special terminology: For
A′ ∈ Rel(∆, ∆′) we call Φ(A′) = A the shadow of A′. Any A′ with
Φ(A′) = A is called a lift of A. The analogous terminology is used
for subclasses C of Rel(∆, ∆′) and Rel(∆). (Thus, for example, for a
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subclass C ⊆ Rel(∆, ∆′), Φ(C) is the class of all shadows of all struc-
tures in the class C.) The following special subclass of Rel(∆, ∆′) will
be important: denote by Relcov(∆, ∆′) the class of all structures in
Rel(∆, ∆′) where we assume that all relations in ∆′ have the same
arity, say r, and that all the r-tuples of an object are contained by
some relation in ∆′. The category Relcov(∆, ∆′) is briefly called cover-
ing or r-covering category. Note that the class Relcov(∆, ∆′) is closed
under surjective homomorphisms. We will work with two other similar
pairs of categories. We denote by Relinj(∆) and Relfull(∆) the cate-
gories where the subjects are again the relational structures of type ∆,
but the morphisms are the injective and full homomorphisms, respec-
tively. We call a mapping a full homomorphism if it is relation and
non-relation preserving, too. Such mappings have very easy structure,
as every full homomorphism which is onto is a retraction. We denote
by Relcov

inj (∆, ∆′) and Relcov
full(∆, ∆′) the subclasses containing the same

class of objects than Relcov(∆, ∆′). We only will use these notions in
the case when ∆′ contains monadic relations.

Let F ′ be a finite set of structures in the category C (one of the above
categories). By Forb(F ′) we denote the class of all structures A′ ∈ C
satisfying F′ 6−→ A′ for every F′ ∈ F ′. (This class is sometimes and
perhaps more efficiently denoted by F ′ 6→.) Similarly (well, dually),
for the finite set of structures D′ in C we denote by CSP (D′) the
class of all structures A′ ∈ C satisfying A′ −→ D′ for some D′ ∈ D′.
(This is sometimes denoted by → D.) Now suppose that the classes
Forb(F ′) and CSP (D′) are equal. Then we say that the pair (F ′,D′) is
a finite duality in C. Explicitly, a finite duality means that the following
equivalence holds for every structure A′ ∈ C:
F′ 6−→ A′ for every F′ ∈ F ′ iff A′ −→ D′

j for some D′ ∈ D′.
One more definition is needed. In dualities (as well as in most of

this paper) we are interested in the existence of a homomorphism (ev-
ery CSP can be expressed by the existence of a homomorphism to a
template; see [6],[10]) . Consequently we can also use the language of
partially ordered sets and consider the homomorphism order C∆ defined
on the class of all structures with signature ∆: we define the order ≤
by putting A ≤ B iff there is a homomorphism A −→ B. The ordering
≤ is clearly a quasiorder but this becomes a partial order if we either
factorize C∆ by the homomorphism equivalence or, perhaps preferably,
if we restrict C∆ to non-isomorphic core structures. We say that A
is core if every homomorphism A −→ A is an automorphism. Every
finite structure A contains (up to an isomorphism) a uniquely deter-
mined core substructure homomorphically equivalent to A, see [26, 10].
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The following result was recently proved in [7] as a generalization of
[26]. It characterizes finite dualities of finite structures., i.e. in the
category Rel(∆).

Theorem 1. For every signature ∆ and for every finite set F of (re-
lational) forests there exists (up to a homomorphism equivalence) a
uniquely determined set D of structures such that (F ,D) forms a finite
duality. Up to a homomorphism equivalence there are no other finite
dualities.

We did not define what is a forest in a structure(see [26, 7]). For the
sake of completeness let us say that a forest is a structure not containing
any cycle. And a cycle in a structure A is either a sequence of distinct
points and distinct tuples x0, r1, x1, . . . , rt, xt = x0 where each tuple ri

belongs to one of the relations R(A) and each xi is a coordinate of ri

and ri+1, or, in the degenerated case t = 1 a relational tuple with at
least one multiple coordinate. The length of the cycle is the integer t in
the first case and 1 in the second case. Finally the girth of a structure
A is the shortest length of a cycle in A (if it exists; otherwise it is a
forest).

The study of homomorphism properties of structures not contain-
ing short cycles (i.e. with a large girth) is a combinatorial problem
studied intensively. The following result has proved particularly useful
in various applications. It is often called the Sparse Incomparability
Lemma:

Lemma 2. Let k, ℓ be positive integers and let A be a structure. Then
there exists a structure B with the following properties:

(1) There exists a homomorphism f : B −→ A;
(2) For every structure C with at most k points the following holds:

there exists a homomorphism A −→ C if and only if there exists
a homomorphism B −→ C;

(3) B has girth ≥ ℓ.

B

A C

f

This result was proved in [25, 27] (see also [10]) by probabilistic
methods. In fact in [25, 27] it was proved for graphs only but the proof
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is the same for finite systems. Of particular interest in this context
is the question whether there exists an explicit construction of the
structure B. This is indeed possible: In the case of binary relations
(digraphs) this was done in [21] and for general systems in [15].

3. NP by means of finitely many forbidden lifts

There is a standard connection between formulae and existence of
homomorphisms. This goes back to [2] and it can be formulated as
follows:

To every structure A in Rel(∆) we associate the canonical conjunc-
tive existential formula ϕA as the conjunction of the atoms RA(x),
where R ∈ ∆ preceded by existential quantification of all elements of
A. Clearly this process may be reversed and thus there is a one-to-one
correspondence between canonical conjunctive existential formulae and
structures. It is then obvious that the following holds:

There is a homomorphism A −→ B if and only if B |= ϕA.
Following Fagin [5], the class SNP consists of all problems expressible

by an existential second-order formula with a universal first-order part.
The class of problems expressible by an existential second-order formula
is exactly the class NP when restricted to finite structures. The class
SNP is computationally equivalent to NP. The input of any problem in
SNP is a relational structure A of signature ∆ with base set A = X(A)
and Π is a set of relations on the same base set A. In this situation
it is customary to call the second order relations Π proof. Let us be
more specific (see [6]): Every language (problem) L in SNP may be
equivalently described by a formula of the form

∃Π∀x ∈ X
∧

i

¬
(

αi ∧ βi ∧ εi

)

,

where

(1) αi is a conjunction of atoms or negated atoms involving vari-
ables and input relations (i.e. of the form R(x) and ¬R(x) for
a relational symbol R and x a tuple of elements of X),

(2) βi is a conjunction of atoms and negated atoms involving vari-
ables and existential (proof) relations (i.e. of the form P (x)
and ¬P (x) for P ∈ Π and x a tuple of elements of X) and

(3) εi is the conjunction of atoms involving variables and inequali-
ties (i.e. of form x 6= y).

A formula of this type is called a canonical formula of the language
L in SNP. It will be denoted by ϕL.
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Example: Consider the language containing one binary symbol R
with two unary proof relations P1, P2 defined by the following formula:
∃P1∃P2∀x1, x2, x3, y ∈ X

∧

k ¬
[

(Pk(x1)∧Pk(x2)∧Pk(x3))∧ (R(x1, x2)∧
R(x1, x3) ∧ R(x2, x3)) ∧ (x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

]

∧
[

¬(¬P1(y) ∧

¬P2(y))
]

.
This formula corresponds to the language of all binary relations

whose base set can be covered by two sets in such a way that none
of these sets contains linearly ordered set with 3 elements. If we in
addition postulate that the relation R is symmetric then these are just
graphs which can be vertex partitioned into two triangle free graphs.

Following [6] one can also define three important syntactically re-
stricted subclasses of SNP:

We say that a canonical formula is monotone if there are no negations
in the αi’s. This implies that more relations lead to less satisfiable
formulae. The canonical formula is monadic if the relations in Π are
all monadic (which means that all proof relations are unary). The
canonical formula is said to be without inequality if it can described by
a canonical formula which does not contain εi.

Feder and Vardi [6] have proved that the three subclasses of SNP
defined by formulae with any two of these syntactical restrictions still
have the full computational power of the class NP:

Theorem 3. [6]

(1) Every problem in NP has a polynomially equivalent problem in
monotone SNP without inequality. Moreover, we may assume
that the existential relations are at most binary.

(2) Every problem in NP has a polynomially equivalent problem in
monotone, monadic SNP.

(3) Every problem in NP has a polynomially equivalent problem in
monadic SNP without inequality.

(The claim that we may restrict to binary relations in (1) is not
stated in [6] but it is clear from the proof.) The class with all the
three restrictions is denoted by MMSNP (Monotone Monadic Strict
Nondeterministic Polynomial). We deal with this class in Section 6.

In this paper we will formulate and prove Theorem 3 in our com-
binatorial category lift/shadow setting. This will be done in Theorem
5 for item 1., in Theorem 7 for item 2. and in Theorem 9 for item 3.
First, we introduce the following: we say that the formula is primitive
if for every clause

(

αi ∧ βi ∧ εi

)

, every variables x1, . . . , xr occurring
in it and every existential relation P ∈ Π of arity r either the atom
P (x1, . . . , xr) or its negation is an atom of the clause. We need the
following technical lemma.



FORBIDDEN LIFTS (NP AND CSP FOR COMBINATORISTS) 11

Lemma 4. Every language in SNP can be described by a primitive
formula. Moreover, if the original formula satisfies some of the restric-
tions (i.e. if it is either monotone or monadic or without inequality)
then so does the primitive formula.

Proof. Consider the language L and the canonical formula defining L:
∃P∀x ∈ S

∧

i ¬
(

αi ∧ βi ∧ εi

)

. We modify the formula so that for every
proof relation R of arity r and variables x1, . . . , xr ∈ S appearing in
αi or βi either R(x1, . . . , xr) or ¬R(x1, . . . , xr) is in the appropriate

conjunct. In order to have such a formula we can replace ¬
(

αi∧βi∧εi

)

by ¬
(

αi∧βi ∧εi∧R(x1, . . . , xr)
)

∧¬
(

αi∧βi∧εi∧¬R(x1, . . . , xr)
)

, this
is equivalent to the original formula. The repetition of this process will
terminate in finitely many steps, and it gives an appropriate formula.

�

Let F ′ be a finite set of structures in Relcov(∆, ∆′). Consider a
language L of structures in the class Rel(∆) and its canonical primitive
formula ϕL (showing that it is in monotone SNP without inequality).
We say that L is the language of Φ(Forb(F ′)) if the formula ϕL and the
formula ∃A′(A′ ∈ Forb(F ′)) are equivalent. Explicitly, ∃Π(A |= ϕL)
if and only if ∃A′(F′ 6−→ A′ for every F′ ∈ F ′). This will be briefly
denoted by L = Φ(Forb(F ′)).

Theorem 5. For every language L ∈ NP there exist relational types
∆, ∆′ and a finite set F ′ of structures in Relcov(∆, ∆′) such that L is
computationally equivalent to Φ(Forb(F ′)). Moreover, we may assume
that the relations in ∆′ are at most binary.

This theorem presents an equivalent form of item 1. of Theorem 3
by means of homomorphisms and classes Forb(F ′). It is interesting
to express other conditions 2., 3. of Theorem 3 by means of homo-
morphisms and classes Forb(F ′). These two other versions are stated
below as Theorems 7 and 9.

Proof. Consider a language L and the canonical formula ϕL (showing
that it is monotone SNP without inequality). The construction of F ′

consists of two steps. In the first step we enforce technical conditions
on the formula.
Step 1.
We need the technical assumption that all proof relations in Π have
the same (at most binary) arity and the formula is primitive. The
first condition can be achieved by exchanging relational symbols that
are not of maximal arity by new relational symbols of maximal arity
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(binary would suffice). We can proceed as follows. In every clause of
the formula we put new (free) different variables into the new entries
in βi, and we increase the number of variables in x, too. This new
formula is equivalent to the original one. An evaluation satisfies to the
new formula exactly iff its restriction to the original variables satisfies
to the original formula. By Lemma 4 we may also assume that the new
formula is primitive. In the following we denote this formula by ϕL.

In the second step we define lifts.
Step 2.
The type ∆′ will contain 2|Π| relational symbols corresponding to the
2|Π| possibilities for a subset of proof relations indicating possibilities
in which a tuple can be. The pattern F′

i will correspond to the clause
αi ∧ βi. The base set of each structure F′

i is the set of variables in the
clause αi ∧ βi. A tuple t of variables is in a relation R (of type ∆) if
the atom R(t) appears in αi. Every tuple t in F′

i (of appropriate arity)
is in exactly one relation from ∆′, this is the relation corresponding
to the subset of all existential relations P ∈ Π such that the atom
P (t) appears in βi. Let F ′ be the set of all lifts F′

i. These may be
disconnected, although we may work with their connected components,
see Remark 6.

We prove that for a structure A ∈ Rel(∆) the formula ϕL(A) is
satisfiable iff there is a lifted structure A′ ∈ Rel(∆, ∆′) such that no
F′

i ∈ F ′ maps to A′ (A′ is the lift of A determined by Π). Towards
this end we first construct a formula ϕF ′ such that ϕF ′(A′) ⇐⇒ A′ ∈
Forb(F ′). This is easy (and for a single structure it was explained at
the beginning of this section). The formula ϕF ′(A′) will have the form
∀x ∈ A

∧

F′∈F ′ ¬ϕF′(x1, . . . , x|F ′|). The formula ϕF′(x1, . . . , x|F ′|) is
expressing the fact that the set {x1, . . . , x|F′|} ⊆ A′ is the homomorphic
image of F′. Now ϕF′(x1, . . . , x|F ′|) is a conjunction of atomic formulae.
If the tuple a is in the input relation R then ϕF′(x1, . . . , x|F ′|) will have
an atom expressing that the image of the tuple is in the relation R.

The formula ∃ΠϕF′(x1, . . . , x|F ′|) is primitive. In other words for ev-
ery r-tuple y of variables and P ∈ Π either P (y) or ¬P (y) is an atom of
the formula. Consider the formula ∃Π∀x ∈ A

∧

F′∈F ¬ϕF′(x1, . . . , x|F ′|),
this is also a primitive formula.

The unique ∆′ relation covering the appropriate tuple of F′ deter-
mines which atoms are negated and which are not. The proper disjoint
covering lifts A′ of A and the Π relational structures on the universe
of A satisfying the formula are in one-to-one correspondence and this
correspondence is provided by the forgetful functor. So the constructed
formula ∃A′ϕF ′(A′) is equivalent to ϕL(A). Moreover, if we exchange
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an atom of the form R(x), where R ∈ ∆′ for the appropriate conjunct
of |Π| atoms or negated atoms we get exactly the original primitive
formula ϕL. �

Remark 6. Consider the languages Φ(Forb(F ′)) and Φ(Forb(G′)).
Their union is exactly the language Φ(Forb(H′)), where H′ = {F′ ∪∗

G′ : F′ ∈ Forb(F ′),G′ ∈ Forb(G′)}. Hence the languages of the form
Φ(Forb(F ′)) are closed under union. In the proof of Theorem 5 we may
restrict ourselves to connected lifts when proving that the constructed
Φ(Forb(F ′)) is the desired language.

Let us now formulate and prove the two analogous theorems for
the class monotone and monadic SNP and for the class monadic SNP
without inequality (which correspond to 2. and 3. of Theorem 3). Here
we use the categories Relcov

inj (∆, ∆′) and Relcov
full(∆, ∆′).

Theorem 7. For every language L ∈ NP there exists relational types
∆ and ∆′, where ∆′ contains only unary relational symbols and a finite
set F ′ ⊂ Relcov

inj (∆, ∆′) such that L is computationally equivalent to the
class Φ(Forbinj(F

′)).

Proof. We proceed analogously as in the proof of Theorem 5 for formu-
las which are monadic monotone SNP. We stress the differences only.
First, using Lemma 4 again, we may suppose that L is defined by a
canonical primitive formula. This constitutes the first step as now we
do not have problem with the arity of the proof relations since these
are all monadic.
Step 2.
We want to enforce for (αi∧βi∧εi) and distinct variables x, y appearing
in it that x 6= y is an atom of εi. If this atom is not in βi then we
exchange ¬(αi ∧ βi ∧ εi) by the following conjunction: ¬(αi1 ∧ βi1 ∧
εi1)

∧

¬(αi2 ∧βi2 ∧ εi2), where ¬(αi1 ∧βi1 ∧ εi1) is ¬(αi ∧βi ∧ εi) except
that we replace all occurence of y by x in it, αi2 = αi, βi2 = βi and
εi2 = εi ∧ (x 6= y). This new formula is equivalent to the original one.
In finitely many steps we manage to enforce that all the required atoms
of the form x 6= y are there in the appropriate εi.

We now define ∆′ in the same way as in Theorem 5 (thus ∆′ is a
monadic type). The set of forbidden lifts F ′ is also defined analogously
as in Theorem 5 with the only one difference which relates to the con-
struction of formula ϕF′ which will have now more clauses: the formula
ϕF′ will have all the atom clauses as in Theorem 5 (i.e. ϕF′(x1, . . . , x|F′|)
will contain as atoms all those tuples which express the fact that a tu-
ple a is in the homomorphic image of F′) and additionally we will have
atoms x 6= y for every pair of different variables. After this change we
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see easily that the rest of the proof does not depend on which category
we work.

�

Remark 8. If we do not enforce the condition that the atom x 6= y
appears in every clause containing the variables x and y (Step 1. of the
proof) before constructing F ′ then we get some weaker characteriza-
tion. Namely, the language L will be similar to the form of Theorem 7
but we allow partially injective mappings not only injective ones. For
every F′ ∈ F ′ and pair x, y ∈ F′ we may have the plus condition that
they can not collapse by a homomorphism. The class defined by such
partially injective forbidden lifts still equals to the class of languages
of the form Φ(Forbinj(F

′)): we can do Step 2. in this combinatorial
setting, too. Here the transformation means that for any F′ ∈ F ′ and
pair x, y ∈ F′ which may collapse, we exchange F′ by two new forbid-
den structures. One of the structures is F′ with conditions on the same
pairs plus we require that x and y may not collapse. The other is a
factor of F′ where we identify x and y, and we have the condition on
a pair of elements of new structures not to collapse iff we have it on
a pair in their preimages in F′. The iteration of this transformation
expresses a language defined in partially injective setting in the fully
injective terminology of Theorem 7 (with the same ∆ and ∆′).

Let us now transform the third syntactic class of Theorem 3.
Theorem 9. For every language L ∈ NP there exist relational types
∆ and ∆′, where ∆′ contains only unary relational symbols and a finite
set F ′ ⊂ Relcov

full(∆, ∆′) such that L is computationally equivalent to the
class Φ(Forbfull(F

′)).

Proof. The proof of Theorem 9 is again a modification of the above
proof of Theorem 5 (and of Theorem 7) for formulas in the monadic
SNP without inequality. The construction of F ′ is even easier: Again,
in Step 1., it suffices to assume that ϕL is canonical primitive. We only
need to be careful with construction of the formula ϕF′(A′)(x1, . . . , x|′F|)
expressing the fact that the set {x1, . . . , x|F′|} ⊆ A′ is the homomor-
phic image of F′ (recall that all homomorphism are now considered in
Relfull(∆, ∆′)). The formula will contain again more atoms. For every
tuple a in the input relation R we will have an atom expressing that
the image of the tuple is in relation R like in the proof of Theorem 5.
But additionally we will have the negation of such an atom for every
tuple not contained by an input relation. The rest of the proof is again
the same. �
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Similarly as above (Remark 8 to Theorem 7) we have the possibility
to state a weaker theorem in the notion of partially full mappings.
Consider a relational symbol R of arity q. We may have two conditions
on an q-tuple in a structure A, either it is in R or not. In the category
Relfull this gives some restrictions on the homomorphisms of A in
both cases. We may generalize the class of objects such that for every
relation R and q-tuple we have three possibilities (from the viewpoint of
mappings to a structure): either the tuple should be mapped to a tuple
in R, or to a tuple not in R or we have no restriction. We may define a
class of languages in Rel(∆) using this enlarged set of forbidden lifts.
However this new class of languages is still equal to those of the form
Φ(Forbfull(F

′)). This may be seen as follows: a forbidden lift in this
new setting may be replaced by a set of forbidden lift in Relcov

full(∆, ∆′)
as for the set of tuple-relation pairs without any condition we take all
possibilities of relation and non-relation conditions. This new set of
forbidden lifts defines the same language.

4. Lifts and Shadows of Dualities

Some of the transformations presented in Section 4 lead to deeper
results - the lifts and shadows give rise to a life on their own. We prove
here two results which will prove to be useful in the next section.

It follows from the Section 3 that shadows of classes Forb(F ′) (in
three categories Relcov(∆, ∆′), Relcov

inj (∆, ∆′) and Relcov
full(∆, ∆′)) in-

clude all NP-complete languages. What about finite dualities? A deli-
cate interplay of lifting and shadows for dualities is expressed by the fol-
lowing two statements which deal (for brevity) with classes Relcov(∆, ∆′)
only. Despite its formal complexity Theorem 10 is an easy statement:

Theorem 10. Let F ′ be a finite set of structures in Relcov(∆, ∆′).
Suppose that there exist a finite set of structures D′ such that (F ′,D′)
is a finite duality in Relcov(∆, ∆′). Then the following sets coincide: the
shadow Φ(Forb(F ′)) = {Φ(A′) : A′ ∈ Forb(F ′)} and CSP (Φ(D′)) =
∨

D′∈D′ CSP (Φ(D′)). Explicitly: for every A ∈ Rel(∆) there exists
A′ ∈ Rel(∆, ∆′), Φ(A′) = A and F′ 6−→ A′ for every F′ ∈ F ′ iff
A −→ Φ(D′) for some D′ ∈ D′ .

Note that we do not claim that the pair (F ,D) is a duality in the
class Rel(∆). This of course does not hold (as shown by our exam-
ple of 3-colorability in the introduction). But the images of all struc-
tures defined by all obstacles of CSP (D′) are forming all obstacles of
CSP (Φ(D′)). We call this shadow duality.
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It is important that Theorem 10 may be sometimes reversed: shadow
dualities may be sometimes “lifted”. This is non-trivial and in fact
Theorem 11 may be seen as the core of this paper.
Theorem 11. Let F ′ be a finite set of structures in Relcov(∆, ∆′), con-
sider Forb(F ′) and suppose that Φ(Forb(F ′)) = CSP (D) (in Rel(∆))
for a finite set D of objects of Rel(∆). (In other words let the pair
(F ′,D) form a shadow duality.) Assume also that CSP (D) 6= Rel(∆)
and that ∆′ contains only unary relations. Then there exists a finite
set D′ in Relcov(∆, ∆′) such that Forb(F ′) = CSP (D′).

Before proving Theorems 10 and 11 we formulate first a lemma which
we shall use repeatedly:

Lemma 12. (lifting) Let A,B ∈ Rel(∆), homomorphism f : A −→
B and Φ(B′) = B be given. Then there exists A′ ∈ Relcov(∆, ∆′),
Φ(A′) = A such that the mapping f is a homomorphism A′ −→ B′ in
Relcov(∆, ∆′).

A’ B’

A Bf

ΦΦ

f

Proof. Assume that A,B ∈ Rel(∆), Φ(B′) = B and f : A −→ B are
as in the statement. For each R ∈ ∆′ put R(A′) = f−1(R(B′)). It is
easy to see that A′ ∈ Relcov(∆, ∆′) �

Proof. (of Theorem 10) Suppose that A ∈ CSP (Φ(D′)), say A ∈
CSP (Φ(D′)). Now for a homomorphism f : A −→ Φ(D′) there is
at least one lift A′ of A such that the mapping f is a homomor-
phism A′ → D′ (here we use Lifting Lemma 12). By the duality
(F ′,D′) (in Relcov(∆, ∆′)) F′

9 A′ for any F′ ∈ D′ and thus in turn
A ∈ Φ(Forb(F ′)).

Conversely, let us assume that A′ ∈ Forb(F ′) satisfies Φ(A′) = A.
But then A′ ∈ CSP (D′) and thus by the functorial property of Φ we
have A = Φ(A′) ∈ CSP (Φ(D′)).

�
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Proof. (of Theorem 11) Assume Φ(Forb(F ′)) = CSP (D). Our goal is
to find D′ such that Forb(F ′) = CSP (D′). This will follow as a (non-
trivial) combination of Theorems 1 and 2. By Theorem 1 we know
that if F ′ is a set of (relational) forests then the set F ′ has a dual set
D′ (in the class Relcov(∆, ∆′)). So assume the contrary that one of
the structures, say F′

0, fails to be a forest (i.e. we assume that one of
the components of F′

0 has a cycle). We proceed by a refined induction
(which will allow us to use more properties of F′

0). Let us introduce
carefully the setting of the induction.

We assume shadow duality Φ(Forb(F ′)) = CSP (D). Let D be fixed
throughout the proof. Clearly many sets F ′ will do the job and we
select the set F ′ such that F ′ consists of cores of all homomorphic
images (explicitly: we close F ′ on homomorphic images and then take
the set of cores of all these structures). Among all such sets F ′ we
take a set of minimal cardinality. It will be again denoted by F ′. We
proceed by induction on the size |F ′| of F ′.

The set Forb(F ′) is clearly determined by the minimal elements of F ′

(minimal in the homomorphism order). Thus let us assume that one of
these minimal elements, say F′

0, is not a forest. By the minimality of F ′

we see that we have a proper inclusion Φ(Forb(F ′ \{F′
0})) ⊃ CSP (D).

Thus there exists a structure S in the difference. But this in turn means
that there has to be a lift S′ of S such that F′

0 −→ S′ and S 6→ D for
every D ∈ D. In fact not only that: as F′

0 is a core, as Forb(F ′) is
homomorphism closed and as F ′ has minimal size we conclude that
there exist S and S′ such that any homomorphism F′

0 −→ S′ is a
monomorphism (i.e. one-to-one, otherwise we could replace F′

0 by a
set of all its homomorphic images - F′

0 would not be needed).
Now we apply (the second non-trivial ingredient) Theorem 2 to struc-

ture S and an ℓ > |X(F′
0)|: we find a structure S0 with the following

properties: S0 −→ S, S0 −→ D if and only if S −→ D for every D ∈ D
and S0 contains no cycles of length ≤ ℓ. It follows that S0 6∈ CSP (D).
Next we apply Lemma 12 to obtain a structure S′

0 with S′
0 −→ S′.

Now we use that all relations in ∆′ are unary and we see that S′
0 does

not contain cycles of length ≤ ℓ. Now for any F′ ∈ F ′, F′ 6= F′
0 we

have F′
9 S′

0 as S′
0 → S′ and F′

9 S′. As the only homomorphism
F′

0 −→ S′ is a monomorphism the only (hypothetical) homomorphism
F′

0 −→ S′ is also monomorphism. But this is a contradiction as F′
0

contains a cycle while S′
0 has no cycles of length ≤ ℓ. This concludes

the proof. �
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5. MMSNP and forbidden patterns

Madelaine [18] introduced the class FP. Every language of the class
FP is defined by forbidden patterns which are defined as follows: Con-
sider the finite relational type ∆, the finite set T and the set of pairs
(F1, ϕ1), . . . , (Fn, ϕn), where each Fi ∈ Rel(∆) and ϕi : Fi → T is a
mapping (i = 1, . . . , n). The language L belongs to the class FP if
there are patterns (F1, ϕ1), . . . , (Fn, ϕn) such that L is the class of all
structures A ∈ Rel(∆) for which there exists a mapping ϕ : A → T
such that for all i = 1, . . . , n no homomorphism α : Fi → A satisfies
ϕ◦α 6= ϕi. Formally: L = {A ∈ Rel(∆) : ∃ϕ : A → T such that ∀i, α :
Fi → A homomorphism ϕ ◦ α 6= ϕi}.

This is a special case of our approach and the class FP may be
equivalently defined as follows (using lifts and shadows): we say that
the set L ⊆ Rel(∆) is an FP language if there exist a finite type ∆′ of
monadic (unary) relational symbols and a language L′ ∈ Relcov(∆, ∆′)
such that L = Φ(Forb(F ′)) for a finite set F ′ ⊆ Relcov(∆, ∆′). (Thus
∆′ is a partition on every F′ ∈ F ′.) The equivalence is clear: we con-
sider the signature (relational type) ∆′ that contains the unary symbol
ut for every element t ∈ T . To every pattern (Fi, ϕi) we correspond
the relational structure F′

i ∈ Rel(∆, ∆′) with the shadow Fi such that
the element x ∈ Fi is in the relation uϕi(x).

In other words the class FP is the class of languages defined by
forbidden monadic lifts of the class Rel(∆).

It has been proved in [18] that the classes FP and MMSNP are equal.
This also follows from Theorem 5: every MMSNP problem (as any
NP problem) can be considered as the shadow of a language Forb(F ′)
in a lifted category Relcov(∆, ∆′). It follows from the above proof of
Theorem 5 that in the case of the class MMSNP these lifted relations
(i.e. ∆′) are all unary. And for unary relations we use the preceding
remark which claims that unary and forbidden patterns are equivalent.

Madelaine and Stewart [19] gave a long process to decide whether an
FP language is a finite union of CSP languages. We use Theorems 10
and 11 and the description of dualities for relational structures [7] to
give a short characterization of a more general class of languages.

Theorem 13. Consider the language L determined by forbidden monadic
lifts. Explicitly, L = Φ(Forb(F ′)) for a set F ′ ⊂ Rel(∆, ∆′) (with ∆′

monadic). If no F′ ∈ Forb(F ′) contains a cycle then there is a set of
finite structures D ⊆ Rel(∆) such that L = CSP (D). If one of the
lifts F′ in a minimal subfamily of F ′ contains a cycle in its core then
the language L is not a finite union of CSP languages.
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Proof. If no F′ ∈ Forb(F ′) contains a cycle then the set F ′ has a dual
D′ in Relcov(∆, ∆′) by [7], and the shadow of this set D′ gives the dual
set D of the set Φ(Forb(F ′)) (by Theorem 10). On the other side if one
F′ ∈ Forb(F ′) contains a cycle in its core and if F ′ is minimal (i.e. F′

is needed) then Forb(F ′) does not have a dual in Relcov(∆, ∆′). The
shadow of the language Forb(F ′) is the language L and consequently
this fails to be a finite union of CSP languages by Theorem 11 (as every
monadic shadow duality can be lifted). �

6. Understanding Feder - Vardi

Now we give a proof one of the principal results of [6] by tools which
we developed in previous sections. Feder and Vardi have proved that
the classes MMSNP and CSP are random equivalent, this was later
derandomised. Here we discuss the deterministic part of the Feder-
Vardi proof. It seems that our setting streamlines some of the earlier
arguments. A structure A is biconnected if it contains a cycle and
every point deleted substructure is connected, in other words for every
three distinct elements x, y and z there is a path connecting x and
y that avoids z. Note that a biconnected structure with more than
one relational tuple contains a cycle. Inclusion maximal biconnected
substructures are called biconnected components (in graph theory they
are often called blocks). For the set of relational structures D we denote
by CSPgirth>k(D) the language of structures in CSP (D) with girth
larger than k. We will prove the following theorem.

Theorem 14. [6] For every MMSNP language L there is a finite set of
relational structures D (of different type) and a positive integer k such
that the following hold.

(1) L can be polynomially reduced to CSP (D).
(2) The language CSPgirth>k(D) can be polynomially reduced to L.

Proof. We construct the set D. Consider a class Forb(F ′) of monadic
lifts of structures satisfying L = Φ(Forb(F ′)) (it exists by Theorem 5).
We may suppose that all structures in F ′ are cores (in Relcov(∆, ∆′))
and there is no homomorphism between them. If all the structures in
F ′ have no cycles then L itself is a finite union of CSP languages by
Theorem 13. Otherwise we will add some forbidden lifts without chang-
ing the language L (the reason will be clear later). These additional
forbidden lifts will be induced by biconnected components. Consider
the set BC of structures in Rel(∆) which are the shadow of some bi-
connected component of a forbidden lift F′ ∈ Forb(F ′). Observe that
each of the structures in BC is biconnected (as all lifts are monadic).
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Let F′ be a forbidden lift and suppose that there is a G′ ∈ Rel(∆, ∆′)
such that all biconnected components of G are in BC, and there is a
homomorphism α : F′ → G′. Moreover, we suppose that G′ is minimal
in the sense that if we remove the relations in one of its biconnected
components then α is no longer a homomorphism. For such an F′ and
G′ we add G′ to the list of forbidden lifts. For every original lift F′ we
add only finitely many G′, so we have finitely many in the end. De-
note this larger set of forbidden lifts by G′. We shall now prove that we
have again L = Φ(Forb(G′)). Clearly G′ ⊇ F ′, proven by the identical
homomorphisms of forbidden lifts. This yields Forb(G′) ⊆ Forb(F ′).
On the other hand every G′ ∈ G′ is the homomorphic image of some
F′ ∈ F ′, hence the two classes are equal.

Consider the following relational type β. For every structure in BC
there is a relational symbol of arity of the size of the component,
the type β consists of these relational symbols. Consider the func-
tor Ψ : Rel(∆) → Rel(β) that assigns to a structure A the following
structure Ψ(A): the base set of Ψ(A) and A are the same, and the
tuple (a1, . . . , al) is in the relation B ∈ β iff the appropriate struc-
ture induced by the set {b1, . . . , bl} (belonging to BC) can be mapped
homomorphically to A such that bi maps to ai. Now Ψ induces a
functor Ψ′ : Rel(∆, ∆′) → Rel(β, ∆′). We will need another functor
Θ : Rel(β) → Rel(∆). We define Θ(A) on the same base set. The
set of relations on Θ(A) is constructed in such a way that we replace
every tuple in relation B ∈ β by the biconnected component in BC
corresponding to B. The functors Ψ, Ψ′, Θ and Θ′ are really functorial,
i.e. A → B implies Ψ(A) → Ψ(B), and the same holds for Ψ′, Θ and
Θ′. Clearly Θ ◦ Ψ(A) = A for every A ∈ Rel(∆).

We will work with the following set of forbidden lifts H′. For every
G′ ∈ G′ replace every biconnected component of G′ by the appropriate
relational tuple in β, denote this by H′

G
. The set H′ consists of these

structures. It is easy to see that all of these structures are trees. Now
there is a finite dual D′ of H′, i.e. Forb(H′) = CSP (D′) holds. And
there is a shadow duality (H′,D), where D = Φ(D′).

First we prove (1). We will show that A ∈ L ⇐⇒ ∃A′Ψ(A) ∈
Forb(H′) holds for every A ∈ Rel(∆). It suffices to prove for every
A′ ∈ Rel(∆,∆′) that A′ ∈ Forb(G′) ⇐⇒ Ψ′(A′) ∈ Forb(H′). If
Ψ′(A′) /∈ Forb(H′) then the forbidden lift H′

G
maps to Ψ′(A′). Now

Θ′(H′
G

) = G′ maps to Θ′(Ψ′(A′)) = A′. On the other hand suppose
that G′ → A′ holds for some G′ ∈ G′. Now Ψ′(G′) → Ψ′(A′). The
forbidden lift H′

G
has the same base set as Ψ′(G′), and it contains less

relations, hence H′
G
→ Ψ′(A′).
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In order to prove (2) consider a relational structure A ∈ Rel(β)
with girth larger than the size of the largest forbidden lift. We will
prove A ∈ Φ(Forb(H′)) ⇐⇒ Θ(A) ∈ L. It suffices to show A′ ∈
Forb(H′) ⇐⇒ Θ′(A′) ∈ Forb(G′). First suppose that G′ → Θ′(A′)
holds for some G′ ∈ G′. Here we may assume by the choice of G′

that the image of each biconnected component of G′ is isomorphic to
a structure in BC, and the restriction of the mapping to this compo-
nent is an isomorphism. By the large girth condition this yields that
the image of this component is contained by a structure in BC cor-
responding to one single tuple of A′, moreover we may suppose that
these are equal. Hence the same mapping is actually a H′

G
→ A′ ho-

momorphism. Secondly suppose that H′
G
→ A′, where H′

G
∈ H′. Now

G′ = Θ′(H′
G

) → Θ′(A′). This completes the proof of the theorem. �

The remaining part is the reduction of CSP with large girth to CSP.
Feder and Vardi proved a randomized reduction, this was later deran-
domized.

Lemma 15 ([15]). For every finite set of relational structures D and
integer k > 0 the language CSP (D) can be polynomially reduced to
CSPgirth>k(D).

The essence of this reduction is the Sparse Incomparability Lemma
2. This polynomial reduction was proved with expanders in the case of
digraphs [21]. The reduction in the case of general relational structures
needed a generalization of expanders called expander (relational) struc-
tures. The notion of expander relational structures was introduced in
[15] [14], and also a polynomial time construction of such structures
with large girth is given there.
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