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abstract. We consider multi-modal logics interpreted over edge-labelled
graphs with a modality 〈#〉, where 〈#〉ϕ means ‘ϕ is accessible by an edge
with some label’. In a logic with finitely many edge labels, 〈#〉 is definable,
but if the set of labels is infinite, it is an independent modality. We axioma-
tise multi-modal K, deterministic multi-modal K, and PDL with converse
and a single nominal, extended with #. The latter gives an axiomatisation
of the logic PDLpath introduced in [3].
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1 Introduction

In this paper, we consider multi-modal logics interpreted over edge-labelled
graphs with a modality 〈#〉, where 〈#〉ϕ means ‘ϕ is accessible by an edge
with some label’. We start by explaining what motivated our interest in
the existential modality: namely, logics for modelling semi-structured data,
such as data on the Web [1]. A collection of web pages can be represented
as a graph with labelled edges. Edge labels come from some set I, which
is either finite but very large, or even countably infinite. For example, I
could be the set of all URLs, or all possible phrases in English (link names).
Suppose we want to reason about constraints on possible paths in a graph,
expressed as inclusions of regular expressions (inclusion constraints were
introduced by Abiteboul and Vianu in [2]):

a; (b+ c); #; d∗ ⊆ e; f

(if a data item is reachable by a path defined by a; (b+c); #; d∗, that is: an a
link followed by either a b or a c link, followed by an arbitrary link, followed
by finitely many d links, then it is also reachable by a path e; f). We can
study the implication problem for inclusion constraints (whether a set of
constraints implies a constraint) by expressing it in a logical language; in
[3], a logic called PDLpath was introduced for this purpose. The only unusual
feature of PDLpath compared to other flavours of PDL, see e.g. [6, 5], is the
wild card, or existential modality 〈#〉, standing for ‘any label’. In this paper,
we consider axiomatisation and decidability problems for 〈#〉, since, as far
as we know, it has not been studied extensively before. The only reference
we could find is in [4], where 〈#〉 is used to make DPDL with intersection of
programs badly undecidable. Clearly, in a language with finitely many edge
labels 〈#〉 is definable. It is easy to show (we do it below) that if the set of
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labels is infinite, then 〈#〉 is not definable. But even if the set of labels I is
finite, we may not want to write the very large formulas required to define
〈#〉 (disjunction over all possible labels in I). For example, if I is the set
of all URLs (which is finite but contains billions of elements), consider the
difference between saying ‘this web page does not have any outgoing links’
as ¬〈#〉� and the alternative expression which involves a disjunction over
all possible URLs.

The paper is organised as follows. First we study the logic K# , obtained
by adding 〈#〉 to multi-modal K. We give a complete axiomatisation of
K# and show that its complexity is the same as that of multi-modal K.
However, an essential technical device we use in those proofs would not
work with deterministic graphs. The device is as follows: given a formula ϕ
and a model M for that formula, replace all edge labels in M which do not
occur in ϕ by a single fresh edge label, and show that the resulting model
still satisfies ϕ. This construction would not work if M were a deterministic
model; we therefore believe that the completeness and decidability proof for
deterministic multi-modal K, DK# is of an independent interest. This proof
is given in section 4. In section 5 we briefly describe PDLpath introduced in
[3] and in section 6 give a sound and weakly complete axiomatisation for it;
decidability was proved in [3].

2 Logics K# and DK#

Consider the propositional modal language LI
# containing (1) a countable

set of propositional parameters Par; (2) propositional connectives ¬ (“not”)
and ∨ (“or”); (3) for every element i of the countable set I of modal in-
dices, a modal operator 〈i〉 ; and (4) a modal operator 〈#〉 . All the other
connectives, including the dual modalities [i] and [#], can be defined in the
usual way. The formulas of LI

# are defined by

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈i〉ϕ | 〈#〉ϕ,

where p ∈ Par and i ∈ I. These formulas are evaluated on LI
#-models.

DEFINITION 1. An LI
#-model is a tuple M = (W, {Ri}i∈I ,R#, V ), where

W �= ∅, Ri ⊆ W ×W , R# =
⋃

i∈I Ri, and V is a function from Par into
2W .

M is deterministic if, for every w ∈W and every i ∈ I, there is no more
than one v such that wRiv.

The truth definitions for formulas of LI
# are standard; in particular,

• M, w � 〈i〉ϕ iff ∃v ∈W (wRiv and M, v � ϕ)

• M, w � 〈#〉ϕ iff ∃v ∈ W (wR#v and M, v � ϕ).

It is easy to see that 〈#〉 increases the expressive power of only those
languages that contain at least a countable set I of modal indices; otherwise,
〈#〉ϕ can be defined as a finite disjunction of formulas of the form 〈i〉ϕ.
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LEMMA 2. Let ϕ be a formula not containing 〈#〉, and let all labels occur-
ring in ϕ be in the set L. Then ϕ is preserved with respect to the operation
of removing Ri edges (where i �∈ L).

Proof. Let M, w � ϕ, and let M′ be obtained from M by removing all
edges with labels not in L. Then M and M′ are bisimilar with respect to
{Ri : i ∈ L}, hence M′, w � ϕ. �

LEMMA 3. Let ϕ be a formula which does contain 〈#〉, and let all labels
occurring in ϕ be in the set L. Then,

1. ϕ is not guaranteed to be preserved with respect to removing non-L
edges;

2. ϕ is preserved with respect to renaming non-L edges, provided that the
new names are also not in L.

COROLLARY 4. 〈#〉 is not definable in a language with an infinite set of
labels I.

Let us denote the logic of all LI
#-models as K# and the logic of all

deterministic LI
#-models as DK# . We are now going to formulate Hilbert-

style axiomatisations of K# and DK# . Since 〈#〉 resembles the existential
quantifier of first-order logic, it’s not hard to see that the axiomatisation of
K# should look as follows (π stands for either an arbitrary i ∈ I or #):

Axiom schemata:
(A0) All classical tautologies;
(K) [π](ϕ→ ψ) → ([π]ϕ→ [π]ψ);
(ER) 〈i〉ϕ→ 〈#〉ϕ.
Inference rules :

(MP)
� ϕ→ ψ,� ϕ

� ψ ; (N)
� ϕ

� [π]ϕ
;

(EL)
� 〈i〉ϕ→ ψ

� 〈#〉ϕ→ ψ
, provided i does not occur in ψ.

Also, it is not difficult to guess that the axiomatisation of DK# can be
obtained by adding to the axiom schemata above the ‘axiom of determin-
ism’:

D 〈i〉ϕ→ [i]ϕ.
It is easy to show the following.

THEOREM 5. K# is sound with respect to the class of all L#-models. DK#

is sound with respect to the class of all deterministic L#-models.

It is also easy to see that both K# and DK# are non-compact (consider
the set Γ = { 〈#〉 p,¬〈i〉p : i ∈ I }), and hence don’t have strongly-complete
axiomatisations. In the next two sections, we prove weak completeness of
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K# and DK# , showing that every K# -consistent and every DK# -consistent
formula has a model.

3 Completeness for K#

We use the completeness-via-finite-models technique described in detail
in [4].

Let us define ∼ ϕ, the pseudo-negation of ϕ, as follows: if ϕ is ¬ψ, ∼ ϕ
is ψ; otherwise, it is ¬ϕ. By the closure of the set of formulas Σ, we mean
the smallest set CL(Σ) containing all the subformulas of formulas of Σ and
their pseudo-negations. It is easy to see that CL(Σ) is finite whenever Σ
is. A finite canonical model for a K# -consistent formula ϕ is built out of
{ϕ}-atoms, maximally consistent subsets of CL({ϕ}). (In general, for an
arbitrary set of formulas Σ, a Σ-atom is a maximally consistent subset of
CL(Σ).) The following is straightforward:

LEMMA 6. If ϕ ∈ CL(Σ) is K# -consistent, then there exists an atom A
over Σ such that ϕ ∈ A.

It is easy to see that every Σ-atom A has the following properties:

1. For every ϕ ∈ CL(Σ), exactly one of ϕ and ∼ ϕ belongs to A.

2. For every ϕ ∨ ψ ∈ CL(Σ), ϕ ∈ CL(Σ) or ψ ∈ CL(Σ).

Now we define finite canonical models for K# .

DEFINITION 7. Let Σ be a finite set of LI
#-formulas and let a ∈ I be such

that a does not occur in Σ. The finite canonical model over Σ, MΣ, is the
tuple (At(Σ), {RΣ

i }i∈I ,RΣ
#, V

Σ), where

1. At(Σ) is the set of all atoms over Σ;

2. ARΣ
i A

′ iff i ∈ Σ or i = a and Â ∧ 〈i〉 Â′ is consistent (X̂ stands for∧
ϕ∈X ϕ);

3. ARΣ
#A

′ iff Â ∧ 〈#〉 Â′ is consistent;

4. For every p ∈ Par, V Σ(p) = {A ∈ At(Σ) : p ∈ A }.

In a standard way (for details, see [4]), we can prove the following lemma.

LEMMA 8. Let Σ be a set of LI
#-formulas, A be an atom over Σ, and π

be either an index occurring in Σ or π = #. Then, for all 〈π〉ϕ ∈ CL(Σ),
〈π〉ϕ ∈ A iff there is an atom A′ such that ARπA

′ and ϕ ∈ A′.

From lemma 8 and the properties of atoms, we immediately obtain the
following lemma.

LEMMA 9. Let Σ be a set of L# formulas, MΣ be the finite canonical
model over Σ, and ψ ∈ CL(Σ). Then, for every A ∈ At(Σ), MΣ, A � ψ iff
ψ ∈ A.
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All that remains to be done is to show that finite canonical models are
LI

#-models.

LEMMA 10. Every finite canonical model MΣ = (At(Σ), {RΣ
i }i∈I ,RΣ

#, V
Σ)

is an L#-model.

Proof. All we have to prove is that RΣ
# =

⋃
i∈I RΣ

i . First, right-to-left.
Suppose that, for some i ∈ I, ARΣ

i A
′ but ARΣ

#A
′ does not hold. Then, by

definition 7, Â ∧ 〈i〉 Â′ is consistent, but Â ∧ 〈#〉 Â′ is inconsistent. Then,
� 〈#〉 Â′ → ¬Â and hence, by (ER), � 〈i〉 Â′ → ¬Â, which is impossible
since Â ∧ 〈i〉 Â′ is consistent.

Now, left-to-right. Suppose that ARΣ
#A

′. If, for some i ∈ I, ARΣ
i A

′, then
we are done. So, let us assume that for no i ∈ I does ARΣ

i A
′ hold. Then,

ARΣ
aA

′ holds. Indeed, if we suppose otherwise, then Â∧〈#〉 Â′ is consistent
and Â ∧ 〈a〉 Â′ inconsistent. But then � 〈a〉 Â′ → ¬Â, and hence, by (EL)
(note that a /∈ Σ), � 〈#〉 Â′ → ¬Â, which is impossible since Â ∧ 〈#〉 Â′ is
consistent. �
THEOREM 11. K# is complete with respect to the class of all L# models.

Proof. Immediately follows from lemmas 6, 9, and 10. �
REMARK 12. If we had not added to the indices occurring in Σ a “new”
index a, we would not have been able to prove that finite canonical models
are L#-models. As a counterexample, consider the set Σ = {〈#〉 p∧¬〈b〉 p}.
Since 〈#〉 p ∧ ¬〈b〉 p is consistent, in MΣ there is an atom A such that
〈#〉 p ∧ ¬〈b〉 p ∈ A. Then, for some B ∈ MΣ such that p ∈ B, we have
ARΣ

#B, but for no index c ∈ Σ do we have ARΣ
c B.

In the proof of Theorem 11, we have constructed a model for a consistent
formula ϕ which is of size 2|ϕ|. This gives us decidability of K# . However,
the complexity of checking whether ϕ is satisfiable by examining all models
of size 2|ϕ| is NEXPTIME. We can do better than that and show that the
complexity of satisfiability problem for K# is no worse than that of multi-
modal K.

THEOREM 13. The satisfiability problem for K# is PSPACE-complete.

Proof. There is a polynomial reduction from K# satisfiability to multi-
modal K satisfiability (which is PSPACE-complete). A K# formula ϕ which
contains labels i1, . . . , in is satisfiable if and only if a formula ϕ′ is satisfiable,
where ϕ′ is obtained from ϕ by replacing each subformula 〈#〉ψ with 〈i1〉ψ∨
. . . ∨ 〈in+1〉ψ. From Lemma 3: rename all labels which do not occur in
ϕ to be in+1. The resulting model satisfies ϕ′. The other direction: let
M, w � ϕ′. ϕ′ does not contain 〈#〉, so it is satisfied in model M′ where
all labels not in the set {i1, . . . , in+1} are removed (by Lemma 2). But on
M′, ϕ and ϕ′ are equivalent, so M′, w � ϕ.

PSPACE-hardness follows from PSPACE-completeness of multi-modal K
and the fact that K# includes multi-modal K. �
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4 Completeness for DK#

The above proof cannot be turned into a completeness proof for DK# in a
straightforward way. If we simply replace in the definition of finite canonical
models K# -consistency by DK# -consistency, we will not be able to prove
that models so defined are deterministic, as the following example shows.

EXAMPLE 14. Consider the formula ϕ = p ∧ 〈i〉 q and the finite canonical
model Mϕ over ϕ. Then, among the points of Mϕ (that is, among DK# -
atoms over p∧〈i〉 q) are A = {p, q, 〈i〉 q, p∧〈i〉 q} and A′ = {¬p, q, 〈i〉 q,¬(p∧
〈i〉 q)}. Then, both Â∧〈i〉 Â and Â∧〈i〉 Â′ are DK# -consistent, which means
that ARϕ

i A and ARϕ
i A

′.

Nevertheless, we will be able to reshape finite canonical models for DK#

into deterministic models. First, we need to slightly adjust the definition
of closure from the previous section. Given a subformula ψ of ϕ, we call
the number of modal operators whose scope contains ψ the modal depth
of ψ within ϕ, symbolically mdϕ(ψ). Now, by the deterministic closure of
the set of formulas Σ, we mean the smallest set DCL(Σ) containing (1) all
the subformulas of formulas of Σ, (2) their pseudo-negations, and (3) for
every ϕ ∈ Σ and ψ such that mdϕ(ψ) > 0, if index i occurs in Σ, then
〈i〉ψ ∈ DCL(Σ) and 〈i〉 ∼ ψ ∈ DCL(Σ). It is easy to see that DCL(Σ) is
finite whenever Σ is. In this section, Σ-atoms are taken to be maximally
DK# -consistent subsets of DCL(Σ).

DEFINITION 15. Let Σ be a finite set of LI
#-formulas. The finite canonical

model over Σ, MΣ, is the tuple (At(Σ), {RΣ
i }i∈I ,RΣ

#, V
Σ), where

1. At(Σ) is the set of all atoms over Σ;

2. ARΣ
i A

′ iff Â ∧ 〈i〉 Â′ is consistent;

3. ARΣ
#A

′ iff Â ∧ 〈#〉 Â′ is consistent;

4. For every p ∈ Par, V Σ(p) = {A ∈ At(Σ) : p ∈ A }.

Proceeding exactly as in the completeness proof for K# , we get the fol-
lowing two lemmas.

LEMMA 16. Let Σ be a set of LI
# formulas, MΣ be the finite canonical

model for DK# over Σ, and ψ ∈ DCL(Σ). Then, for every A ∈ At(Σ),
MΣ, A � ψ iff ψ ∈ A.

LEMMA 17. Every finite canonical model MΣ = (At(Σ), {RΣ
i }i∈I ,RΣ

#, V
Σ)

is an L#-model.

Now, we have to reshape MΣ into a deterministic model. We do so in
two stages: first, we get rid of non-determinism with respect to indices not
occurring in Σ, and then with respect to indices occurring in Σ. The first
stage is easy.
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LEMMA 18. Let MΣ = (At(Σ), {RΣ
i }i∈I ,RΣ

#, V
Σ) be a finite canonical

model for DK# . Then, there exists a model M′Σ = (At(Σ), {R′Σ
i }i∈I ,RΣ

#, V
Σ)

such that (1) for every i /∈ Σ and every A,B,B′ ∈ At(Σ), if AR′Σ
i B and

AR′Σ
i B

′ then B = B′, (2) the number of Ri edges with i /∈ Σ, is at most
|At(Σ)|2, and (3) for every ψ ∈ DCL(Σ) and every X ∈ At(Σ), M′Σ, X � ψ
iff MΣ, X � ψ.

Proof. First, note that, by definition 15, if ARΣ
#B then ARΣ

i B holds for
every i not occurring in Σ. For every pair of atoms A and B connected by
RΣ

#, choose a single fresh link iAB between them not occurring in Σ, and
rename all other non-Σ links between A and B to be iAB. The renaming
of the links cannot affect the truth values of formulas in DCL(Σ), as the
renamed links are indexed by indices not occurring in Σ and hence DCL(Σ).

�

At the second stage, we proceed as follows. We will take a submodel of
M′ϕ generated by the atom Aϕ containing ϕ, unravel this submodel into a
tree-like model with root Aϕ and then prune the resultant tree, leaving only
one Ri branch for every i ∈ I. We show that such a model still satisfies ϕ,
since ϕ cannot tell apart the points on the branch we leave in the tree from
the pruned ones. We need the versions of tree-likeness and unravelling that
are slightly different from the standard ones.

DEFINITION 19. Let M = (W, {Ri}i∈I ,R#, V ) be a LI
#-model. M is

tree-like if the structure (W,R#) is an irreflexive tree. M is strongly tree-
like if M is tree-like and, for every (w, v) ∈ R#, there exists exactly one
i ∈ I such that (w, v) ∈ Ri.

THEOREM 20. Let M = (W, {Ri}i∈I ,R#, V ) be a rooted LI
#-model with

root w. Then, there exists a strongly tree-like LI
#-model MT = (WT ,

{RT
i }i∈I ,RT

#, V
T ) with root w such that, for every LI

#-formula ϕ, M, w � ϕ

iff MT , w � ϕ.

Proof. First, consider model M′ = (W ′, {R′
i}i∈I ,R′

#, V
′), where

1. W is the set of all possible sequences of the form (w,wi1
1 , . . . , w

in
n ),

where w1, . . . , wn≥0 ∈W and i1, . . . , in ∈ I;

2. (w,wi1
1 , . . . , w

in
n )R′

j(w,wi1
1 , . . . , w

in
n , w

in+1
n+1 ) if wnRjwn+1 and j = in+1;

3. R′
# =

⋃
i∈I R′

i;

4. V ′(p) = { (w,wi1
1 , . . . , w

in
n ) : wn ∈ V (p) }, for every p ∈ Par.

Next, take the submodel of M′ generated by w. Let us call it MT . It is clear
that MT is strongly tree-like (the last member of the sequence serving as
the second argument of each R′

i bears exactly one superscript). The truth-
preservation is guaranteed by the existence of a bisimulation Z ⊆W ×WT

defined by vZ(w,wi1
1 , . . . , w

in
n ) iff wn = v, which connects the roots of the

two models. �
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Now we show that, in tree-like models, for every formula ϕ, the value
of ϕ at the root does not change if we replace a point v accessible from
the root in k steps with another point v′ such that v and v′ agree on
all the subformulas of ϕ of modal depth k. (In the statement of the fol-
lowing lemma, we use wRk

#v to mean that there are u1, . . . , uk−1 such
that wR#u1R# . . .R#uk−1R#v; in particular, wR0

#v means that w = v.
Sub(ϕ) stands for the set of all subformulas of ϕ.)

LEMMA 21. Let ϕ be a LI
#-formula, M = (W, {Ri}i∈I ,R#, V ) a tree-like

LI
#-model, w ∈ W , and v ∈ W such that wRk

#v. Let M′ be obtained from
M by replacing the subtree generated by v by another subtree, with root v′,
such that, for every ψ ∈ Sub(ϕ) with mdϕ(ψ) = k, M, v � ψ iff M′, v′ � ψ.
Then, M, w � ϕ iff M′, w′ � ϕ.

Proof. By induction on k
Let k = 0. Then, w = v. Moreover, v and v′ agree on all ψ ∈ Sub(ϕ)

with mdϕ(ψ) = 0. As mdϕ(ϕ) = 0, w and v′ agree on ϕ.
Assume that the statement of the lemma is true for k = n. We show that

it is true for k = n + 1. Suppose that it is not. Then, v and v′ agree on
all ψ ∈ Sub(ϕ) with mdϕ(ψ) = n + 1 and M, w � ϕ, but M′, w′

� ϕ (the
other case is symmetrical). Since no changes have been made to w itself,
ϕ should have a subformula 〈i〉χ with mdϕ(〈i〉χ) = 0 such that, for some
u such that wRiu and u ∈ path(w, v), M, u � χ but M′, u � χ (the other
case is symmetrical). Now, mdϕ(χ) = mdϕ(〈i〉χ) + 1 and Sub(χ) ⊆ Sub(ϕ);
therefore, v and v′ agree on all ψ ∈ Sub(χ) with mdχ(ψ) = n. As uRn

#v,
applying the inductive hypothesis to the tree generated by u, we get M, u �
χ iff M′, u � χ, a contradiction. �

LEMMA 22. Let MϕT be a strongly tree-like model obtained from the canon-
ical model over ϕ, Mϕ, by unravelling the submodel of Mϕ generated by
an atom Aϕ containing ϕ. Then, for every B,B′ ∈ MϕT such that, for
some C, CRiB and CRiB

′, and every ψ such that mdϕ(ψ) > 0, we have
MϕT , B � ψ iff MϕT , B′ � ψ.

Proof. Assume that there exist B and B′ such that CRiB and CRiB
′,

MϕT , B � ψ, and MϕT , B′
� ψ. Then, MϕT , C � 〈i〉ψ and MϕT , C �

〈i〉 ∼ ψ. Therefore, since 〈i〉ψ, 〈i〉 ∼ ψ ∈ DCL(ϕ), by lemma 16, 〈i〉ψ, 〈i〉 ∼
ψ ∈ C. This, however, is impossible, since by axiom (F), 〈i〉ψ, 〈i〉 ∼
ψ,�DK# ⊥. �

Now we can prove the completeness theorem.

THEOREM 23. DK# is weakly complete with respect to the class of deter-
ministic L#-models.

Proof. Let ϕ be a DK# -consistent formula. Build the finite canonical
model Mϕ over ϕ. There is in Mϕ an atom Aϕ such that ϕ ∈ Aϕ. By
lemma 16, Mϕ, Aϕ � ϕ. Remove, using the construction of lemma 18, all
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the “redundant” atomic links in Mϕ indexed by i not occurring in Σ. Next,
unravel M′ϕ into a strongly tree-like model M′ϕT using the construction of
theorem 20. Now, level by level, for every point C and label i at level n such
that C can reach several points B1, . . . , Bm by an edge labelled i, replace all
Bjs by B1. Denote the resultant model by M′ϕT ′

. By the lemmas above,
M′ϕT ′

, Aϕ � ϕ. Lastly, construct M′ϕT ′′
by replacing all identical copies

of B1 produced in construction of M′ϕT ′
by a single point B1. M′ϕT ′

and
M′ϕT ′′

are obviously bisimilar, so M′ϕT ′′
, Aϕ � ϕ. It is clear that M′ϕT ′′

is deterministic. �
The model for ϕ we have constructed in the proof of Theorem 23 is

possibly infinite (it is an unravelling of a possibly cyclic model Mϕ of size
2|ϕ|). We can however make it finite by pruning the tree at depth k, where
k is the maximal depth of nesting of modal operators in ϕ (note that k is
bound by |ϕ|). The branching factor of the tree is |ϕ| + 2|ϕ| (from every
node A, there are at most |ϕ| edges using labels from ϕ, and at most 2|ϕ|

fresh links - at most one for every other node B in the original canonical
model). Given the branching factor and the depth of the finite tree model,
the maximal number of nodes there is (|ϕ|+2|ϕ|)|ϕ|. This effective bounded
model property for DK# gives us the following theorem:

THEOREM 24. DK# is decidable.

The best upper bound we have is NEXPTIME (guess a model for ϕ of
size at most (|ϕ|+ 2|ϕ|)|ϕ|, which is O(2|ϕ|2), and verify that it satisfies ϕ).

5 Logic PDLpath

The language of PDLpath is an extension of the language of PDL, propo-
sitional dynamic logic. The language of PDL has two kinds of primitive
symbols: propositional parameters and atomic transitions (or, modality in-
dices). Indices are used to label edges in the transition system. Compound
path expressions are built out of indices using binary operators ◦ (compo-
sition), ∪ (union) and a unary operator ∗ (finite iteration). In addition to
these, the language of PDLpath , introduced in [3], has the modal identity
constant id, the unary converse operator ·− and the wild card modality #.
Moreover, the language of PDLpath has a single nominal (a propositional
letter that is true at exactly one point of a model) r, which is meant to mark
the root of the graph. In the literature, PDL with the converse operator is
referred to as converse PDL or CPDL . Thus, PDLpath is a fragment (since
we have only one nominal) of CPDL with nominals augmented with the
existential modality #.

In this paper, we give a complete Hilbert-style axiomatisation for PDLpath .
To that end, we need to extend the language of PDLpath as introduced in [3]
with the ”at” modality @ of hybrid logics, which we will need to axiomati-
cally describe the behaviour of the nominal r.

DEFINITION 25. Given a countable set of indices I = {i1, i2, . . . , in, . . .},
path expressions over I are defined by the following BNF expression:
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ΛI := I | id | # | ΛI ◦ ΛI | ΛI ∪ ΛI | Λ ∗
I | ΛI

−.

PDLpath -formulas over the set of path expressions ΛI are defined as follows:

ϕ := � | ⊥ | r | ¬ϕ | ϕ ∨ ϕ | 〈ΛI〉ϕ | @rϕ.

PDLpath -formulas are evaluated on path models.

DEFINITION 26. A path model M over the set of labels ΛI is a tuple
(W, {Rπ}π∈ΛI , V ), where

1. W �= ∅;
2. V is a function assigning some {w} ⊆W to r.

3. {Rπ}π∈ΛI is a collection of binary relations over W satisfying the
following conditions:

(a) R# =
⋃

i∈I Ri;

(b) Rid = { (w,w) : w ∈W } (identity relation);

(c) Rπ− = R−
π (converse);

(d) Rπ1◦π2 = Rπ1 ◦ Rπ2 (composition);

(e) Rπ1∪π2 = Rπ1 ∪ Rπ2 (union);

(f) Rπ∗ = R∗
π (reflexive-transitive closure);

(g) For every w, v ∈W , there is a sequence of points u1, . . . , un such
that (1) w = u1, (2) v = un, and (3) for every 1 ≤ i ≤ n − 1,
either, for some i ∈ I, uiRiui+1, or, for some i ∈ I, ui+1Riui

(connectedness).

The truth of PDLpath -formulas at a point in a path model is defined as
follows.

DEFINITION 27. Let M = (W, {Rπ}π∈ΛI , V ) be a path model, w, v ∈ W .
Then,

M, w � � always;
M, w �⊥ never;
M, w � r iff V (r) = {w};
M, w � ¬ϕ iff M, w � ϕ;
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ;
M, w � 〈π〉ϕ iff for some v ∈W,wRπv and M, v � ϕ;
M, w � @rϕ iff M, v � ϕ and V (r) = {v}.

Here are some examples of properties definable in PDLpath : r defines the
root; ¬〈#〉� defines leaf nodes; 〈(# ∪ #−)∗〉r defines nodes connected to
the root. To express a path constraint π1 ⊆ π2 (everything reachable from
the root by a path π1 is reachable by a path π2), we can say @r[π1]〈π2

−〉r.
Note that on connected graphs, @rϕ is definable as 〈(# ∪ #−)∗〉(r ∧ ϕ).
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In [3], it was proved that PDLpath is decidable (the proof is similar to
the proof of Theorem 13, reducing the satisfiability problem for PDLpath to
the satisfiability problem for CPDL with nominals. CPDL with nominals is
decidable in EXPTIME [5].

Now, we describe a Hilbert-style axiomatisation of PDLpath . Axiom
schemata of PDLpath can be logically divided into four parts.

The first part describes the behaviour of propositional connectives and
conventional modal operators 〈π〉 and [π ] :

(A0) all classical tautologies;

(K) [π ] (ϕ→ ψ) → ([π ] ϕ→ [π ] ψ);

(A1) 〈π〉ϕ↔ ¬[π ] ¬ϕ.

The second part describes the properties of path expression operators:

(A2) 〈π1 ◦ π2〉 ϕ↔ 〈π1〉 〈π2〉ϕ;

(A3) 〈π1 ∪ π2〉 ϕ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ;

(A4) 〈π∗〉ϕ↔ ϕ ∨ 〈π〉 〈π∗〉ϕ;

(A5) [π∗](ϕ→ [π ] ϕ) → (ϕ→ [π∗]ϕ);

(A6) ϕ→ [π− ] 〈π〉ϕ;

(A7) ϕ→ [π ] 〈π−〉ϕ;

(A8) ϕ↔ 〈id〉ϕ;

(ER) 〈i〉ϕ→ 〈#〉ϕ.

The third part describes properties of @r operator:

(A9) @r(ϕ→ ψ) → (@rϕ→ @rψ);

(A10) @rϕ↔ ¬@r¬ϕ;

(A11) r ∧ ϕ→ @rϕ;

(A12) @rr;

(A13) 〈π〉@rϕ→ @rϕ.

Finally, the following axiom pertains to connectedness:

(A14) 〈(# ∪ #−)∗〉 r.
The inference rules are:

(MP)
� ϕ→ ψ,� ϕ

� ψ ; (N)
� ϕ

� [π]ϕ
; (NN)

� ϕ
� @rϕ

;
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(EL)
� 〈i〉ϕ→ ψ

� 〈#〉ϕ→ ψ
, provided i does not occur in ψ.

In addition to the above axiom schemata and rules of inference, in the
course of the following completeness proof, we will appeal to two additional
rules of inference pertaining to the converse operator, whose derivability we
establish in the following lemma.

LEMMA 28. The following rules of inference are derivable in PDLpath :

� ϕ→ [π ]¬ψ
� ψ → [π−]¬ϕ ; � ϕ→ [π−]¬ψ

� ψ → [π ]¬ϕ .

Proof. The first rule can be derived as follows.

1. ϕ→ [π ]¬ψ – premise

2. ψ – assumption

3. [π− ] (ϕ→ [π ]¬ψ) – by (N) from 1

4. ψ → [π− ] 〈π〉ψ – (A6)

5. [π− ] 〈π〉ψ – by (MP) from 2, 4

6. [π− ] (〈π〉ψ ∧ (ϕ→ [π ]¬ψ)) – from 3, 5 by (K)

7. [π− ] (¬ϕ ∨ (〈π〉ψ ∧ [π ]¬ψ)) – by (K) and propositional reasoning
from 6

8. [π− ]¬ϕ – by (A1) and propositional reasoning from 7

9. ψ → [π− ]¬ϕ – from 2, 8.

The second rule can be derived analogously, relying on axiom (A7). �

6 Completeness for PDLpath

In this section, we prove completeness of the above axiomatisation of PDLpath

(its soundness is straightforward). As the language of PDLpath contains 〈#〉
and 〈π∗〉 , both of which give rise to non-compact logics, we can only prove
weak completeness for PDLpath . As in the completeness proofs for K# and
DK# , we use the completeness-via-finite-models technique.

DEFINITION 29. Let Σ be a set of PDLpath -formulas over ΛI . The closure
of Σ, CL(Σ), is the smallest set such that

• if ϕ ∈ Σ then Sub(ϕ) ⊆ CL(Σ);

• if 〈π−〉ϕ ∈ Σ then [π ] 〈π−〉ϕ ∈ CL(Σ) (here and below, π ranges over
all path labels);
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• if 〈π1 ◦ π2〉 ϕ ∈ CL(Σ) then 〈π1〉 〈π2〉ϕ ∈ CL(Σ);

• if 〈π1 ∪ π2〉 ϕ ∈ CL(Σ) then 〈π1〉ϕ ∨ 〈π2〉ϕ ∈ CL(Σ);

• if 〈π∗〉ϕ ∈ CL(Σ) then 〈π〉 〈π∗〉ϕ ∈ CL(Σ);

• if ψ ∈ CL(Σ) and ψ �= @rχ and ψ �= ¬@rχ, then @rψ ∈ CL(Σ);

• @rr ∈ CL(Σ);

• 〈(# ∪ #−)∗〉 r ∈ CL(Σ);

• if ϕ ∈ CL(Σ), then ∼ ϕ ∈ CL(Σ).

LEMMA 30. Let Σ be a set of PDLpath -formulas. If Σ is finite, then CL(Σ)
is finite, too.

PDLpath -atoms are defined exactly as K# -atoms. It is easy to show that,
in addition to the properties satisfied by K# -atoms, PDLpath -atoms have
the following ones:

• for all 〈π−〉ϕ ∈ CL(Σ), if ϕ ∈ A then [π ] 〈π−〉ϕ ∈ A;

• for all 〈π1 ◦ π2〉 ϕ ∈ CL(Σ), 〈π1 ◦ π2〉 ϕ ∈ A iff 〈π1〉 〈π2〉ϕ ∈ A;

• for all 〈π1 ∪ π2〉 ϕ ∈ CL(Σ), 〈π1 ∪ π2〉 ϕ ∈ A iff 〈π1〉ϕ ∨ 〈π2〉ϕ ∈ A;

• for all 〈π∗〉ϕ ∈ CL(Σ), 〈π∗〉ϕ ∈ A iff 〈π〉 〈π∗〉ϕ ∈ A;

• for all 〈id〉ϕ ∈ CL(Σ), 〈id〉ϕ ∈ A iff ϕ ∈ A.

LEMMA 31. If ϕ ∈ CL(Σ) is PDLpath -consistent, then there exists an atom
A over Σ such that ϕ ∈ A.

Now we define the finite canonical PDLpath -model over Σ.

DEFINITION 32. Let Σ be a finite set of PDLpath -formulas over the set of
path expressions ΛI and let a be an index such that a ∈ I but a does not
occur in CL(Σ). First, define a family of binary relations {Sπ} on the set
At(Σ) of atoms over Σ, as follows:

• For all atoms A,A′ ∈ At(Σ), ASπA
′ iff π ∈ CL(Σ) or π = a, and

Â ∧ 〈π〉 Â′ is consistent.

Now, the finite canonical model MΣ over ΛI is a tuple (WΣ, {RΣ
π}π∈ΛI , V

Σ)
such that

1. W = At(Σ);

2. V (r) = {A ∈ At(Σ) : r ∈ A };
3. • for every atomic c such that c ∈ CL(Σ) or c = a, RΣ

c = Sc;

• RΣ
# = S#;
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• RΣ
id = { (A,A) : A ∈ At(Σ) };

• RΣ
ρ = (RΣ

ρ )−;

• RΣ
π1◦π2

= RΣ
π1

◦ RΣ
π2

;

• RΣ
π1∪π2

= RΣ
π1

∪ RΣ
π2

;

• RΣ
π∗ = (RΣ)∗π .

It is easy to see that finite canonical models for PDLpath satisfy conditions
(3a)–(3f) required by definition 26 of path models (indeed, conditions (3b)–
(3f) are satisfied because of definition 32, and condition (3a) can be shown
to be satisfied in the same way as in the proof of lemma 10); thus, finite
canonical models are regular. This is enough to prove the existence lemma
and the truth lemma for finite canonical models.

To prove the existence lemma for finite canonical models, we first need
to show that, for every π ∈ ΛI , Sπ ⊆ RΣ

π .

LEMMA 33. For every π ∈ ΛI , Sπ ⊆ RΣ
π .

Proof. By induction on the complexity of π.
(0) The cases π ∈ I and π = # are obvious, since for π ∈ I ∪ {#},

RΣ
π = Sπ.
(1) Let π be id. Suppose that ASidB, that is Â ∧ 〈id〉 B̂ is consistent.

By (A8), Â ∧ B̂ is consistent. Since both A and B are atoms, this is only
possible if A = B. Therefore, ARΣ

idB.
(2) Let π be ρ. Suppose that ASρB, that is Â∧〈ρ−〉B̂ is consistent. This

implies consistency of B̂ ∧ 〈ρ〉 Â. Indeed, if we suppose otherwise, then �
B̂ → ¬〈ρ〉 Â and hence � B̂ → [ ρ ]¬Â. Then, by lemma 28, � Â→ [ρ−]¬B̂,
which means that, contrary to the assumption, Â ∧ 〈ρ−〉B̂ is inconsistent.
Thus, B̂∧〈ρ〉 Â is consistent and hence BSρA. By the inductive hypothesis,
BRΣ

ρA and therefore ARΣ
ρB, as required.

(3)-(5) The other cases are proved exactly as for PDL. �

LEMMA 34 (Existence lemma). Let Σ be a set of PDLpath -formulas over
ΛI , A be an atom over Σ, and π ∈ ΛI . Then, for all 〈π〉ψ ∈ CL(Σ),
〈π〉ψ ∈ A iff there is an atom A′ such that ARΣ

πA
′ and ψ ∈ A′.

Proof. The left-to-right direction can be proved using the standard “forcing
choices” technique: picking, for every ψ ∈ CL(Σ), either ψ itself of its
pseudo-negation (in a consistency-preserving way), build an atom A′ such
that Â∧〈π〉 Â′ is consistent. Then, by lemma 33, ARΣ

πA
′. The right-to-left

direction is proved by induction on the complexity of π.
(0) π ∈ I. Suppose that there is an atom A′ such that ϕ ∈ A′ and ARπA

′.
Then, by definition 32, ASπA

′, which means that Â ∧ 〈π〉 Â′ is consistent.
Then, as ϕ ∈ A′ and, thus, ϕ is one of the conjuncts of Â′, Â ∧ 〈π〉ϕ is
consistent, too. Then, as 〈π〉ϕ ∈ CL(Σ) and A is an atom, 〈π〉ϕ ∈ A.

(1) π = #. Analogously to (0).
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(2) π = ρ. Suppose that ARΣ
ρA

′ and ψ ∈ A′. Then, A′RΣ
ρA. As we know,

[ ρ ] 〈ρ−〉ψ ∈ A′. But this implies 〈ρ−〉ψ ∈ A; indeed, if we suppose otherwise
then ¬〈ρ−〉ψ ∈ A and so, by inductive hypothesis, 〈ρ〉 ¬〈ρ−〉ψ ∈ A′, which
is impossible since then A′ would be inconsistent.

(3)-(5) As for PDL. �

It is now easy to prove the truth lemma.

LEMMA 35. Let Σ be a set of PDLpath -formulas, MΣ be the finite canon-
ical model over Σ, and ψ ∈ CL(Σ). Then, for every A ∈ At(Σ), MΣ, A � ψ
iff ψ ∈ A.

What remains to be done is ensure that we can reshape MΣ into a model
with exactly one root in a truth-preserving way. To that end, we will show
that, given an atom A ∈ MΣ, if we take a submodel MΣ

A of MΣ generated
byA, then MΣ

A contains at most one root. This will be enough to prove weak
completeness for PDLpath , since axiom (A14) ensures that MΣ

A contains at
least one root.

First, note the following simple fact.

LEMMA 36. Let M be a regular model and w ∈ M. Then, the submodel
of M generated by w is also regular.

Next, we prove that all the atoms of the submodel of MΣ generated by
A agree on formulas beginning with @r.

LEMMA 37. Let A be an atom, MΣ
A be a submodel of MΣ generated by

A, and B and B′ be atoms such that B,B′ ∈ MΣ
A. Then, for every @rψ ∈

CL(Σ), @rψ ∈ B iff @rψ ∈ B′.

Proof. Assume that @rψ ∈ B and @rψ /∈ B′ (the other case is symmetrical)
and, hence ¬@rψ ∈ B′.

Notice that, for any two atoms X,X ′ ∈ MΣ
A, if XRΣ

i∈IX
′ and @rψ ∈ X ′,

then @rψ ∈ X . Indeed, otherwise, ¬@rψ ∈ X , which is impossible since, on
the one hand, by (A13), ¬@rψ∧〈i〉@rψ is inconsistent and hence X̂∧〈i〉 X̂ ′

is inconsistent, and on the other, by definition 32, XRΣ
i X

′ holds only if
X̂ ∧ 〈i〉 X̂ ′ is consistent. Analogously, for any two atoms X,X ′ ∈ MΣ

A, if
XRΣ

i X
′ and ¬@rψ ∈ X ′, then ¬@rψ ∈ X . For otherwise, @rψ ∈ X , which

is impossible since, on the one hand, by (A10) and (A13), @rψ ∧ 〈i〉 ¬@rψ

is inconsistent and hence X̂ ∧ 〈i〉 X̂ ′ is inconsistent, and on the other, by
definition 32, XRΣ

aX
′ holds only if X̂ ∧ 〈i〉 X̂ ′ is consistent. From the

foregoing, it also follows that, for any X,X ′ ∈ MΣ
A such that X ′RΣ

i X , if
@rψ ∈ X ′ then @rψ ∈ X and ¬@rψ ∈ X ′ then ¬@rψ ∈ X .

Since MΣ, and hence, by lemma 36, also MΣ
A are regular, B ∈ MΣ

A

implies that there is a chain of atomic transitions RΣ
i connecting A and B

(so that, to reach B from A, we can move forward as well as backward along
RΣ

i ’s in the chain). It follows that from @rψ ∈ B we can infer @rψ ∈ A
(using the argument of the preceding paragraphs, “pull back” @rψ along
the chain connecting A and B). Analogously, from ¬@rψ ∈ B′ we can infer
¬@rψ ∈ A. This is impossible since A is an atom. �
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Next, we can show that MΣ
A has at most one root.

LEMMA 38. Let A be an atom, MΣ
A be a submodel of MΣ generated by A,

and B and B′ be atoms such that (1) B,B′ ∈ MΣ
A and (2) B �= B′. Then,

at most one of B and B′ contains r.

Proof. Assume that r ∈ B and r ∈ B′. Since B �= B′, there is ψ ∈ CL(Σ)
such that ψ ∈ B and ∼ ψ ∈ B′. There are two cases to consider: (1) @rψ ∈
CL(Σ) and (2) @rψ /∈ CL(Σ) and, hence, either ψ = @rχ or ψ = ¬@rχ.

(1) Suppose that @rψ ∈ CL(Σ), and hence, ¬@rψ ∈ CL(Σ). As ψ ∈ B
and r ∈ B, we also have @rψ ∈ B (due to (A11), otherwise B would
be inconsistent). Analogously, ∼ ψ ∈ B and r ∈ B imply ¬@rψ ∈ B′.
However, since @rψ ∈ B (by lemma 37), we also have @rψ ∈ B′, which is
impossible.

(2) Suppose that @rψ /∈ CL(Σ) and, hence, either (2a) ψ = @rχ or (2b)
ψ = ¬@rχ. The case (2a) is analogous to the case (1), and the case (2b) is
symmetrical. �

Now we can show that MΣ
A is a path model.

LEMMA 39. Let A be an atom and MΣ
A be a submodel of MΣ generated

by A. Then, MΣ
A is a path model.

Proof. By lemma 36, MΣ
A is regular and, by lemma 38, it has no more

than one root. Moreover, (A14) guarantees that it has at least one root. �

The foregoing gives us the following theorem.

THEOREM 40. PDLpath is complete with respect to the class of all path
models.

7 PDLpath without connectedness

Now, we consider what happens if we want to drop from the semantic defi-
nition of PDLpath the requirement that path models should be connected.
It is easy to see that all we have to do to axiomatise PDLpath without
connectedness is to drop from the above axiomatisation of PDLpath axiom
(A14). Then, we can still show that every consistent formula has a model
with exactly one root.

The only difference between the completeness proof for PDLpath and the
completeness proof for PDLpath without connectedness is that, in the latter
case, we cannot prove the analogue of lemma 39, as the following example
shows.

EXAMPLE 41. Consider the formula ϕ = ¬〈(# ∪ #−)∗〉 r. Since now path
models are allowed to be unconnected, it is consistent, and hence, there is,
in the finite canonical model M{ϕ} over {ϕ}, an atom Aϕ such that ϕ ∈ Aϕ.
It is easy to see that the submodel M{ϕ}Aϕ of M{ϕ} generated by Aϕ, does
not contain an atom B such that r ∈ B.
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Nevertheless, as the following lemma shows, given a finite canonical model
for PDLpath without connectedness MΣ and an atom A, we can always
reshape MΣ

A into a path model.

LEMMA 42. Let A be an atom and MΣ
A be a submodel of MΣ generated

by A such that no X ∈ MΣ
A contains r. Then, there exists M′Σ

A such that
(1) M′Σ

A is a path model, and (2) for every X ∈ MΣ
A and every ψ ∈ CL(Σ),

M′Σ
A, X � ψ iff MΣ

A, X � ψ.

Proof. Let us take an arbitrary atom B ∈ MΣ
A and form the set Br = {χ :

@rχ ∈ B } (because of lemma 37, it does not matter which B we take).
First, note that Br is consistent. Indeed, suppose that χ1 ∧ . . . ∧ χn is

inconsistent, where {χ1, . . . , χn} = Br. Then, � ¬(χ1∧ . . .∧χn) and hence,
by (NN), � @r¬(χ1∧. . .∧χn). Therefore, due to (A10), � ¬@r(χ1∧. . .∧χn)
and, due to (K) and PL, � ¬(@rχ1 ∧ . . .∧@rχn), which is impossible since
then B would be inconsistent. Secondly, note that, as every X ∈ MΣ

A

contains @rr (due to (A12)), r ∈ Br. Since Br is consistent, by lemma 31,
there exists an atom C such that Br ⊆ C.

Next, obtain M′Σ
A by adding to MΣ

A the submodel MΣ
C of MΣ generated

by C. It is easy to see that M′Σ
A is a disjoint union of MΣ

A and MΣ
C . Indeed,

if for some X ∈ MΣ
A, some X ′ ∈ MΣ

C , and some i ∈ I we would have
either XRΣ

i X
′ or X ′RΣ

i X , then C would be in MΣ
A, which contradicts our

assumption that no atom in MΣ
A contains r. Now, first, by lemma 38, M′Σ

A

contains exactly one atom containing r (namely, C). Moreover, as both MΣ
A

and MΣ
C are, by lemma 36, regular (since they are generated submodels of

a regular model MΣ), M′Σ
A, being their disjoint union, is also regular.

Therefore, M′Σ
A is a path model. Secondly, as M′Σ

A is a disjoint union of
MΣ

A and MΣ
C , for every X ∈ MΣ

A and every ψ ∈ CL(Σ), M′Σ
A, X � ψ iff

MΣ
A, X � ψ. �

Using the preceding lemma, we can prove the following theorem.

THEOREM 43. PDLpath without axiom (A14) is complete with respect to
the class of all (not necessarily connected) path models.

8 Conclusions and future work

We have proved completeness and decidability of extensions of multi modal
K and DK with the existential modality, and axiomatised PDLpath , which
also contains this modality. In future work, we plan to investigate the
decidability of deterministic PDLpath . This involves investigating an open
problem of decidability of deterministic CPDL with nominals.
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